xref: /linux/mm/rmap.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_mutex
28  *         anon_vma->mutex
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35  *               inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
37  *                 mapping->tree_lock (widely used, in set_page_dirty,
38  *                           in arch-dependent flush_dcache_mmap_lock,
39  *                           within inode_wb_list_lock in __sync_single_inode)
40  *
41  * (code doesn't rely on that order so it could be switched around)
42  * ->tasklist_lock
43  *   anon_vma->mutex      (memory_failure, collect_procs_anon)
44  *     pte map lock
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 
62 #include <asm/tlbflush.h>
63 
64 #include "internal.h"
65 
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68 
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 	struct anon_vma *anon_vma;
72 
73 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 	if (anon_vma) {
75 		atomic_set(&anon_vma->refcount, 1);
76 		/*
77 		 * Initialise the anon_vma root to point to itself. If called
78 		 * from fork, the root will be reset to the parents anon_vma.
79 		 */
80 		anon_vma->root = anon_vma;
81 	}
82 
83 	return anon_vma;
84 }
85 
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 
90 	/*
91 	 * Synchronize against page_lock_anon_vma() such that
92 	 * we can safely hold the lock without the anon_vma getting
93 	 * freed.
94 	 *
95 	 * Relies on the full mb implied by the atomic_dec_and_test() from
96 	 * put_anon_vma() against the acquire barrier implied by
97 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 	 *
99 	 * page_lock_anon_vma()		VS	put_anon_vma()
100 	 *   mutex_trylock()			  atomic_dec_and_test()
101 	 *   LOCK				  MB
102 	 *   atomic_read()			  mutex_is_locked()
103 	 *
104 	 * LOCK should suffice since the actual taking of the lock must
105 	 * happen _before_ what follows.
106 	 */
107 	if (mutex_is_locked(&anon_vma->root->mutex)) {
108 		anon_vma_lock(anon_vma);
109 		anon_vma_unlock(anon_vma);
110 	}
111 
112 	kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114 
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
116 {
117 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
118 }
119 
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124 
125 /**
126  * anon_vma_prepare - attach an anon_vma to a memory region
127  * @vma: the memory region in question
128  *
129  * This makes sure the memory mapping described by 'vma' has
130  * an 'anon_vma' attached to it, so that we can associate the
131  * anonymous pages mapped into it with that anon_vma.
132  *
133  * The common case will be that we already have one, but if
134  * not we either need to find an adjacent mapping that we
135  * can re-use the anon_vma from (very common when the only
136  * reason for splitting a vma has been mprotect()), or we
137  * allocate a new one.
138  *
139  * Anon-vma allocations are very subtle, because we may have
140  * optimistically looked up an anon_vma in page_lock_anon_vma()
141  * and that may actually touch the spinlock even in the newly
142  * allocated vma (it depends on RCU to make sure that the
143  * anon_vma isn't actually destroyed).
144  *
145  * As a result, we need to do proper anon_vma locking even
146  * for the new allocation. At the same time, we do not want
147  * to do any locking for the common case of already having
148  * an anon_vma.
149  *
150  * This must be called with the mmap_sem held for reading.
151  */
152 int anon_vma_prepare(struct vm_area_struct *vma)
153 {
154 	struct anon_vma *anon_vma = vma->anon_vma;
155 	struct anon_vma_chain *avc;
156 
157 	might_sleep();
158 	if (unlikely(!anon_vma)) {
159 		struct mm_struct *mm = vma->vm_mm;
160 		struct anon_vma *allocated;
161 
162 		avc = anon_vma_chain_alloc();
163 		if (!avc)
164 			goto out_enomem;
165 
166 		anon_vma = find_mergeable_anon_vma(vma);
167 		allocated = NULL;
168 		if (!anon_vma) {
169 			anon_vma = anon_vma_alloc();
170 			if (unlikely(!anon_vma))
171 				goto out_enomem_free_avc;
172 			allocated = anon_vma;
173 		}
174 
175 		anon_vma_lock(anon_vma);
176 		/* page_table_lock to protect against threads */
177 		spin_lock(&mm->page_table_lock);
178 		if (likely(!vma->anon_vma)) {
179 			vma->anon_vma = anon_vma;
180 			avc->anon_vma = anon_vma;
181 			avc->vma = vma;
182 			list_add(&avc->same_vma, &vma->anon_vma_chain);
183 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 			allocated = NULL;
185 			avc = NULL;
186 		}
187 		spin_unlock(&mm->page_table_lock);
188 		anon_vma_unlock(anon_vma);
189 
190 		if (unlikely(allocated))
191 			put_anon_vma(allocated);
192 		if (unlikely(avc))
193 			anon_vma_chain_free(avc);
194 	}
195 	return 0;
196 
197  out_enomem_free_avc:
198 	anon_vma_chain_free(avc);
199  out_enomem:
200 	return -ENOMEM;
201 }
202 
203 static void anon_vma_chain_link(struct vm_area_struct *vma,
204 				struct anon_vma_chain *avc,
205 				struct anon_vma *anon_vma)
206 {
207 	avc->vma = vma;
208 	avc->anon_vma = anon_vma;
209 	list_add(&avc->same_vma, &vma->anon_vma_chain);
210 
211 	anon_vma_lock(anon_vma);
212 	/*
213 	 * It's critical to add new vmas to the tail of the anon_vma,
214 	 * see comment in huge_memory.c:__split_huge_page().
215 	 */
216 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
217 	anon_vma_unlock(anon_vma);
218 }
219 
220 /*
221  * Attach the anon_vmas from src to dst.
222  * Returns 0 on success, -ENOMEM on failure.
223  */
224 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
225 {
226 	struct anon_vma_chain *avc, *pavc;
227 
228 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
229 		avc = anon_vma_chain_alloc();
230 		if (!avc)
231 			goto enomem_failure;
232 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
233 	}
234 	return 0;
235 
236  enomem_failure:
237 	unlink_anon_vmas(dst);
238 	return -ENOMEM;
239 }
240 
241 /*
242  * Attach vma to its own anon_vma, as well as to the anon_vmas that
243  * the corresponding VMA in the parent process is attached to.
244  * Returns 0 on success, non-zero on failure.
245  */
246 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
247 {
248 	struct anon_vma_chain *avc;
249 	struct anon_vma *anon_vma;
250 
251 	/* Don't bother if the parent process has no anon_vma here. */
252 	if (!pvma->anon_vma)
253 		return 0;
254 
255 	/*
256 	 * First, attach the new VMA to the parent VMA's anon_vmas,
257 	 * so rmap can find non-COWed pages in child processes.
258 	 */
259 	if (anon_vma_clone(vma, pvma))
260 		return -ENOMEM;
261 
262 	/* Then add our own anon_vma. */
263 	anon_vma = anon_vma_alloc();
264 	if (!anon_vma)
265 		goto out_error;
266 	avc = anon_vma_chain_alloc();
267 	if (!avc)
268 		goto out_error_free_anon_vma;
269 
270 	/*
271 	 * The root anon_vma's spinlock is the lock actually used when we
272 	 * lock any of the anon_vmas in this anon_vma tree.
273 	 */
274 	anon_vma->root = pvma->anon_vma->root;
275 	/*
276 	 * With refcounts, an anon_vma can stay around longer than the
277 	 * process it belongs to. The root anon_vma needs to be pinned until
278 	 * this anon_vma is freed, because the lock lives in the root.
279 	 */
280 	get_anon_vma(anon_vma->root);
281 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
282 	vma->anon_vma = anon_vma;
283 	anon_vma_chain_link(vma, avc, anon_vma);
284 
285 	return 0;
286 
287  out_error_free_anon_vma:
288 	put_anon_vma(anon_vma);
289  out_error:
290 	unlink_anon_vmas(vma);
291 	return -ENOMEM;
292 }
293 
294 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
295 {
296 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
297 	int empty;
298 
299 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
300 	if (!anon_vma)
301 		return;
302 
303 	anon_vma_lock(anon_vma);
304 	list_del(&anon_vma_chain->same_anon_vma);
305 
306 	/* We must garbage collect the anon_vma if it's empty */
307 	empty = list_empty(&anon_vma->head);
308 	anon_vma_unlock(anon_vma);
309 
310 	if (empty)
311 		put_anon_vma(anon_vma);
312 }
313 
314 void unlink_anon_vmas(struct vm_area_struct *vma)
315 {
316 	struct anon_vma_chain *avc, *next;
317 
318 	/*
319 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
320 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
321 	 */
322 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
323 		anon_vma_unlink(avc);
324 		list_del(&avc->same_vma);
325 		anon_vma_chain_free(avc);
326 	}
327 }
328 
329 static void anon_vma_ctor(void *data)
330 {
331 	struct anon_vma *anon_vma = data;
332 
333 	mutex_init(&anon_vma->mutex);
334 	atomic_set(&anon_vma->refcount, 0);
335 	INIT_LIST_HEAD(&anon_vma->head);
336 }
337 
338 void __init anon_vma_init(void)
339 {
340 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
341 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
342 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
343 }
344 
345 /*
346  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
347  *
348  * Since there is no serialization what so ever against page_remove_rmap()
349  * the best this function can do is return a locked anon_vma that might
350  * have been relevant to this page.
351  *
352  * The page might have been remapped to a different anon_vma or the anon_vma
353  * returned may already be freed (and even reused).
354  *
355  * In case it was remapped to a different anon_vma, the new anon_vma will be a
356  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
357  * ensure that any anon_vma obtained from the page will still be valid for as
358  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
359  *
360  * All users of this function must be very careful when walking the anon_vma
361  * chain and verify that the page in question is indeed mapped in it
362  * [ something equivalent to page_mapped_in_vma() ].
363  *
364  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
365  * that the anon_vma pointer from page->mapping is valid if there is a
366  * mapcount, we can dereference the anon_vma after observing those.
367  */
368 struct anon_vma *page_get_anon_vma(struct page *page)
369 {
370 	struct anon_vma *anon_vma = NULL;
371 	unsigned long anon_mapping;
372 
373 	rcu_read_lock();
374 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
375 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
376 		goto out;
377 	if (!page_mapped(page))
378 		goto out;
379 
380 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
381 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
382 		anon_vma = NULL;
383 		goto out;
384 	}
385 
386 	/*
387 	 * If this page is still mapped, then its anon_vma cannot have been
388 	 * freed.  But if it has been unmapped, we have no security against the
389 	 * anon_vma structure being freed and reused (for another anon_vma:
390 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
391 	 * above cannot corrupt).
392 	 */
393 	if (!page_mapped(page)) {
394 		put_anon_vma(anon_vma);
395 		anon_vma = NULL;
396 	}
397 out:
398 	rcu_read_unlock();
399 
400 	return anon_vma;
401 }
402 
403 /*
404  * Similar to page_get_anon_vma() except it locks the anon_vma.
405  *
406  * Its a little more complex as it tries to keep the fast path to a single
407  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
408  * reference like with page_get_anon_vma() and then block on the mutex.
409  */
410 struct anon_vma *page_lock_anon_vma(struct page *page)
411 {
412 	struct anon_vma *anon_vma = NULL;
413 	struct anon_vma *root_anon_vma;
414 	unsigned long anon_mapping;
415 
416 	rcu_read_lock();
417 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
418 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
419 		goto out;
420 	if (!page_mapped(page))
421 		goto out;
422 
423 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
424 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
425 	if (mutex_trylock(&root_anon_vma->mutex)) {
426 		/*
427 		 * If the page is still mapped, then this anon_vma is still
428 		 * its anon_vma, and holding the mutex ensures that it will
429 		 * not go away, see anon_vma_free().
430 		 */
431 		if (!page_mapped(page)) {
432 			mutex_unlock(&root_anon_vma->mutex);
433 			anon_vma = NULL;
434 		}
435 		goto out;
436 	}
437 
438 	/* trylock failed, we got to sleep */
439 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
440 		anon_vma = NULL;
441 		goto out;
442 	}
443 
444 	if (!page_mapped(page)) {
445 		put_anon_vma(anon_vma);
446 		anon_vma = NULL;
447 		goto out;
448 	}
449 
450 	/* we pinned the anon_vma, its safe to sleep */
451 	rcu_read_unlock();
452 	anon_vma_lock(anon_vma);
453 
454 	if (atomic_dec_and_test(&anon_vma->refcount)) {
455 		/*
456 		 * Oops, we held the last refcount, release the lock
457 		 * and bail -- can't simply use put_anon_vma() because
458 		 * we'll deadlock on the anon_vma_lock() recursion.
459 		 */
460 		anon_vma_unlock(anon_vma);
461 		__put_anon_vma(anon_vma);
462 		anon_vma = NULL;
463 	}
464 
465 	return anon_vma;
466 
467 out:
468 	rcu_read_unlock();
469 	return anon_vma;
470 }
471 
472 void page_unlock_anon_vma(struct anon_vma *anon_vma)
473 {
474 	anon_vma_unlock(anon_vma);
475 }
476 
477 /*
478  * At what user virtual address is page expected in @vma?
479  * Returns virtual address or -EFAULT if page's index/offset is not
480  * within the range mapped the @vma.
481  */
482 inline unsigned long
483 vma_address(struct page *page, struct vm_area_struct *vma)
484 {
485 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
486 	unsigned long address;
487 
488 	if (unlikely(is_vm_hugetlb_page(vma)))
489 		pgoff = page->index << huge_page_order(page_hstate(page));
490 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
491 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
492 		/* page should be within @vma mapping range */
493 		return -EFAULT;
494 	}
495 	return address;
496 }
497 
498 /*
499  * At what user virtual address is page expected in vma?
500  * Caller should check the page is actually part of the vma.
501  */
502 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
503 {
504 	if (PageAnon(page)) {
505 		struct anon_vma *page__anon_vma = page_anon_vma(page);
506 		/*
507 		 * Note: swapoff's unuse_vma() is more efficient with this
508 		 * check, and needs it to match anon_vma when KSM is active.
509 		 */
510 		if (!vma->anon_vma || !page__anon_vma ||
511 		    vma->anon_vma->root != page__anon_vma->root)
512 			return -EFAULT;
513 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
514 		if (!vma->vm_file ||
515 		    vma->vm_file->f_mapping != page->mapping)
516 			return -EFAULT;
517 	} else
518 		return -EFAULT;
519 	return vma_address(page, vma);
520 }
521 
522 /*
523  * Check that @page is mapped at @address into @mm.
524  *
525  * If @sync is false, page_check_address may perform a racy check to avoid
526  * the page table lock when the pte is not present (helpful when reclaiming
527  * highly shared pages).
528  *
529  * On success returns with pte mapped and locked.
530  */
531 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
532 			  unsigned long address, spinlock_t **ptlp, int sync)
533 {
534 	pgd_t *pgd;
535 	pud_t *pud;
536 	pmd_t *pmd;
537 	pte_t *pte;
538 	spinlock_t *ptl;
539 
540 	if (unlikely(PageHuge(page))) {
541 		pte = huge_pte_offset(mm, address);
542 		ptl = &mm->page_table_lock;
543 		goto check;
544 	}
545 
546 	pgd = pgd_offset(mm, address);
547 	if (!pgd_present(*pgd))
548 		return NULL;
549 
550 	pud = pud_offset(pgd, address);
551 	if (!pud_present(*pud))
552 		return NULL;
553 
554 	pmd = pmd_offset(pud, address);
555 	if (!pmd_present(*pmd))
556 		return NULL;
557 	if (pmd_trans_huge(*pmd))
558 		return NULL;
559 
560 	pte = pte_offset_map(pmd, address);
561 	/* Make a quick check before getting the lock */
562 	if (!sync && !pte_present(*pte)) {
563 		pte_unmap(pte);
564 		return NULL;
565 	}
566 
567 	ptl = pte_lockptr(mm, pmd);
568 check:
569 	spin_lock(ptl);
570 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
571 		*ptlp = ptl;
572 		return pte;
573 	}
574 	pte_unmap_unlock(pte, ptl);
575 	return NULL;
576 }
577 
578 /**
579  * page_mapped_in_vma - check whether a page is really mapped in a VMA
580  * @page: the page to test
581  * @vma: the VMA to test
582  *
583  * Returns 1 if the page is mapped into the page tables of the VMA, 0
584  * if the page is not mapped into the page tables of this VMA.  Only
585  * valid for normal file or anonymous VMAs.
586  */
587 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
588 {
589 	unsigned long address;
590 	pte_t *pte;
591 	spinlock_t *ptl;
592 
593 	address = vma_address(page, vma);
594 	if (address == -EFAULT)		/* out of vma range */
595 		return 0;
596 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
597 	if (!pte)			/* the page is not in this mm */
598 		return 0;
599 	pte_unmap_unlock(pte, ptl);
600 
601 	return 1;
602 }
603 
604 /*
605  * Subfunctions of page_referenced: page_referenced_one called
606  * repeatedly from either page_referenced_anon or page_referenced_file.
607  */
608 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
609 			unsigned long address, unsigned int *mapcount,
610 			unsigned long *vm_flags)
611 {
612 	struct mm_struct *mm = vma->vm_mm;
613 	int referenced = 0;
614 
615 	if (unlikely(PageTransHuge(page))) {
616 		pmd_t *pmd;
617 
618 		spin_lock(&mm->page_table_lock);
619 		/*
620 		 * rmap might return false positives; we must filter
621 		 * these out using page_check_address_pmd().
622 		 */
623 		pmd = page_check_address_pmd(page, mm, address,
624 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
625 		if (!pmd) {
626 			spin_unlock(&mm->page_table_lock);
627 			goto out;
628 		}
629 
630 		if (vma->vm_flags & VM_LOCKED) {
631 			spin_unlock(&mm->page_table_lock);
632 			*mapcount = 0;	/* break early from loop */
633 			*vm_flags |= VM_LOCKED;
634 			goto out;
635 		}
636 
637 		/* go ahead even if the pmd is pmd_trans_splitting() */
638 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
639 			referenced++;
640 		spin_unlock(&mm->page_table_lock);
641 	} else {
642 		pte_t *pte;
643 		spinlock_t *ptl;
644 
645 		/*
646 		 * rmap might return false positives; we must filter
647 		 * these out using page_check_address().
648 		 */
649 		pte = page_check_address(page, mm, address, &ptl, 0);
650 		if (!pte)
651 			goto out;
652 
653 		if (vma->vm_flags & VM_LOCKED) {
654 			pte_unmap_unlock(pte, ptl);
655 			*mapcount = 0;	/* break early from loop */
656 			*vm_flags |= VM_LOCKED;
657 			goto out;
658 		}
659 
660 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
661 			/*
662 			 * Don't treat a reference through a sequentially read
663 			 * mapping as such.  If the page has been used in
664 			 * another mapping, we will catch it; if this other
665 			 * mapping is already gone, the unmap path will have
666 			 * set PG_referenced or activated the page.
667 			 */
668 			if (likely(!VM_SequentialReadHint(vma)))
669 				referenced++;
670 		}
671 		pte_unmap_unlock(pte, ptl);
672 	}
673 
674 	/* Pretend the page is referenced if the task has the
675 	   swap token and is in the middle of a page fault. */
676 	if (mm != current->mm && has_swap_token(mm) &&
677 			rwsem_is_locked(&mm->mmap_sem))
678 		referenced++;
679 
680 	(*mapcount)--;
681 
682 	if (referenced)
683 		*vm_flags |= vma->vm_flags;
684 out:
685 	return referenced;
686 }
687 
688 static int page_referenced_anon(struct page *page,
689 				struct mem_cgroup *mem_cont,
690 				unsigned long *vm_flags)
691 {
692 	unsigned int mapcount;
693 	struct anon_vma *anon_vma;
694 	struct anon_vma_chain *avc;
695 	int referenced = 0;
696 
697 	anon_vma = page_lock_anon_vma(page);
698 	if (!anon_vma)
699 		return referenced;
700 
701 	mapcount = page_mapcount(page);
702 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
703 		struct vm_area_struct *vma = avc->vma;
704 		unsigned long address = vma_address(page, vma);
705 		if (address == -EFAULT)
706 			continue;
707 		/*
708 		 * If we are reclaiming on behalf of a cgroup, skip
709 		 * counting on behalf of references from different
710 		 * cgroups
711 		 */
712 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
713 			continue;
714 		referenced += page_referenced_one(page, vma, address,
715 						  &mapcount, vm_flags);
716 		if (!mapcount)
717 			break;
718 	}
719 
720 	page_unlock_anon_vma(anon_vma);
721 	return referenced;
722 }
723 
724 /**
725  * page_referenced_file - referenced check for object-based rmap
726  * @page: the page we're checking references on.
727  * @mem_cont: target memory controller
728  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
729  *
730  * For an object-based mapped page, find all the places it is mapped and
731  * check/clear the referenced flag.  This is done by following the page->mapping
732  * pointer, then walking the chain of vmas it holds.  It returns the number
733  * of references it found.
734  *
735  * This function is only called from page_referenced for object-based pages.
736  */
737 static int page_referenced_file(struct page *page,
738 				struct mem_cgroup *mem_cont,
739 				unsigned long *vm_flags)
740 {
741 	unsigned int mapcount;
742 	struct address_space *mapping = page->mapping;
743 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
744 	struct vm_area_struct *vma;
745 	struct prio_tree_iter iter;
746 	int referenced = 0;
747 
748 	/*
749 	 * The caller's checks on page->mapping and !PageAnon have made
750 	 * sure that this is a file page: the check for page->mapping
751 	 * excludes the case just before it gets set on an anon page.
752 	 */
753 	BUG_ON(PageAnon(page));
754 
755 	/*
756 	 * The page lock not only makes sure that page->mapping cannot
757 	 * suddenly be NULLified by truncation, it makes sure that the
758 	 * structure at mapping cannot be freed and reused yet,
759 	 * so we can safely take mapping->i_mmap_mutex.
760 	 */
761 	BUG_ON(!PageLocked(page));
762 
763 	mutex_lock(&mapping->i_mmap_mutex);
764 
765 	/*
766 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
767 	 * is more likely to be accurate if we note it after spinning.
768 	 */
769 	mapcount = page_mapcount(page);
770 
771 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
772 		unsigned long address = vma_address(page, vma);
773 		if (address == -EFAULT)
774 			continue;
775 		/*
776 		 * If we are reclaiming on behalf of a cgroup, skip
777 		 * counting on behalf of references from different
778 		 * cgroups
779 		 */
780 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
781 			continue;
782 		referenced += page_referenced_one(page, vma, address,
783 						  &mapcount, vm_flags);
784 		if (!mapcount)
785 			break;
786 	}
787 
788 	mutex_unlock(&mapping->i_mmap_mutex);
789 	return referenced;
790 }
791 
792 /**
793  * page_referenced - test if the page was referenced
794  * @page: the page to test
795  * @is_locked: caller holds lock on the page
796  * @mem_cont: target memory controller
797  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
798  *
799  * Quick test_and_clear_referenced for all mappings to a page,
800  * returns the number of ptes which referenced the page.
801  */
802 int page_referenced(struct page *page,
803 		    int is_locked,
804 		    struct mem_cgroup *mem_cont,
805 		    unsigned long *vm_flags)
806 {
807 	int referenced = 0;
808 	int we_locked = 0;
809 
810 	*vm_flags = 0;
811 	if (page_mapped(page) && page_rmapping(page)) {
812 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
813 			we_locked = trylock_page(page);
814 			if (!we_locked) {
815 				referenced++;
816 				goto out;
817 			}
818 		}
819 		if (unlikely(PageKsm(page)))
820 			referenced += page_referenced_ksm(page, mem_cont,
821 								vm_flags);
822 		else if (PageAnon(page))
823 			referenced += page_referenced_anon(page, mem_cont,
824 								vm_flags);
825 		else if (page->mapping)
826 			referenced += page_referenced_file(page, mem_cont,
827 								vm_flags);
828 		if (we_locked)
829 			unlock_page(page);
830 	}
831 out:
832 	if (page_test_and_clear_young(page_to_pfn(page)))
833 		referenced++;
834 
835 	return referenced;
836 }
837 
838 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
839 			    unsigned long address)
840 {
841 	struct mm_struct *mm = vma->vm_mm;
842 	pte_t *pte;
843 	spinlock_t *ptl;
844 	int ret = 0;
845 
846 	pte = page_check_address(page, mm, address, &ptl, 1);
847 	if (!pte)
848 		goto out;
849 
850 	if (pte_dirty(*pte) || pte_write(*pte)) {
851 		pte_t entry;
852 
853 		flush_cache_page(vma, address, pte_pfn(*pte));
854 		entry = ptep_clear_flush_notify(vma, address, pte);
855 		entry = pte_wrprotect(entry);
856 		entry = pte_mkclean(entry);
857 		set_pte_at(mm, address, pte, entry);
858 		ret = 1;
859 	}
860 
861 	pte_unmap_unlock(pte, ptl);
862 out:
863 	return ret;
864 }
865 
866 static int page_mkclean_file(struct address_space *mapping, struct page *page)
867 {
868 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
869 	struct vm_area_struct *vma;
870 	struct prio_tree_iter iter;
871 	int ret = 0;
872 
873 	BUG_ON(PageAnon(page));
874 
875 	mutex_lock(&mapping->i_mmap_mutex);
876 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
877 		if (vma->vm_flags & VM_SHARED) {
878 			unsigned long address = vma_address(page, vma);
879 			if (address == -EFAULT)
880 				continue;
881 			ret += page_mkclean_one(page, vma, address);
882 		}
883 	}
884 	mutex_unlock(&mapping->i_mmap_mutex);
885 	return ret;
886 }
887 
888 int page_mkclean(struct page *page)
889 {
890 	int ret = 0;
891 
892 	BUG_ON(!PageLocked(page));
893 
894 	if (page_mapped(page)) {
895 		struct address_space *mapping = page_mapping(page);
896 		if (mapping) {
897 			ret = page_mkclean_file(mapping, page);
898 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
899 				ret = 1;
900 		}
901 	}
902 
903 	return ret;
904 }
905 EXPORT_SYMBOL_GPL(page_mkclean);
906 
907 /**
908  * page_move_anon_rmap - move a page to our anon_vma
909  * @page:	the page to move to our anon_vma
910  * @vma:	the vma the page belongs to
911  * @address:	the user virtual address mapped
912  *
913  * When a page belongs exclusively to one process after a COW event,
914  * that page can be moved into the anon_vma that belongs to just that
915  * process, so the rmap code will not search the parent or sibling
916  * processes.
917  */
918 void page_move_anon_rmap(struct page *page,
919 	struct vm_area_struct *vma, unsigned long address)
920 {
921 	struct anon_vma *anon_vma = vma->anon_vma;
922 
923 	VM_BUG_ON(!PageLocked(page));
924 	VM_BUG_ON(!anon_vma);
925 	VM_BUG_ON(page->index != linear_page_index(vma, address));
926 
927 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
928 	page->mapping = (struct address_space *) anon_vma;
929 }
930 
931 /**
932  * __page_set_anon_rmap - set up new anonymous rmap
933  * @page:	Page to add to rmap
934  * @vma:	VM area to add page to.
935  * @address:	User virtual address of the mapping
936  * @exclusive:	the page is exclusively owned by the current process
937  */
938 static void __page_set_anon_rmap(struct page *page,
939 	struct vm_area_struct *vma, unsigned long address, int exclusive)
940 {
941 	struct anon_vma *anon_vma = vma->anon_vma;
942 
943 	BUG_ON(!anon_vma);
944 
945 	if (PageAnon(page))
946 		return;
947 
948 	/*
949 	 * If the page isn't exclusively mapped into this vma,
950 	 * we must use the _oldest_ possible anon_vma for the
951 	 * page mapping!
952 	 */
953 	if (!exclusive)
954 		anon_vma = anon_vma->root;
955 
956 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
957 	page->mapping = (struct address_space *) anon_vma;
958 	page->index = linear_page_index(vma, address);
959 }
960 
961 /**
962  * __page_check_anon_rmap - sanity check anonymous rmap addition
963  * @page:	the page to add the mapping to
964  * @vma:	the vm area in which the mapping is added
965  * @address:	the user virtual address mapped
966  */
967 static void __page_check_anon_rmap(struct page *page,
968 	struct vm_area_struct *vma, unsigned long address)
969 {
970 #ifdef CONFIG_DEBUG_VM
971 	/*
972 	 * The page's anon-rmap details (mapping and index) are guaranteed to
973 	 * be set up correctly at this point.
974 	 *
975 	 * We have exclusion against page_add_anon_rmap because the caller
976 	 * always holds the page locked, except if called from page_dup_rmap,
977 	 * in which case the page is already known to be setup.
978 	 *
979 	 * We have exclusion against page_add_new_anon_rmap because those pages
980 	 * are initially only visible via the pagetables, and the pte is locked
981 	 * over the call to page_add_new_anon_rmap.
982 	 */
983 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
984 	BUG_ON(page->index != linear_page_index(vma, address));
985 #endif
986 }
987 
988 /**
989  * page_add_anon_rmap - add pte mapping to an anonymous page
990  * @page:	the page to add the mapping to
991  * @vma:	the vm area in which the mapping is added
992  * @address:	the user virtual address mapped
993  *
994  * The caller needs to hold the pte lock, and the page must be locked in
995  * the anon_vma case: to serialize mapping,index checking after setting,
996  * and to ensure that PageAnon is not being upgraded racily to PageKsm
997  * (but PageKsm is never downgraded to PageAnon).
998  */
999 void page_add_anon_rmap(struct page *page,
1000 	struct vm_area_struct *vma, unsigned long address)
1001 {
1002 	do_page_add_anon_rmap(page, vma, address, 0);
1003 }
1004 
1005 /*
1006  * Special version of the above for do_swap_page, which often runs
1007  * into pages that are exclusively owned by the current process.
1008  * Everybody else should continue to use page_add_anon_rmap above.
1009  */
1010 void do_page_add_anon_rmap(struct page *page,
1011 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1012 {
1013 	int first = atomic_inc_and_test(&page->_mapcount);
1014 	if (first) {
1015 		if (!PageTransHuge(page))
1016 			__inc_zone_page_state(page, NR_ANON_PAGES);
1017 		else
1018 			__inc_zone_page_state(page,
1019 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1020 	}
1021 	if (unlikely(PageKsm(page)))
1022 		return;
1023 
1024 	VM_BUG_ON(!PageLocked(page));
1025 	/* address might be in next vma when migration races vma_adjust */
1026 	if (first)
1027 		__page_set_anon_rmap(page, vma, address, exclusive);
1028 	else
1029 		__page_check_anon_rmap(page, vma, address);
1030 }
1031 
1032 /**
1033  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1034  * @page:	the page to add the mapping to
1035  * @vma:	the vm area in which the mapping is added
1036  * @address:	the user virtual address mapped
1037  *
1038  * Same as page_add_anon_rmap but must only be called on *new* pages.
1039  * This means the inc-and-test can be bypassed.
1040  * Page does not have to be locked.
1041  */
1042 void page_add_new_anon_rmap(struct page *page,
1043 	struct vm_area_struct *vma, unsigned long address)
1044 {
1045 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1046 	SetPageSwapBacked(page);
1047 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1048 	if (!PageTransHuge(page))
1049 		__inc_zone_page_state(page, NR_ANON_PAGES);
1050 	else
1051 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1052 	__page_set_anon_rmap(page, vma, address, 1);
1053 	if (page_evictable(page, vma))
1054 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1055 	else
1056 		add_page_to_unevictable_list(page);
1057 }
1058 
1059 /**
1060  * page_add_file_rmap - add pte mapping to a file page
1061  * @page: the page to add the mapping to
1062  *
1063  * The caller needs to hold the pte lock.
1064  */
1065 void page_add_file_rmap(struct page *page)
1066 {
1067 	if (atomic_inc_and_test(&page->_mapcount)) {
1068 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1069 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1070 	}
1071 }
1072 
1073 /**
1074  * page_remove_rmap - take down pte mapping from a page
1075  * @page: page to remove mapping from
1076  *
1077  * The caller needs to hold the pte lock.
1078  */
1079 void page_remove_rmap(struct page *page)
1080 {
1081 	/* page still mapped by someone else? */
1082 	if (!atomic_add_negative(-1, &page->_mapcount))
1083 		return;
1084 
1085 	/*
1086 	 * Now that the last pte has gone, s390 must transfer dirty
1087 	 * flag from storage key to struct page.  We can usually skip
1088 	 * this if the page is anon, so about to be freed; but perhaps
1089 	 * not if it's in swapcache - there might be another pte slot
1090 	 * containing the swap entry, but page not yet written to swap.
1091 	 */
1092 	if ((!PageAnon(page) || PageSwapCache(page)) &&
1093 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1094 		set_page_dirty(page);
1095 	/*
1096 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1097 	 * and not charged by memcg for now.
1098 	 */
1099 	if (unlikely(PageHuge(page)))
1100 		return;
1101 	if (PageAnon(page)) {
1102 		mem_cgroup_uncharge_page(page);
1103 		if (!PageTransHuge(page))
1104 			__dec_zone_page_state(page, NR_ANON_PAGES);
1105 		else
1106 			__dec_zone_page_state(page,
1107 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1108 	} else {
1109 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1110 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1111 	}
1112 	/*
1113 	 * It would be tidy to reset the PageAnon mapping here,
1114 	 * but that might overwrite a racing page_add_anon_rmap
1115 	 * which increments mapcount after us but sets mapping
1116 	 * before us: so leave the reset to free_hot_cold_page,
1117 	 * and remember that it's only reliable while mapped.
1118 	 * Leaving it set also helps swapoff to reinstate ptes
1119 	 * faster for those pages still in swapcache.
1120 	 */
1121 }
1122 
1123 /*
1124  * Subfunctions of try_to_unmap: try_to_unmap_one called
1125  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1126  */
1127 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1128 		     unsigned long address, enum ttu_flags flags)
1129 {
1130 	struct mm_struct *mm = vma->vm_mm;
1131 	pte_t *pte;
1132 	pte_t pteval;
1133 	spinlock_t *ptl;
1134 	int ret = SWAP_AGAIN;
1135 
1136 	pte = page_check_address(page, mm, address, &ptl, 0);
1137 	if (!pte)
1138 		goto out;
1139 
1140 	/*
1141 	 * If the page is mlock()d, we cannot swap it out.
1142 	 * If it's recently referenced (perhaps page_referenced
1143 	 * skipped over this mm) then we should reactivate it.
1144 	 */
1145 	if (!(flags & TTU_IGNORE_MLOCK)) {
1146 		if (vma->vm_flags & VM_LOCKED)
1147 			goto out_mlock;
1148 
1149 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1150 			goto out_unmap;
1151 	}
1152 	if (!(flags & TTU_IGNORE_ACCESS)) {
1153 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1154 			ret = SWAP_FAIL;
1155 			goto out_unmap;
1156 		}
1157   	}
1158 
1159 	/* Nuke the page table entry. */
1160 	flush_cache_page(vma, address, page_to_pfn(page));
1161 	pteval = ptep_clear_flush_notify(vma, address, pte);
1162 
1163 	/* Move the dirty bit to the physical page now the pte is gone. */
1164 	if (pte_dirty(pteval))
1165 		set_page_dirty(page);
1166 
1167 	/* Update high watermark before we lower rss */
1168 	update_hiwater_rss(mm);
1169 
1170 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1171 		if (PageAnon(page))
1172 			dec_mm_counter(mm, MM_ANONPAGES);
1173 		else
1174 			dec_mm_counter(mm, MM_FILEPAGES);
1175 		set_pte_at(mm, address, pte,
1176 				swp_entry_to_pte(make_hwpoison_entry(page)));
1177 	} else if (PageAnon(page)) {
1178 		swp_entry_t entry = { .val = page_private(page) };
1179 
1180 		if (PageSwapCache(page)) {
1181 			/*
1182 			 * Store the swap location in the pte.
1183 			 * See handle_pte_fault() ...
1184 			 */
1185 			if (swap_duplicate(entry) < 0) {
1186 				set_pte_at(mm, address, pte, pteval);
1187 				ret = SWAP_FAIL;
1188 				goto out_unmap;
1189 			}
1190 			if (list_empty(&mm->mmlist)) {
1191 				spin_lock(&mmlist_lock);
1192 				if (list_empty(&mm->mmlist))
1193 					list_add(&mm->mmlist, &init_mm.mmlist);
1194 				spin_unlock(&mmlist_lock);
1195 			}
1196 			dec_mm_counter(mm, MM_ANONPAGES);
1197 			inc_mm_counter(mm, MM_SWAPENTS);
1198 		} else if (PAGE_MIGRATION) {
1199 			/*
1200 			 * Store the pfn of the page in a special migration
1201 			 * pte. do_swap_page() will wait until the migration
1202 			 * pte is removed and then restart fault handling.
1203 			 */
1204 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1205 			entry = make_migration_entry(page, pte_write(pteval));
1206 		}
1207 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1208 		BUG_ON(pte_file(*pte));
1209 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1210 		/* Establish migration entry for a file page */
1211 		swp_entry_t entry;
1212 		entry = make_migration_entry(page, pte_write(pteval));
1213 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1214 	} else
1215 		dec_mm_counter(mm, MM_FILEPAGES);
1216 
1217 	page_remove_rmap(page);
1218 	page_cache_release(page);
1219 
1220 out_unmap:
1221 	pte_unmap_unlock(pte, ptl);
1222 out:
1223 	return ret;
1224 
1225 out_mlock:
1226 	pte_unmap_unlock(pte, ptl);
1227 
1228 
1229 	/*
1230 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1231 	 * unstable result and race. Plus, We can't wait here because
1232 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1233 	 * if trylock failed, the page remain in evictable lru and later
1234 	 * vmscan could retry to move the page to unevictable lru if the
1235 	 * page is actually mlocked.
1236 	 */
1237 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1238 		if (vma->vm_flags & VM_LOCKED) {
1239 			mlock_vma_page(page);
1240 			ret = SWAP_MLOCK;
1241 		}
1242 		up_read(&vma->vm_mm->mmap_sem);
1243 	}
1244 	return ret;
1245 }
1246 
1247 /*
1248  * objrmap doesn't work for nonlinear VMAs because the assumption that
1249  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1250  * Consequently, given a particular page and its ->index, we cannot locate the
1251  * ptes which are mapping that page without an exhaustive linear search.
1252  *
1253  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1254  * maps the file to which the target page belongs.  The ->vm_private_data field
1255  * holds the current cursor into that scan.  Successive searches will circulate
1256  * around the vma's virtual address space.
1257  *
1258  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1259  * more scanning pressure is placed against them as well.   Eventually pages
1260  * will become fully unmapped and are eligible for eviction.
1261  *
1262  * For very sparsely populated VMAs this is a little inefficient - chances are
1263  * there there won't be many ptes located within the scan cluster.  In this case
1264  * maybe we could scan further - to the end of the pte page, perhaps.
1265  *
1266  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1267  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1268  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1269  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1270  */
1271 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1272 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1273 
1274 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1275 		struct vm_area_struct *vma, struct page *check_page)
1276 {
1277 	struct mm_struct *mm = vma->vm_mm;
1278 	pgd_t *pgd;
1279 	pud_t *pud;
1280 	pmd_t *pmd;
1281 	pte_t *pte;
1282 	pte_t pteval;
1283 	spinlock_t *ptl;
1284 	struct page *page;
1285 	unsigned long address;
1286 	unsigned long end;
1287 	int ret = SWAP_AGAIN;
1288 	int locked_vma = 0;
1289 
1290 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1291 	end = address + CLUSTER_SIZE;
1292 	if (address < vma->vm_start)
1293 		address = vma->vm_start;
1294 	if (end > vma->vm_end)
1295 		end = vma->vm_end;
1296 
1297 	pgd = pgd_offset(mm, address);
1298 	if (!pgd_present(*pgd))
1299 		return ret;
1300 
1301 	pud = pud_offset(pgd, address);
1302 	if (!pud_present(*pud))
1303 		return ret;
1304 
1305 	pmd = pmd_offset(pud, address);
1306 	if (!pmd_present(*pmd))
1307 		return ret;
1308 
1309 	/*
1310 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1311 	 * keep the sem while scanning the cluster for mlocking pages.
1312 	 */
1313 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1314 		locked_vma = (vma->vm_flags & VM_LOCKED);
1315 		if (!locked_vma)
1316 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1317 	}
1318 
1319 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1320 
1321 	/* Update high watermark before we lower rss */
1322 	update_hiwater_rss(mm);
1323 
1324 	for (; address < end; pte++, address += PAGE_SIZE) {
1325 		if (!pte_present(*pte))
1326 			continue;
1327 		page = vm_normal_page(vma, address, *pte);
1328 		BUG_ON(!page || PageAnon(page));
1329 
1330 		if (locked_vma) {
1331 			mlock_vma_page(page);   /* no-op if already mlocked */
1332 			if (page == check_page)
1333 				ret = SWAP_MLOCK;
1334 			continue;	/* don't unmap */
1335 		}
1336 
1337 		if (ptep_clear_flush_young_notify(vma, address, pte))
1338 			continue;
1339 
1340 		/* Nuke the page table entry. */
1341 		flush_cache_page(vma, address, pte_pfn(*pte));
1342 		pteval = ptep_clear_flush_notify(vma, address, pte);
1343 
1344 		/* If nonlinear, store the file page offset in the pte. */
1345 		if (page->index != linear_page_index(vma, address))
1346 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1347 
1348 		/* Move the dirty bit to the physical page now the pte is gone. */
1349 		if (pte_dirty(pteval))
1350 			set_page_dirty(page);
1351 
1352 		page_remove_rmap(page);
1353 		page_cache_release(page);
1354 		dec_mm_counter(mm, MM_FILEPAGES);
1355 		(*mapcount)--;
1356 	}
1357 	pte_unmap_unlock(pte - 1, ptl);
1358 	if (locked_vma)
1359 		up_read(&vma->vm_mm->mmap_sem);
1360 	return ret;
1361 }
1362 
1363 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1364 {
1365 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1366 
1367 	if (!maybe_stack)
1368 		return false;
1369 
1370 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1371 						VM_STACK_INCOMPLETE_SETUP)
1372 		return true;
1373 
1374 	return false;
1375 }
1376 
1377 /**
1378  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1379  * rmap method
1380  * @page: the page to unmap/unlock
1381  * @flags: action and flags
1382  *
1383  * Find all the mappings of a page using the mapping pointer and the vma chains
1384  * contained in the anon_vma struct it points to.
1385  *
1386  * This function is only called from try_to_unmap/try_to_munlock for
1387  * anonymous pages.
1388  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1389  * where the page was found will be held for write.  So, we won't recheck
1390  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1391  * 'LOCKED.
1392  */
1393 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1394 {
1395 	struct anon_vma *anon_vma;
1396 	struct anon_vma_chain *avc;
1397 	int ret = SWAP_AGAIN;
1398 
1399 	anon_vma = page_lock_anon_vma(page);
1400 	if (!anon_vma)
1401 		return ret;
1402 
1403 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1404 		struct vm_area_struct *vma = avc->vma;
1405 		unsigned long address;
1406 
1407 		/*
1408 		 * During exec, a temporary VMA is setup and later moved.
1409 		 * The VMA is moved under the anon_vma lock but not the
1410 		 * page tables leading to a race where migration cannot
1411 		 * find the migration ptes. Rather than increasing the
1412 		 * locking requirements of exec(), migration skips
1413 		 * temporary VMAs until after exec() completes.
1414 		 */
1415 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1416 				is_vma_temporary_stack(vma))
1417 			continue;
1418 
1419 		address = vma_address(page, vma);
1420 		if (address == -EFAULT)
1421 			continue;
1422 		ret = try_to_unmap_one(page, vma, address, flags);
1423 		if (ret != SWAP_AGAIN || !page_mapped(page))
1424 			break;
1425 	}
1426 
1427 	page_unlock_anon_vma(anon_vma);
1428 	return ret;
1429 }
1430 
1431 /**
1432  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1433  * @page: the page to unmap/unlock
1434  * @flags: action and flags
1435  *
1436  * Find all the mappings of a page using the mapping pointer and the vma chains
1437  * contained in the address_space struct it points to.
1438  *
1439  * This function is only called from try_to_unmap/try_to_munlock for
1440  * object-based pages.
1441  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1442  * where the page was found will be held for write.  So, we won't recheck
1443  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1444  * 'LOCKED.
1445  */
1446 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1447 {
1448 	struct address_space *mapping = page->mapping;
1449 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1450 	struct vm_area_struct *vma;
1451 	struct prio_tree_iter iter;
1452 	int ret = SWAP_AGAIN;
1453 	unsigned long cursor;
1454 	unsigned long max_nl_cursor = 0;
1455 	unsigned long max_nl_size = 0;
1456 	unsigned int mapcount;
1457 
1458 	mutex_lock(&mapping->i_mmap_mutex);
1459 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1460 		unsigned long address = vma_address(page, vma);
1461 		if (address == -EFAULT)
1462 			continue;
1463 		ret = try_to_unmap_one(page, vma, address, flags);
1464 		if (ret != SWAP_AGAIN || !page_mapped(page))
1465 			goto out;
1466 	}
1467 
1468 	if (list_empty(&mapping->i_mmap_nonlinear))
1469 		goto out;
1470 
1471 	/*
1472 	 * We don't bother to try to find the munlocked page in nonlinears.
1473 	 * It's costly. Instead, later, page reclaim logic may call
1474 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1475 	 */
1476 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1477 		goto out;
1478 
1479 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1480 						shared.vm_set.list) {
1481 		cursor = (unsigned long) vma->vm_private_data;
1482 		if (cursor > max_nl_cursor)
1483 			max_nl_cursor = cursor;
1484 		cursor = vma->vm_end - vma->vm_start;
1485 		if (cursor > max_nl_size)
1486 			max_nl_size = cursor;
1487 	}
1488 
1489 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1490 		ret = SWAP_FAIL;
1491 		goto out;
1492 	}
1493 
1494 	/*
1495 	 * We don't try to search for this page in the nonlinear vmas,
1496 	 * and page_referenced wouldn't have found it anyway.  Instead
1497 	 * just walk the nonlinear vmas trying to age and unmap some.
1498 	 * The mapcount of the page we came in with is irrelevant,
1499 	 * but even so use it as a guide to how hard we should try?
1500 	 */
1501 	mapcount = page_mapcount(page);
1502 	if (!mapcount)
1503 		goto out;
1504 	cond_resched();
1505 
1506 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1507 	if (max_nl_cursor == 0)
1508 		max_nl_cursor = CLUSTER_SIZE;
1509 
1510 	do {
1511 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1512 						shared.vm_set.list) {
1513 			cursor = (unsigned long) vma->vm_private_data;
1514 			while ( cursor < max_nl_cursor &&
1515 				cursor < vma->vm_end - vma->vm_start) {
1516 				if (try_to_unmap_cluster(cursor, &mapcount,
1517 						vma, page) == SWAP_MLOCK)
1518 					ret = SWAP_MLOCK;
1519 				cursor += CLUSTER_SIZE;
1520 				vma->vm_private_data = (void *) cursor;
1521 				if ((int)mapcount <= 0)
1522 					goto out;
1523 			}
1524 			vma->vm_private_data = (void *) max_nl_cursor;
1525 		}
1526 		cond_resched();
1527 		max_nl_cursor += CLUSTER_SIZE;
1528 	} while (max_nl_cursor <= max_nl_size);
1529 
1530 	/*
1531 	 * Don't loop forever (perhaps all the remaining pages are
1532 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1533 	 * vmas, now forgetting on which ones it had fallen behind.
1534 	 */
1535 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1536 		vma->vm_private_data = NULL;
1537 out:
1538 	mutex_unlock(&mapping->i_mmap_mutex);
1539 	return ret;
1540 }
1541 
1542 /**
1543  * try_to_unmap - try to remove all page table mappings to a page
1544  * @page: the page to get unmapped
1545  * @flags: action and flags
1546  *
1547  * Tries to remove all the page table entries which are mapping this
1548  * page, used in the pageout path.  Caller must hold the page lock.
1549  * Return values are:
1550  *
1551  * SWAP_SUCCESS	- we succeeded in removing all mappings
1552  * SWAP_AGAIN	- we missed a mapping, try again later
1553  * SWAP_FAIL	- the page is unswappable
1554  * SWAP_MLOCK	- page is mlocked.
1555  */
1556 int try_to_unmap(struct page *page, enum ttu_flags flags)
1557 {
1558 	int ret;
1559 
1560 	BUG_ON(!PageLocked(page));
1561 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1562 
1563 	if (unlikely(PageKsm(page)))
1564 		ret = try_to_unmap_ksm(page, flags);
1565 	else if (PageAnon(page))
1566 		ret = try_to_unmap_anon(page, flags);
1567 	else
1568 		ret = try_to_unmap_file(page, flags);
1569 	if (ret != SWAP_MLOCK && !page_mapped(page))
1570 		ret = SWAP_SUCCESS;
1571 	return ret;
1572 }
1573 
1574 /**
1575  * try_to_munlock - try to munlock a page
1576  * @page: the page to be munlocked
1577  *
1578  * Called from munlock code.  Checks all of the VMAs mapping the page
1579  * to make sure nobody else has this page mlocked. The page will be
1580  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1581  *
1582  * Return values are:
1583  *
1584  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1585  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1586  * SWAP_FAIL	- page cannot be located at present
1587  * SWAP_MLOCK	- page is now mlocked.
1588  */
1589 int try_to_munlock(struct page *page)
1590 {
1591 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1592 
1593 	if (unlikely(PageKsm(page)))
1594 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1595 	else if (PageAnon(page))
1596 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1597 	else
1598 		return try_to_unmap_file(page, TTU_MUNLOCK);
1599 }
1600 
1601 void __put_anon_vma(struct anon_vma *anon_vma)
1602 {
1603 	struct anon_vma *root = anon_vma->root;
1604 
1605 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1606 		anon_vma_free(root);
1607 
1608 	anon_vma_free(anon_vma);
1609 }
1610 
1611 #ifdef CONFIG_MIGRATION
1612 /*
1613  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1614  * Called by migrate.c to remove migration ptes, but might be used more later.
1615  */
1616 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1617 		struct vm_area_struct *, unsigned long, void *), void *arg)
1618 {
1619 	struct anon_vma *anon_vma;
1620 	struct anon_vma_chain *avc;
1621 	int ret = SWAP_AGAIN;
1622 
1623 	/*
1624 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1625 	 * because that depends on page_mapped(); but not all its usages
1626 	 * are holding mmap_sem. Users without mmap_sem are required to
1627 	 * take a reference count to prevent the anon_vma disappearing
1628 	 */
1629 	anon_vma = page_anon_vma(page);
1630 	if (!anon_vma)
1631 		return ret;
1632 	anon_vma_lock(anon_vma);
1633 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1634 		struct vm_area_struct *vma = avc->vma;
1635 		unsigned long address = vma_address(page, vma);
1636 		if (address == -EFAULT)
1637 			continue;
1638 		ret = rmap_one(page, vma, address, arg);
1639 		if (ret != SWAP_AGAIN)
1640 			break;
1641 	}
1642 	anon_vma_unlock(anon_vma);
1643 	return ret;
1644 }
1645 
1646 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1647 		struct vm_area_struct *, unsigned long, void *), void *arg)
1648 {
1649 	struct address_space *mapping = page->mapping;
1650 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1651 	struct vm_area_struct *vma;
1652 	struct prio_tree_iter iter;
1653 	int ret = SWAP_AGAIN;
1654 
1655 	if (!mapping)
1656 		return ret;
1657 	mutex_lock(&mapping->i_mmap_mutex);
1658 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1659 		unsigned long address = vma_address(page, vma);
1660 		if (address == -EFAULT)
1661 			continue;
1662 		ret = rmap_one(page, vma, address, arg);
1663 		if (ret != SWAP_AGAIN)
1664 			break;
1665 	}
1666 	/*
1667 	 * No nonlinear handling: being always shared, nonlinear vmas
1668 	 * never contain migration ptes.  Decide what to do about this
1669 	 * limitation to linear when we need rmap_walk() on nonlinear.
1670 	 */
1671 	mutex_unlock(&mapping->i_mmap_mutex);
1672 	return ret;
1673 }
1674 
1675 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1676 		struct vm_area_struct *, unsigned long, void *), void *arg)
1677 {
1678 	VM_BUG_ON(!PageLocked(page));
1679 
1680 	if (unlikely(PageKsm(page)))
1681 		return rmap_walk_ksm(page, rmap_one, arg);
1682 	else if (PageAnon(page))
1683 		return rmap_walk_anon(page, rmap_one, arg);
1684 	else
1685 		return rmap_walk_file(page, rmap_one, arg);
1686 }
1687 #endif /* CONFIG_MIGRATION */
1688 
1689 #ifdef CONFIG_HUGETLB_PAGE
1690 /*
1691  * The following three functions are for anonymous (private mapped) hugepages.
1692  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1693  * and no lru code, because we handle hugepages differently from common pages.
1694  */
1695 static void __hugepage_set_anon_rmap(struct page *page,
1696 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1697 {
1698 	struct anon_vma *anon_vma = vma->anon_vma;
1699 
1700 	BUG_ON(!anon_vma);
1701 
1702 	if (PageAnon(page))
1703 		return;
1704 	if (!exclusive)
1705 		anon_vma = anon_vma->root;
1706 
1707 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1708 	page->mapping = (struct address_space *) anon_vma;
1709 	page->index = linear_page_index(vma, address);
1710 }
1711 
1712 void hugepage_add_anon_rmap(struct page *page,
1713 			    struct vm_area_struct *vma, unsigned long address)
1714 {
1715 	struct anon_vma *anon_vma = vma->anon_vma;
1716 	int first;
1717 
1718 	BUG_ON(!PageLocked(page));
1719 	BUG_ON(!anon_vma);
1720 	/* address might be in next vma when migration races vma_adjust */
1721 	first = atomic_inc_and_test(&page->_mapcount);
1722 	if (first)
1723 		__hugepage_set_anon_rmap(page, vma, address, 0);
1724 }
1725 
1726 void hugepage_add_new_anon_rmap(struct page *page,
1727 			struct vm_area_struct *vma, unsigned long address)
1728 {
1729 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1730 	atomic_set(&page->_mapcount, 0);
1731 	__hugepage_set_anon_rmap(page, vma, address, 1);
1732 }
1733 #endif /* CONFIG_HUGETLB_PAGE */
1734