xref: /linux/mm/rmap.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_sem	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem
25  *
26  * When a page fault occurs in writing from user to file, down_read
27  * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28  * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29  * taken together; in truncation, i_sem is taken outermost.
30  *
31  * mm->mmap_sem
32  *   page->flags PG_locked (lock_page)
33  *     mapping->i_mmap_lock
34  *       anon_vma->lock
35  *         mm->page_table_lock
36  *           zone->lru_lock (in mark_page_accessed)
37  *           swap_lock (in swap_duplicate, swap_info_get)
38  *             mmlist_lock (in mmput, drain_mmlist and others)
39  *             mapping->private_lock (in __set_page_dirty_buffers)
40  *             inode_lock (in set_page_dirty's __mark_inode_dirty)
41  *               sb_lock (within inode_lock in fs/fs-writeback.c)
42  *               mapping->tree_lock (widely used, in set_page_dirty,
43  *                         in arch-dependent flush_dcache_mmap_lock,
44  *                         within inode_lock in __sync_single_inode)
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 
56 #include <asm/tlbflush.h>
57 
58 //#define RMAP_DEBUG /* can be enabled only for debugging */
59 
60 kmem_cache_t *anon_vma_cachep;
61 
62 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
63 {
64 #ifdef RMAP_DEBUG
65 	struct anon_vma *anon_vma = find_vma->anon_vma;
66 	struct vm_area_struct *vma;
67 	unsigned int mapcount = 0;
68 	int found = 0;
69 
70 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
71 		mapcount++;
72 		BUG_ON(mapcount > 100000);
73 		if (vma == find_vma)
74 			found = 1;
75 	}
76 	BUG_ON(!found);
77 #endif
78 }
79 
80 /* This must be called under the mmap_sem. */
81 int anon_vma_prepare(struct vm_area_struct *vma)
82 {
83 	struct anon_vma *anon_vma = vma->anon_vma;
84 
85 	might_sleep();
86 	if (unlikely(!anon_vma)) {
87 		struct mm_struct *mm = vma->vm_mm;
88 		struct anon_vma *allocated, *locked;
89 
90 		anon_vma = find_mergeable_anon_vma(vma);
91 		if (anon_vma) {
92 			allocated = NULL;
93 			locked = anon_vma;
94 			spin_lock(&locked->lock);
95 		} else {
96 			anon_vma = anon_vma_alloc();
97 			if (unlikely(!anon_vma))
98 				return -ENOMEM;
99 			allocated = anon_vma;
100 			locked = NULL;
101 		}
102 
103 		/* page_table_lock to protect against threads */
104 		spin_lock(&mm->page_table_lock);
105 		if (likely(!vma->anon_vma)) {
106 			vma->anon_vma = anon_vma;
107 			list_add(&vma->anon_vma_node, &anon_vma->head);
108 			allocated = NULL;
109 		}
110 		spin_unlock(&mm->page_table_lock);
111 
112 		if (locked)
113 			spin_unlock(&locked->lock);
114 		if (unlikely(allocated))
115 			anon_vma_free(allocated);
116 	}
117 	return 0;
118 }
119 
120 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
121 {
122 	BUG_ON(vma->anon_vma != next->anon_vma);
123 	list_del(&next->anon_vma_node);
124 }
125 
126 void __anon_vma_link(struct vm_area_struct *vma)
127 {
128 	struct anon_vma *anon_vma = vma->anon_vma;
129 
130 	if (anon_vma) {
131 		list_add(&vma->anon_vma_node, &anon_vma->head);
132 		validate_anon_vma(vma);
133 	}
134 }
135 
136 void anon_vma_link(struct vm_area_struct *vma)
137 {
138 	struct anon_vma *anon_vma = vma->anon_vma;
139 
140 	if (anon_vma) {
141 		spin_lock(&anon_vma->lock);
142 		list_add(&vma->anon_vma_node, &anon_vma->head);
143 		validate_anon_vma(vma);
144 		spin_unlock(&anon_vma->lock);
145 	}
146 }
147 
148 void anon_vma_unlink(struct vm_area_struct *vma)
149 {
150 	struct anon_vma *anon_vma = vma->anon_vma;
151 	int empty;
152 
153 	if (!anon_vma)
154 		return;
155 
156 	spin_lock(&anon_vma->lock);
157 	validate_anon_vma(vma);
158 	list_del(&vma->anon_vma_node);
159 
160 	/* We must garbage collect the anon_vma if it's empty */
161 	empty = list_empty(&anon_vma->head);
162 	spin_unlock(&anon_vma->lock);
163 
164 	if (empty)
165 		anon_vma_free(anon_vma);
166 }
167 
168 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
169 {
170 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 						SLAB_CTOR_CONSTRUCTOR) {
172 		struct anon_vma *anon_vma = data;
173 
174 		spin_lock_init(&anon_vma->lock);
175 		INIT_LIST_HEAD(&anon_vma->head);
176 	}
177 }
178 
179 void __init anon_vma_init(void)
180 {
181 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
183 }
184 
185 /*
186  * Getting a lock on a stable anon_vma from a page off the LRU is
187  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
188  */
189 static struct anon_vma *page_lock_anon_vma(struct page *page)
190 {
191 	struct anon_vma *anon_vma = NULL;
192 	unsigned long anon_mapping;
193 
194 	rcu_read_lock();
195 	anon_mapping = (unsigned long) page->mapping;
196 	if (!(anon_mapping & PAGE_MAPPING_ANON))
197 		goto out;
198 	if (!page_mapped(page))
199 		goto out;
200 
201 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 	spin_lock(&anon_vma->lock);
203 out:
204 	rcu_read_unlock();
205 	return anon_vma;
206 }
207 
208 /*
209  * At what user virtual address is page expected in vma?
210  */
211 static inline unsigned long
212 vma_address(struct page *page, struct vm_area_struct *vma)
213 {
214 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
215 	unsigned long address;
216 
217 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
218 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
219 		/* page should be within any vma from prio_tree_next */
220 		BUG_ON(!PageAnon(page));
221 		return -EFAULT;
222 	}
223 	return address;
224 }
225 
226 /*
227  * At what user virtual address is page expected in vma? checking that the
228  * page matches the vma: currently only used by unuse_process, on anon pages.
229  */
230 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
231 {
232 	if (PageAnon(page)) {
233 		if ((void *)vma->anon_vma !=
234 		    (void *)page->mapping - PAGE_MAPPING_ANON)
235 			return -EFAULT;
236 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
237 		if (vma->vm_file->f_mapping != page->mapping)
238 			return -EFAULT;
239 	} else
240 		return -EFAULT;
241 	return vma_address(page, vma);
242 }
243 
244 /*
245  * Check that @page is mapped at @address into @mm.
246  *
247  * On success returns with mapped pte and locked mm->page_table_lock.
248  */
249 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
250 			  unsigned long address)
251 {
252 	pgd_t *pgd;
253 	pud_t *pud;
254 	pmd_t *pmd;
255 	pte_t *pte;
256 
257 	/*
258 	 * We need the page_table_lock to protect us from page faults,
259 	 * munmap, fork, etc...
260 	 */
261 	spin_lock(&mm->page_table_lock);
262 	pgd = pgd_offset(mm, address);
263 	if (likely(pgd_present(*pgd))) {
264 		pud = pud_offset(pgd, address);
265 		if (likely(pud_present(*pud))) {
266 			pmd = pmd_offset(pud, address);
267 			if (likely(pmd_present(*pmd))) {
268 				pte = pte_offset_map(pmd, address);
269 				if (likely(pte_present(*pte) &&
270 					   page_to_pfn(page) == pte_pfn(*pte)))
271 					return pte;
272 				pte_unmap(pte);
273 			}
274 		}
275 	}
276 	spin_unlock(&mm->page_table_lock);
277 	return ERR_PTR(-ENOENT);
278 }
279 
280 /*
281  * Subfunctions of page_referenced: page_referenced_one called
282  * repeatedly from either page_referenced_anon or page_referenced_file.
283  */
284 static int page_referenced_one(struct page *page,
285 	struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
286 {
287 	struct mm_struct *mm = vma->vm_mm;
288 	unsigned long address;
289 	pte_t *pte;
290 	int referenced = 0;
291 
292 	address = vma_address(page, vma);
293 	if (address == -EFAULT)
294 		goto out;
295 
296 	pte = page_check_address(page, mm, address);
297 	if (!IS_ERR(pte)) {
298 		if (ptep_clear_flush_young(vma, address, pte))
299 			referenced++;
300 
301 		if (mm != current->mm && !ignore_token && has_swap_token(mm))
302 			referenced++;
303 
304 		(*mapcount)--;
305 		pte_unmap(pte);
306 		spin_unlock(&mm->page_table_lock);
307 	}
308 out:
309 	return referenced;
310 }
311 
312 static int page_referenced_anon(struct page *page, int ignore_token)
313 {
314 	unsigned int mapcount;
315 	struct anon_vma *anon_vma;
316 	struct vm_area_struct *vma;
317 	int referenced = 0;
318 
319 	anon_vma = page_lock_anon_vma(page);
320 	if (!anon_vma)
321 		return referenced;
322 
323 	mapcount = page_mapcount(page);
324 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
325 		referenced += page_referenced_one(page, vma, &mapcount,
326 							ignore_token);
327 		if (!mapcount)
328 			break;
329 	}
330 	spin_unlock(&anon_vma->lock);
331 	return referenced;
332 }
333 
334 /**
335  * page_referenced_file - referenced check for object-based rmap
336  * @page: the page we're checking references on.
337  *
338  * For an object-based mapped page, find all the places it is mapped and
339  * check/clear the referenced flag.  This is done by following the page->mapping
340  * pointer, then walking the chain of vmas it holds.  It returns the number
341  * of references it found.
342  *
343  * This function is only called from page_referenced for object-based pages.
344  */
345 static int page_referenced_file(struct page *page, int ignore_token)
346 {
347 	unsigned int mapcount;
348 	struct address_space *mapping = page->mapping;
349 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
350 	struct vm_area_struct *vma;
351 	struct prio_tree_iter iter;
352 	int referenced = 0;
353 
354 	/*
355 	 * The caller's checks on page->mapping and !PageAnon have made
356 	 * sure that this is a file page: the check for page->mapping
357 	 * excludes the case just before it gets set on an anon page.
358 	 */
359 	BUG_ON(PageAnon(page));
360 
361 	/*
362 	 * The page lock not only makes sure that page->mapping cannot
363 	 * suddenly be NULLified by truncation, it makes sure that the
364 	 * structure at mapping cannot be freed and reused yet,
365 	 * so we can safely take mapping->i_mmap_lock.
366 	 */
367 	BUG_ON(!PageLocked(page));
368 
369 	spin_lock(&mapping->i_mmap_lock);
370 
371 	/*
372 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
373 	 * is more likely to be accurate if we note it after spinning.
374 	 */
375 	mapcount = page_mapcount(page);
376 
377 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
378 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
379 				  == (VM_LOCKED|VM_MAYSHARE)) {
380 			referenced++;
381 			break;
382 		}
383 		referenced += page_referenced_one(page, vma, &mapcount,
384 							ignore_token);
385 		if (!mapcount)
386 			break;
387 	}
388 
389 	spin_unlock(&mapping->i_mmap_lock);
390 	return referenced;
391 }
392 
393 /**
394  * page_referenced - test if the page was referenced
395  * @page: the page to test
396  * @is_locked: caller holds lock on the page
397  *
398  * Quick test_and_clear_referenced for all mappings to a page,
399  * returns the number of ptes which referenced the page.
400  */
401 int page_referenced(struct page *page, int is_locked, int ignore_token)
402 {
403 	int referenced = 0;
404 
405 	if (!swap_token_default_timeout)
406 		ignore_token = 1;
407 
408 	if (page_test_and_clear_young(page))
409 		referenced++;
410 
411 	if (TestClearPageReferenced(page))
412 		referenced++;
413 
414 	if (page_mapped(page) && page->mapping) {
415 		if (PageAnon(page))
416 			referenced += page_referenced_anon(page, ignore_token);
417 		else if (is_locked)
418 			referenced += page_referenced_file(page, ignore_token);
419 		else if (TestSetPageLocked(page))
420 			referenced++;
421 		else {
422 			if (page->mapping)
423 				referenced += page_referenced_file(page,
424 								ignore_token);
425 			unlock_page(page);
426 		}
427 	}
428 	return referenced;
429 }
430 
431 /**
432  * page_add_anon_rmap - add pte mapping to an anonymous page
433  * @page:	the page to add the mapping to
434  * @vma:	the vm area in which the mapping is added
435  * @address:	the user virtual address mapped
436  *
437  * The caller needs to hold the mm->page_table_lock.
438  */
439 void page_add_anon_rmap(struct page *page,
440 	struct vm_area_struct *vma, unsigned long address)
441 {
442 	BUG_ON(PageReserved(page));
443 
444 	inc_mm_counter(vma->vm_mm, anon_rss);
445 
446 	if (atomic_inc_and_test(&page->_mapcount)) {
447 		struct anon_vma *anon_vma = vma->anon_vma;
448 
449 		BUG_ON(!anon_vma);
450 		anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
451 		page->mapping = (struct address_space *) anon_vma;
452 
453 		page->index = linear_page_index(vma, address);
454 
455 		inc_page_state(nr_mapped);
456 	}
457 	/* else checking page index and mapping is racy */
458 }
459 
460 /**
461  * page_add_file_rmap - add pte mapping to a file page
462  * @page: the page to add the mapping to
463  *
464  * The caller needs to hold the mm->page_table_lock.
465  */
466 void page_add_file_rmap(struct page *page)
467 {
468 	BUG_ON(PageAnon(page));
469 	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
470 		return;
471 
472 	if (atomic_inc_and_test(&page->_mapcount))
473 		inc_page_state(nr_mapped);
474 }
475 
476 /**
477  * page_remove_rmap - take down pte mapping from a page
478  * @page: page to remove mapping from
479  *
480  * Caller needs to hold the mm->page_table_lock.
481  */
482 void page_remove_rmap(struct page *page)
483 {
484 	BUG_ON(PageReserved(page));
485 
486 	if (atomic_add_negative(-1, &page->_mapcount)) {
487 		BUG_ON(page_mapcount(page) < 0);
488 		/*
489 		 * It would be tidy to reset the PageAnon mapping here,
490 		 * but that might overwrite a racing page_add_anon_rmap
491 		 * which increments mapcount after us but sets mapping
492 		 * before us: so leave the reset to free_hot_cold_page,
493 		 * and remember that it's only reliable while mapped.
494 		 * Leaving it set also helps swapoff to reinstate ptes
495 		 * faster for those pages still in swapcache.
496 		 */
497 		if (page_test_and_clear_dirty(page))
498 			set_page_dirty(page);
499 		dec_page_state(nr_mapped);
500 	}
501 }
502 
503 /*
504  * Subfunctions of try_to_unmap: try_to_unmap_one called
505  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
506  */
507 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
508 {
509 	struct mm_struct *mm = vma->vm_mm;
510 	unsigned long address;
511 	pte_t *pte;
512 	pte_t pteval;
513 	int ret = SWAP_AGAIN;
514 
515 	address = vma_address(page, vma);
516 	if (address == -EFAULT)
517 		goto out;
518 
519 	pte = page_check_address(page, mm, address);
520 	if (IS_ERR(pte))
521 		goto out;
522 
523 	/*
524 	 * If the page is mlock()d, we cannot swap it out.
525 	 * If it's recently referenced (perhaps page_referenced
526 	 * skipped over this mm) then we should reactivate it.
527 	 *
528 	 * Pages belonging to VM_RESERVED regions should not happen here.
529 	 */
530 	if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
531 			ptep_clear_flush_young(vma, address, pte)) {
532 		ret = SWAP_FAIL;
533 		goto out_unmap;
534 	}
535 
536 	/* Nuke the page table entry. */
537 	flush_cache_page(vma, address, page_to_pfn(page));
538 	pteval = ptep_clear_flush(vma, address, pte);
539 
540 	/* Move the dirty bit to the physical page now the pte is gone. */
541 	if (pte_dirty(pteval))
542 		set_page_dirty(page);
543 
544 	if (PageAnon(page)) {
545 		swp_entry_t entry = { .val = page->private };
546 		/*
547 		 * Store the swap location in the pte.
548 		 * See handle_pte_fault() ...
549 		 */
550 		BUG_ON(!PageSwapCache(page));
551 		swap_duplicate(entry);
552 		if (list_empty(&mm->mmlist)) {
553 			spin_lock(&mmlist_lock);
554 			list_add(&mm->mmlist, &init_mm.mmlist);
555 			spin_unlock(&mmlist_lock);
556 		}
557 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
558 		BUG_ON(pte_file(*pte));
559 		dec_mm_counter(mm, anon_rss);
560 	}
561 
562 	dec_mm_counter(mm, rss);
563 	page_remove_rmap(page);
564 	page_cache_release(page);
565 
566 out_unmap:
567 	pte_unmap(pte);
568 	spin_unlock(&mm->page_table_lock);
569 out:
570 	return ret;
571 }
572 
573 /*
574  * objrmap doesn't work for nonlinear VMAs because the assumption that
575  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
576  * Consequently, given a particular page and its ->index, we cannot locate the
577  * ptes which are mapping that page without an exhaustive linear search.
578  *
579  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
580  * maps the file to which the target page belongs.  The ->vm_private_data field
581  * holds the current cursor into that scan.  Successive searches will circulate
582  * around the vma's virtual address space.
583  *
584  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
585  * more scanning pressure is placed against them as well.   Eventually pages
586  * will become fully unmapped and are eligible for eviction.
587  *
588  * For very sparsely populated VMAs this is a little inefficient - chances are
589  * there there won't be many ptes located within the scan cluster.  In this case
590  * maybe we could scan further - to the end of the pte page, perhaps.
591  */
592 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
593 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
594 
595 static void try_to_unmap_cluster(unsigned long cursor,
596 	unsigned int *mapcount, struct vm_area_struct *vma)
597 {
598 	struct mm_struct *mm = vma->vm_mm;
599 	pgd_t *pgd;
600 	pud_t *pud;
601 	pmd_t *pmd;
602 	pte_t *pte, *original_pte;
603 	pte_t pteval;
604 	struct page *page;
605 	unsigned long address;
606 	unsigned long end;
607 	unsigned long pfn;
608 
609 	/*
610 	 * We need the page_table_lock to protect us from page faults,
611 	 * munmap, fork, etc...
612 	 */
613 	spin_lock(&mm->page_table_lock);
614 
615 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
616 	end = address + CLUSTER_SIZE;
617 	if (address < vma->vm_start)
618 		address = vma->vm_start;
619 	if (end > vma->vm_end)
620 		end = vma->vm_end;
621 
622 	pgd = pgd_offset(mm, address);
623 	if (!pgd_present(*pgd))
624 		goto out_unlock;
625 
626 	pud = pud_offset(pgd, address);
627 	if (!pud_present(*pud))
628 		goto out_unlock;
629 
630 	pmd = pmd_offset(pud, address);
631 	if (!pmd_present(*pmd))
632 		goto out_unlock;
633 
634 	for (original_pte = pte = pte_offset_map(pmd, address);
635 			address < end; pte++, address += PAGE_SIZE) {
636 
637 		if (!pte_present(*pte))
638 			continue;
639 
640 		pfn = pte_pfn(*pte);
641 		if (!pfn_valid(pfn))
642 			continue;
643 
644 		page = pfn_to_page(pfn);
645 		BUG_ON(PageAnon(page));
646 		if (PageReserved(page))
647 			continue;
648 
649 		if (ptep_clear_flush_young(vma, address, pte))
650 			continue;
651 
652 		/* Nuke the page table entry. */
653 		flush_cache_page(vma, address, pfn);
654 		pteval = ptep_clear_flush(vma, address, pte);
655 
656 		/* If nonlinear, store the file page offset in the pte. */
657 		if (page->index != linear_page_index(vma, address))
658 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
659 
660 		/* Move the dirty bit to the physical page now the pte is gone. */
661 		if (pte_dirty(pteval))
662 			set_page_dirty(page);
663 
664 		page_remove_rmap(page);
665 		page_cache_release(page);
666 		dec_mm_counter(mm, rss);
667 		(*mapcount)--;
668 	}
669 
670 	pte_unmap(original_pte);
671 out_unlock:
672 	spin_unlock(&mm->page_table_lock);
673 }
674 
675 static int try_to_unmap_anon(struct page *page)
676 {
677 	struct anon_vma *anon_vma;
678 	struct vm_area_struct *vma;
679 	int ret = SWAP_AGAIN;
680 
681 	anon_vma = page_lock_anon_vma(page);
682 	if (!anon_vma)
683 		return ret;
684 
685 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
686 		ret = try_to_unmap_one(page, vma);
687 		if (ret == SWAP_FAIL || !page_mapped(page))
688 			break;
689 	}
690 	spin_unlock(&anon_vma->lock);
691 	return ret;
692 }
693 
694 /**
695  * try_to_unmap_file - unmap file page using the object-based rmap method
696  * @page: the page to unmap
697  *
698  * Find all the mappings of a page using the mapping pointer and the vma chains
699  * contained in the address_space struct it points to.
700  *
701  * This function is only called from try_to_unmap for object-based pages.
702  */
703 static int try_to_unmap_file(struct page *page)
704 {
705 	struct address_space *mapping = page->mapping;
706 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
707 	struct vm_area_struct *vma;
708 	struct prio_tree_iter iter;
709 	int ret = SWAP_AGAIN;
710 	unsigned long cursor;
711 	unsigned long max_nl_cursor = 0;
712 	unsigned long max_nl_size = 0;
713 	unsigned int mapcount;
714 
715 	spin_lock(&mapping->i_mmap_lock);
716 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
717 		ret = try_to_unmap_one(page, vma);
718 		if (ret == SWAP_FAIL || !page_mapped(page))
719 			goto out;
720 	}
721 
722 	if (list_empty(&mapping->i_mmap_nonlinear))
723 		goto out;
724 
725 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
726 						shared.vm_set.list) {
727 		if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
728 			continue;
729 		cursor = (unsigned long) vma->vm_private_data;
730 		if (cursor > max_nl_cursor)
731 			max_nl_cursor = cursor;
732 		cursor = vma->vm_end - vma->vm_start;
733 		if (cursor > max_nl_size)
734 			max_nl_size = cursor;
735 	}
736 
737 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
738 		ret = SWAP_FAIL;
739 		goto out;
740 	}
741 
742 	/*
743 	 * We don't try to search for this page in the nonlinear vmas,
744 	 * and page_referenced wouldn't have found it anyway.  Instead
745 	 * just walk the nonlinear vmas trying to age and unmap some.
746 	 * The mapcount of the page we came in with is irrelevant,
747 	 * but even so use it as a guide to how hard we should try?
748 	 */
749 	mapcount = page_mapcount(page);
750 	if (!mapcount)
751 		goto out;
752 	cond_resched_lock(&mapping->i_mmap_lock);
753 
754 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
755 	if (max_nl_cursor == 0)
756 		max_nl_cursor = CLUSTER_SIZE;
757 
758 	do {
759 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
760 						shared.vm_set.list) {
761 			if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
762 				continue;
763 			cursor = (unsigned long) vma->vm_private_data;
764 			while ( cursor < max_nl_cursor &&
765 				cursor < vma->vm_end - vma->vm_start) {
766 				try_to_unmap_cluster(cursor, &mapcount, vma);
767 				cursor += CLUSTER_SIZE;
768 				vma->vm_private_data = (void *) cursor;
769 				if ((int)mapcount <= 0)
770 					goto out;
771 			}
772 			vma->vm_private_data = (void *) max_nl_cursor;
773 		}
774 		cond_resched_lock(&mapping->i_mmap_lock);
775 		max_nl_cursor += CLUSTER_SIZE;
776 	} while (max_nl_cursor <= max_nl_size);
777 
778 	/*
779 	 * Don't loop forever (perhaps all the remaining pages are
780 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
781 	 * vmas, now forgetting on which ones it had fallen behind.
782 	 */
783 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
784 						shared.vm_set.list) {
785 		if (!(vma->vm_flags & VM_RESERVED))
786 			vma->vm_private_data = NULL;
787 	}
788 out:
789 	spin_unlock(&mapping->i_mmap_lock);
790 	return ret;
791 }
792 
793 /**
794  * try_to_unmap - try to remove all page table mappings to a page
795  * @page: the page to get unmapped
796  *
797  * Tries to remove all the page table entries which are mapping this
798  * page, used in the pageout path.  Caller must hold the page lock.
799  * Return values are:
800  *
801  * SWAP_SUCCESS	- we succeeded in removing all mappings
802  * SWAP_AGAIN	- we missed a mapping, try again later
803  * SWAP_FAIL	- the page is unswappable
804  */
805 int try_to_unmap(struct page *page)
806 {
807 	int ret;
808 
809 	BUG_ON(PageReserved(page));
810 	BUG_ON(!PageLocked(page));
811 
812 	if (PageAnon(page))
813 		ret = try_to_unmap_anon(page);
814 	else
815 		ret = try_to_unmap_file(page);
816 
817 	if (!page_mapped(page))
818 		ret = SWAP_SUCCESS;
819 	return ret;
820 }
821 
822