xref: /linux/mm/rmap.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
64 
65 #include <asm/tlbflush.h>
66 
67 #include <trace/events/tlb.h>
68 
69 #include "internal.h"
70 
71 static struct kmem_cache *anon_vma_cachep;
72 static struct kmem_cache *anon_vma_chain_cachep;
73 
74 static inline struct anon_vma *anon_vma_alloc(void)
75 {
76 	struct anon_vma *anon_vma;
77 
78 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 	if (anon_vma) {
80 		atomic_set(&anon_vma->refcount, 1);
81 		anon_vma->degree = 1;	/* Reference for first vma */
82 		anon_vma->parent = anon_vma;
83 		/*
84 		 * Initialise the anon_vma root to point to itself. If called
85 		 * from fork, the root will be reset to the parents anon_vma.
86 		 */
87 		anon_vma->root = anon_vma;
88 	}
89 
90 	return anon_vma;
91 }
92 
93 static inline void anon_vma_free(struct anon_vma *anon_vma)
94 {
95 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
96 
97 	/*
98 	 * Synchronize against page_lock_anon_vma_read() such that
99 	 * we can safely hold the lock without the anon_vma getting
100 	 * freed.
101 	 *
102 	 * Relies on the full mb implied by the atomic_dec_and_test() from
103 	 * put_anon_vma() against the acquire barrier implied by
104 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 	 *
106 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
107 	 *   down_read_trylock()		  atomic_dec_and_test()
108 	 *   LOCK				  MB
109 	 *   atomic_read()			  rwsem_is_locked()
110 	 *
111 	 * LOCK should suffice since the actual taking of the lock must
112 	 * happen _before_ what follows.
113 	 */
114 	might_sleep();
115 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
116 		anon_vma_lock_write(anon_vma);
117 		anon_vma_unlock_write(anon_vma);
118 	}
119 
120 	kmem_cache_free(anon_vma_cachep, anon_vma);
121 }
122 
123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
124 {
125 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
126 }
127 
128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
129 {
130 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131 }
132 
133 static void anon_vma_chain_link(struct vm_area_struct *vma,
134 				struct anon_vma_chain *avc,
135 				struct anon_vma *anon_vma)
136 {
137 	avc->vma = vma;
138 	avc->anon_vma = anon_vma;
139 	list_add(&avc->same_vma, &vma->anon_vma_chain);
140 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
141 }
142 
143 /**
144  * anon_vma_prepare - attach an anon_vma to a memory region
145  * @vma: the memory region in question
146  *
147  * This makes sure the memory mapping described by 'vma' has
148  * an 'anon_vma' attached to it, so that we can associate the
149  * anonymous pages mapped into it with that anon_vma.
150  *
151  * The common case will be that we already have one, but if
152  * not we either need to find an adjacent mapping that we
153  * can re-use the anon_vma from (very common when the only
154  * reason for splitting a vma has been mprotect()), or we
155  * allocate a new one.
156  *
157  * Anon-vma allocations are very subtle, because we may have
158  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
159  * and that may actually touch the spinlock even in the newly
160  * allocated vma (it depends on RCU to make sure that the
161  * anon_vma isn't actually destroyed).
162  *
163  * As a result, we need to do proper anon_vma locking even
164  * for the new allocation. At the same time, we do not want
165  * to do any locking for the common case of already having
166  * an anon_vma.
167  *
168  * This must be called with the mmap_sem held for reading.
169  */
170 int anon_vma_prepare(struct vm_area_struct *vma)
171 {
172 	struct anon_vma *anon_vma = vma->anon_vma;
173 	struct anon_vma_chain *avc;
174 
175 	might_sleep();
176 	if (unlikely(!anon_vma)) {
177 		struct mm_struct *mm = vma->vm_mm;
178 		struct anon_vma *allocated;
179 
180 		avc = anon_vma_chain_alloc(GFP_KERNEL);
181 		if (!avc)
182 			goto out_enomem;
183 
184 		anon_vma = find_mergeable_anon_vma(vma);
185 		allocated = NULL;
186 		if (!anon_vma) {
187 			anon_vma = anon_vma_alloc();
188 			if (unlikely(!anon_vma))
189 				goto out_enomem_free_avc;
190 			allocated = anon_vma;
191 		}
192 
193 		anon_vma_lock_write(anon_vma);
194 		/* page_table_lock to protect against threads */
195 		spin_lock(&mm->page_table_lock);
196 		if (likely(!vma->anon_vma)) {
197 			vma->anon_vma = anon_vma;
198 			anon_vma_chain_link(vma, avc, anon_vma);
199 			/* vma reference or self-parent link for new root */
200 			anon_vma->degree++;
201 			allocated = NULL;
202 			avc = NULL;
203 		}
204 		spin_unlock(&mm->page_table_lock);
205 		anon_vma_unlock_write(anon_vma);
206 
207 		if (unlikely(allocated))
208 			put_anon_vma(allocated);
209 		if (unlikely(avc))
210 			anon_vma_chain_free(avc);
211 	}
212 	return 0;
213 
214  out_enomem_free_avc:
215 	anon_vma_chain_free(avc);
216  out_enomem:
217 	return -ENOMEM;
218 }
219 
220 /*
221  * This is a useful helper function for locking the anon_vma root as
222  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223  * have the same vma.
224  *
225  * Such anon_vma's should have the same root, so you'd expect to see
226  * just a single mutex_lock for the whole traversal.
227  */
228 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229 {
230 	struct anon_vma *new_root = anon_vma->root;
231 	if (new_root != root) {
232 		if (WARN_ON_ONCE(root))
233 			up_write(&root->rwsem);
234 		root = new_root;
235 		down_write(&root->rwsem);
236 	}
237 	return root;
238 }
239 
240 static inline void unlock_anon_vma_root(struct anon_vma *root)
241 {
242 	if (root)
243 		up_write(&root->rwsem);
244 }
245 
246 /*
247  * Attach the anon_vmas from src to dst.
248  * Returns 0 on success, -ENOMEM on failure.
249  *
250  * If dst->anon_vma is NULL this function tries to find and reuse existing
251  * anon_vma which has no vmas and only one child anon_vma. This prevents
252  * degradation of anon_vma hierarchy to endless linear chain in case of
253  * constantly forking task. On the other hand, an anon_vma with more than one
254  * child isn't reused even if there was no alive vma, thus rmap walker has a
255  * good chance of avoiding scanning the whole hierarchy when it searches where
256  * page is mapped.
257  */
258 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
259 {
260 	struct anon_vma_chain *avc, *pavc;
261 	struct anon_vma *root = NULL;
262 
263 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
264 		struct anon_vma *anon_vma;
265 
266 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 		if (unlikely(!avc)) {
268 			unlock_anon_vma_root(root);
269 			root = NULL;
270 			avc = anon_vma_chain_alloc(GFP_KERNEL);
271 			if (!avc)
272 				goto enomem_failure;
273 		}
274 		anon_vma = pavc->anon_vma;
275 		root = lock_anon_vma_root(root, anon_vma);
276 		anon_vma_chain_link(dst, avc, anon_vma);
277 
278 		/*
279 		 * Reuse existing anon_vma if its degree lower than two,
280 		 * that means it has no vma and only one anon_vma child.
281 		 *
282 		 * Do not chose parent anon_vma, otherwise first child
283 		 * will always reuse it. Root anon_vma is never reused:
284 		 * it has self-parent reference and at least one child.
285 		 */
286 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 				anon_vma->degree < 2)
288 			dst->anon_vma = anon_vma;
289 	}
290 	if (dst->anon_vma)
291 		dst->anon_vma->degree++;
292 	unlock_anon_vma_root(root);
293 	return 0;
294 
295  enomem_failure:
296 	/*
297 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 	 * decremented in unlink_anon_vmas().
299 	 * We can safely do this because callers of anon_vma_clone() don't care
300 	 * about dst->anon_vma if anon_vma_clone() failed.
301 	 */
302 	dst->anon_vma = NULL;
303 	unlink_anon_vmas(dst);
304 	return -ENOMEM;
305 }
306 
307 /*
308  * Attach vma to its own anon_vma, as well as to the anon_vmas that
309  * the corresponding VMA in the parent process is attached to.
310  * Returns 0 on success, non-zero on failure.
311  */
312 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
313 {
314 	struct anon_vma_chain *avc;
315 	struct anon_vma *anon_vma;
316 	int error;
317 
318 	/* Don't bother if the parent process has no anon_vma here. */
319 	if (!pvma->anon_vma)
320 		return 0;
321 
322 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 	vma->anon_vma = NULL;
324 
325 	/*
326 	 * First, attach the new VMA to the parent VMA's anon_vmas,
327 	 * so rmap can find non-COWed pages in child processes.
328 	 */
329 	error = anon_vma_clone(vma, pvma);
330 	if (error)
331 		return error;
332 
333 	/* An existing anon_vma has been reused, all done then. */
334 	if (vma->anon_vma)
335 		return 0;
336 
337 	/* Then add our own anon_vma. */
338 	anon_vma = anon_vma_alloc();
339 	if (!anon_vma)
340 		goto out_error;
341 	avc = anon_vma_chain_alloc(GFP_KERNEL);
342 	if (!avc)
343 		goto out_error_free_anon_vma;
344 
345 	/*
346 	 * The root anon_vma's spinlock is the lock actually used when we
347 	 * lock any of the anon_vmas in this anon_vma tree.
348 	 */
349 	anon_vma->root = pvma->anon_vma->root;
350 	anon_vma->parent = pvma->anon_vma;
351 	/*
352 	 * With refcounts, an anon_vma can stay around longer than the
353 	 * process it belongs to. The root anon_vma needs to be pinned until
354 	 * this anon_vma is freed, because the lock lives in the root.
355 	 */
356 	get_anon_vma(anon_vma->root);
357 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
358 	vma->anon_vma = anon_vma;
359 	anon_vma_lock_write(anon_vma);
360 	anon_vma_chain_link(vma, avc, anon_vma);
361 	anon_vma->parent->degree++;
362 	anon_vma_unlock_write(anon_vma);
363 
364 	return 0;
365 
366  out_error_free_anon_vma:
367 	put_anon_vma(anon_vma);
368  out_error:
369 	unlink_anon_vmas(vma);
370 	return -ENOMEM;
371 }
372 
373 void unlink_anon_vmas(struct vm_area_struct *vma)
374 {
375 	struct anon_vma_chain *avc, *next;
376 	struct anon_vma *root = NULL;
377 
378 	/*
379 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
380 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 	 */
382 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 		struct anon_vma *anon_vma = avc->anon_vma;
384 
385 		root = lock_anon_vma_root(root, anon_vma);
386 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
387 
388 		/*
389 		 * Leave empty anon_vmas on the list - we'll need
390 		 * to free them outside the lock.
391 		 */
392 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 			anon_vma->parent->degree--;
394 			continue;
395 		}
396 
397 		list_del(&avc->same_vma);
398 		anon_vma_chain_free(avc);
399 	}
400 	if (vma->anon_vma)
401 		vma->anon_vma->degree--;
402 	unlock_anon_vma_root(root);
403 
404 	/*
405 	 * Iterate the list once more, it now only contains empty and unlinked
406 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 	 * needing to write-acquire the anon_vma->root->rwsem.
408 	 */
409 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 		struct anon_vma *anon_vma = avc->anon_vma;
411 
412 		BUG_ON(anon_vma->degree);
413 		put_anon_vma(anon_vma);
414 
415 		list_del(&avc->same_vma);
416 		anon_vma_chain_free(avc);
417 	}
418 }
419 
420 static void anon_vma_ctor(void *data)
421 {
422 	struct anon_vma *anon_vma = data;
423 
424 	init_rwsem(&anon_vma->rwsem);
425 	atomic_set(&anon_vma->refcount, 0);
426 	anon_vma->rb_root = RB_ROOT;
427 }
428 
429 void __init anon_vma_init(void)
430 {
431 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 			anon_vma_ctor);
434 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 			SLAB_PANIC|SLAB_ACCOUNT);
436 }
437 
438 /*
439  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440  *
441  * Since there is no serialization what so ever against page_remove_rmap()
442  * the best this function can do is return a locked anon_vma that might
443  * have been relevant to this page.
444  *
445  * The page might have been remapped to a different anon_vma or the anon_vma
446  * returned may already be freed (and even reused).
447  *
448  * In case it was remapped to a different anon_vma, the new anon_vma will be a
449  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450  * ensure that any anon_vma obtained from the page will still be valid for as
451  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452  *
453  * All users of this function must be very careful when walking the anon_vma
454  * chain and verify that the page in question is indeed mapped in it
455  * [ something equivalent to page_mapped_in_vma() ].
456  *
457  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458  * that the anon_vma pointer from page->mapping is valid if there is a
459  * mapcount, we can dereference the anon_vma after observing those.
460  */
461 struct anon_vma *page_get_anon_vma(struct page *page)
462 {
463 	struct anon_vma *anon_vma = NULL;
464 	unsigned long anon_mapping;
465 
466 	rcu_read_lock();
467 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
468 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
469 		goto out;
470 	if (!page_mapped(page))
471 		goto out;
472 
473 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	/*
480 	 * If this page is still mapped, then its anon_vma cannot have been
481 	 * freed.  But if it has been unmapped, we have no security against the
482 	 * anon_vma structure being freed and reused (for another anon_vma:
483 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 	 * above cannot corrupt).
485 	 */
486 	if (!page_mapped(page)) {
487 		rcu_read_unlock();
488 		put_anon_vma(anon_vma);
489 		return NULL;
490 	}
491 out:
492 	rcu_read_unlock();
493 
494 	return anon_vma;
495 }
496 
497 /*
498  * Similar to page_get_anon_vma() except it locks the anon_vma.
499  *
500  * Its a little more complex as it tries to keep the fast path to a single
501  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502  * reference like with page_get_anon_vma() and then block on the mutex.
503  */
504 struct anon_vma *page_lock_anon_vma_read(struct page *page)
505 {
506 	struct anon_vma *anon_vma = NULL;
507 	struct anon_vma *root_anon_vma;
508 	unsigned long anon_mapping;
509 
510 	rcu_read_lock();
511 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
512 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 		goto out;
514 	if (!page_mapped(page))
515 		goto out;
516 
517 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 	root_anon_vma = READ_ONCE(anon_vma->root);
519 	if (down_read_trylock(&root_anon_vma->rwsem)) {
520 		/*
521 		 * If the page is still mapped, then this anon_vma is still
522 		 * its anon_vma, and holding the mutex ensures that it will
523 		 * not go away, see anon_vma_free().
524 		 */
525 		if (!page_mapped(page)) {
526 			up_read(&root_anon_vma->rwsem);
527 			anon_vma = NULL;
528 		}
529 		goto out;
530 	}
531 
532 	/* trylock failed, we got to sleep */
533 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 		anon_vma = NULL;
535 		goto out;
536 	}
537 
538 	if (!page_mapped(page)) {
539 		rcu_read_unlock();
540 		put_anon_vma(anon_vma);
541 		return NULL;
542 	}
543 
544 	/* we pinned the anon_vma, its safe to sleep */
545 	rcu_read_unlock();
546 	anon_vma_lock_read(anon_vma);
547 
548 	if (atomic_dec_and_test(&anon_vma->refcount)) {
549 		/*
550 		 * Oops, we held the last refcount, release the lock
551 		 * and bail -- can't simply use put_anon_vma() because
552 		 * we'll deadlock on the anon_vma_lock_write() recursion.
553 		 */
554 		anon_vma_unlock_read(anon_vma);
555 		__put_anon_vma(anon_vma);
556 		anon_vma = NULL;
557 	}
558 
559 	return anon_vma;
560 
561 out:
562 	rcu_read_unlock();
563 	return anon_vma;
564 }
565 
566 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
567 {
568 	anon_vma_unlock_read(anon_vma);
569 }
570 
571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572 /*
573  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
574  * important if a PTE was dirty when it was unmapped that it's flushed
575  * before any IO is initiated on the page to prevent lost writes. Similarly,
576  * it must be flushed before freeing to prevent data leakage.
577  */
578 void try_to_unmap_flush(void)
579 {
580 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
581 	int cpu;
582 
583 	if (!tlb_ubc->flush_required)
584 		return;
585 
586 	cpu = get_cpu();
587 
588 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
589 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
590 		local_flush_tlb();
591 		trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
592 	}
593 
594 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
595 		flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
596 	cpumask_clear(&tlb_ubc->cpumask);
597 	tlb_ubc->flush_required = false;
598 	tlb_ubc->writable = false;
599 	put_cpu();
600 }
601 
602 /* Flush iff there are potentially writable TLB entries that can race with IO */
603 void try_to_unmap_flush_dirty(void)
604 {
605 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606 
607 	if (tlb_ubc->writable)
608 		try_to_unmap_flush();
609 }
610 
611 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
612 		struct page *page, bool writable)
613 {
614 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615 
616 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
617 	tlb_ubc->flush_required = true;
618 
619 	/*
620 	 * If the PTE was dirty then it's best to assume it's writable. The
621 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
622 	 * before the page is queued for IO.
623 	 */
624 	if (writable)
625 		tlb_ubc->writable = true;
626 }
627 
628 /*
629  * Returns true if the TLB flush should be deferred to the end of a batch of
630  * unmap operations to reduce IPIs.
631  */
632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
633 {
634 	bool should_defer = false;
635 
636 	if (!(flags & TTU_BATCH_FLUSH))
637 		return false;
638 
639 	/* If remote CPUs need to be flushed then defer batch the flush */
640 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
641 		should_defer = true;
642 	put_cpu();
643 
644 	return should_defer;
645 }
646 #else
647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
648 		struct page *page, bool writable)
649 {
650 }
651 
652 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
653 {
654 	return false;
655 }
656 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
657 
658 /*
659  * At what user virtual address is page expected in vma?
660  * Caller should check the page is actually part of the vma.
661  */
662 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
663 {
664 	unsigned long address;
665 	if (PageAnon(page)) {
666 		struct anon_vma *page__anon_vma = page_anon_vma(page);
667 		/*
668 		 * Note: swapoff's unuse_vma() is more efficient with this
669 		 * check, and needs it to match anon_vma when KSM is active.
670 		 */
671 		if (!vma->anon_vma || !page__anon_vma ||
672 		    vma->anon_vma->root != page__anon_vma->root)
673 			return -EFAULT;
674 	} else if (page->mapping) {
675 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
676 			return -EFAULT;
677 	} else
678 		return -EFAULT;
679 	address = __vma_address(page, vma);
680 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
681 		return -EFAULT;
682 	return address;
683 }
684 
685 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
686 {
687 	pgd_t *pgd;
688 	pud_t *pud;
689 	pmd_t *pmd = NULL;
690 	pmd_t pmde;
691 
692 	pgd = pgd_offset(mm, address);
693 	if (!pgd_present(*pgd))
694 		goto out;
695 
696 	pud = pud_offset(pgd, address);
697 	if (!pud_present(*pud))
698 		goto out;
699 
700 	pmd = pmd_offset(pud, address);
701 	/*
702 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
703 	 * without holding anon_vma lock for write.  So when looking for a
704 	 * genuine pmde (in which to find pte), test present and !THP together.
705 	 */
706 	pmde = *pmd;
707 	barrier();
708 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
709 		pmd = NULL;
710 out:
711 	return pmd;
712 }
713 
714 /*
715  * Check that @page is mapped at @address into @mm.
716  *
717  * If @sync is false, page_check_address may perform a racy check to avoid
718  * the page table lock when the pte is not present (helpful when reclaiming
719  * highly shared pages).
720  *
721  * On success returns with pte mapped and locked.
722  */
723 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
724 			  unsigned long address, spinlock_t **ptlp, int sync)
725 {
726 	pmd_t *pmd;
727 	pte_t *pte;
728 	spinlock_t *ptl;
729 
730 	if (unlikely(PageHuge(page))) {
731 		/* when pud is not present, pte will be NULL */
732 		pte = huge_pte_offset(mm, address);
733 		if (!pte)
734 			return NULL;
735 
736 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
737 		goto check;
738 	}
739 
740 	pmd = mm_find_pmd(mm, address);
741 	if (!pmd)
742 		return NULL;
743 
744 	pte = pte_offset_map(pmd, address);
745 	/* Make a quick check before getting the lock */
746 	if (!sync && !pte_present(*pte)) {
747 		pte_unmap(pte);
748 		return NULL;
749 	}
750 
751 	ptl = pte_lockptr(mm, pmd);
752 check:
753 	spin_lock(ptl);
754 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
755 		*ptlp = ptl;
756 		return pte;
757 	}
758 	pte_unmap_unlock(pte, ptl);
759 	return NULL;
760 }
761 
762 /**
763  * page_mapped_in_vma - check whether a page is really mapped in a VMA
764  * @page: the page to test
765  * @vma: the VMA to test
766  *
767  * Returns 1 if the page is mapped into the page tables of the VMA, 0
768  * if the page is not mapped into the page tables of this VMA.  Only
769  * valid for normal file or anonymous VMAs.
770  */
771 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
772 {
773 	unsigned long address;
774 	pte_t *pte;
775 	spinlock_t *ptl;
776 
777 	address = __vma_address(page, vma);
778 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
779 		return 0;
780 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
781 	if (!pte)			/* the page is not in this mm */
782 		return 0;
783 	pte_unmap_unlock(pte, ptl);
784 
785 	return 1;
786 }
787 
788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
789 /*
790  * Check that @page is mapped at @address into @mm. In contrast to
791  * page_check_address(), this function can handle transparent huge pages.
792  *
793  * On success returns true with pte mapped and locked. For PMD-mapped
794  * transparent huge pages *@ptep is set to NULL.
795  */
796 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
797 				  unsigned long address, pmd_t **pmdp,
798 				  pte_t **ptep, spinlock_t **ptlp)
799 {
800 	pgd_t *pgd;
801 	pud_t *pud;
802 	pmd_t *pmd;
803 	pte_t *pte;
804 	spinlock_t *ptl;
805 
806 	if (unlikely(PageHuge(page))) {
807 		/* when pud is not present, pte will be NULL */
808 		pte = huge_pte_offset(mm, address);
809 		if (!pte)
810 			return false;
811 
812 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
813 		pmd = NULL;
814 		goto check_pte;
815 	}
816 
817 	pgd = pgd_offset(mm, address);
818 	if (!pgd_present(*pgd))
819 		return false;
820 	pud = pud_offset(pgd, address);
821 	if (!pud_present(*pud))
822 		return false;
823 	pmd = pmd_offset(pud, address);
824 
825 	if (pmd_trans_huge(*pmd)) {
826 		ptl = pmd_lock(mm, pmd);
827 		if (!pmd_present(*pmd))
828 			goto unlock_pmd;
829 		if (unlikely(!pmd_trans_huge(*pmd))) {
830 			spin_unlock(ptl);
831 			goto map_pte;
832 		}
833 
834 		if (pmd_page(*pmd) != page)
835 			goto unlock_pmd;
836 
837 		pte = NULL;
838 		goto found;
839 unlock_pmd:
840 		spin_unlock(ptl);
841 		return false;
842 	} else {
843 		pmd_t pmde = *pmd;
844 
845 		barrier();
846 		if (!pmd_present(pmde) || pmd_trans_huge(pmde))
847 			return false;
848 	}
849 map_pte:
850 	pte = pte_offset_map(pmd, address);
851 	if (!pte_present(*pte)) {
852 		pte_unmap(pte);
853 		return false;
854 	}
855 
856 	ptl = pte_lockptr(mm, pmd);
857 check_pte:
858 	spin_lock(ptl);
859 
860 	if (!pte_present(*pte)) {
861 		pte_unmap_unlock(pte, ptl);
862 		return false;
863 	}
864 
865 	/* THP can be referenced by any subpage */
866 	if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
867 		pte_unmap_unlock(pte, ptl);
868 		return false;
869 	}
870 found:
871 	*ptep = pte;
872 	*pmdp = pmd;
873 	*ptlp = ptl;
874 	return true;
875 }
876 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
877 
878 struct page_referenced_arg {
879 	int mapcount;
880 	int referenced;
881 	unsigned long vm_flags;
882 	struct mem_cgroup *memcg;
883 };
884 /*
885  * arg: page_referenced_arg will be passed
886  */
887 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
888 			unsigned long address, void *arg)
889 {
890 	struct mm_struct *mm = vma->vm_mm;
891 	struct page_referenced_arg *pra = arg;
892 	pmd_t *pmd;
893 	pte_t *pte;
894 	spinlock_t *ptl;
895 	int referenced = 0;
896 
897 	if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
898 		return SWAP_AGAIN;
899 
900 	if (vma->vm_flags & VM_LOCKED) {
901 		if (pte)
902 			pte_unmap(pte);
903 		spin_unlock(ptl);
904 		pra->vm_flags |= VM_LOCKED;
905 		return SWAP_FAIL; /* To break the loop */
906 	}
907 
908 	if (pte) {
909 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
910 			/*
911 			 * Don't treat a reference through a sequentially read
912 			 * mapping as such.  If the page has been used in
913 			 * another mapping, we will catch it; if this other
914 			 * mapping is already gone, the unmap path will have
915 			 * set PG_referenced or activated the page.
916 			 */
917 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
918 				referenced++;
919 		}
920 		pte_unmap(pte);
921 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
922 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
923 			referenced++;
924 	} else {
925 		/* unexpected pmd-mapped page? */
926 		WARN_ON_ONCE(1);
927 	}
928 	spin_unlock(ptl);
929 
930 	if (referenced)
931 		clear_page_idle(page);
932 	if (test_and_clear_page_young(page))
933 		referenced++;
934 
935 	if (referenced) {
936 		pra->referenced++;
937 		pra->vm_flags |= vma->vm_flags;
938 	}
939 
940 	pra->mapcount--;
941 	if (!pra->mapcount)
942 		return SWAP_SUCCESS; /* To break the loop */
943 
944 	return SWAP_AGAIN;
945 }
946 
947 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
948 {
949 	struct page_referenced_arg *pra = arg;
950 	struct mem_cgroup *memcg = pra->memcg;
951 
952 	if (!mm_match_cgroup(vma->vm_mm, memcg))
953 		return true;
954 
955 	return false;
956 }
957 
958 /**
959  * page_referenced - test if the page was referenced
960  * @page: the page to test
961  * @is_locked: caller holds lock on the page
962  * @memcg: target memory cgroup
963  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
964  *
965  * Quick test_and_clear_referenced for all mappings to a page,
966  * returns the number of ptes which referenced the page.
967  */
968 int page_referenced(struct page *page,
969 		    int is_locked,
970 		    struct mem_cgroup *memcg,
971 		    unsigned long *vm_flags)
972 {
973 	int ret;
974 	int we_locked = 0;
975 	struct page_referenced_arg pra = {
976 		.mapcount = total_mapcount(page),
977 		.memcg = memcg,
978 	};
979 	struct rmap_walk_control rwc = {
980 		.rmap_one = page_referenced_one,
981 		.arg = (void *)&pra,
982 		.anon_lock = page_lock_anon_vma_read,
983 	};
984 
985 	*vm_flags = 0;
986 	if (!page_mapped(page))
987 		return 0;
988 
989 	if (!page_rmapping(page))
990 		return 0;
991 
992 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
993 		we_locked = trylock_page(page);
994 		if (!we_locked)
995 			return 1;
996 	}
997 
998 	/*
999 	 * If we are reclaiming on behalf of a cgroup, skip
1000 	 * counting on behalf of references from different
1001 	 * cgroups
1002 	 */
1003 	if (memcg) {
1004 		rwc.invalid_vma = invalid_page_referenced_vma;
1005 	}
1006 
1007 	ret = rmap_walk(page, &rwc);
1008 	*vm_flags = pra.vm_flags;
1009 
1010 	if (we_locked)
1011 		unlock_page(page);
1012 
1013 	return pra.referenced;
1014 }
1015 
1016 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1017 			    unsigned long address, void *arg)
1018 {
1019 	struct mm_struct *mm = vma->vm_mm;
1020 	pte_t *pte;
1021 	spinlock_t *ptl;
1022 	int ret = 0;
1023 	int *cleaned = arg;
1024 
1025 	pte = page_check_address(page, mm, address, &ptl, 1);
1026 	if (!pte)
1027 		goto out;
1028 
1029 	if (pte_dirty(*pte) || pte_write(*pte)) {
1030 		pte_t entry;
1031 
1032 		flush_cache_page(vma, address, pte_pfn(*pte));
1033 		entry = ptep_clear_flush(vma, address, pte);
1034 		entry = pte_wrprotect(entry);
1035 		entry = pte_mkclean(entry);
1036 		set_pte_at(mm, address, pte, entry);
1037 		ret = 1;
1038 	}
1039 
1040 	pte_unmap_unlock(pte, ptl);
1041 
1042 	if (ret) {
1043 		mmu_notifier_invalidate_page(mm, address);
1044 		(*cleaned)++;
1045 	}
1046 out:
1047 	return SWAP_AGAIN;
1048 }
1049 
1050 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1051 {
1052 	if (vma->vm_flags & VM_SHARED)
1053 		return false;
1054 
1055 	return true;
1056 }
1057 
1058 int page_mkclean(struct page *page)
1059 {
1060 	int cleaned = 0;
1061 	struct address_space *mapping;
1062 	struct rmap_walk_control rwc = {
1063 		.arg = (void *)&cleaned,
1064 		.rmap_one = page_mkclean_one,
1065 		.invalid_vma = invalid_mkclean_vma,
1066 	};
1067 
1068 	BUG_ON(!PageLocked(page));
1069 
1070 	if (!page_mapped(page))
1071 		return 0;
1072 
1073 	mapping = page_mapping(page);
1074 	if (!mapping)
1075 		return 0;
1076 
1077 	rmap_walk(page, &rwc);
1078 
1079 	return cleaned;
1080 }
1081 EXPORT_SYMBOL_GPL(page_mkclean);
1082 
1083 /**
1084  * page_move_anon_rmap - move a page to our anon_vma
1085  * @page:	the page to move to our anon_vma
1086  * @vma:	the vma the page belongs to
1087  * @address:	the user virtual address mapped
1088  *
1089  * When a page belongs exclusively to one process after a COW event,
1090  * that page can be moved into the anon_vma that belongs to just that
1091  * process, so the rmap code will not search the parent or sibling
1092  * processes.
1093  */
1094 void page_move_anon_rmap(struct page *page,
1095 	struct vm_area_struct *vma, unsigned long address)
1096 {
1097 	struct anon_vma *anon_vma = vma->anon_vma;
1098 
1099 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1100 	VM_BUG_ON_VMA(!anon_vma, vma);
1101 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1102 
1103 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1104 	/*
1105 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1106 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1107 	 * PageAnon()) will not see one without the other.
1108 	 */
1109 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1110 }
1111 
1112 /**
1113  * __page_set_anon_rmap - set up new anonymous rmap
1114  * @page:	Page to add to rmap
1115  * @vma:	VM area to add page to.
1116  * @address:	User virtual address of the mapping
1117  * @exclusive:	the page is exclusively owned by the current process
1118  */
1119 static void __page_set_anon_rmap(struct page *page,
1120 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1121 {
1122 	struct anon_vma *anon_vma = vma->anon_vma;
1123 
1124 	BUG_ON(!anon_vma);
1125 
1126 	if (PageAnon(page))
1127 		return;
1128 
1129 	/*
1130 	 * If the page isn't exclusively mapped into this vma,
1131 	 * we must use the _oldest_ possible anon_vma for the
1132 	 * page mapping!
1133 	 */
1134 	if (!exclusive)
1135 		anon_vma = anon_vma->root;
1136 
1137 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1138 	page->mapping = (struct address_space *) anon_vma;
1139 	page->index = linear_page_index(vma, address);
1140 }
1141 
1142 /**
1143  * __page_check_anon_rmap - sanity check anonymous rmap addition
1144  * @page:	the page to add the mapping to
1145  * @vma:	the vm area in which the mapping is added
1146  * @address:	the user virtual address mapped
1147  */
1148 static void __page_check_anon_rmap(struct page *page,
1149 	struct vm_area_struct *vma, unsigned long address)
1150 {
1151 #ifdef CONFIG_DEBUG_VM
1152 	/*
1153 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1154 	 * be set up correctly at this point.
1155 	 *
1156 	 * We have exclusion against page_add_anon_rmap because the caller
1157 	 * always holds the page locked, except if called from page_dup_rmap,
1158 	 * in which case the page is already known to be setup.
1159 	 *
1160 	 * We have exclusion against page_add_new_anon_rmap because those pages
1161 	 * are initially only visible via the pagetables, and the pte is locked
1162 	 * over the call to page_add_new_anon_rmap.
1163 	 */
1164 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1165 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1166 #endif
1167 }
1168 
1169 /**
1170  * page_add_anon_rmap - add pte mapping to an anonymous page
1171  * @page:	the page to add the mapping to
1172  * @vma:	the vm area in which the mapping is added
1173  * @address:	the user virtual address mapped
1174  * @compound:	charge the page as compound or small page
1175  *
1176  * The caller needs to hold the pte lock, and the page must be locked in
1177  * the anon_vma case: to serialize mapping,index checking after setting,
1178  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1179  * (but PageKsm is never downgraded to PageAnon).
1180  */
1181 void page_add_anon_rmap(struct page *page,
1182 	struct vm_area_struct *vma, unsigned long address, bool compound)
1183 {
1184 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1185 }
1186 
1187 /*
1188  * Special version of the above for do_swap_page, which often runs
1189  * into pages that are exclusively owned by the current process.
1190  * Everybody else should continue to use page_add_anon_rmap above.
1191  */
1192 void do_page_add_anon_rmap(struct page *page,
1193 	struct vm_area_struct *vma, unsigned long address, int flags)
1194 {
1195 	bool compound = flags & RMAP_COMPOUND;
1196 	bool first;
1197 
1198 	if (compound) {
1199 		atomic_t *mapcount;
1200 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1201 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1202 		mapcount = compound_mapcount_ptr(page);
1203 		first = atomic_inc_and_test(mapcount);
1204 	} else {
1205 		first = atomic_inc_and_test(&page->_mapcount);
1206 	}
1207 
1208 	if (first) {
1209 		int nr = compound ? hpage_nr_pages(page) : 1;
1210 		/*
1211 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1212 		 * these counters are not modified in interrupt context, and
1213 		 * pte lock(a spinlock) is held, which implies preemption
1214 		 * disabled.
1215 		 */
1216 		if (compound) {
1217 			__inc_zone_page_state(page,
1218 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1219 		}
1220 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1221 	}
1222 	if (unlikely(PageKsm(page)))
1223 		return;
1224 
1225 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1226 
1227 	/* address might be in next vma when migration races vma_adjust */
1228 	if (first)
1229 		__page_set_anon_rmap(page, vma, address,
1230 				flags & RMAP_EXCLUSIVE);
1231 	else
1232 		__page_check_anon_rmap(page, vma, address);
1233 }
1234 
1235 /**
1236  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1237  * @page:	the page to add the mapping to
1238  * @vma:	the vm area in which the mapping is added
1239  * @address:	the user virtual address mapped
1240  * @compound:	charge the page as compound or small page
1241  *
1242  * Same as page_add_anon_rmap but must only be called on *new* pages.
1243  * This means the inc-and-test can be bypassed.
1244  * Page does not have to be locked.
1245  */
1246 void page_add_new_anon_rmap(struct page *page,
1247 	struct vm_area_struct *vma, unsigned long address, bool compound)
1248 {
1249 	int nr = compound ? hpage_nr_pages(page) : 1;
1250 
1251 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1252 	SetPageSwapBacked(page);
1253 	if (compound) {
1254 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1255 		/* increment count (starts at -1) */
1256 		atomic_set(compound_mapcount_ptr(page), 0);
1257 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1258 	} else {
1259 		/* Anon THP always mapped first with PMD */
1260 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1261 		/* increment count (starts at -1) */
1262 		atomic_set(&page->_mapcount, 0);
1263 	}
1264 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1265 	__page_set_anon_rmap(page, vma, address, 1);
1266 }
1267 
1268 /**
1269  * page_add_file_rmap - add pte mapping to a file page
1270  * @page: the page to add the mapping to
1271  *
1272  * The caller needs to hold the pte lock.
1273  */
1274 void page_add_file_rmap(struct page *page)
1275 {
1276 	lock_page_memcg(page);
1277 	if (atomic_inc_and_test(&page->_mapcount)) {
1278 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1279 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1280 	}
1281 	unlock_page_memcg(page);
1282 }
1283 
1284 static void page_remove_file_rmap(struct page *page)
1285 {
1286 	lock_page_memcg(page);
1287 
1288 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1289 	if (unlikely(PageHuge(page))) {
1290 		/* hugetlb pages are always mapped with pmds */
1291 		atomic_dec(compound_mapcount_ptr(page));
1292 		goto out;
1293 	}
1294 
1295 	/* page still mapped by someone else? */
1296 	if (!atomic_add_negative(-1, &page->_mapcount))
1297 		goto out;
1298 
1299 	/*
1300 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1301 	 * these counters are not modified in interrupt context, and
1302 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1303 	 */
1304 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1305 	mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1306 
1307 	if (unlikely(PageMlocked(page)))
1308 		clear_page_mlock(page);
1309 out:
1310 	unlock_page_memcg(page);
1311 }
1312 
1313 static void page_remove_anon_compound_rmap(struct page *page)
1314 {
1315 	int i, nr;
1316 
1317 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1318 		return;
1319 
1320 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1321 	if (unlikely(PageHuge(page)))
1322 		return;
1323 
1324 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1325 		return;
1326 
1327 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1328 
1329 	if (TestClearPageDoubleMap(page)) {
1330 		/*
1331 		 * Subpages can be mapped with PTEs too. Check how many of
1332 		 * themi are still mapped.
1333 		 */
1334 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1335 			if (atomic_add_negative(-1, &page[i]._mapcount))
1336 				nr++;
1337 		}
1338 	} else {
1339 		nr = HPAGE_PMD_NR;
1340 	}
1341 
1342 	if (unlikely(PageMlocked(page)))
1343 		clear_page_mlock(page);
1344 
1345 	if (nr) {
1346 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1347 		deferred_split_huge_page(page);
1348 	}
1349 }
1350 
1351 /**
1352  * page_remove_rmap - take down pte mapping from a page
1353  * @page:	page to remove mapping from
1354  * @compound:	uncharge the page as compound or small page
1355  *
1356  * The caller needs to hold the pte lock.
1357  */
1358 void page_remove_rmap(struct page *page, bool compound)
1359 {
1360 	if (!PageAnon(page)) {
1361 		VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1362 		page_remove_file_rmap(page);
1363 		return;
1364 	}
1365 
1366 	if (compound)
1367 		return page_remove_anon_compound_rmap(page);
1368 
1369 	/* page still mapped by someone else? */
1370 	if (!atomic_add_negative(-1, &page->_mapcount))
1371 		return;
1372 
1373 	/*
1374 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1375 	 * these counters are not modified in interrupt context, and
1376 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1377 	 */
1378 	__dec_zone_page_state(page, NR_ANON_PAGES);
1379 
1380 	if (unlikely(PageMlocked(page)))
1381 		clear_page_mlock(page);
1382 
1383 	if (PageTransCompound(page))
1384 		deferred_split_huge_page(compound_head(page));
1385 
1386 	/*
1387 	 * It would be tidy to reset the PageAnon mapping here,
1388 	 * but that might overwrite a racing page_add_anon_rmap
1389 	 * which increments mapcount after us but sets mapping
1390 	 * before us: so leave the reset to free_hot_cold_page,
1391 	 * and remember that it's only reliable while mapped.
1392 	 * Leaving it set also helps swapoff to reinstate ptes
1393 	 * faster for those pages still in swapcache.
1394 	 */
1395 }
1396 
1397 struct rmap_private {
1398 	enum ttu_flags flags;
1399 	int lazyfreed;
1400 };
1401 
1402 /*
1403  * @arg: enum ttu_flags will be passed to this argument
1404  */
1405 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1406 		     unsigned long address, void *arg)
1407 {
1408 	struct mm_struct *mm = vma->vm_mm;
1409 	pte_t *pte;
1410 	pte_t pteval;
1411 	spinlock_t *ptl;
1412 	int ret = SWAP_AGAIN;
1413 	struct rmap_private *rp = arg;
1414 	enum ttu_flags flags = rp->flags;
1415 
1416 	/* munlock has nothing to gain from examining un-locked vmas */
1417 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1418 		goto out;
1419 
1420 	if (flags & TTU_SPLIT_HUGE_PMD) {
1421 		split_huge_pmd_address(vma, address,
1422 				flags & TTU_MIGRATION, page);
1423 		/* check if we have anything to do after split */
1424 		if (page_mapcount(page) == 0)
1425 			goto out;
1426 	}
1427 
1428 	pte = page_check_address(page, mm, address, &ptl, 0);
1429 	if (!pte)
1430 		goto out;
1431 
1432 	/*
1433 	 * If the page is mlock()d, we cannot swap it out.
1434 	 * If it's recently referenced (perhaps page_referenced
1435 	 * skipped over this mm) then we should reactivate it.
1436 	 */
1437 	if (!(flags & TTU_IGNORE_MLOCK)) {
1438 		if (vma->vm_flags & VM_LOCKED) {
1439 			/* Holding pte lock, we do *not* need mmap_sem here */
1440 			mlock_vma_page(page);
1441 			ret = SWAP_MLOCK;
1442 			goto out_unmap;
1443 		}
1444 		if (flags & TTU_MUNLOCK)
1445 			goto out_unmap;
1446 	}
1447 	if (!(flags & TTU_IGNORE_ACCESS)) {
1448 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1449 			ret = SWAP_FAIL;
1450 			goto out_unmap;
1451 		}
1452   	}
1453 
1454 	/* Nuke the page table entry. */
1455 	flush_cache_page(vma, address, page_to_pfn(page));
1456 	if (should_defer_flush(mm, flags)) {
1457 		/*
1458 		 * We clear the PTE but do not flush so potentially a remote
1459 		 * CPU could still be writing to the page. If the entry was
1460 		 * previously clean then the architecture must guarantee that
1461 		 * a clear->dirty transition on a cached TLB entry is written
1462 		 * through and traps if the PTE is unmapped.
1463 		 */
1464 		pteval = ptep_get_and_clear(mm, address, pte);
1465 
1466 		set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1467 	} else {
1468 		pteval = ptep_clear_flush(vma, address, pte);
1469 	}
1470 
1471 	/* Move the dirty bit to the physical page now the pte is gone. */
1472 	if (pte_dirty(pteval))
1473 		set_page_dirty(page);
1474 
1475 	/* Update high watermark before we lower rss */
1476 	update_hiwater_rss(mm);
1477 
1478 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1479 		if (PageHuge(page)) {
1480 			hugetlb_count_sub(1 << compound_order(page), mm);
1481 		} else {
1482 			dec_mm_counter(mm, mm_counter(page));
1483 		}
1484 		set_pte_at(mm, address, pte,
1485 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1486 	} else if (pte_unused(pteval)) {
1487 		/*
1488 		 * The guest indicated that the page content is of no
1489 		 * interest anymore. Simply discard the pte, vmscan
1490 		 * will take care of the rest.
1491 		 */
1492 		dec_mm_counter(mm, mm_counter(page));
1493 	} else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1494 		swp_entry_t entry;
1495 		pte_t swp_pte;
1496 		/*
1497 		 * Store the pfn of the page in a special migration
1498 		 * pte. do_swap_page() will wait until the migration
1499 		 * pte is removed and then restart fault handling.
1500 		 */
1501 		entry = make_migration_entry(page, pte_write(pteval));
1502 		swp_pte = swp_entry_to_pte(entry);
1503 		if (pte_soft_dirty(pteval))
1504 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1505 		set_pte_at(mm, address, pte, swp_pte);
1506 	} else if (PageAnon(page)) {
1507 		swp_entry_t entry = { .val = page_private(page) };
1508 		pte_t swp_pte;
1509 		/*
1510 		 * Store the swap location in the pte.
1511 		 * See handle_pte_fault() ...
1512 		 */
1513 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1514 
1515 		if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1516 			/* It's a freeable page by MADV_FREE */
1517 			dec_mm_counter(mm, MM_ANONPAGES);
1518 			rp->lazyfreed++;
1519 			goto discard;
1520 		}
1521 
1522 		if (swap_duplicate(entry) < 0) {
1523 			set_pte_at(mm, address, pte, pteval);
1524 			ret = SWAP_FAIL;
1525 			goto out_unmap;
1526 		}
1527 		if (list_empty(&mm->mmlist)) {
1528 			spin_lock(&mmlist_lock);
1529 			if (list_empty(&mm->mmlist))
1530 				list_add(&mm->mmlist, &init_mm.mmlist);
1531 			spin_unlock(&mmlist_lock);
1532 		}
1533 		dec_mm_counter(mm, MM_ANONPAGES);
1534 		inc_mm_counter(mm, MM_SWAPENTS);
1535 		swp_pte = swp_entry_to_pte(entry);
1536 		if (pte_soft_dirty(pteval))
1537 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1538 		set_pte_at(mm, address, pte, swp_pte);
1539 	} else
1540 		dec_mm_counter(mm, mm_counter_file(page));
1541 
1542 discard:
1543 	page_remove_rmap(page, PageHuge(page));
1544 	put_page(page);
1545 
1546 out_unmap:
1547 	pte_unmap_unlock(pte, ptl);
1548 	if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1549 		mmu_notifier_invalidate_page(mm, address);
1550 out:
1551 	return ret;
1552 }
1553 
1554 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1555 {
1556 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1557 
1558 	if (!maybe_stack)
1559 		return false;
1560 
1561 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1562 						VM_STACK_INCOMPLETE_SETUP)
1563 		return true;
1564 
1565 	return false;
1566 }
1567 
1568 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1569 {
1570 	return is_vma_temporary_stack(vma);
1571 }
1572 
1573 static int page_mapcount_is_zero(struct page *page)
1574 {
1575 	return !page_mapcount(page);
1576 }
1577 
1578 /**
1579  * try_to_unmap - try to remove all page table mappings to a page
1580  * @page: the page to get unmapped
1581  * @flags: action and flags
1582  *
1583  * Tries to remove all the page table entries which are mapping this
1584  * page, used in the pageout path.  Caller must hold the page lock.
1585  * Return values are:
1586  *
1587  * SWAP_SUCCESS	- we succeeded in removing all mappings
1588  * SWAP_AGAIN	- we missed a mapping, try again later
1589  * SWAP_FAIL	- the page is unswappable
1590  * SWAP_MLOCK	- page is mlocked.
1591  */
1592 int try_to_unmap(struct page *page, enum ttu_flags flags)
1593 {
1594 	int ret;
1595 	struct rmap_private rp = {
1596 		.flags = flags,
1597 		.lazyfreed = 0,
1598 	};
1599 
1600 	struct rmap_walk_control rwc = {
1601 		.rmap_one = try_to_unmap_one,
1602 		.arg = &rp,
1603 		.done = page_mapcount_is_zero,
1604 		.anon_lock = page_lock_anon_vma_read,
1605 	};
1606 
1607 	/*
1608 	 * During exec, a temporary VMA is setup and later moved.
1609 	 * The VMA is moved under the anon_vma lock but not the
1610 	 * page tables leading to a race where migration cannot
1611 	 * find the migration ptes. Rather than increasing the
1612 	 * locking requirements of exec(), migration skips
1613 	 * temporary VMAs until after exec() completes.
1614 	 */
1615 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1616 		rwc.invalid_vma = invalid_migration_vma;
1617 
1618 	if (flags & TTU_RMAP_LOCKED)
1619 		ret = rmap_walk_locked(page, &rwc);
1620 	else
1621 		ret = rmap_walk(page, &rwc);
1622 
1623 	if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1624 		ret = SWAP_SUCCESS;
1625 		if (rp.lazyfreed && !PageDirty(page))
1626 			ret = SWAP_LZFREE;
1627 	}
1628 	return ret;
1629 }
1630 
1631 static int page_not_mapped(struct page *page)
1632 {
1633 	return !page_mapped(page);
1634 };
1635 
1636 /**
1637  * try_to_munlock - try to munlock a page
1638  * @page: the page to be munlocked
1639  *
1640  * Called from munlock code.  Checks all of the VMAs mapping the page
1641  * to make sure nobody else has this page mlocked. The page will be
1642  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1643  *
1644  * Return values are:
1645  *
1646  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1647  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1648  * SWAP_FAIL	- page cannot be located at present
1649  * SWAP_MLOCK	- page is now mlocked.
1650  */
1651 int try_to_munlock(struct page *page)
1652 {
1653 	int ret;
1654 	struct rmap_private rp = {
1655 		.flags = TTU_MUNLOCK,
1656 		.lazyfreed = 0,
1657 	};
1658 
1659 	struct rmap_walk_control rwc = {
1660 		.rmap_one = try_to_unmap_one,
1661 		.arg = &rp,
1662 		.done = page_not_mapped,
1663 		.anon_lock = page_lock_anon_vma_read,
1664 
1665 	};
1666 
1667 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1668 
1669 	ret = rmap_walk(page, &rwc);
1670 	return ret;
1671 }
1672 
1673 void __put_anon_vma(struct anon_vma *anon_vma)
1674 {
1675 	struct anon_vma *root = anon_vma->root;
1676 
1677 	anon_vma_free(anon_vma);
1678 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1679 		anon_vma_free(root);
1680 }
1681 
1682 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1683 					struct rmap_walk_control *rwc)
1684 {
1685 	struct anon_vma *anon_vma;
1686 
1687 	if (rwc->anon_lock)
1688 		return rwc->anon_lock(page);
1689 
1690 	/*
1691 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1692 	 * because that depends on page_mapped(); but not all its usages
1693 	 * are holding mmap_sem. Users without mmap_sem are required to
1694 	 * take a reference count to prevent the anon_vma disappearing
1695 	 */
1696 	anon_vma = page_anon_vma(page);
1697 	if (!anon_vma)
1698 		return NULL;
1699 
1700 	anon_vma_lock_read(anon_vma);
1701 	return anon_vma;
1702 }
1703 
1704 /*
1705  * rmap_walk_anon - do something to anonymous page using the object-based
1706  * rmap method
1707  * @page: the page to be handled
1708  * @rwc: control variable according to each walk type
1709  *
1710  * Find all the mappings of a page using the mapping pointer and the vma chains
1711  * contained in the anon_vma struct it points to.
1712  *
1713  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1714  * where the page was found will be held for write.  So, we won't recheck
1715  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1716  * LOCKED.
1717  */
1718 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1719 		bool locked)
1720 {
1721 	struct anon_vma *anon_vma;
1722 	pgoff_t pgoff;
1723 	struct anon_vma_chain *avc;
1724 	int ret = SWAP_AGAIN;
1725 
1726 	if (locked) {
1727 		anon_vma = page_anon_vma(page);
1728 		/* anon_vma disappear under us? */
1729 		VM_BUG_ON_PAGE(!anon_vma, page);
1730 	} else {
1731 		anon_vma = rmap_walk_anon_lock(page, rwc);
1732 	}
1733 	if (!anon_vma)
1734 		return ret;
1735 
1736 	pgoff = page_to_pgoff(page);
1737 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1738 		struct vm_area_struct *vma = avc->vma;
1739 		unsigned long address = vma_address(page, vma);
1740 
1741 		cond_resched();
1742 
1743 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1744 			continue;
1745 
1746 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1747 		if (ret != SWAP_AGAIN)
1748 			break;
1749 		if (rwc->done && rwc->done(page))
1750 			break;
1751 	}
1752 
1753 	if (!locked)
1754 		anon_vma_unlock_read(anon_vma);
1755 	return ret;
1756 }
1757 
1758 /*
1759  * rmap_walk_file - do something to file page using the object-based rmap method
1760  * @page: the page to be handled
1761  * @rwc: control variable according to each walk type
1762  *
1763  * Find all the mappings of a page using the mapping pointer and the vma chains
1764  * contained in the address_space struct it points to.
1765  *
1766  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1767  * where the page was found will be held for write.  So, we won't recheck
1768  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1769  * LOCKED.
1770  */
1771 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1772 		bool locked)
1773 {
1774 	struct address_space *mapping = page_mapping(page);
1775 	pgoff_t pgoff;
1776 	struct vm_area_struct *vma;
1777 	int ret = SWAP_AGAIN;
1778 
1779 	/*
1780 	 * The page lock not only makes sure that page->mapping cannot
1781 	 * suddenly be NULLified by truncation, it makes sure that the
1782 	 * structure at mapping cannot be freed and reused yet,
1783 	 * so we can safely take mapping->i_mmap_rwsem.
1784 	 */
1785 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1786 
1787 	if (!mapping)
1788 		return ret;
1789 
1790 	pgoff = page_to_pgoff(page);
1791 	if (!locked)
1792 		i_mmap_lock_read(mapping);
1793 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1794 		unsigned long address = vma_address(page, vma);
1795 
1796 		cond_resched();
1797 
1798 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1799 			continue;
1800 
1801 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1802 		if (ret != SWAP_AGAIN)
1803 			goto done;
1804 		if (rwc->done && rwc->done(page))
1805 			goto done;
1806 	}
1807 
1808 done:
1809 	if (!locked)
1810 		i_mmap_unlock_read(mapping);
1811 	return ret;
1812 }
1813 
1814 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1815 {
1816 	if (unlikely(PageKsm(page)))
1817 		return rmap_walk_ksm(page, rwc);
1818 	else if (PageAnon(page))
1819 		return rmap_walk_anon(page, rwc, false);
1820 	else
1821 		return rmap_walk_file(page, rwc, false);
1822 }
1823 
1824 /* Like rmap_walk, but caller holds relevant rmap lock */
1825 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1826 {
1827 	/* no ksm support for now */
1828 	VM_BUG_ON_PAGE(PageKsm(page), page);
1829 	if (PageAnon(page))
1830 		return rmap_walk_anon(page, rwc, true);
1831 	else
1832 		return rmap_walk_file(page, rwc, true);
1833 }
1834 
1835 #ifdef CONFIG_HUGETLB_PAGE
1836 /*
1837  * The following three functions are for anonymous (private mapped) hugepages.
1838  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1839  * and no lru code, because we handle hugepages differently from common pages.
1840  */
1841 static void __hugepage_set_anon_rmap(struct page *page,
1842 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1843 {
1844 	struct anon_vma *anon_vma = vma->anon_vma;
1845 
1846 	BUG_ON(!anon_vma);
1847 
1848 	if (PageAnon(page))
1849 		return;
1850 	if (!exclusive)
1851 		anon_vma = anon_vma->root;
1852 
1853 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1854 	page->mapping = (struct address_space *) anon_vma;
1855 	page->index = linear_page_index(vma, address);
1856 }
1857 
1858 void hugepage_add_anon_rmap(struct page *page,
1859 			    struct vm_area_struct *vma, unsigned long address)
1860 {
1861 	struct anon_vma *anon_vma = vma->anon_vma;
1862 	int first;
1863 
1864 	BUG_ON(!PageLocked(page));
1865 	BUG_ON(!anon_vma);
1866 	/* address might be in next vma when migration races vma_adjust */
1867 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1868 	if (first)
1869 		__hugepage_set_anon_rmap(page, vma, address, 0);
1870 }
1871 
1872 void hugepage_add_new_anon_rmap(struct page *page,
1873 			struct vm_area_struct *vma, unsigned long address)
1874 {
1875 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1876 	atomic_set(compound_mapcount_ptr(page), 0);
1877 	__hugepage_set_anon_rmap(page, vma, address, 1);
1878 }
1879 #endif /* CONFIG_HUGETLB_PAGE */
1880