1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_sem (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem 25 * 26 * When a page fault occurs in writing from user to file, down_read 27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within 28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never 29 * taken together; in truncation, i_sem is taken outermost. 30 * 31 * mm->mmap_sem 32 * page->flags PG_locked (lock_page) 33 * mapping->i_mmap_lock 34 * anon_vma->lock 35 * mm->page_table_lock 36 * zone->lru_lock (in mark_page_accessed) 37 * swap_lock (in swap_duplicate, swap_info_get) 38 * mmlist_lock (in mmput, drain_mmlist and others) 39 * mapping->private_lock (in __set_page_dirty_buffers) 40 * inode_lock (in set_page_dirty's __mark_inode_dirty) 41 * sb_lock (within inode_lock in fs/fs-writeback.c) 42 * mapping->tree_lock (widely used, in set_page_dirty, 43 * in arch-dependent flush_dcache_mmap_lock, 44 * within inode_lock in __sync_single_inode) 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 56 #include <asm/tlbflush.h> 57 58 //#define RMAP_DEBUG /* can be enabled only for debugging */ 59 60 kmem_cache_t *anon_vma_cachep; 61 62 static inline void validate_anon_vma(struct vm_area_struct *find_vma) 63 { 64 #ifdef RMAP_DEBUG 65 struct anon_vma *anon_vma = find_vma->anon_vma; 66 struct vm_area_struct *vma; 67 unsigned int mapcount = 0; 68 int found = 0; 69 70 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 71 mapcount++; 72 BUG_ON(mapcount > 100000); 73 if (vma == find_vma) 74 found = 1; 75 } 76 BUG_ON(!found); 77 #endif 78 } 79 80 /* This must be called under the mmap_sem. */ 81 int anon_vma_prepare(struct vm_area_struct *vma) 82 { 83 struct anon_vma *anon_vma = vma->anon_vma; 84 85 might_sleep(); 86 if (unlikely(!anon_vma)) { 87 struct mm_struct *mm = vma->vm_mm; 88 struct anon_vma *allocated, *locked; 89 90 anon_vma = find_mergeable_anon_vma(vma); 91 if (anon_vma) { 92 allocated = NULL; 93 locked = anon_vma; 94 spin_lock(&locked->lock); 95 } else { 96 anon_vma = anon_vma_alloc(); 97 if (unlikely(!anon_vma)) 98 return -ENOMEM; 99 allocated = anon_vma; 100 locked = NULL; 101 } 102 103 /* page_table_lock to protect against threads */ 104 spin_lock(&mm->page_table_lock); 105 if (likely(!vma->anon_vma)) { 106 vma->anon_vma = anon_vma; 107 list_add(&vma->anon_vma_node, &anon_vma->head); 108 allocated = NULL; 109 } 110 spin_unlock(&mm->page_table_lock); 111 112 if (locked) 113 spin_unlock(&locked->lock); 114 if (unlikely(allocated)) 115 anon_vma_free(allocated); 116 } 117 return 0; 118 } 119 120 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 121 { 122 BUG_ON(vma->anon_vma != next->anon_vma); 123 list_del(&next->anon_vma_node); 124 } 125 126 void __anon_vma_link(struct vm_area_struct *vma) 127 { 128 struct anon_vma *anon_vma = vma->anon_vma; 129 130 if (anon_vma) { 131 list_add(&vma->anon_vma_node, &anon_vma->head); 132 validate_anon_vma(vma); 133 } 134 } 135 136 void anon_vma_link(struct vm_area_struct *vma) 137 { 138 struct anon_vma *anon_vma = vma->anon_vma; 139 140 if (anon_vma) { 141 spin_lock(&anon_vma->lock); 142 list_add(&vma->anon_vma_node, &anon_vma->head); 143 validate_anon_vma(vma); 144 spin_unlock(&anon_vma->lock); 145 } 146 } 147 148 void anon_vma_unlink(struct vm_area_struct *vma) 149 { 150 struct anon_vma *anon_vma = vma->anon_vma; 151 int empty; 152 153 if (!anon_vma) 154 return; 155 156 spin_lock(&anon_vma->lock); 157 validate_anon_vma(vma); 158 list_del(&vma->anon_vma_node); 159 160 /* We must garbage collect the anon_vma if it's empty */ 161 empty = list_empty(&anon_vma->head); 162 spin_unlock(&anon_vma->lock); 163 164 if (empty) 165 anon_vma_free(anon_vma); 166 } 167 168 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) 169 { 170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 171 SLAB_CTOR_CONSTRUCTOR) { 172 struct anon_vma *anon_vma = data; 173 174 spin_lock_init(&anon_vma->lock); 175 INIT_LIST_HEAD(&anon_vma->head); 176 } 177 } 178 179 void __init anon_vma_init(void) 180 { 181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); 183 } 184 185 /* 186 * Getting a lock on a stable anon_vma from a page off the LRU is 187 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 188 */ 189 static struct anon_vma *page_lock_anon_vma(struct page *page) 190 { 191 struct anon_vma *anon_vma = NULL; 192 unsigned long anon_mapping; 193 194 rcu_read_lock(); 195 anon_mapping = (unsigned long) page->mapping; 196 if (!(anon_mapping & PAGE_MAPPING_ANON)) 197 goto out; 198 if (!page_mapped(page)) 199 goto out; 200 201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 202 spin_lock(&anon_vma->lock); 203 out: 204 rcu_read_unlock(); 205 return anon_vma; 206 } 207 208 /* 209 * At what user virtual address is page expected in vma? 210 */ 211 static inline unsigned long 212 vma_address(struct page *page, struct vm_area_struct *vma) 213 { 214 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 215 unsigned long address; 216 217 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 218 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 219 /* page should be within any vma from prio_tree_next */ 220 BUG_ON(!PageAnon(page)); 221 return -EFAULT; 222 } 223 return address; 224 } 225 226 /* 227 * At what user virtual address is page expected in vma? checking that the 228 * page matches the vma: currently only used by unuse_process, on anon pages. 229 */ 230 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 231 { 232 if (PageAnon(page)) { 233 if ((void *)vma->anon_vma != 234 (void *)page->mapping - PAGE_MAPPING_ANON) 235 return -EFAULT; 236 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 237 if (vma->vm_file->f_mapping != page->mapping) 238 return -EFAULT; 239 } else 240 return -EFAULT; 241 return vma_address(page, vma); 242 } 243 244 /* 245 * Check that @page is mapped at @address into @mm. 246 * 247 * On success returns with mapped pte and locked mm->page_table_lock. 248 */ 249 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 250 unsigned long address) 251 { 252 pgd_t *pgd; 253 pud_t *pud; 254 pmd_t *pmd; 255 pte_t *pte; 256 257 /* 258 * We need the page_table_lock to protect us from page faults, 259 * munmap, fork, etc... 260 */ 261 spin_lock(&mm->page_table_lock); 262 pgd = pgd_offset(mm, address); 263 if (likely(pgd_present(*pgd))) { 264 pud = pud_offset(pgd, address); 265 if (likely(pud_present(*pud))) { 266 pmd = pmd_offset(pud, address); 267 if (likely(pmd_present(*pmd))) { 268 pte = pte_offset_map(pmd, address); 269 if (likely(pte_present(*pte) && 270 page_to_pfn(page) == pte_pfn(*pte))) 271 return pte; 272 pte_unmap(pte); 273 } 274 } 275 } 276 spin_unlock(&mm->page_table_lock); 277 return ERR_PTR(-ENOENT); 278 } 279 280 /* 281 * Subfunctions of page_referenced: page_referenced_one called 282 * repeatedly from either page_referenced_anon or page_referenced_file. 283 */ 284 static int page_referenced_one(struct page *page, 285 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token) 286 { 287 struct mm_struct *mm = vma->vm_mm; 288 unsigned long address; 289 pte_t *pte; 290 int referenced = 0; 291 292 address = vma_address(page, vma); 293 if (address == -EFAULT) 294 goto out; 295 296 pte = page_check_address(page, mm, address); 297 if (!IS_ERR(pte)) { 298 if (ptep_clear_flush_young(vma, address, pte)) 299 referenced++; 300 301 if (mm != current->mm && !ignore_token && has_swap_token(mm)) 302 referenced++; 303 304 (*mapcount)--; 305 pte_unmap(pte); 306 spin_unlock(&mm->page_table_lock); 307 } 308 out: 309 return referenced; 310 } 311 312 static int page_referenced_anon(struct page *page, int ignore_token) 313 { 314 unsigned int mapcount; 315 struct anon_vma *anon_vma; 316 struct vm_area_struct *vma; 317 int referenced = 0; 318 319 anon_vma = page_lock_anon_vma(page); 320 if (!anon_vma) 321 return referenced; 322 323 mapcount = page_mapcount(page); 324 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 325 referenced += page_referenced_one(page, vma, &mapcount, 326 ignore_token); 327 if (!mapcount) 328 break; 329 } 330 spin_unlock(&anon_vma->lock); 331 return referenced; 332 } 333 334 /** 335 * page_referenced_file - referenced check for object-based rmap 336 * @page: the page we're checking references on. 337 * 338 * For an object-based mapped page, find all the places it is mapped and 339 * check/clear the referenced flag. This is done by following the page->mapping 340 * pointer, then walking the chain of vmas it holds. It returns the number 341 * of references it found. 342 * 343 * This function is only called from page_referenced for object-based pages. 344 */ 345 static int page_referenced_file(struct page *page, int ignore_token) 346 { 347 unsigned int mapcount; 348 struct address_space *mapping = page->mapping; 349 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 350 struct vm_area_struct *vma; 351 struct prio_tree_iter iter; 352 int referenced = 0; 353 354 /* 355 * The caller's checks on page->mapping and !PageAnon have made 356 * sure that this is a file page: the check for page->mapping 357 * excludes the case just before it gets set on an anon page. 358 */ 359 BUG_ON(PageAnon(page)); 360 361 /* 362 * The page lock not only makes sure that page->mapping cannot 363 * suddenly be NULLified by truncation, it makes sure that the 364 * structure at mapping cannot be freed and reused yet, 365 * so we can safely take mapping->i_mmap_lock. 366 */ 367 BUG_ON(!PageLocked(page)); 368 369 spin_lock(&mapping->i_mmap_lock); 370 371 /* 372 * i_mmap_lock does not stabilize mapcount at all, but mapcount 373 * is more likely to be accurate if we note it after spinning. 374 */ 375 mapcount = page_mapcount(page); 376 377 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 378 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 379 == (VM_LOCKED|VM_MAYSHARE)) { 380 referenced++; 381 break; 382 } 383 referenced += page_referenced_one(page, vma, &mapcount, 384 ignore_token); 385 if (!mapcount) 386 break; 387 } 388 389 spin_unlock(&mapping->i_mmap_lock); 390 return referenced; 391 } 392 393 /** 394 * page_referenced - test if the page was referenced 395 * @page: the page to test 396 * @is_locked: caller holds lock on the page 397 * 398 * Quick test_and_clear_referenced for all mappings to a page, 399 * returns the number of ptes which referenced the page. 400 */ 401 int page_referenced(struct page *page, int is_locked, int ignore_token) 402 { 403 int referenced = 0; 404 405 if (!swap_token_default_timeout) 406 ignore_token = 1; 407 408 if (page_test_and_clear_young(page)) 409 referenced++; 410 411 if (TestClearPageReferenced(page)) 412 referenced++; 413 414 if (page_mapped(page) && page->mapping) { 415 if (PageAnon(page)) 416 referenced += page_referenced_anon(page, ignore_token); 417 else if (is_locked) 418 referenced += page_referenced_file(page, ignore_token); 419 else if (TestSetPageLocked(page)) 420 referenced++; 421 else { 422 if (page->mapping) 423 referenced += page_referenced_file(page, 424 ignore_token); 425 unlock_page(page); 426 } 427 } 428 return referenced; 429 } 430 431 /** 432 * page_add_anon_rmap - add pte mapping to an anonymous page 433 * @page: the page to add the mapping to 434 * @vma: the vm area in which the mapping is added 435 * @address: the user virtual address mapped 436 * 437 * The caller needs to hold the mm->page_table_lock. 438 */ 439 void page_add_anon_rmap(struct page *page, 440 struct vm_area_struct *vma, unsigned long address) 441 { 442 BUG_ON(PageReserved(page)); 443 444 inc_mm_counter(vma->vm_mm, anon_rss); 445 446 if (atomic_inc_and_test(&page->_mapcount)) { 447 struct anon_vma *anon_vma = vma->anon_vma; 448 449 BUG_ON(!anon_vma); 450 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 451 page->mapping = (struct address_space *) anon_vma; 452 453 page->index = linear_page_index(vma, address); 454 455 inc_page_state(nr_mapped); 456 } 457 /* else checking page index and mapping is racy */ 458 } 459 460 /** 461 * page_add_file_rmap - add pte mapping to a file page 462 * @page: the page to add the mapping to 463 * 464 * The caller needs to hold the mm->page_table_lock. 465 */ 466 void page_add_file_rmap(struct page *page) 467 { 468 BUG_ON(PageAnon(page)); 469 if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) 470 return; 471 472 if (atomic_inc_and_test(&page->_mapcount)) 473 inc_page_state(nr_mapped); 474 } 475 476 /** 477 * page_remove_rmap - take down pte mapping from a page 478 * @page: page to remove mapping from 479 * 480 * Caller needs to hold the mm->page_table_lock. 481 */ 482 void page_remove_rmap(struct page *page) 483 { 484 BUG_ON(PageReserved(page)); 485 486 if (atomic_add_negative(-1, &page->_mapcount)) { 487 BUG_ON(page_mapcount(page) < 0); 488 /* 489 * It would be tidy to reset the PageAnon mapping here, 490 * but that might overwrite a racing page_add_anon_rmap 491 * which increments mapcount after us but sets mapping 492 * before us: so leave the reset to free_hot_cold_page, 493 * and remember that it's only reliable while mapped. 494 * Leaving it set also helps swapoff to reinstate ptes 495 * faster for those pages still in swapcache. 496 */ 497 if (page_test_and_clear_dirty(page)) 498 set_page_dirty(page); 499 dec_page_state(nr_mapped); 500 } 501 } 502 503 /* 504 * Subfunctions of try_to_unmap: try_to_unmap_one called 505 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 506 */ 507 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) 508 { 509 struct mm_struct *mm = vma->vm_mm; 510 unsigned long address; 511 pte_t *pte; 512 pte_t pteval; 513 int ret = SWAP_AGAIN; 514 515 address = vma_address(page, vma); 516 if (address == -EFAULT) 517 goto out; 518 519 pte = page_check_address(page, mm, address); 520 if (IS_ERR(pte)) 521 goto out; 522 523 /* 524 * If the page is mlock()d, we cannot swap it out. 525 * If it's recently referenced (perhaps page_referenced 526 * skipped over this mm) then we should reactivate it. 527 * 528 * Pages belonging to VM_RESERVED regions should not happen here. 529 */ 530 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || 531 ptep_clear_flush_young(vma, address, pte)) { 532 ret = SWAP_FAIL; 533 goto out_unmap; 534 } 535 536 /* Nuke the page table entry. */ 537 flush_cache_page(vma, address, page_to_pfn(page)); 538 pteval = ptep_clear_flush(vma, address, pte); 539 540 /* Move the dirty bit to the physical page now the pte is gone. */ 541 if (pte_dirty(pteval)) 542 set_page_dirty(page); 543 544 if (PageAnon(page)) { 545 swp_entry_t entry = { .val = page->private }; 546 /* 547 * Store the swap location in the pte. 548 * See handle_pte_fault() ... 549 */ 550 BUG_ON(!PageSwapCache(page)); 551 swap_duplicate(entry); 552 if (list_empty(&mm->mmlist)) { 553 spin_lock(&mmlist_lock); 554 list_add(&mm->mmlist, &init_mm.mmlist); 555 spin_unlock(&mmlist_lock); 556 } 557 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 558 BUG_ON(pte_file(*pte)); 559 dec_mm_counter(mm, anon_rss); 560 } 561 562 dec_mm_counter(mm, rss); 563 page_remove_rmap(page); 564 page_cache_release(page); 565 566 out_unmap: 567 pte_unmap(pte); 568 spin_unlock(&mm->page_table_lock); 569 out: 570 return ret; 571 } 572 573 /* 574 * objrmap doesn't work for nonlinear VMAs because the assumption that 575 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 576 * Consequently, given a particular page and its ->index, we cannot locate the 577 * ptes which are mapping that page without an exhaustive linear search. 578 * 579 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 580 * maps the file to which the target page belongs. The ->vm_private_data field 581 * holds the current cursor into that scan. Successive searches will circulate 582 * around the vma's virtual address space. 583 * 584 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 585 * more scanning pressure is placed against them as well. Eventually pages 586 * will become fully unmapped and are eligible for eviction. 587 * 588 * For very sparsely populated VMAs this is a little inefficient - chances are 589 * there there won't be many ptes located within the scan cluster. In this case 590 * maybe we could scan further - to the end of the pte page, perhaps. 591 */ 592 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 593 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 594 595 static void try_to_unmap_cluster(unsigned long cursor, 596 unsigned int *mapcount, struct vm_area_struct *vma) 597 { 598 struct mm_struct *mm = vma->vm_mm; 599 pgd_t *pgd; 600 pud_t *pud; 601 pmd_t *pmd; 602 pte_t *pte, *original_pte; 603 pte_t pteval; 604 struct page *page; 605 unsigned long address; 606 unsigned long end; 607 unsigned long pfn; 608 609 /* 610 * We need the page_table_lock to protect us from page faults, 611 * munmap, fork, etc... 612 */ 613 spin_lock(&mm->page_table_lock); 614 615 address = (vma->vm_start + cursor) & CLUSTER_MASK; 616 end = address + CLUSTER_SIZE; 617 if (address < vma->vm_start) 618 address = vma->vm_start; 619 if (end > vma->vm_end) 620 end = vma->vm_end; 621 622 pgd = pgd_offset(mm, address); 623 if (!pgd_present(*pgd)) 624 goto out_unlock; 625 626 pud = pud_offset(pgd, address); 627 if (!pud_present(*pud)) 628 goto out_unlock; 629 630 pmd = pmd_offset(pud, address); 631 if (!pmd_present(*pmd)) 632 goto out_unlock; 633 634 for (original_pte = pte = pte_offset_map(pmd, address); 635 address < end; pte++, address += PAGE_SIZE) { 636 637 if (!pte_present(*pte)) 638 continue; 639 640 pfn = pte_pfn(*pte); 641 if (!pfn_valid(pfn)) 642 continue; 643 644 page = pfn_to_page(pfn); 645 BUG_ON(PageAnon(page)); 646 if (PageReserved(page)) 647 continue; 648 649 if (ptep_clear_flush_young(vma, address, pte)) 650 continue; 651 652 /* Nuke the page table entry. */ 653 flush_cache_page(vma, address, pfn); 654 pteval = ptep_clear_flush(vma, address, pte); 655 656 /* If nonlinear, store the file page offset in the pte. */ 657 if (page->index != linear_page_index(vma, address)) 658 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 659 660 /* Move the dirty bit to the physical page now the pte is gone. */ 661 if (pte_dirty(pteval)) 662 set_page_dirty(page); 663 664 page_remove_rmap(page); 665 page_cache_release(page); 666 dec_mm_counter(mm, rss); 667 (*mapcount)--; 668 } 669 670 pte_unmap(original_pte); 671 out_unlock: 672 spin_unlock(&mm->page_table_lock); 673 } 674 675 static int try_to_unmap_anon(struct page *page) 676 { 677 struct anon_vma *anon_vma; 678 struct vm_area_struct *vma; 679 int ret = SWAP_AGAIN; 680 681 anon_vma = page_lock_anon_vma(page); 682 if (!anon_vma) 683 return ret; 684 685 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 686 ret = try_to_unmap_one(page, vma); 687 if (ret == SWAP_FAIL || !page_mapped(page)) 688 break; 689 } 690 spin_unlock(&anon_vma->lock); 691 return ret; 692 } 693 694 /** 695 * try_to_unmap_file - unmap file page using the object-based rmap method 696 * @page: the page to unmap 697 * 698 * Find all the mappings of a page using the mapping pointer and the vma chains 699 * contained in the address_space struct it points to. 700 * 701 * This function is only called from try_to_unmap for object-based pages. 702 */ 703 static int try_to_unmap_file(struct page *page) 704 { 705 struct address_space *mapping = page->mapping; 706 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 707 struct vm_area_struct *vma; 708 struct prio_tree_iter iter; 709 int ret = SWAP_AGAIN; 710 unsigned long cursor; 711 unsigned long max_nl_cursor = 0; 712 unsigned long max_nl_size = 0; 713 unsigned int mapcount; 714 715 spin_lock(&mapping->i_mmap_lock); 716 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 717 ret = try_to_unmap_one(page, vma); 718 if (ret == SWAP_FAIL || !page_mapped(page)) 719 goto out; 720 } 721 722 if (list_empty(&mapping->i_mmap_nonlinear)) 723 goto out; 724 725 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 726 shared.vm_set.list) { 727 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) 728 continue; 729 cursor = (unsigned long) vma->vm_private_data; 730 if (cursor > max_nl_cursor) 731 max_nl_cursor = cursor; 732 cursor = vma->vm_end - vma->vm_start; 733 if (cursor > max_nl_size) 734 max_nl_size = cursor; 735 } 736 737 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 738 ret = SWAP_FAIL; 739 goto out; 740 } 741 742 /* 743 * We don't try to search for this page in the nonlinear vmas, 744 * and page_referenced wouldn't have found it anyway. Instead 745 * just walk the nonlinear vmas trying to age and unmap some. 746 * The mapcount of the page we came in with is irrelevant, 747 * but even so use it as a guide to how hard we should try? 748 */ 749 mapcount = page_mapcount(page); 750 if (!mapcount) 751 goto out; 752 cond_resched_lock(&mapping->i_mmap_lock); 753 754 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 755 if (max_nl_cursor == 0) 756 max_nl_cursor = CLUSTER_SIZE; 757 758 do { 759 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 760 shared.vm_set.list) { 761 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) 762 continue; 763 cursor = (unsigned long) vma->vm_private_data; 764 while ( cursor < max_nl_cursor && 765 cursor < vma->vm_end - vma->vm_start) { 766 try_to_unmap_cluster(cursor, &mapcount, vma); 767 cursor += CLUSTER_SIZE; 768 vma->vm_private_data = (void *) cursor; 769 if ((int)mapcount <= 0) 770 goto out; 771 } 772 vma->vm_private_data = (void *) max_nl_cursor; 773 } 774 cond_resched_lock(&mapping->i_mmap_lock); 775 max_nl_cursor += CLUSTER_SIZE; 776 } while (max_nl_cursor <= max_nl_size); 777 778 /* 779 * Don't loop forever (perhaps all the remaining pages are 780 * in locked vmas). Reset cursor on all unreserved nonlinear 781 * vmas, now forgetting on which ones it had fallen behind. 782 */ 783 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 784 shared.vm_set.list) { 785 if (!(vma->vm_flags & VM_RESERVED)) 786 vma->vm_private_data = NULL; 787 } 788 out: 789 spin_unlock(&mapping->i_mmap_lock); 790 return ret; 791 } 792 793 /** 794 * try_to_unmap - try to remove all page table mappings to a page 795 * @page: the page to get unmapped 796 * 797 * Tries to remove all the page table entries which are mapping this 798 * page, used in the pageout path. Caller must hold the page lock. 799 * Return values are: 800 * 801 * SWAP_SUCCESS - we succeeded in removing all mappings 802 * SWAP_AGAIN - we missed a mapping, try again later 803 * SWAP_FAIL - the page is unswappable 804 */ 805 int try_to_unmap(struct page *page) 806 { 807 int ret; 808 809 BUG_ON(PageReserved(page)); 810 BUG_ON(!PageLocked(page)); 811 812 if (PageAnon(page)) 813 ret = try_to_unmap_anon(page); 814 else 815 ret = try_to_unmap_file(page); 816 817 if (!page_mapped(page)) 818 ret = SWAP_SUCCESS; 819 return ret; 820 } 821 822