1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_mutex 28 * anon_vma->mutex 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty) 36 * sb_lock (within inode_lock in fs/fs-writeback.c) 37 * mapping->tree_lock (widely used, in set_page_dirty, 38 * in arch-dependent flush_dcache_mmap_lock, 39 * within inode_wb_list_lock in __sync_single_inode) 40 * 41 * (code doesn't rely on that order so it could be switched around) 42 * ->tasklist_lock 43 * anon_vma->mutex (memory_failure, collect_procs_anon) 44 * pte map lock 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/rcupdate.h> 56 #include <linux/module.h> 57 #include <linux/memcontrol.h> 58 #include <linux/mmu_notifier.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 62 #include <asm/tlbflush.h> 63 64 #include "internal.h" 65 66 static struct kmem_cache *anon_vma_cachep; 67 static struct kmem_cache *anon_vma_chain_cachep; 68 69 static inline struct anon_vma *anon_vma_alloc(void) 70 { 71 struct anon_vma *anon_vma; 72 73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 74 if (anon_vma) { 75 atomic_set(&anon_vma->refcount, 1); 76 /* 77 * Initialise the anon_vma root to point to itself. If called 78 * from fork, the root will be reset to the parents anon_vma. 79 */ 80 anon_vma->root = anon_vma; 81 } 82 83 return anon_vma; 84 } 85 86 static inline void anon_vma_free(struct anon_vma *anon_vma) 87 { 88 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 89 90 /* 91 * Synchronize against page_lock_anon_vma() such that 92 * we can safely hold the lock without the anon_vma getting 93 * freed. 94 * 95 * Relies on the full mb implied by the atomic_dec_and_test() from 96 * put_anon_vma() against the acquire barrier implied by 97 * mutex_trylock() from page_lock_anon_vma(). This orders: 98 * 99 * page_lock_anon_vma() VS put_anon_vma() 100 * mutex_trylock() atomic_dec_and_test() 101 * LOCK MB 102 * atomic_read() mutex_is_locked() 103 * 104 * LOCK should suffice since the actual taking of the lock must 105 * happen _before_ what follows. 106 */ 107 if (mutex_is_locked(&anon_vma->root->mutex)) { 108 anon_vma_lock(anon_vma); 109 anon_vma_unlock(anon_vma); 110 } 111 112 kmem_cache_free(anon_vma_cachep, anon_vma); 113 } 114 115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 116 { 117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 118 } 119 120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 121 { 122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 123 } 124 125 /** 126 * anon_vma_prepare - attach an anon_vma to a memory region 127 * @vma: the memory region in question 128 * 129 * This makes sure the memory mapping described by 'vma' has 130 * an 'anon_vma' attached to it, so that we can associate the 131 * anonymous pages mapped into it with that anon_vma. 132 * 133 * The common case will be that we already have one, but if 134 * not we either need to find an adjacent mapping that we 135 * can re-use the anon_vma from (very common when the only 136 * reason for splitting a vma has been mprotect()), or we 137 * allocate a new one. 138 * 139 * Anon-vma allocations are very subtle, because we may have 140 * optimistically looked up an anon_vma in page_lock_anon_vma() 141 * and that may actually touch the spinlock even in the newly 142 * allocated vma (it depends on RCU to make sure that the 143 * anon_vma isn't actually destroyed). 144 * 145 * As a result, we need to do proper anon_vma locking even 146 * for the new allocation. At the same time, we do not want 147 * to do any locking for the common case of already having 148 * an anon_vma. 149 * 150 * This must be called with the mmap_sem held for reading. 151 */ 152 int anon_vma_prepare(struct vm_area_struct *vma) 153 { 154 struct anon_vma *anon_vma = vma->anon_vma; 155 struct anon_vma_chain *avc; 156 157 might_sleep(); 158 if (unlikely(!anon_vma)) { 159 struct mm_struct *mm = vma->vm_mm; 160 struct anon_vma *allocated; 161 162 avc = anon_vma_chain_alloc(); 163 if (!avc) 164 goto out_enomem; 165 166 anon_vma = find_mergeable_anon_vma(vma); 167 allocated = NULL; 168 if (!anon_vma) { 169 anon_vma = anon_vma_alloc(); 170 if (unlikely(!anon_vma)) 171 goto out_enomem_free_avc; 172 allocated = anon_vma; 173 } 174 175 anon_vma_lock(anon_vma); 176 /* page_table_lock to protect against threads */ 177 spin_lock(&mm->page_table_lock); 178 if (likely(!vma->anon_vma)) { 179 vma->anon_vma = anon_vma; 180 avc->anon_vma = anon_vma; 181 avc->vma = vma; 182 list_add(&avc->same_vma, &vma->anon_vma_chain); 183 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 184 allocated = NULL; 185 avc = NULL; 186 } 187 spin_unlock(&mm->page_table_lock); 188 anon_vma_unlock(anon_vma); 189 190 if (unlikely(allocated)) 191 put_anon_vma(allocated); 192 if (unlikely(avc)) 193 anon_vma_chain_free(avc); 194 } 195 return 0; 196 197 out_enomem_free_avc: 198 anon_vma_chain_free(avc); 199 out_enomem: 200 return -ENOMEM; 201 } 202 203 static void anon_vma_chain_link(struct vm_area_struct *vma, 204 struct anon_vma_chain *avc, 205 struct anon_vma *anon_vma) 206 { 207 avc->vma = vma; 208 avc->anon_vma = anon_vma; 209 list_add(&avc->same_vma, &vma->anon_vma_chain); 210 211 anon_vma_lock(anon_vma); 212 /* 213 * It's critical to add new vmas to the tail of the anon_vma, 214 * see comment in huge_memory.c:__split_huge_page(). 215 */ 216 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 217 anon_vma_unlock(anon_vma); 218 } 219 220 /* 221 * Attach the anon_vmas from src to dst. 222 * Returns 0 on success, -ENOMEM on failure. 223 */ 224 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 225 { 226 struct anon_vma_chain *avc, *pavc; 227 228 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 229 avc = anon_vma_chain_alloc(); 230 if (!avc) 231 goto enomem_failure; 232 anon_vma_chain_link(dst, avc, pavc->anon_vma); 233 } 234 return 0; 235 236 enomem_failure: 237 unlink_anon_vmas(dst); 238 return -ENOMEM; 239 } 240 241 /* 242 * Attach vma to its own anon_vma, as well as to the anon_vmas that 243 * the corresponding VMA in the parent process is attached to. 244 * Returns 0 on success, non-zero on failure. 245 */ 246 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 247 { 248 struct anon_vma_chain *avc; 249 struct anon_vma *anon_vma; 250 251 /* Don't bother if the parent process has no anon_vma here. */ 252 if (!pvma->anon_vma) 253 return 0; 254 255 /* 256 * First, attach the new VMA to the parent VMA's anon_vmas, 257 * so rmap can find non-COWed pages in child processes. 258 */ 259 if (anon_vma_clone(vma, pvma)) 260 return -ENOMEM; 261 262 /* Then add our own anon_vma. */ 263 anon_vma = anon_vma_alloc(); 264 if (!anon_vma) 265 goto out_error; 266 avc = anon_vma_chain_alloc(); 267 if (!avc) 268 goto out_error_free_anon_vma; 269 270 /* 271 * The root anon_vma's spinlock is the lock actually used when we 272 * lock any of the anon_vmas in this anon_vma tree. 273 */ 274 anon_vma->root = pvma->anon_vma->root; 275 /* 276 * With refcounts, an anon_vma can stay around longer than the 277 * process it belongs to. The root anon_vma needs to be pinned until 278 * this anon_vma is freed, because the lock lives in the root. 279 */ 280 get_anon_vma(anon_vma->root); 281 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 282 vma->anon_vma = anon_vma; 283 anon_vma_chain_link(vma, avc, anon_vma); 284 285 return 0; 286 287 out_error_free_anon_vma: 288 put_anon_vma(anon_vma); 289 out_error: 290 unlink_anon_vmas(vma); 291 return -ENOMEM; 292 } 293 294 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 295 { 296 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 297 int empty; 298 299 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 300 if (!anon_vma) 301 return; 302 303 anon_vma_lock(anon_vma); 304 list_del(&anon_vma_chain->same_anon_vma); 305 306 /* We must garbage collect the anon_vma if it's empty */ 307 empty = list_empty(&anon_vma->head); 308 anon_vma_unlock(anon_vma); 309 310 if (empty) 311 put_anon_vma(anon_vma); 312 } 313 314 void unlink_anon_vmas(struct vm_area_struct *vma) 315 { 316 struct anon_vma_chain *avc, *next; 317 318 /* 319 * Unlink each anon_vma chained to the VMA. This list is ordered 320 * from newest to oldest, ensuring the root anon_vma gets freed last. 321 */ 322 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 323 anon_vma_unlink(avc); 324 list_del(&avc->same_vma); 325 anon_vma_chain_free(avc); 326 } 327 } 328 329 static void anon_vma_ctor(void *data) 330 { 331 struct anon_vma *anon_vma = data; 332 333 mutex_init(&anon_vma->mutex); 334 atomic_set(&anon_vma->refcount, 0); 335 INIT_LIST_HEAD(&anon_vma->head); 336 } 337 338 void __init anon_vma_init(void) 339 { 340 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 341 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 342 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 343 } 344 345 /* 346 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 347 * 348 * Since there is no serialization what so ever against page_remove_rmap() 349 * the best this function can do is return a locked anon_vma that might 350 * have been relevant to this page. 351 * 352 * The page might have been remapped to a different anon_vma or the anon_vma 353 * returned may already be freed (and even reused). 354 * 355 * In case it was remapped to a different anon_vma, the new anon_vma will be a 356 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 357 * ensure that any anon_vma obtained from the page will still be valid for as 358 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 359 * 360 * All users of this function must be very careful when walking the anon_vma 361 * chain and verify that the page in question is indeed mapped in it 362 * [ something equivalent to page_mapped_in_vma() ]. 363 * 364 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 365 * that the anon_vma pointer from page->mapping is valid if there is a 366 * mapcount, we can dereference the anon_vma after observing those. 367 */ 368 struct anon_vma *page_get_anon_vma(struct page *page) 369 { 370 struct anon_vma *anon_vma = NULL; 371 unsigned long anon_mapping; 372 373 rcu_read_lock(); 374 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 375 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 376 goto out; 377 if (!page_mapped(page)) 378 goto out; 379 380 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 381 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 382 anon_vma = NULL; 383 goto out; 384 } 385 386 /* 387 * If this page is still mapped, then its anon_vma cannot have been 388 * freed. But if it has been unmapped, we have no security against the 389 * anon_vma structure being freed and reused (for another anon_vma: 390 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 391 * above cannot corrupt). 392 */ 393 if (!page_mapped(page)) { 394 put_anon_vma(anon_vma); 395 anon_vma = NULL; 396 } 397 out: 398 rcu_read_unlock(); 399 400 return anon_vma; 401 } 402 403 /* 404 * Similar to page_get_anon_vma() except it locks the anon_vma. 405 * 406 * Its a little more complex as it tries to keep the fast path to a single 407 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 408 * reference like with page_get_anon_vma() and then block on the mutex. 409 */ 410 struct anon_vma *page_lock_anon_vma(struct page *page) 411 { 412 struct anon_vma *anon_vma = NULL; 413 struct anon_vma *root_anon_vma; 414 unsigned long anon_mapping; 415 416 rcu_read_lock(); 417 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 418 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 419 goto out; 420 if (!page_mapped(page)) 421 goto out; 422 423 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 424 root_anon_vma = ACCESS_ONCE(anon_vma->root); 425 if (mutex_trylock(&root_anon_vma->mutex)) { 426 /* 427 * If the page is still mapped, then this anon_vma is still 428 * its anon_vma, and holding the mutex ensures that it will 429 * not go away, see anon_vma_free(). 430 */ 431 if (!page_mapped(page)) { 432 mutex_unlock(&root_anon_vma->mutex); 433 anon_vma = NULL; 434 } 435 goto out; 436 } 437 438 /* trylock failed, we got to sleep */ 439 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 440 anon_vma = NULL; 441 goto out; 442 } 443 444 if (!page_mapped(page)) { 445 put_anon_vma(anon_vma); 446 anon_vma = NULL; 447 goto out; 448 } 449 450 /* we pinned the anon_vma, its safe to sleep */ 451 rcu_read_unlock(); 452 anon_vma_lock(anon_vma); 453 454 if (atomic_dec_and_test(&anon_vma->refcount)) { 455 /* 456 * Oops, we held the last refcount, release the lock 457 * and bail -- can't simply use put_anon_vma() because 458 * we'll deadlock on the anon_vma_lock() recursion. 459 */ 460 anon_vma_unlock(anon_vma); 461 __put_anon_vma(anon_vma); 462 anon_vma = NULL; 463 } 464 465 return anon_vma; 466 467 out: 468 rcu_read_unlock(); 469 return anon_vma; 470 } 471 472 void page_unlock_anon_vma(struct anon_vma *anon_vma) 473 { 474 anon_vma_unlock(anon_vma); 475 } 476 477 /* 478 * At what user virtual address is page expected in @vma? 479 * Returns virtual address or -EFAULT if page's index/offset is not 480 * within the range mapped the @vma. 481 */ 482 inline unsigned long 483 vma_address(struct page *page, struct vm_area_struct *vma) 484 { 485 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 486 unsigned long address; 487 488 if (unlikely(is_vm_hugetlb_page(vma))) 489 pgoff = page->index << huge_page_order(page_hstate(page)); 490 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 491 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 492 /* page should be within @vma mapping range */ 493 return -EFAULT; 494 } 495 return address; 496 } 497 498 /* 499 * At what user virtual address is page expected in vma? 500 * Caller should check the page is actually part of the vma. 501 */ 502 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 503 { 504 if (PageAnon(page)) { 505 struct anon_vma *page__anon_vma = page_anon_vma(page); 506 /* 507 * Note: swapoff's unuse_vma() is more efficient with this 508 * check, and needs it to match anon_vma when KSM is active. 509 */ 510 if (!vma->anon_vma || !page__anon_vma || 511 vma->anon_vma->root != page__anon_vma->root) 512 return -EFAULT; 513 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 514 if (!vma->vm_file || 515 vma->vm_file->f_mapping != page->mapping) 516 return -EFAULT; 517 } else 518 return -EFAULT; 519 return vma_address(page, vma); 520 } 521 522 /* 523 * Check that @page is mapped at @address into @mm. 524 * 525 * If @sync is false, page_check_address may perform a racy check to avoid 526 * the page table lock when the pte is not present (helpful when reclaiming 527 * highly shared pages). 528 * 529 * On success returns with pte mapped and locked. 530 */ 531 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 532 unsigned long address, spinlock_t **ptlp, int sync) 533 { 534 pgd_t *pgd; 535 pud_t *pud; 536 pmd_t *pmd; 537 pte_t *pte; 538 spinlock_t *ptl; 539 540 if (unlikely(PageHuge(page))) { 541 pte = huge_pte_offset(mm, address); 542 ptl = &mm->page_table_lock; 543 goto check; 544 } 545 546 pgd = pgd_offset(mm, address); 547 if (!pgd_present(*pgd)) 548 return NULL; 549 550 pud = pud_offset(pgd, address); 551 if (!pud_present(*pud)) 552 return NULL; 553 554 pmd = pmd_offset(pud, address); 555 if (!pmd_present(*pmd)) 556 return NULL; 557 if (pmd_trans_huge(*pmd)) 558 return NULL; 559 560 pte = pte_offset_map(pmd, address); 561 /* Make a quick check before getting the lock */ 562 if (!sync && !pte_present(*pte)) { 563 pte_unmap(pte); 564 return NULL; 565 } 566 567 ptl = pte_lockptr(mm, pmd); 568 check: 569 spin_lock(ptl); 570 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 571 *ptlp = ptl; 572 return pte; 573 } 574 pte_unmap_unlock(pte, ptl); 575 return NULL; 576 } 577 578 /** 579 * page_mapped_in_vma - check whether a page is really mapped in a VMA 580 * @page: the page to test 581 * @vma: the VMA to test 582 * 583 * Returns 1 if the page is mapped into the page tables of the VMA, 0 584 * if the page is not mapped into the page tables of this VMA. Only 585 * valid for normal file or anonymous VMAs. 586 */ 587 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 588 { 589 unsigned long address; 590 pte_t *pte; 591 spinlock_t *ptl; 592 593 address = vma_address(page, vma); 594 if (address == -EFAULT) /* out of vma range */ 595 return 0; 596 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 597 if (!pte) /* the page is not in this mm */ 598 return 0; 599 pte_unmap_unlock(pte, ptl); 600 601 return 1; 602 } 603 604 /* 605 * Subfunctions of page_referenced: page_referenced_one called 606 * repeatedly from either page_referenced_anon or page_referenced_file. 607 */ 608 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 609 unsigned long address, unsigned int *mapcount, 610 unsigned long *vm_flags) 611 { 612 struct mm_struct *mm = vma->vm_mm; 613 int referenced = 0; 614 615 if (unlikely(PageTransHuge(page))) { 616 pmd_t *pmd; 617 618 spin_lock(&mm->page_table_lock); 619 /* 620 * rmap might return false positives; we must filter 621 * these out using page_check_address_pmd(). 622 */ 623 pmd = page_check_address_pmd(page, mm, address, 624 PAGE_CHECK_ADDRESS_PMD_FLAG); 625 if (!pmd) { 626 spin_unlock(&mm->page_table_lock); 627 goto out; 628 } 629 630 if (vma->vm_flags & VM_LOCKED) { 631 spin_unlock(&mm->page_table_lock); 632 *mapcount = 0; /* break early from loop */ 633 *vm_flags |= VM_LOCKED; 634 goto out; 635 } 636 637 /* go ahead even if the pmd is pmd_trans_splitting() */ 638 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 639 referenced++; 640 spin_unlock(&mm->page_table_lock); 641 } else { 642 pte_t *pte; 643 spinlock_t *ptl; 644 645 /* 646 * rmap might return false positives; we must filter 647 * these out using page_check_address(). 648 */ 649 pte = page_check_address(page, mm, address, &ptl, 0); 650 if (!pte) 651 goto out; 652 653 if (vma->vm_flags & VM_LOCKED) { 654 pte_unmap_unlock(pte, ptl); 655 *mapcount = 0; /* break early from loop */ 656 *vm_flags |= VM_LOCKED; 657 goto out; 658 } 659 660 if (ptep_clear_flush_young_notify(vma, address, pte)) { 661 /* 662 * Don't treat a reference through a sequentially read 663 * mapping as such. If the page has been used in 664 * another mapping, we will catch it; if this other 665 * mapping is already gone, the unmap path will have 666 * set PG_referenced or activated the page. 667 */ 668 if (likely(!VM_SequentialReadHint(vma))) 669 referenced++; 670 } 671 pte_unmap_unlock(pte, ptl); 672 } 673 674 /* Pretend the page is referenced if the task has the 675 swap token and is in the middle of a page fault. */ 676 if (mm != current->mm && has_swap_token(mm) && 677 rwsem_is_locked(&mm->mmap_sem)) 678 referenced++; 679 680 (*mapcount)--; 681 682 if (referenced) 683 *vm_flags |= vma->vm_flags; 684 out: 685 return referenced; 686 } 687 688 static int page_referenced_anon(struct page *page, 689 struct mem_cgroup *mem_cont, 690 unsigned long *vm_flags) 691 { 692 unsigned int mapcount; 693 struct anon_vma *anon_vma; 694 struct anon_vma_chain *avc; 695 int referenced = 0; 696 697 anon_vma = page_lock_anon_vma(page); 698 if (!anon_vma) 699 return referenced; 700 701 mapcount = page_mapcount(page); 702 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 703 struct vm_area_struct *vma = avc->vma; 704 unsigned long address = vma_address(page, vma); 705 if (address == -EFAULT) 706 continue; 707 /* 708 * If we are reclaiming on behalf of a cgroup, skip 709 * counting on behalf of references from different 710 * cgroups 711 */ 712 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 713 continue; 714 referenced += page_referenced_one(page, vma, address, 715 &mapcount, vm_flags); 716 if (!mapcount) 717 break; 718 } 719 720 page_unlock_anon_vma(anon_vma); 721 return referenced; 722 } 723 724 /** 725 * page_referenced_file - referenced check for object-based rmap 726 * @page: the page we're checking references on. 727 * @mem_cont: target memory controller 728 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 729 * 730 * For an object-based mapped page, find all the places it is mapped and 731 * check/clear the referenced flag. This is done by following the page->mapping 732 * pointer, then walking the chain of vmas it holds. It returns the number 733 * of references it found. 734 * 735 * This function is only called from page_referenced for object-based pages. 736 */ 737 static int page_referenced_file(struct page *page, 738 struct mem_cgroup *mem_cont, 739 unsigned long *vm_flags) 740 { 741 unsigned int mapcount; 742 struct address_space *mapping = page->mapping; 743 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 744 struct vm_area_struct *vma; 745 struct prio_tree_iter iter; 746 int referenced = 0; 747 748 /* 749 * The caller's checks on page->mapping and !PageAnon have made 750 * sure that this is a file page: the check for page->mapping 751 * excludes the case just before it gets set on an anon page. 752 */ 753 BUG_ON(PageAnon(page)); 754 755 /* 756 * The page lock not only makes sure that page->mapping cannot 757 * suddenly be NULLified by truncation, it makes sure that the 758 * structure at mapping cannot be freed and reused yet, 759 * so we can safely take mapping->i_mmap_mutex. 760 */ 761 BUG_ON(!PageLocked(page)); 762 763 mutex_lock(&mapping->i_mmap_mutex); 764 765 /* 766 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 767 * is more likely to be accurate if we note it after spinning. 768 */ 769 mapcount = page_mapcount(page); 770 771 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 772 unsigned long address = vma_address(page, vma); 773 if (address == -EFAULT) 774 continue; 775 /* 776 * If we are reclaiming on behalf of a cgroup, skip 777 * counting on behalf of references from different 778 * cgroups 779 */ 780 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 781 continue; 782 referenced += page_referenced_one(page, vma, address, 783 &mapcount, vm_flags); 784 if (!mapcount) 785 break; 786 } 787 788 mutex_unlock(&mapping->i_mmap_mutex); 789 return referenced; 790 } 791 792 /** 793 * page_referenced - test if the page was referenced 794 * @page: the page to test 795 * @is_locked: caller holds lock on the page 796 * @mem_cont: target memory controller 797 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 798 * 799 * Quick test_and_clear_referenced for all mappings to a page, 800 * returns the number of ptes which referenced the page. 801 */ 802 int page_referenced(struct page *page, 803 int is_locked, 804 struct mem_cgroup *mem_cont, 805 unsigned long *vm_flags) 806 { 807 int referenced = 0; 808 int we_locked = 0; 809 810 *vm_flags = 0; 811 if (page_mapped(page) && page_rmapping(page)) { 812 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 813 we_locked = trylock_page(page); 814 if (!we_locked) { 815 referenced++; 816 goto out; 817 } 818 } 819 if (unlikely(PageKsm(page))) 820 referenced += page_referenced_ksm(page, mem_cont, 821 vm_flags); 822 else if (PageAnon(page)) 823 referenced += page_referenced_anon(page, mem_cont, 824 vm_flags); 825 else if (page->mapping) 826 referenced += page_referenced_file(page, mem_cont, 827 vm_flags); 828 if (we_locked) 829 unlock_page(page); 830 } 831 out: 832 if (page_test_and_clear_young(page_to_pfn(page))) 833 referenced++; 834 835 return referenced; 836 } 837 838 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 839 unsigned long address) 840 { 841 struct mm_struct *mm = vma->vm_mm; 842 pte_t *pte; 843 spinlock_t *ptl; 844 int ret = 0; 845 846 pte = page_check_address(page, mm, address, &ptl, 1); 847 if (!pte) 848 goto out; 849 850 if (pte_dirty(*pte) || pte_write(*pte)) { 851 pte_t entry; 852 853 flush_cache_page(vma, address, pte_pfn(*pte)); 854 entry = ptep_clear_flush_notify(vma, address, pte); 855 entry = pte_wrprotect(entry); 856 entry = pte_mkclean(entry); 857 set_pte_at(mm, address, pte, entry); 858 ret = 1; 859 } 860 861 pte_unmap_unlock(pte, ptl); 862 out: 863 return ret; 864 } 865 866 static int page_mkclean_file(struct address_space *mapping, struct page *page) 867 { 868 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 869 struct vm_area_struct *vma; 870 struct prio_tree_iter iter; 871 int ret = 0; 872 873 BUG_ON(PageAnon(page)); 874 875 mutex_lock(&mapping->i_mmap_mutex); 876 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 877 if (vma->vm_flags & VM_SHARED) { 878 unsigned long address = vma_address(page, vma); 879 if (address == -EFAULT) 880 continue; 881 ret += page_mkclean_one(page, vma, address); 882 } 883 } 884 mutex_unlock(&mapping->i_mmap_mutex); 885 return ret; 886 } 887 888 int page_mkclean(struct page *page) 889 { 890 int ret = 0; 891 892 BUG_ON(!PageLocked(page)); 893 894 if (page_mapped(page)) { 895 struct address_space *mapping = page_mapping(page); 896 if (mapping) { 897 ret = page_mkclean_file(mapping, page); 898 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 899 ret = 1; 900 } 901 } 902 903 return ret; 904 } 905 EXPORT_SYMBOL_GPL(page_mkclean); 906 907 /** 908 * page_move_anon_rmap - move a page to our anon_vma 909 * @page: the page to move to our anon_vma 910 * @vma: the vma the page belongs to 911 * @address: the user virtual address mapped 912 * 913 * When a page belongs exclusively to one process after a COW event, 914 * that page can be moved into the anon_vma that belongs to just that 915 * process, so the rmap code will not search the parent or sibling 916 * processes. 917 */ 918 void page_move_anon_rmap(struct page *page, 919 struct vm_area_struct *vma, unsigned long address) 920 { 921 struct anon_vma *anon_vma = vma->anon_vma; 922 923 VM_BUG_ON(!PageLocked(page)); 924 VM_BUG_ON(!anon_vma); 925 VM_BUG_ON(page->index != linear_page_index(vma, address)); 926 927 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 928 page->mapping = (struct address_space *) anon_vma; 929 } 930 931 /** 932 * __page_set_anon_rmap - set up new anonymous rmap 933 * @page: Page to add to rmap 934 * @vma: VM area to add page to. 935 * @address: User virtual address of the mapping 936 * @exclusive: the page is exclusively owned by the current process 937 */ 938 static void __page_set_anon_rmap(struct page *page, 939 struct vm_area_struct *vma, unsigned long address, int exclusive) 940 { 941 struct anon_vma *anon_vma = vma->anon_vma; 942 943 BUG_ON(!anon_vma); 944 945 if (PageAnon(page)) 946 return; 947 948 /* 949 * If the page isn't exclusively mapped into this vma, 950 * we must use the _oldest_ possible anon_vma for the 951 * page mapping! 952 */ 953 if (!exclusive) 954 anon_vma = anon_vma->root; 955 956 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 957 page->mapping = (struct address_space *) anon_vma; 958 page->index = linear_page_index(vma, address); 959 } 960 961 /** 962 * __page_check_anon_rmap - sanity check anonymous rmap addition 963 * @page: the page to add the mapping to 964 * @vma: the vm area in which the mapping is added 965 * @address: the user virtual address mapped 966 */ 967 static void __page_check_anon_rmap(struct page *page, 968 struct vm_area_struct *vma, unsigned long address) 969 { 970 #ifdef CONFIG_DEBUG_VM 971 /* 972 * The page's anon-rmap details (mapping and index) are guaranteed to 973 * be set up correctly at this point. 974 * 975 * We have exclusion against page_add_anon_rmap because the caller 976 * always holds the page locked, except if called from page_dup_rmap, 977 * in which case the page is already known to be setup. 978 * 979 * We have exclusion against page_add_new_anon_rmap because those pages 980 * are initially only visible via the pagetables, and the pte is locked 981 * over the call to page_add_new_anon_rmap. 982 */ 983 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 984 BUG_ON(page->index != linear_page_index(vma, address)); 985 #endif 986 } 987 988 /** 989 * page_add_anon_rmap - add pte mapping to an anonymous page 990 * @page: the page to add the mapping to 991 * @vma: the vm area in which the mapping is added 992 * @address: the user virtual address mapped 993 * 994 * The caller needs to hold the pte lock, and the page must be locked in 995 * the anon_vma case: to serialize mapping,index checking after setting, 996 * and to ensure that PageAnon is not being upgraded racily to PageKsm 997 * (but PageKsm is never downgraded to PageAnon). 998 */ 999 void page_add_anon_rmap(struct page *page, 1000 struct vm_area_struct *vma, unsigned long address) 1001 { 1002 do_page_add_anon_rmap(page, vma, address, 0); 1003 } 1004 1005 /* 1006 * Special version of the above for do_swap_page, which often runs 1007 * into pages that are exclusively owned by the current process. 1008 * Everybody else should continue to use page_add_anon_rmap above. 1009 */ 1010 void do_page_add_anon_rmap(struct page *page, 1011 struct vm_area_struct *vma, unsigned long address, int exclusive) 1012 { 1013 int first = atomic_inc_and_test(&page->_mapcount); 1014 if (first) { 1015 if (!PageTransHuge(page)) 1016 __inc_zone_page_state(page, NR_ANON_PAGES); 1017 else 1018 __inc_zone_page_state(page, 1019 NR_ANON_TRANSPARENT_HUGEPAGES); 1020 } 1021 if (unlikely(PageKsm(page))) 1022 return; 1023 1024 VM_BUG_ON(!PageLocked(page)); 1025 /* address might be in next vma when migration races vma_adjust */ 1026 if (first) 1027 __page_set_anon_rmap(page, vma, address, exclusive); 1028 else 1029 __page_check_anon_rmap(page, vma, address); 1030 } 1031 1032 /** 1033 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1034 * @page: the page to add the mapping to 1035 * @vma: the vm area in which the mapping is added 1036 * @address: the user virtual address mapped 1037 * 1038 * Same as page_add_anon_rmap but must only be called on *new* pages. 1039 * This means the inc-and-test can be bypassed. 1040 * Page does not have to be locked. 1041 */ 1042 void page_add_new_anon_rmap(struct page *page, 1043 struct vm_area_struct *vma, unsigned long address) 1044 { 1045 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1046 SetPageSwapBacked(page); 1047 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1048 if (!PageTransHuge(page)) 1049 __inc_zone_page_state(page, NR_ANON_PAGES); 1050 else 1051 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1052 __page_set_anon_rmap(page, vma, address, 1); 1053 if (page_evictable(page, vma)) 1054 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1055 else 1056 add_page_to_unevictable_list(page); 1057 } 1058 1059 /** 1060 * page_add_file_rmap - add pte mapping to a file page 1061 * @page: the page to add the mapping to 1062 * 1063 * The caller needs to hold the pte lock. 1064 */ 1065 void page_add_file_rmap(struct page *page) 1066 { 1067 if (atomic_inc_and_test(&page->_mapcount)) { 1068 __inc_zone_page_state(page, NR_FILE_MAPPED); 1069 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1070 } 1071 } 1072 1073 /** 1074 * page_remove_rmap - take down pte mapping from a page 1075 * @page: page to remove mapping from 1076 * 1077 * The caller needs to hold the pte lock. 1078 */ 1079 void page_remove_rmap(struct page *page) 1080 { 1081 /* page still mapped by someone else? */ 1082 if (!atomic_add_negative(-1, &page->_mapcount)) 1083 return; 1084 1085 /* 1086 * Now that the last pte has gone, s390 must transfer dirty 1087 * flag from storage key to struct page. We can usually skip 1088 * this if the page is anon, so about to be freed; but perhaps 1089 * not if it's in swapcache - there might be another pte slot 1090 * containing the swap entry, but page not yet written to swap. 1091 */ 1092 if ((!PageAnon(page) || PageSwapCache(page)) && 1093 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1094 set_page_dirty(page); 1095 /* 1096 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1097 * and not charged by memcg for now. 1098 */ 1099 if (unlikely(PageHuge(page))) 1100 return; 1101 if (PageAnon(page)) { 1102 mem_cgroup_uncharge_page(page); 1103 if (!PageTransHuge(page)) 1104 __dec_zone_page_state(page, NR_ANON_PAGES); 1105 else 1106 __dec_zone_page_state(page, 1107 NR_ANON_TRANSPARENT_HUGEPAGES); 1108 } else { 1109 __dec_zone_page_state(page, NR_FILE_MAPPED); 1110 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1111 } 1112 /* 1113 * It would be tidy to reset the PageAnon mapping here, 1114 * but that might overwrite a racing page_add_anon_rmap 1115 * which increments mapcount after us but sets mapping 1116 * before us: so leave the reset to free_hot_cold_page, 1117 * and remember that it's only reliable while mapped. 1118 * Leaving it set also helps swapoff to reinstate ptes 1119 * faster for those pages still in swapcache. 1120 */ 1121 } 1122 1123 /* 1124 * Subfunctions of try_to_unmap: try_to_unmap_one called 1125 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 1126 */ 1127 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1128 unsigned long address, enum ttu_flags flags) 1129 { 1130 struct mm_struct *mm = vma->vm_mm; 1131 pte_t *pte; 1132 pte_t pteval; 1133 spinlock_t *ptl; 1134 int ret = SWAP_AGAIN; 1135 1136 pte = page_check_address(page, mm, address, &ptl, 0); 1137 if (!pte) 1138 goto out; 1139 1140 /* 1141 * If the page is mlock()d, we cannot swap it out. 1142 * If it's recently referenced (perhaps page_referenced 1143 * skipped over this mm) then we should reactivate it. 1144 */ 1145 if (!(flags & TTU_IGNORE_MLOCK)) { 1146 if (vma->vm_flags & VM_LOCKED) 1147 goto out_mlock; 1148 1149 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1150 goto out_unmap; 1151 } 1152 if (!(flags & TTU_IGNORE_ACCESS)) { 1153 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1154 ret = SWAP_FAIL; 1155 goto out_unmap; 1156 } 1157 } 1158 1159 /* Nuke the page table entry. */ 1160 flush_cache_page(vma, address, page_to_pfn(page)); 1161 pteval = ptep_clear_flush_notify(vma, address, pte); 1162 1163 /* Move the dirty bit to the physical page now the pte is gone. */ 1164 if (pte_dirty(pteval)) 1165 set_page_dirty(page); 1166 1167 /* Update high watermark before we lower rss */ 1168 update_hiwater_rss(mm); 1169 1170 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1171 if (PageAnon(page)) 1172 dec_mm_counter(mm, MM_ANONPAGES); 1173 else 1174 dec_mm_counter(mm, MM_FILEPAGES); 1175 set_pte_at(mm, address, pte, 1176 swp_entry_to_pte(make_hwpoison_entry(page))); 1177 } else if (PageAnon(page)) { 1178 swp_entry_t entry = { .val = page_private(page) }; 1179 1180 if (PageSwapCache(page)) { 1181 /* 1182 * Store the swap location in the pte. 1183 * See handle_pte_fault() ... 1184 */ 1185 if (swap_duplicate(entry) < 0) { 1186 set_pte_at(mm, address, pte, pteval); 1187 ret = SWAP_FAIL; 1188 goto out_unmap; 1189 } 1190 if (list_empty(&mm->mmlist)) { 1191 spin_lock(&mmlist_lock); 1192 if (list_empty(&mm->mmlist)) 1193 list_add(&mm->mmlist, &init_mm.mmlist); 1194 spin_unlock(&mmlist_lock); 1195 } 1196 dec_mm_counter(mm, MM_ANONPAGES); 1197 inc_mm_counter(mm, MM_SWAPENTS); 1198 } else if (PAGE_MIGRATION) { 1199 /* 1200 * Store the pfn of the page in a special migration 1201 * pte. do_swap_page() will wait until the migration 1202 * pte is removed and then restart fault handling. 1203 */ 1204 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1205 entry = make_migration_entry(page, pte_write(pteval)); 1206 } 1207 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1208 BUG_ON(pte_file(*pte)); 1209 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1210 /* Establish migration entry for a file page */ 1211 swp_entry_t entry; 1212 entry = make_migration_entry(page, pte_write(pteval)); 1213 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1214 } else 1215 dec_mm_counter(mm, MM_FILEPAGES); 1216 1217 page_remove_rmap(page); 1218 page_cache_release(page); 1219 1220 out_unmap: 1221 pte_unmap_unlock(pte, ptl); 1222 out: 1223 return ret; 1224 1225 out_mlock: 1226 pte_unmap_unlock(pte, ptl); 1227 1228 1229 /* 1230 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1231 * unstable result and race. Plus, We can't wait here because 1232 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1233 * if trylock failed, the page remain in evictable lru and later 1234 * vmscan could retry to move the page to unevictable lru if the 1235 * page is actually mlocked. 1236 */ 1237 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1238 if (vma->vm_flags & VM_LOCKED) { 1239 mlock_vma_page(page); 1240 ret = SWAP_MLOCK; 1241 } 1242 up_read(&vma->vm_mm->mmap_sem); 1243 } 1244 return ret; 1245 } 1246 1247 /* 1248 * objrmap doesn't work for nonlinear VMAs because the assumption that 1249 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1250 * Consequently, given a particular page and its ->index, we cannot locate the 1251 * ptes which are mapping that page without an exhaustive linear search. 1252 * 1253 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1254 * maps the file to which the target page belongs. The ->vm_private_data field 1255 * holds the current cursor into that scan. Successive searches will circulate 1256 * around the vma's virtual address space. 1257 * 1258 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1259 * more scanning pressure is placed against them as well. Eventually pages 1260 * will become fully unmapped and are eligible for eviction. 1261 * 1262 * For very sparsely populated VMAs this is a little inefficient - chances are 1263 * there there won't be many ptes located within the scan cluster. In this case 1264 * maybe we could scan further - to the end of the pte page, perhaps. 1265 * 1266 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1267 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1268 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1269 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1270 */ 1271 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1272 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1273 1274 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1275 struct vm_area_struct *vma, struct page *check_page) 1276 { 1277 struct mm_struct *mm = vma->vm_mm; 1278 pgd_t *pgd; 1279 pud_t *pud; 1280 pmd_t *pmd; 1281 pte_t *pte; 1282 pte_t pteval; 1283 spinlock_t *ptl; 1284 struct page *page; 1285 unsigned long address; 1286 unsigned long end; 1287 int ret = SWAP_AGAIN; 1288 int locked_vma = 0; 1289 1290 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1291 end = address + CLUSTER_SIZE; 1292 if (address < vma->vm_start) 1293 address = vma->vm_start; 1294 if (end > vma->vm_end) 1295 end = vma->vm_end; 1296 1297 pgd = pgd_offset(mm, address); 1298 if (!pgd_present(*pgd)) 1299 return ret; 1300 1301 pud = pud_offset(pgd, address); 1302 if (!pud_present(*pud)) 1303 return ret; 1304 1305 pmd = pmd_offset(pud, address); 1306 if (!pmd_present(*pmd)) 1307 return ret; 1308 1309 /* 1310 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1311 * keep the sem while scanning the cluster for mlocking pages. 1312 */ 1313 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1314 locked_vma = (vma->vm_flags & VM_LOCKED); 1315 if (!locked_vma) 1316 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1317 } 1318 1319 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1320 1321 /* Update high watermark before we lower rss */ 1322 update_hiwater_rss(mm); 1323 1324 for (; address < end; pte++, address += PAGE_SIZE) { 1325 if (!pte_present(*pte)) 1326 continue; 1327 page = vm_normal_page(vma, address, *pte); 1328 BUG_ON(!page || PageAnon(page)); 1329 1330 if (locked_vma) { 1331 mlock_vma_page(page); /* no-op if already mlocked */ 1332 if (page == check_page) 1333 ret = SWAP_MLOCK; 1334 continue; /* don't unmap */ 1335 } 1336 1337 if (ptep_clear_flush_young_notify(vma, address, pte)) 1338 continue; 1339 1340 /* Nuke the page table entry. */ 1341 flush_cache_page(vma, address, pte_pfn(*pte)); 1342 pteval = ptep_clear_flush_notify(vma, address, pte); 1343 1344 /* If nonlinear, store the file page offset in the pte. */ 1345 if (page->index != linear_page_index(vma, address)) 1346 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1347 1348 /* Move the dirty bit to the physical page now the pte is gone. */ 1349 if (pte_dirty(pteval)) 1350 set_page_dirty(page); 1351 1352 page_remove_rmap(page); 1353 page_cache_release(page); 1354 dec_mm_counter(mm, MM_FILEPAGES); 1355 (*mapcount)--; 1356 } 1357 pte_unmap_unlock(pte - 1, ptl); 1358 if (locked_vma) 1359 up_read(&vma->vm_mm->mmap_sem); 1360 return ret; 1361 } 1362 1363 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1364 { 1365 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1366 1367 if (!maybe_stack) 1368 return false; 1369 1370 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1371 VM_STACK_INCOMPLETE_SETUP) 1372 return true; 1373 1374 return false; 1375 } 1376 1377 /** 1378 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1379 * rmap method 1380 * @page: the page to unmap/unlock 1381 * @flags: action and flags 1382 * 1383 * Find all the mappings of a page using the mapping pointer and the vma chains 1384 * contained in the anon_vma struct it points to. 1385 * 1386 * This function is only called from try_to_unmap/try_to_munlock for 1387 * anonymous pages. 1388 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1389 * where the page was found will be held for write. So, we won't recheck 1390 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1391 * 'LOCKED. 1392 */ 1393 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1394 { 1395 struct anon_vma *anon_vma; 1396 struct anon_vma_chain *avc; 1397 int ret = SWAP_AGAIN; 1398 1399 anon_vma = page_lock_anon_vma(page); 1400 if (!anon_vma) 1401 return ret; 1402 1403 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1404 struct vm_area_struct *vma = avc->vma; 1405 unsigned long address; 1406 1407 /* 1408 * During exec, a temporary VMA is setup and later moved. 1409 * The VMA is moved under the anon_vma lock but not the 1410 * page tables leading to a race where migration cannot 1411 * find the migration ptes. Rather than increasing the 1412 * locking requirements of exec(), migration skips 1413 * temporary VMAs until after exec() completes. 1414 */ 1415 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1416 is_vma_temporary_stack(vma)) 1417 continue; 1418 1419 address = vma_address(page, vma); 1420 if (address == -EFAULT) 1421 continue; 1422 ret = try_to_unmap_one(page, vma, address, flags); 1423 if (ret != SWAP_AGAIN || !page_mapped(page)) 1424 break; 1425 } 1426 1427 page_unlock_anon_vma(anon_vma); 1428 return ret; 1429 } 1430 1431 /** 1432 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1433 * @page: the page to unmap/unlock 1434 * @flags: action and flags 1435 * 1436 * Find all the mappings of a page using the mapping pointer and the vma chains 1437 * contained in the address_space struct it points to. 1438 * 1439 * This function is only called from try_to_unmap/try_to_munlock for 1440 * object-based pages. 1441 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1442 * where the page was found will be held for write. So, we won't recheck 1443 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1444 * 'LOCKED. 1445 */ 1446 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1447 { 1448 struct address_space *mapping = page->mapping; 1449 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1450 struct vm_area_struct *vma; 1451 struct prio_tree_iter iter; 1452 int ret = SWAP_AGAIN; 1453 unsigned long cursor; 1454 unsigned long max_nl_cursor = 0; 1455 unsigned long max_nl_size = 0; 1456 unsigned int mapcount; 1457 1458 mutex_lock(&mapping->i_mmap_mutex); 1459 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1460 unsigned long address = vma_address(page, vma); 1461 if (address == -EFAULT) 1462 continue; 1463 ret = try_to_unmap_one(page, vma, address, flags); 1464 if (ret != SWAP_AGAIN || !page_mapped(page)) 1465 goto out; 1466 } 1467 1468 if (list_empty(&mapping->i_mmap_nonlinear)) 1469 goto out; 1470 1471 /* 1472 * We don't bother to try to find the munlocked page in nonlinears. 1473 * It's costly. Instead, later, page reclaim logic may call 1474 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1475 */ 1476 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1477 goto out; 1478 1479 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1480 shared.vm_set.list) { 1481 cursor = (unsigned long) vma->vm_private_data; 1482 if (cursor > max_nl_cursor) 1483 max_nl_cursor = cursor; 1484 cursor = vma->vm_end - vma->vm_start; 1485 if (cursor > max_nl_size) 1486 max_nl_size = cursor; 1487 } 1488 1489 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1490 ret = SWAP_FAIL; 1491 goto out; 1492 } 1493 1494 /* 1495 * We don't try to search for this page in the nonlinear vmas, 1496 * and page_referenced wouldn't have found it anyway. Instead 1497 * just walk the nonlinear vmas trying to age and unmap some. 1498 * The mapcount of the page we came in with is irrelevant, 1499 * but even so use it as a guide to how hard we should try? 1500 */ 1501 mapcount = page_mapcount(page); 1502 if (!mapcount) 1503 goto out; 1504 cond_resched(); 1505 1506 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1507 if (max_nl_cursor == 0) 1508 max_nl_cursor = CLUSTER_SIZE; 1509 1510 do { 1511 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1512 shared.vm_set.list) { 1513 cursor = (unsigned long) vma->vm_private_data; 1514 while ( cursor < max_nl_cursor && 1515 cursor < vma->vm_end - vma->vm_start) { 1516 if (try_to_unmap_cluster(cursor, &mapcount, 1517 vma, page) == SWAP_MLOCK) 1518 ret = SWAP_MLOCK; 1519 cursor += CLUSTER_SIZE; 1520 vma->vm_private_data = (void *) cursor; 1521 if ((int)mapcount <= 0) 1522 goto out; 1523 } 1524 vma->vm_private_data = (void *) max_nl_cursor; 1525 } 1526 cond_resched(); 1527 max_nl_cursor += CLUSTER_SIZE; 1528 } while (max_nl_cursor <= max_nl_size); 1529 1530 /* 1531 * Don't loop forever (perhaps all the remaining pages are 1532 * in locked vmas). Reset cursor on all unreserved nonlinear 1533 * vmas, now forgetting on which ones it had fallen behind. 1534 */ 1535 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1536 vma->vm_private_data = NULL; 1537 out: 1538 mutex_unlock(&mapping->i_mmap_mutex); 1539 return ret; 1540 } 1541 1542 /** 1543 * try_to_unmap - try to remove all page table mappings to a page 1544 * @page: the page to get unmapped 1545 * @flags: action and flags 1546 * 1547 * Tries to remove all the page table entries which are mapping this 1548 * page, used in the pageout path. Caller must hold the page lock. 1549 * Return values are: 1550 * 1551 * SWAP_SUCCESS - we succeeded in removing all mappings 1552 * SWAP_AGAIN - we missed a mapping, try again later 1553 * SWAP_FAIL - the page is unswappable 1554 * SWAP_MLOCK - page is mlocked. 1555 */ 1556 int try_to_unmap(struct page *page, enum ttu_flags flags) 1557 { 1558 int ret; 1559 1560 BUG_ON(!PageLocked(page)); 1561 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1562 1563 if (unlikely(PageKsm(page))) 1564 ret = try_to_unmap_ksm(page, flags); 1565 else if (PageAnon(page)) 1566 ret = try_to_unmap_anon(page, flags); 1567 else 1568 ret = try_to_unmap_file(page, flags); 1569 if (ret != SWAP_MLOCK && !page_mapped(page)) 1570 ret = SWAP_SUCCESS; 1571 return ret; 1572 } 1573 1574 /** 1575 * try_to_munlock - try to munlock a page 1576 * @page: the page to be munlocked 1577 * 1578 * Called from munlock code. Checks all of the VMAs mapping the page 1579 * to make sure nobody else has this page mlocked. The page will be 1580 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1581 * 1582 * Return values are: 1583 * 1584 * SWAP_AGAIN - no vma is holding page mlocked, or, 1585 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1586 * SWAP_FAIL - page cannot be located at present 1587 * SWAP_MLOCK - page is now mlocked. 1588 */ 1589 int try_to_munlock(struct page *page) 1590 { 1591 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1592 1593 if (unlikely(PageKsm(page))) 1594 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1595 else if (PageAnon(page)) 1596 return try_to_unmap_anon(page, TTU_MUNLOCK); 1597 else 1598 return try_to_unmap_file(page, TTU_MUNLOCK); 1599 } 1600 1601 void __put_anon_vma(struct anon_vma *anon_vma) 1602 { 1603 struct anon_vma *root = anon_vma->root; 1604 1605 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1606 anon_vma_free(root); 1607 1608 anon_vma_free(anon_vma); 1609 } 1610 1611 #ifdef CONFIG_MIGRATION 1612 /* 1613 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1614 * Called by migrate.c to remove migration ptes, but might be used more later. 1615 */ 1616 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1617 struct vm_area_struct *, unsigned long, void *), void *arg) 1618 { 1619 struct anon_vma *anon_vma; 1620 struct anon_vma_chain *avc; 1621 int ret = SWAP_AGAIN; 1622 1623 /* 1624 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1625 * because that depends on page_mapped(); but not all its usages 1626 * are holding mmap_sem. Users without mmap_sem are required to 1627 * take a reference count to prevent the anon_vma disappearing 1628 */ 1629 anon_vma = page_anon_vma(page); 1630 if (!anon_vma) 1631 return ret; 1632 anon_vma_lock(anon_vma); 1633 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1634 struct vm_area_struct *vma = avc->vma; 1635 unsigned long address = vma_address(page, vma); 1636 if (address == -EFAULT) 1637 continue; 1638 ret = rmap_one(page, vma, address, arg); 1639 if (ret != SWAP_AGAIN) 1640 break; 1641 } 1642 anon_vma_unlock(anon_vma); 1643 return ret; 1644 } 1645 1646 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1647 struct vm_area_struct *, unsigned long, void *), void *arg) 1648 { 1649 struct address_space *mapping = page->mapping; 1650 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1651 struct vm_area_struct *vma; 1652 struct prio_tree_iter iter; 1653 int ret = SWAP_AGAIN; 1654 1655 if (!mapping) 1656 return ret; 1657 mutex_lock(&mapping->i_mmap_mutex); 1658 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1659 unsigned long address = vma_address(page, vma); 1660 if (address == -EFAULT) 1661 continue; 1662 ret = rmap_one(page, vma, address, arg); 1663 if (ret != SWAP_AGAIN) 1664 break; 1665 } 1666 /* 1667 * No nonlinear handling: being always shared, nonlinear vmas 1668 * never contain migration ptes. Decide what to do about this 1669 * limitation to linear when we need rmap_walk() on nonlinear. 1670 */ 1671 mutex_unlock(&mapping->i_mmap_mutex); 1672 return ret; 1673 } 1674 1675 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1676 struct vm_area_struct *, unsigned long, void *), void *arg) 1677 { 1678 VM_BUG_ON(!PageLocked(page)); 1679 1680 if (unlikely(PageKsm(page))) 1681 return rmap_walk_ksm(page, rmap_one, arg); 1682 else if (PageAnon(page)) 1683 return rmap_walk_anon(page, rmap_one, arg); 1684 else 1685 return rmap_walk_file(page, rmap_one, arg); 1686 } 1687 #endif /* CONFIG_MIGRATION */ 1688 1689 #ifdef CONFIG_HUGETLB_PAGE 1690 /* 1691 * The following three functions are for anonymous (private mapped) hugepages. 1692 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1693 * and no lru code, because we handle hugepages differently from common pages. 1694 */ 1695 static void __hugepage_set_anon_rmap(struct page *page, 1696 struct vm_area_struct *vma, unsigned long address, int exclusive) 1697 { 1698 struct anon_vma *anon_vma = vma->anon_vma; 1699 1700 BUG_ON(!anon_vma); 1701 1702 if (PageAnon(page)) 1703 return; 1704 if (!exclusive) 1705 anon_vma = anon_vma->root; 1706 1707 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1708 page->mapping = (struct address_space *) anon_vma; 1709 page->index = linear_page_index(vma, address); 1710 } 1711 1712 void hugepage_add_anon_rmap(struct page *page, 1713 struct vm_area_struct *vma, unsigned long address) 1714 { 1715 struct anon_vma *anon_vma = vma->anon_vma; 1716 int first; 1717 1718 BUG_ON(!PageLocked(page)); 1719 BUG_ON(!anon_vma); 1720 /* address might be in next vma when migration races vma_adjust */ 1721 first = atomic_inc_and_test(&page->_mapcount); 1722 if (first) 1723 __hugepage_set_anon_rmap(page, vma, address, 0); 1724 } 1725 1726 void hugepage_add_new_anon_rmap(struct page *page, 1727 struct vm_area_struct *vma, unsigned long address) 1728 { 1729 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1730 atomic_set(&page->_mapcount, 0); 1731 __hugepage_set_anon_rmap(page, vma, address, 1); 1732 } 1733 #endif /* CONFIG_HUGETLB_PAGE */ 1734