1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 */ 186 int __anon_vma_prepare(struct vm_area_struct *vma) 187 { 188 struct mm_struct *mm = vma->vm_mm; 189 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma_chain *avc; 191 192 mmap_assert_locked(mm); 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 269 * call, we can identify this case by checking (!dst->anon_vma && 270 * src->anon_vma). 271 * 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in 275 * case of constantly forking task. On the other hand, an anon_vma with more 276 * than one child isn't reused even if there was no alive vma, thus rmap 277 * walker has a good chance of avoiding scanning the whole hierarchy when it 278 * searches where page is mapped. 279 */ 280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 281 { 282 struct anon_vma_chain *avc, *pavc; 283 struct anon_vma *root = NULL; 284 285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 286 struct anon_vma *anon_vma; 287 288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 289 if (unlikely(!avc)) { 290 unlock_anon_vma_root(root); 291 root = NULL; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto enomem_failure; 295 } 296 anon_vma = pavc->anon_vma; 297 root = lock_anon_vma_root(root, anon_vma); 298 anon_vma_chain_link(dst, avc, anon_vma); 299 300 /* 301 * Reuse existing anon_vma if it has no vma and only one 302 * anon_vma child. 303 * 304 * Root anon_vma is never reused: 305 * it has self-parent reference and at least one child. 306 */ 307 if (!dst->anon_vma && src->anon_vma && 308 anon_vma->num_children < 2 && 309 anon_vma->num_active_vmas == 0) 310 dst->anon_vma = anon_vma; 311 } 312 if (dst->anon_vma) 313 dst->anon_vma->num_active_vmas++; 314 unlock_anon_vma_root(root); 315 return 0; 316 317 enomem_failure: 318 /* 319 * dst->anon_vma is dropped here otherwise its num_active_vmas can 320 * be incorrectly decremented in unlink_anon_vmas(). 321 * We can safely do this because callers of anon_vma_clone() don't care 322 * about dst->anon_vma if anon_vma_clone() failed. 323 */ 324 dst->anon_vma = NULL; 325 unlink_anon_vmas(dst); 326 return -ENOMEM; 327 } 328 329 /* 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that 331 * the corresponding VMA in the parent process is attached to. 332 * Returns 0 on success, non-zero on failure. 333 */ 334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 335 { 336 struct anon_vma_chain *avc; 337 struct anon_vma *anon_vma; 338 int error; 339 340 /* Don't bother if the parent process has no anon_vma here. */ 341 if (!pvma->anon_vma) 342 return 0; 343 344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 345 vma->anon_vma = NULL; 346 347 /* 348 * First, attach the new VMA to the parent VMA's anon_vmas, 349 * so rmap can find non-COWed pages in child processes. 350 */ 351 error = anon_vma_clone(vma, pvma); 352 if (error) 353 return error; 354 355 /* An existing anon_vma has been reused, all done then. */ 356 if (vma->anon_vma) 357 return 0; 358 359 /* Then add our own anon_vma. */ 360 anon_vma = anon_vma_alloc(); 361 if (!anon_vma) 362 goto out_error; 363 anon_vma->num_active_vmas++; 364 avc = anon_vma_chain_alloc(GFP_KERNEL); 365 if (!avc) 366 goto out_error_free_anon_vma; 367 368 /* 369 * The root anon_vma's rwsem is the lock actually used when we 370 * lock any of the anon_vmas in this anon_vma tree. 371 */ 372 anon_vma->root = pvma->anon_vma->root; 373 anon_vma->parent = pvma->anon_vma; 374 /* 375 * With refcounts, an anon_vma can stay around longer than the 376 * process it belongs to. The root anon_vma needs to be pinned until 377 * this anon_vma is freed, because the lock lives in the root. 378 */ 379 get_anon_vma(anon_vma->root); 380 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 381 vma->anon_vma = anon_vma; 382 anon_vma_lock_write(anon_vma); 383 anon_vma_chain_link(vma, avc, anon_vma); 384 anon_vma->parent->num_children++; 385 anon_vma_unlock_write(anon_vma); 386 387 return 0; 388 389 out_error_free_anon_vma: 390 put_anon_vma(anon_vma); 391 out_error: 392 unlink_anon_vmas(vma); 393 return -ENOMEM; 394 } 395 396 void unlink_anon_vmas(struct vm_area_struct *vma) 397 { 398 struct anon_vma_chain *avc, *next; 399 struct anon_vma *root = NULL; 400 401 /* 402 * Unlink each anon_vma chained to the VMA. This list is ordered 403 * from newest to oldest, ensuring the root anon_vma gets freed last. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 root = lock_anon_vma_root(root, anon_vma); 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 410 411 /* 412 * Leave empty anon_vmas on the list - we'll need 413 * to free them outside the lock. 414 */ 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 416 anon_vma->parent->num_children--; 417 continue; 418 } 419 420 list_del(&avc->same_vma); 421 anon_vma_chain_free(avc); 422 } 423 if (vma->anon_vma) { 424 vma->anon_vma->num_active_vmas--; 425 426 /* 427 * vma would still be needed after unlink, and anon_vma will be prepared 428 * when handle fault. 429 */ 430 vma->anon_vma = NULL; 431 } 432 unlock_anon_vma_root(root); 433 434 /* 435 * Iterate the list once more, it now only contains empty and unlinked 436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 437 * needing to write-acquire the anon_vma->root->rwsem. 438 */ 439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 440 struct anon_vma *anon_vma = avc->anon_vma; 441 442 VM_WARN_ON(anon_vma->num_children); 443 VM_WARN_ON(anon_vma->num_active_vmas); 444 put_anon_vma(anon_vma); 445 446 list_del(&avc->same_vma); 447 anon_vma_chain_free(avc); 448 } 449 } 450 451 static void anon_vma_ctor(void *data) 452 { 453 struct anon_vma *anon_vma = data; 454 455 init_rwsem(&anon_vma->rwsem); 456 atomic_set(&anon_vma->refcount, 0); 457 anon_vma->rb_root = RB_ROOT_CACHED; 458 } 459 460 void __init anon_vma_init(void) 461 { 462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 464 anon_vma_ctor); 465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 466 SLAB_PANIC|SLAB_ACCOUNT); 467 } 468 469 /* 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 471 * 472 * Since there is no serialization what so ever against folio_remove_rmap_*() 473 * the best this function can do is return a refcount increased anon_vma 474 * that might have been relevant to this page. 475 * 476 * The page might have been remapped to a different anon_vma or the anon_vma 477 * returned may already be freed (and even reused). 478 * 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 481 * ensure that any anon_vma obtained from the page will still be valid for as 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 483 * 484 * All users of this function must be very careful when walking the anon_vma 485 * chain and verify that the page in question is indeed mapped in it 486 * [ something equivalent to page_mapped_in_vma() ]. 487 * 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 490 * if there is a mapcount, we can dereference the anon_vma after observing 491 * those. 492 * 493 * NOTE: the caller should normally hold folio lock when calling this. If 494 * not, the caller needs to double check the anon_vma didn't change after 495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 496 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 497 * which has already covered that, and comment above remap_pages(). 498 */ 499 struct anon_vma *folio_get_anon_vma(struct folio *folio) 500 { 501 struct anon_vma *anon_vma = NULL; 502 unsigned long anon_mapping; 503 504 rcu_read_lock(); 505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 507 goto out; 508 if (!folio_mapped(folio)) 509 goto out; 510 511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 512 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 513 anon_vma = NULL; 514 goto out; 515 } 516 517 /* 518 * If this folio is still mapped, then its anon_vma cannot have been 519 * freed. But if it has been unmapped, we have no security against the 520 * anon_vma structure being freed and reused (for another anon_vma: 521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 522 * above cannot corrupt). 523 */ 524 if (!folio_mapped(folio)) { 525 rcu_read_unlock(); 526 put_anon_vma(anon_vma); 527 return NULL; 528 } 529 out: 530 rcu_read_unlock(); 531 532 return anon_vma; 533 } 534 535 /* 536 * Similar to folio_get_anon_vma() except it locks the anon_vma. 537 * 538 * Its a little more complex as it tries to keep the fast path to a single 539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 540 * reference like with folio_get_anon_vma() and then block on the mutex 541 * on !rwc->try_lock case. 542 */ 543 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 544 struct rmap_walk_control *rwc) 545 { 546 struct anon_vma *anon_vma = NULL; 547 struct anon_vma *root_anon_vma; 548 unsigned long anon_mapping; 549 550 retry: 551 rcu_read_lock(); 552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 554 goto out; 555 if (!folio_mapped(folio)) 556 goto out; 557 558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 559 root_anon_vma = READ_ONCE(anon_vma->root); 560 if (down_read_trylock(&root_anon_vma->rwsem)) { 561 /* 562 * folio_move_anon_rmap() might have changed the anon_vma as we 563 * might not hold the folio lock here. 564 */ 565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 566 anon_mapping)) { 567 up_read(&root_anon_vma->rwsem); 568 rcu_read_unlock(); 569 goto retry; 570 } 571 572 /* 573 * If the folio is still mapped, then this anon_vma is still 574 * its anon_vma, and holding the mutex ensures that it will 575 * not go away, see anon_vma_free(). 576 */ 577 if (!folio_mapped(folio)) { 578 up_read(&root_anon_vma->rwsem); 579 anon_vma = NULL; 580 } 581 goto out; 582 } 583 584 if (rwc && rwc->try_lock) { 585 anon_vma = NULL; 586 rwc->contended = true; 587 goto out; 588 } 589 590 /* trylock failed, we got to sleep */ 591 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 592 anon_vma = NULL; 593 goto out; 594 } 595 596 if (!folio_mapped(folio)) { 597 rcu_read_unlock(); 598 put_anon_vma(anon_vma); 599 return NULL; 600 } 601 602 /* we pinned the anon_vma, its safe to sleep */ 603 rcu_read_unlock(); 604 anon_vma_lock_read(anon_vma); 605 606 /* 607 * folio_move_anon_rmap() might have changed the anon_vma as we might 608 * not hold the folio lock here. 609 */ 610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 611 anon_mapping)) { 612 anon_vma_unlock_read(anon_vma); 613 put_anon_vma(anon_vma); 614 anon_vma = NULL; 615 goto retry; 616 } 617 618 if (atomic_dec_and_test(&anon_vma->refcount)) { 619 /* 620 * Oops, we held the last refcount, release the lock 621 * and bail -- can't simply use put_anon_vma() because 622 * we'll deadlock on the anon_vma_lock_write() recursion. 623 */ 624 anon_vma_unlock_read(anon_vma); 625 __put_anon_vma(anon_vma); 626 anon_vma = NULL; 627 } 628 629 return anon_vma; 630 631 out: 632 rcu_read_unlock(); 633 return anon_vma; 634 } 635 636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 637 /* 638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 639 * important if a PTE was dirty when it was unmapped that it's flushed 640 * before any IO is initiated on the page to prevent lost writes. Similarly, 641 * it must be flushed before freeing to prevent data leakage. 642 */ 643 void try_to_unmap_flush(void) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 647 if (!tlb_ubc->flush_required) 648 return; 649 650 arch_tlbbatch_flush(&tlb_ubc->arch); 651 tlb_ubc->flush_required = false; 652 tlb_ubc->writable = false; 653 } 654 655 /* Flush iff there are potentially writable TLB entries that can race with IO */ 656 void try_to_unmap_flush_dirty(void) 657 { 658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 659 660 if (tlb_ubc->writable) 661 try_to_unmap_flush(); 662 } 663 664 /* 665 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 667 */ 668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 669 #define TLB_FLUSH_BATCH_PENDING_MASK \ 670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 671 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 672 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 673 674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 675 unsigned long uaddr) 676 { 677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 678 int batch; 679 bool writable = pte_dirty(pteval); 680 681 if (!pte_accessible(mm, pteval)) 682 return; 683 684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 685 tlb_ubc->flush_required = true; 686 687 /* 688 * Ensure compiler does not re-order the setting of tlb_flush_batched 689 * before the PTE is cleared. 690 */ 691 barrier(); 692 batch = atomic_read(&mm->tlb_flush_batched); 693 retry: 694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 695 /* 696 * Prevent `pending' from catching up with `flushed' because of 697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 698 * `pending' becomes large. 699 */ 700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 701 goto retry; 702 } else { 703 atomic_inc(&mm->tlb_flush_batched); 704 } 705 706 /* 707 * If the PTE was dirty then it's best to assume it's writable. The 708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 709 * before the page is queued for IO. 710 */ 711 if (writable) 712 tlb_ubc->writable = true; 713 } 714 715 /* 716 * Returns true if the TLB flush should be deferred to the end of a batch of 717 * unmap operations to reduce IPIs. 718 */ 719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 720 { 721 if (!(flags & TTU_BATCH_FLUSH)) 722 return false; 723 724 return arch_tlbbatch_should_defer(mm); 725 } 726 727 /* 728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 730 * operation such as mprotect or munmap to race between reclaim unmapping 731 * the page and flushing the page. If this race occurs, it potentially allows 732 * access to data via a stale TLB entry. Tracking all mm's that have TLB 733 * batching in flight would be expensive during reclaim so instead track 734 * whether TLB batching occurred in the past and if so then do a flush here 735 * if required. This will cost one additional flush per reclaim cycle paid 736 * by the first operation at risk such as mprotect and mumap. 737 * 738 * This must be called under the PTL so that an access to tlb_flush_batched 739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 740 * via the PTL. 741 */ 742 void flush_tlb_batched_pending(struct mm_struct *mm) 743 { 744 int batch = atomic_read(&mm->tlb_flush_batched); 745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 747 748 if (pending != flushed) { 749 arch_flush_tlb_batched_pending(mm); 750 /* 751 * If the new TLB flushing is pending during flushing, leave 752 * mm->tlb_flush_batched as is, to avoid losing flushing. 753 */ 754 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 756 } 757 } 758 #else 759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 760 unsigned long uaddr) 761 { 762 } 763 764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 765 { 766 return false; 767 } 768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 769 770 /* 771 * At what user virtual address is page expected in vma? 772 * Caller should check the page is actually part of the vma. 773 */ 774 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 775 { 776 struct folio *folio = page_folio(page); 777 pgoff_t pgoff; 778 779 if (folio_test_anon(folio)) { 780 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 781 /* 782 * Note: swapoff's unuse_vma() is more efficient with this 783 * check, and needs it to match anon_vma when KSM is active. 784 */ 785 if (!vma->anon_vma || !page__anon_vma || 786 vma->anon_vma->root != page__anon_vma->root) 787 return -EFAULT; 788 } else if (!vma->vm_file) { 789 return -EFAULT; 790 } else if (vma->vm_file->f_mapping != folio->mapping) { 791 return -EFAULT; 792 } 793 794 /* The !page__anon_vma above handles KSM folios */ 795 pgoff = folio->index + folio_page_idx(folio, page); 796 return vma_address(vma, pgoff, 1); 797 } 798 799 /* 800 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 801 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 802 * represents. 803 */ 804 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 805 { 806 pgd_t *pgd; 807 p4d_t *p4d; 808 pud_t *pud; 809 pmd_t *pmd = NULL; 810 811 pgd = pgd_offset(mm, address); 812 if (!pgd_present(*pgd)) 813 goto out; 814 815 p4d = p4d_offset(pgd, address); 816 if (!p4d_present(*p4d)) 817 goto out; 818 819 pud = pud_offset(p4d, address); 820 if (!pud_present(*pud)) 821 goto out; 822 823 pmd = pmd_offset(pud, address); 824 out: 825 return pmd; 826 } 827 828 struct folio_referenced_arg { 829 int mapcount; 830 int referenced; 831 unsigned long vm_flags; 832 struct mem_cgroup *memcg; 833 }; 834 835 /* 836 * arg: folio_referenced_arg will be passed 837 */ 838 static bool folio_referenced_one(struct folio *folio, 839 struct vm_area_struct *vma, unsigned long address, void *arg) 840 { 841 struct folio_referenced_arg *pra = arg; 842 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 843 int referenced = 0; 844 unsigned long start = address, ptes = 0; 845 846 while (page_vma_mapped_walk(&pvmw)) { 847 address = pvmw.address; 848 849 if (vma->vm_flags & VM_LOCKED) { 850 if (!folio_test_large(folio) || !pvmw.pte) { 851 /* Restore the mlock which got missed */ 852 mlock_vma_folio(folio, vma); 853 page_vma_mapped_walk_done(&pvmw); 854 pra->vm_flags |= VM_LOCKED; 855 return false; /* To break the loop */ 856 } 857 /* 858 * For large folio fully mapped to VMA, will 859 * be handled after the pvmw loop. 860 * 861 * For large folio cross VMA boundaries, it's 862 * expected to be picked by page reclaim. But 863 * should skip reference of pages which are in 864 * the range of VM_LOCKED vma. As page reclaim 865 * should just count the reference of pages out 866 * the range of VM_LOCKED vma. 867 */ 868 ptes++; 869 pra->mapcount--; 870 continue; 871 } 872 873 /* 874 * Skip the non-shared swapbacked folio mapped solely by 875 * the exiting or OOM-reaped process. This avoids redundant 876 * swap-out followed by an immediate unmap. 877 */ 878 if ((!atomic_read(&vma->vm_mm->mm_users) || 879 check_stable_address_space(vma->vm_mm)) && 880 folio_test_anon(folio) && folio_test_swapbacked(folio) && 881 !folio_likely_mapped_shared(folio)) { 882 pra->referenced = -1; 883 page_vma_mapped_walk_done(&pvmw); 884 return false; 885 } 886 887 if (lru_gen_enabled() && pvmw.pte) { 888 if (lru_gen_look_around(&pvmw)) 889 referenced++; 890 } else if (pvmw.pte) { 891 if (ptep_clear_flush_young_notify(vma, address, 892 pvmw.pte)) 893 referenced++; 894 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 895 if (pmdp_clear_flush_young_notify(vma, address, 896 pvmw.pmd)) 897 referenced++; 898 } else { 899 /* unexpected pmd-mapped folio? */ 900 WARN_ON_ONCE(1); 901 } 902 903 pra->mapcount--; 904 } 905 906 if ((vma->vm_flags & VM_LOCKED) && 907 folio_test_large(folio) && 908 folio_within_vma(folio, vma)) { 909 unsigned long s_align, e_align; 910 911 s_align = ALIGN_DOWN(start, PMD_SIZE); 912 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 913 914 /* folio doesn't cross page table boundary and fully mapped */ 915 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 916 /* Restore the mlock which got missed */ 917 mlock_vma_folio(folio, vma); 918 pra->vm_flags |= VM_LOCKED; 919 return false; /* To break the loop */ 920 } 921 } 922 923 if (referenced) 924 folio_clear_idle(folio); 925 if (folio_test_clear_young(folio)) 926 referenced++; 927 928 if (referenced) { 929 pra->referenced++; 930 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 931 } 932 933 if (!pra->mapcount) 934 return false; /* To break the loop */ 935 936 return true; 937 } 938 939 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 940 { 941 struct folio_referenced_arg *pra = arg; 942 struct mem_cgroup *memcg = pra->memcg; 943 944 /* 945 * Ignore references from this mapping if it has no recency. If the 946 * folio has been used in another mapping, we will catch it; if this 947 * other mapping is already gone, the unmap path will have set the 948 * referenced flag or activated the folio in zap_pte_range(). 949 */ 950 if (!vma_has_recency(vma)) 951 return true; 952 953 /* 954 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 955 * of references from different cgroups. 956 */ 957 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 958 return true; 959 960 return false; 961 } 962 963 /** 964 * folio_referenced() - Test if the folio was referenced. 965 * @folio: The folio to test. 966 * @is_locked: Caller holds lock on the folio. 967 * @memcg: target memory cgroup 968 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 969 * 970 * Quick test_and_clear_referenced for all mappings of a folio, 971 * 972 * Return: The number of mappings which referenced the folio. Return -1 if 973 * the function bailed out due to rmap lock contention. 974 */ 975 int folio_referenced(struct folio *folio, int is_locked, 976 struct mem_cgroup *memcg, unsigned long *vm_flags) 977 { 978 bool we_locked = false; 979 struct folio_referenced_arg pra = { 980 .mapcount = folio_mapcount(folio), 981 .memcg = memcg, 982 }; 983 struct rmap_walk_control rwc = { 984 .rmap_one = folio_referenced_one, 985 .arg = (void *)&pra, 986 .anon_lock = folio_lock_anon_vma_read, 987 .try_lock = true, 988 .invalid_vma = invalid_folio_referenced_vma, 989 }; 990 991 *vm_flags = 0; 992 if (!pra.mapcount) 993 return 0; 994 995 if (!folio_raw_mapping(folio)) 996 return 0; 997 998 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 999 we_locked = folio_trylock(folio); 1000 if (!we_locked) 1001 return 1; 1002 } 1003 1004 rmap_walk(folio, &rwc); 1005 *vm_flags = pra.vm_flags; 1006 1007 if (we_locked) 1008 folio_unlock(folio); 1009 1010 return rwc.contended ? -1 : pra.referenced; 1011 } 1012 1013 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1014 { 1015 int cleaned = 0; 1016 struct vm_area_struct *vma = pvmw->vma; 1017 struct mmu_notifier_range range; 1018 unsigned long address = pvmw->address; 1019 1020 /* 1021 * We have to assume the worse case ie pmd for invalidation. Note that 1022 * the folio can not be freed from this function. 1023 */ 1024 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1025 vma->vm_mm, address, vma_address_end(pvmw)); 1026 mmu_notifier_invalidate_range_start(&range); 1027 1028 while (page_vma_mapped_walk(pvmw)) { 1029 int ret = 0; 1030 1031 address = pvmw->address; 1032 if (pvmw->pte) { 1033 pte_t *pte = pvmw->pte; 1034 pte_t entry = ptep_get(pte); 1035 1036 if (!pte_dirty(entry) && !pte_write(entry)) 1037 continue; 1038 1039 flush_cache_page(vma, address, pte_pfn(entry)); 1040 entry = ptep_clear_flush(vma, address, pte); 1041 entry = pte_wrprotect(entry); 1042 entry = pte_mkclean(entry); 1043 set_pte_at(vma->vm_mm, address, pte, entry); 1044 ret = 1; 1045 } else { 1046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1047 pmd_t *pmd = pvmw->pmd; 1048 pmd_t entry; 1049 1050 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1051 continue; 1052 1053 flush_cache_range(vma, address, 1054 address + HPAGE_PMD_SIZE); 1055 entry = pmdp_invalidate(vma, address, pmd); 1056 entry = pmd_wrprotect(entry); 1057 entry = pmd_mkclean(entry); 1058 set_pmd_at(vma->vm_mm, address, pmd, entry); 1059 ret = 1; 1060 #else 1061 /* unexpected pmd-mapped folio? */ 1062 WARN_ON_ONCE(1); 1063 #endif 1064 } 1065 1066 if (ret) 1067 cleaned++; 1068 } 1069 1070 mmu_notifier_invalidate_range_end(&range); 1071 1072 return cleaned; 1073 } 1074 1075 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1076 unsigned long address, void *arg) 1077 { 1078 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1079 int *cleaned = arg; 1080 1081 *cleaned += page_vma_mkclean_one(&pvmw); 1082 1083 return true; 1084 } 1085 1086 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1087 { 1088 if (vma->vm_flags & VM_SHARED) 1089 return false; 1090 1091 return true; 1092 } 1093 1094 int folio_mkclean(struct folio *folio) 1095 { 1096 int cleaned = 0; 1097 struct address_space *mapping; 1098 struct rmap_walk_control rwc = { 1099 .arg = (void *)&cleaned, 1100 .rmap_one = page_mkclean_one, 1101 .invalid_vma = invalid_mkclean_vma, 1102 }; 1103 1104 BUG_ON(!folio_test_locked(folio)); 1105 1106 if (!folio_mapped(folio)) 1107 return 0; 1108 1109 mapping = folio_mapping(folio); 1110 if (!mapping) 1111 return 0; 1112 1113 rmap_walk(folio, &rwc); 1114 1115 return cleaned; 1116 } 1117 EXPORT_SYMBOL_GPL(folio_mkclean); 1118 1119 /** 1120 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1121 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1122 * within the @vma of shared mappings. And since clean PTEs 1123 * should also be readonly, write protects them too. 1124 * @pfn: start pfn. 1125 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1126 * @pgoff: page offset that the @pfn mapped with. 1127 * @vma: vma that @pfn mapped within. 1128 * 1129 * Returns the number of cleaned PTEs (including PMDs). 1130 */ 1131 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1132 struct vm_area_struct *vma) 1133 { 1134 struct page_vma_mapped_walk pvmw = { 1135 .pfn = pfn, 1136 .nr_pages = nr_pages, 1137 .pgoff = pgoff, 1138 .vma = vma, 1139 .flags = PVMW_SYNC, 1140 }; 1141 1142 if (invalid_mkclean_vma(vma, NULL)) 1143 return 0; 1144 1145 pvmw.address = vma_address(vma, pgoff, nr_pages); 1146 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1147 1148 return page_vma_mkclean_one(&pvmw); 1149 } 1150 1151 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1152 struct page *page, int nr_pages, enum rmap_level level, 1153 int *nr_pmdmapped) 1154 { 1155 atomic_t *mapped = &folio->_nr_pages_mapped; 1156 const int orig_nr_pages = nr_pages; 1157 int first = 0, nr = 0; 1158 1159 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1160 1161 switch (level) { 1162 case RMAP_LEVEL_PTE: 1163 if (!folio_test_large(folio)) { 1164 nr = atomic_inc_and_test(&folio->_mapcount); 1165 break; 1166 } 1167 1168 do { 1169 first += atomic_inc_and_test(&page->_mapcount); 1170 } while (page++, --nr_pages > 0); 1171 1172 if (first && 1173 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1174 nr = first; 1175 1176 atomic_add(orig_nr_pages, &folio->_large_mapcount); 1177 break; 1178 case RMAP_LEVEL_PMD: 1179 first = atomic_inc_and_test(&folio->_entire_mapcount); 1180 if (first) { 1181 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1182 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1183 *nr_pmdmapped = folio_nr_pages(folio); 1184 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1185 /* Raced ahead of a remove and another add? */ 1186 if (unlikely(nr < 0)) 1187 nr = 0; 1188 } else { 1189 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1190 nr = 0; 1191 } 1192 } 1193 atomic_inc(&folio->_large_mapcount); 1194 break; 1195 } 1196 return nr; 1197 } 1198 1199 /** 1200 * folio_move_anon_rmap - move a folio to our anon_vma 1201 * @folio: The folio to move to our anon_vma 1202 * @vma: The vma the folio belongs to 1203 * 1204 * When a folio belongs exclusively to one process after a COW event, 1205 * that folio can be moved into the anon_vma that belongs to just that 1206 * process, so the rmap code will not search the parent or sibling processes. 1207 */ 1208 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1209 { 1210 void *anon_vma = vma->anon_vma; 1211 1212 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1213 VM_BUG_ON_VMA(!anon_vma, vma); 1214 1215 anon_vma += PAGE_MAPPING_ANON; 1216 /* 1217 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1218 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1219 * folio_test_anon()) will not see one without the other. 1220 */ 1221 WRITE_ONCE(folio->mapping, anon_vma); 1222 } 1223 1224 /** 1225 * __folio_set_anon - set up a new anonymous rmap for a folio 1226 * @folio: The folio to set up the new anonymous rmap for. 1227 * @vma: VM area to add the folio to. 1228 * @address: User virtual address of the mapping 1229 * @exclusive: Whether the folio is exclusive to the process. 1230 */ 1231 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1232 unsigned long address, bool exclusive) 1233 { 1234 struct anon_vma *anon_vma = vma->anon_vma; 1235 1236 BUG_ON(!anon_vma); 1237 1238 /* 1239 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1240 * possible anon_vma for the folio mapping! 1241 */ 1242 if (!exclusive) 1243 anon_vma = anon_vma->root; 1244 1245 /* 1246 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1247 * Make sure the compiler doesn't split the stores of anon_vma and 1248 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1249 * could mistake the mapping for a struct address_space and crash. 1250 */ 1251 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1252 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1253 folio->index = linear_page_index(vma, address); 1254 } 1255 1256 /** 1257 * __page_check_anon_rmap - sanity check anonymous rmap addition 1258 * @folio: The folio containing @page. 1259 * @page: the page to check the mapping of 1260 * @vma: the vm area in which the mapping is added 1261 * @address: the user virtual address mapped 1262 */ 1263 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1264 struct vm_area_struct *vma, unsigned long address) 1265 { 1266 /* 1267 * The page's anon-rmap details (mapping and index) are guaranteed to 1268 * be set up correctly at this point. 1269 * 1270 * We have exclusion against folio_add_anon_rmap_*() because the caller 1271 * always holds the page locked. 1272 * 1273 * We have exclusion against folio_add_new_anon_rmap because those pages 1274 * are initially only visible via the pagetables, and the pte is locked 1275 * over the call to folio_add_new_anon_rmap. 1276 */ 1277 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1278 folio); 1279 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1280 page); 1281 } 1282 1283 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1284 { 1285 int idx; 1286 1287 if (nr) { 1288 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1289 __lruvec_stat_mod_folio(folio, idx, nr); 1290 } 1291 if (nr_pmdmapped) { 1292 if (folio_test_anon(folio)) { 1293 idx = NR_ANON_THPS; 1294 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1295 } else { 1296 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1297 idx = folio_test_swapbacked(folio) ? 1298 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1299 __mod_node_page_state(folio_pgdat(folio), idx, 1300 nr_pmdmapped); 1301 } 1302 } 1303 } 1304 1305 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1306 struct page *page, int nr_pages, struct vm_area_struct *vma, 1307 unsigned long address, rmap_t flags, enum rmap_level level) 1308 { 1309 int i, nr, nr_pmdmapped = 0; 1310 1311 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1312 1313 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1314 1315 if (likely(!folio_test_ksm(folio))) 1316 __page_check_anon_rmap(folio, page, vma, address); 1317 1318 __folio_mod_stat(folio, nr, nr_pmdmapped); 1319 1320 if (flags & RMAP_EXCLUSIVE) { 1321 switch (level) { 1322 case RMAP_LEVEL_PTE: 1323 for (i = 0; i < nr_pages; i++) 1324 SetPageAnonExclusive(page + i); 1325 break; 1326 case RMAP_LEVEL_PMD: 1327 SetPageAnonExclusive(page); 1328 break; 1329 } 1330 } 1331 for (i = 0; i < nr_pages; i++) { 1332 struct page *cur_page = page + i; 1333 1334 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1335 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1336 (folio_test_large(folio) && 1337 folio_entire_mapcount(folio) > 1)) && 1338 PageAnonExclusive(cur_page), folio); 1339 } 1340 1341 /* 1342 * For large folio, only mlock it if it's fully mapped to VMA. It's 1343 * not easy to check whether the large folio is fully mapped to VMA 1344 * here. Only mlock normal 4K folio and leave page reclaim to handle 1345 * large folio. 1346 */ 1347 if (!folio_test_large(folio)) 1348 mlock_vma_folio(folio, vma); 1349 } 1350 1351 /** 1352 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1353 * @folio: The folio to add the mappings to 1354 * @page: The first page to add 1355 * @nr_pages: The number of pages which will be mapped 1356 * @vma: The vm area in which the mappings are added 1357 * @address: The user virtual address of the first page to map 1358 * @flags: The rmap flags 1359 * 1360 * The page range of folio is defined by [first_page, first_page + nr_pages) 1361 * 1362 * The caller needs to hold the page table lock, and the page must be locked in 1363 * the anon_vma case: to serialize mapping,index checking after setting, 1364 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1365 * (but KSM folios are never downgraded). 1366 */ 1367 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1368 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1369 rmap_t flags) 1370 { 1371 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1372 RMAP_LEVEL_PTE); 1373 } 1374 1375 /** 1376 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1377 * @folio: The folio to add the mapping to 1378 * @page: The first page to add 1379 * @vma: The vm area in which the mapping is added 1380 * @address: The user virtual address of the first page to map 1381 * @flags: The rmap flags 1382 * 1383 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1384 * 1385 * The caller needs to hold the page table lock, and the page must be locked in 1386 * the anon_vma case: to serialize mapping,index checking after setting. 1387 */ 1388 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1389 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1390 { 1391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1392 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1393 RMAP_LEVEL_PMD); 1394 #else 1395 WARN_ON_ONCE(true); 1396 #endif 1397 } 1398 1399 /** 1400 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1401 * @folio: The folio to add the mapping to. 1402 * @vma: the vm area in which the mapping is added 1403 * @address: the user virtual address mapped 1404 * @flags: The rmap flags 1405 * 1406 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1407 * This means the inc-and-test can be bypassed. 1408 * The folio doesn't necessarily need to be locked while it's exclusive 1409 * unless two threads map it concurrently. However, the folio must be 1410 * locked if it's shared. 1411 * 1412 * If the folio is pmd-mappable, it is accounted as a THP. 1413 */ 1414 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1415 unsigned long address, rmap_t flags) 1416 { 1417 const int nr = folio_nr_pages(folio); 1418 const bool exclusive = flags & RMAP_EXCLUSIVE; 1419 int nr_pmdmapped = 0; 1420 1421 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1422 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1423 VM_BUG_ON_VMA(address < vma->vm_start || 1424 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1425 1426 /* 1427 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1428 * under memory pressure. 1429 */ 1430 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1431 __folio_set_swapbacked(folio); 1432 __folio_set_anon(folio, vma, address, exclusive); 1433 1434 if (likely(!folio_test_large(folio))) { 1435 /* increment count (starts at -1) */ 1436 atomic_set(&folio->_mapcount, 0); 1437 if (exclusive) 1438 SetPageAnonExclusive(&folio->page); 1439 } else if (!folio_test_pmd_mappable(folio)) { 1440 int i; 1441 1442 for (i = 0; i < nr; i++) { 1443 struct page *page = folio_page(folio, i); 1444 1445 /* increment count (starts at -1) */ 1446 atomic_set(&page->_mapcount, 0); 1447 if (exclusive) 1448 SetPageAnonExclusive(page); 1449 } 1450 1451 /* increment count (starts at -1) */ 1452 atomic_set(&folio->_large_mapcount, nr - 1); 1453 atomic_set(&folio->_nr_pages_mapped, nr); 1454 } else { 1455 /* increment count (starts at -1) */ 1456 atomic_set(&folio->_entire_mapcount, 0); 1457 /* increment count (starts at -1) */ 1458 atomic_set(&folio->_large_mapcount, 0); 1459 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1460 if (exclusive) 1461 SetPageAnonExclusive(&folio->page); 1462 nr_pmdmapped = nr; 1463 } 1464 1465 __folio_mod_stat(folio, nr, nr_pmdmapped); 1466 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1467 } 1468 1469 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1470 struct page *page, int nr_pages, struct vm_area_struct *vma, 1471 enum rmap_level level) 1472 { 1473 int nr, nr_pmdmapped = 0; 1474 1475 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1476 1477 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1478 __folio_mod_stat(folio, nr, nr_pmdmapped); 1479 1480 /* See comments in folio_add_anon_rmap_*() */ 1481 if (!folio_test_large(folio)) 1482 mlock_vma_folio(folio, vma); 1483 } 1484 1485 /** 1486 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1487 * @folio: The folio to add the mappings to 1488 * @page: The first page to add 1489 * @nr_pages: The number of pages that will be mapped using PTEs 1490 * @vma: The vm area in which the mappings are added 1491 * 1492 * The page range of the folio is defined by [page, page + nr_pages) 1493 * 1494 * The caller needs to hold the page table lock. 1495 */ 1496 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1497 int nr_pages, struct vm_area_struct *vma) 1498 { 1499 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1500 } 1501 1502 /** 1503 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1504 * @folio: The folio to add the mapping to 1505 * @page: The first page to add 1506 * @vma: The vm area in which the mapping is added 1507 * 1508 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1509 * 1510 * The caller needs to hold the page table lock. 1511 */ 1512 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1513 struct vm_area_struct *vma) 1514 { 1515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1516 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1517 #else 1518 WARN_ON_ONCE(true); 1519 #endif 1520 } 1521 1522 static __always_inline void __folio_remove_rmap(struct folio *folio, 1523 struct page *page, int nr_pages, struct vm_area_struct *vma, 1524 enum rmap_level level) 1525 { 1526 atomic_t *mapped = &folio->_nr_pages_mapped; 1527 int last = 0, nr = 0, nr_pmdmapped = 0; 1528 bool partially_mapped = false; 1529 1530 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1531 1532 switch (level) { 1533 case RMAP_LEVEL_PTE: 1534 if (!folio_test_large(folio)) { 1535 nr = atomic_add_negative(-1, &folio->_mapcount); 1536 break; 1537 } 1538 1539 atomic_sub(nr_pages, &folio->_large_mapcount); 1540 do { 1541 last += atomic_add_negative(-1, &page->_mapcount); 1542 } while (page++, --nr_pages > 0); 1543 1544 if (last && 1545 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1546 nr = last; 1547 1548 partially_mapped = nr && atomic_read(mapped); 1549 break; 1550 case RMAP_LEVEL_PMD: 1551 atomic_dec(&folio->_large_mapcount); 1552 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1553 if (last) { 1554 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1555 if (likely(nr < ENTIRELY_MAPPED)) { 1556 nr_pmdmapped = folio_nr_pages(folio); 1557 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1558 /* Raced ahead of another remove and an add? */ 1559 if (unlikely(nr < 0)) 1560 nr = 0; 1561 } else { 1562 /* An add of ENTIRELY_MAPPED raced ahead */ 1563 nr = 0; 1564 } 1565 } 1566 1567 partially_mapped = nr && nr < nr_pmdmapped; 1568 break; 1569 } 1570 1571 /* 1572 * Queue anon large folio for deferred split if at least one page of 1573 * the folio is unmapped and at least one page is still mapped. 1574 * 1575 * Check partially_mapped first to ensure it is a large folio. 1576 */ 1577 if (partially_mapped && folio_test_anon(folio) && 1578 !folio_test_partially_mapped(folio)) 1579 deferred_split_folio(folio, true); 1580 1581 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1582 1583 /* 1584 * It would be tidy to reset folio_test_anon mapping when fully 1585 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1586 * which increments mapcount after us but sets mapping before us: 1587 * so leave the reset to free_pages_prepare, and remember that 1588 * it's only reliable while mapped. 1589 */ 1590 1591 munlock_vma_folio(folio, vma); 1592 } 1593 1594 /** 1595 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1596 * @folio: The folio to remove the mappings from 1597 * @page: The first page to remove 1598 * @nr_pages: The number of pages that will be removed from the mapping 1599 * @vma: The vm area from which the mappings are removed 1600 * 1601 * The page range of the folio is defined by [page, page + nr_pages) 1602 * 1603 * The caller needs to hold the page table lock. 1604 */ 1605 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1606 int nr_pages, struct vm_area_struct *vma) 1607 { 1608 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1609 } 1610 1611 /** 1612 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1613 * @folio: The folio to remove the mapping from 1614 * @page: The first page to remove 1615 * @vma: The vm area from which the mapping is removed 1616 * 1617 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1618 * 1619 * The caller needs to hold the page table lock. 1620 */ 1621 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1622 struct vm_area_struct *vma) 1623 { 1624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1625 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1626 #else 1627 WARN_ON_ONCE(true); 1628 #endif 1629 } 1630 1631 /* 1632 * @arg: enum ttu_flags will be passed to this argument 1633 */ 1634 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1635 unsigned long address, void *arg) 1636 { 1637 struct mm_struct *mm = vma->vm_mm; 1638 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1639 pte_t pteval; 1640 struct page *subpage; 1641 bool anon_exclusive, ret = true; 1642 struct mmu_notifier_range range; 1643 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1644 unsigned long pfn; 1645 unsigned long hsz = 0; 1646 1647 /* 1648 * When racing against e.g. zap_pte_range() on another cpu, 1649 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1650 * try_to_unmap() may return before page_mapped() has become false, 1651 * if page table locking is skipped: use TTU_SYNC to wait for that. 1652 */ 1653 if (flags & TTU_SYNC) 1654 pvmw.flags = PVMW_SYNC; 1655 1656 /* 1657 * For THP, we have to assume the worse case ie pmd for invalidation. 1658 * For hugetlb, it could be much worse if we need to do pud 1659 * invalidation in the case of pmd sharing. 1660 * 1661 * Note that the folio can not be freed in this function as call of 1662 * try_to_unmap() must hold a reference on the folio. 1663 */ 1664 range.end = vma_address_end(&pvmw); 1665 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1666 address, range.end); 1667 if (folio_test_hugetlb(folio)) { 1668 /* 1669 * If sharing is possible, start and end will be adjusted 1670 * accordingly. 1671 */ 1672 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1673 &range.end); 1674 1675 /* We need the huge page size for set_huge_pte_at() */ 1676 hsz = huge_page_size(hstate_vma(vma)); 1677 } 1678 mmu_notifier_invalidate_range_start(&range); 1679 1680 while (page_vma_mapped_walk(&pvmw)) { 1681 /* 1682 * If the folio is in an mlock()d vma, we must not swap it out. 1683 */ 1684 if (!(flags & TTU_IGNORE_MLOCK) && 1685 (vma->vm_flags & VM_LOCKED)) { 1686 /* Restore the mlock which got missed */ 1687 if (!folio_test_large(folio)) 1688 mlock_vma_folio(folio, vma); 1689 goto walk_abort; 1690 } 1691 1692 if (!pvmw.pte) { 1693 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, 1694 folio)) 1695 goto walk_done; 1696 1697 if (flags & TTU_SPLIT_HUGE_PMD) { 1698 /* 1699 * We temporarily have to drop the PTL and 1700 * restart so we can process the PTE-mapped THP. 1701 */ 1702 split_huge_pmd_locked(vma, pvmw.address, 1703 pvmw.pmd, false, folio); 1704 flags &= ~TTU_SPLIT_HUGE_PMD; 1705 page_vma_mapped_walk_restart(&pvmw); 1706 continue; 1707 } 1708 } 1709 1710 /* Unexpected PMD-mapped THP? */ 1711 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1712 1713 pfn = pte_pfn(ptep_get(pvmw.pte)); 1714 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1715 address = pvmw.address; 1716 anon_exclusive = folio_test_anon(folio) && 1717 PageAnonExclusive(subpage); 1718 1719 if (folio_test_hugetlb(folio)) { 1720 bool anon = folio_test_anon(folio); 1721 1722 /* 1723 * The try_to_unmap() is only passed a hugetlb page 1724 * in the case where the hugetlb page is poisoned. 1725 */ 1726 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1727 /* 1728 * huge_pmd_unshare may unmap an entire PMD page. 1729 * There is no way of knowing exactly which PMDs may 1730 * be cached for this mm, so we must flush them all. 1731 * start/end were already adjusted above to cover this 1732 * range. 1733 */ 1734 flush_cache_range(vma, range.start, range.end); 1735 1736 /* 1737 * To call huge_pmd_unshare, i_mmap_rwsem must be 1738 * held in write mode. Caller needs to explicitly 1739 * do this outside rmap routines. 1740 * 1741 * We also must hold hugetlb vma_lock in write mode. 1742 * Lock order dictates acquiring vma_lock BEFORE 1743 * i_mmap_rwsem. We can only try lock here and fail 1744 * if unsuccessful. 1745 */ 1746 if (!anon) { 1747 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1748 if (!hugetlb_vma_trylock_write(vma)) 1749 goto walk_abort; 1750 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1751 hugetlb_vma_unlock_write(vma); 1752 flush_tlb_range(vma, 1753 range.start, range.end); 1754 /* 1755 * The ref count of the PMD page was 1756 * dropped which is part of the way map 1757 * counting is done for shared PMDs. 1758 * Return 'true' here. When there is 1759 * no other sharing, huge_pmd_unshare 1760 * returns false and we will unmap the 1761 * actual page and drop map count 1762 * to zero. 1763 */ 1764 goto walk_done; 1765 } 1766 hugetlb_vma_unlock_write(vma); 1767 } 1768 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1769 } else { 1770 flush_cache_page(vma, address, pfn); 1771 /* Nuke the page table entry. */ 1772 if (should_defer_flush(mm, flags)) { 1773 /* 1774 * We clear the PTE but do not flush so potentially 1775 * a remote CPU could still be writing to the folio. 1776 * If the entry was previously clean then the 1777 * architecture must guarantee that a clear->dirty 1778 * transition on a cached TLB entry is written through 1779 * and traps if the PTE is unmapped. 1780 */ 1781 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1782 1783 set_tlb_ubc_flush_pending(mm, pteval, address); 1784 } else { 1785 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1786 } 1787 } 1788 1789 /* 1790 * Now the pte is cleared. If this pte was uffd-wp armed, 1791 * we may want to replace a none pte with a marker pte if 1792 * it's file-backed, so we don't lose the tracking info. 1793 */ 1794 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1795 1796 /* Set the dirty flag on the folio now the pte is gone. */ 1797 if (pte_dirty(pteval)) 1798 folio_mark_dirty(folio); 1799 1800 /* Update high watermark before we lower rss */ 1801 update_hiwater_rss(mm); 1802 1803 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1804 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1805 if (folio_test_hugetlb(folio)) { 1806 hugetlb_count_sub(folio_nr_pages(folio), mm); 1807 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1808 hsz); 1809 } else { 1810 dec_mm_counter(mm, mm_counter(folio)); 1811 set_pte_at(mm, address, pvmw.pte, pteval); 1812 } 1813 1814 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1815 /* 1816 * The guest indicated that the page content is of no 1817 * interest anymore. Simply discard the pte, vmscan 1818 * will take care of the rest. 1819 * A future reference will then fault in a new zero 1820 * page. When userfaultfd is active, we must not drop 1821 * this page though, as its main user (postcopy 1822 * migration) will not expect userfaults on already 1823 * copied pages. 1824 */ 1825 dec_mm_counter(mm, mm_counter(folio)); 1826 } else if (folio_test_anon(folio)) { 1827 swp_entry_t entry = page_swap_entry(subpage); 1828 pte_t swp_pte; 1829 /* 1830 * Store the swap location in the pte. 1831 * See handle_pte_fault() ... 1832 */ 1833 if (unlikely(folio_test_swapbacked(folio) != 1834 folio_test_swapcache(folio))) { 1835 WARN_ON_ONCE(1); 1836 goto walk_abort; 1837 } 1838 1839 /* MADV_FREE page check */ 1840 if (!folio_test_swapbacked(folio)) { 1841 int ref_count, map_count; 1842 1843 /* 1844 * Synchronize with gup_pte_range(): 1845 * - clear PTE; barrier; read refcount 1846 * - inc refcount; barrier; read PTE 1847 */ 1848 smp_mb(); 1849 1850 ref_count = folio_ref_count(folio); 1851 map_count = folio_mapcount(folio); 1852 1853 /* 1854 * Order reads for page refcount and dirty flag 1855 * (see comments in __remove_mapping()). 1856 */ 1857 smp_rmb(); 1858 1859 /* 1860 * The only page refs must be one from isolation 1861 * plus the rmap(s) (dropped by discard:). 1862 */ 1863 if (ref_count == 1 + map_count && 1864 (!folio_test_dirty(folio) || 1865 /* 1866 * Unlike MADV_FREE mappings, VM_DROPPABLE 1867 * ones can be dropped even if they've 1868 * been dirtied. 1869 */ 1870 (vma->vm_flags & VM_DROPPABLE))) { 1871 dec_mm_counter(mm, MM_ANONPAGES); 1872 goto discard; 1873 } 1874 1875 /* 1876 * If the folio was redirtied, it cannot be 1877 * discarded. Remap the page to page table. 1878 */ 1879 set_pte_at(mm, address, pvmw.pte, pteval); 1880 /* 1881 * Unlike MADV_FREE mappings, VM_DROPPABLE ones 1882 * never get swap backed on failure to drop. 1883 */ 1884 if (!(vma->vm_flags & VM_DROPPABLE)) 1885 folio_set_swapbacked(folio); 1886 goto walk_abort; 1887 } 1888 1889 if (swap_duplicate(entry) < 0) { 1890 set_pte_at(mm, address, pvmw.pte, pteval); 1891 goto walk_abort; 1892 } 1893 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1894 swap_free(entry); 1895 set_pte_at(mm, address, pvmw.pte, pteval); 1896 goto walk_abort; 1897 } 1898 1899 /* See folio_try_share_anon_rmap(): clear PTE first. */ 1900 if (anon_exclusive && 1901 folio_try_share_anon_rmap_pte(folio, subpage)) { 1902 swap_free(entry); 1903 set_pte_at(mm, address, pvmw.pte, pteval); 1904 goto walk_abort; 1905 } 1906 if (list_empty(&mm->mmlist)) { 1907 spin_lock(&mmlist_lock); 1908 if (list_empty(&mm->mmlist)) 1909 list_add(&mm->mmlist, &init_mm.mmlist); 1910 spin_unlock(&mmlist_lock); 1911 } 1912 dec_mm_counter(mm, MM_ANONPAGES); 1913 inc_mm_counter(mm, MM_SWAPENTS); 1914 swp_pte = swp_entry_to_pte(entry); 1915 if (anon_exclusive) 1916 swp_pte = pte_swp_mkexclusive(swp_pte); 1917 if (pte_soft_dirty(pteval)) 1918 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1919 if (pte_uffd_wp(pteval)) 1920 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1921 set_pte_at(mm, address, pvmw.pte, swp_pte); 1922 } else { 1923 /* 1924 * This is a locked file-backed folio, 1925 * so it cannot be removed from the page 1926 * cache and replaced by a new folio before 1927 * mmu_notifier_invalidate_range_end, so no 1928 * concurrent thread might update its page table 1929 * to point at a new folio while a device is 1930 * still using this folio. 1931 * 1932 * See Documentation/mm/mmu_notifier.rst 1933 */ 1934 dec_mm_counter(mm, mm_counter_file(folio)); 1935 } 1936 discard: 1937 if (unlikely(folio_test_hugetlb(folio))) 1938 hugetlb_remove_rmap(folio); 1939 else 1940 folio_remove_rmap_pte(folio, subpage, vma); 1941 if (vma->vm_flags & VM_LOCKED) 1942 mlock_drain_local(); 1943 folio_put(folio); 1944 continue; 1945 walk_abort: 1946 ret = false; 1947 walk_done: 1948 page_vma_mapped_walk_done(&pvmw); 1949 break; 1950 } 1951 1952 mmu_notifier_invalidate_range_end(&range); 1953 1954 return ret; 1955 } 1956 1957 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1958 { 1959 return vma_is_temporary_stack(vma); 1960 } 1961 1962 static int folio_not_mapped(struct folio *folio) 1963 { 1964 return !folio_mapped(folio); 1965 } 1966 1967 /** 1968 * try_to_unmap - Try to remove all page table mappings to a folio. 1969 * @folio: The folio to unmap. 1970 * @flags: action and flags 1971 * 1972 * Tries to remove all the page table entries which are mapping this 1973 * folio. It is the caller's responsibility to check if the folio is 1974 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1975 * 1976 * Context: Caller must hold the folio lock. 1977 */ 1978 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1979 { 1980 struct rmap_walk_control rwc = { 1981 .rmap_one = try_to_unmap_one, 1982 .arg = (void *)flags, 1983 .done = folio_not_mapped, 1984 .anon_lock = folio_lock_anon_vma_read, 1985 }; 1986 1987 if (flags & TTU_RMAP_LOCKED) 1988 rmap_walk_locked(folio, &rwc); 1989 else 1990 rmap_walk(folio, &rwc); 1991 } 1992 1993 /* 1994 * @arg: enum ttu_flags will be passed to this argument. 1995 * 1996 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1997 * containing migration entries. 1998 */ 1999 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2000 unsigned long address, void *arg) 2001 { 2002 struct mm_struct *mm = vma->vm_mm; 2003 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2004 pte_t pteval; 2005 struct page *subpage; 2006 bool anon_exclusive, ret = true; 2007 struct mmu_notifier_range range; 2008 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2009 unsigned long pfn; 2010 unsigned long hsz = 0; 2011 2012 /* 2013 * When racing against e.g. zap_pte_range() on another cpu, 2014 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2015 * try_to_migrate() may return before page_mapped() has become false, 2016 * if page table locking is skipped: use TTU_SYNC to wait for that. 2017 */ 2018 if (flags & TTU_SYNC) 2019 pvmw.flags = PVMW_SYNC; 2020 2021 /* 2022 * unmap_page() in mm/huge_memory.c is the only user of migration with 2023 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 2024 */ 2025 if (flags & TTU_SPLIT_HUGE_PMD) 2026 split_huge_pmd_address(vma, address, true, folio); 2027 2028 /* 2029 * For THP, we have to assume the worse case ie pmd for invalidation. 2030 * For hugetlb, it could be much worse if we need to do pud 2031 * invalidation in the case of pmd sharing. 2032 * 2033 * Note that the page can not be free in this function as call of 2034 * try_to_unmap() must hold a reference on the page. 2035 */ 2036 range.end = vma_address_end(&pvmw); 2037 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2038 address, range.end); 2039 if (folio_test_hugetlb(folio)) { 2040 /* 2041 * If sharing is possible, start and end will be adjusted 2042 * accordingly. 2043 */ 2044 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2045 &range.end); 2046 2047 /* We need the huge page size for set_huge_pte_at() */ 2048 hsz = huge_page_size(hstate_vma(vma)); 2049 } 2050 mmu_notifier_invalidate_range_start(&range); 2051 2052 while (page_vma_mapped_walk(&pvmw)) { 2053 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2054 /* PMD-mapped THP migration entry */ 2055 if (!pvmw.pte) { 2056 subpage = folio_page(folio, 2057 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2058 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2059 !folio_test_pmd_mappable(folio), folio); 2060 2061 if (set_pmd_migration_entry(&pvmw, subpage)) { 2062 ret = false; 2063 page_vma_mapped_walk_done(&pvmw); 2064 break; 2065 } 2066 continue; 2067 } 2068 #endif 2069 2070 /* Unexpected PMD-mapped THP? */ 2071 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2072 2073 pfn = pte_pfn(ptep_get(pvmw.pte)); 2074 2075 if (folio_is_zone_device(folio)) { 2076 /* 2077 * Our PTE is a non-present device exclusive entry and 2078 * calculating the subpage as for the common case would 2079 * result in an invalid pointer. 2080 * 2081 * Since only PAGE_SIZE pages can currently be 2082 * migrated, just set it to page. This will need to be 2083 * changed when hugepage migrations to device private 2084 * memory are supported. 2085 */ 2086 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 2087 subpage = &folio->page; 2088 } else { 2089 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2090 } 2091 address = pvmw.address; 2092 anon_exclusive = folio_test_anon(folio) && 2093 PageAnonExclusive(subpage); 2094 2095 if (folio_test_hugetlb(folio)) { 2096 bool anon = folio_test_anon(folio); 2097 2098 /* 2099 * huge_pmd_unshare may unmap an entire PMD page. 2100 * There is no way of knowing exactly which PMDs may 2101 * be cached for this mm, so we must flush them all. 2102 * start/end were already adjusted above to cover this 2103 * range. 2104 */ 2105 flush_cache_range(vma, range.start, range.end); 2106 2107 /* 2108 * To call huge_pmd_unshare, i_mmap_rwsem must be 2109 * held in write mode. Caller needs to explicitly 2110 * do this outside rmap routines. 2111 * 2112 * We also must hold hugetlb vma_lock in write mode. 2113 * Lock order dictates acquiring vma_lock BEFORE 2114 * i_mmap_rwsem. We can only try lock here and 2115 * fail if unsuccessful. 2116 */ 2117 if (!anon) { 2118 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2119 if (!hugetlb_vma_trylock_write(vma)) { 2120 page_vma_mapped_walk_done(&pvmw); 2121 ret = false; 2122 break; 2123 } 2124 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2125 hugetlb_vma_unlock_write(vma); 2126 flush_tlb_range(vma, 2127 range.start, range.end); 2128 2129 /* 2130 * The ref count of the PMD page was 2131 * dropped which is part of the way map 2132 * counting is done for shared PMDs. 2133 * Return 'true' here. When there is 2134 * no other sharing, huge_pmd_unshare 2135 * returns false and we will unmap the 2136 * actual page and drop map count 2137 * to zero. 2138 */ 2139 page_vma_mapped_walk_done(&pvmw); 2140 break; 2141 } 2142 hugetlb_vma_unlock_write(vma); 2143 } 2144 /* Nuke the hugetlb page table entry */ 2145 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2146 } else { 2147 flush_cache_page(vma, address, pfn); 2148 /* Nuke the page table entry. */ 2149 if (should_defer_flush(mm, flags)) { 2150 /* 2151 * We clear the PTE but do not flush so potentially 2152 * a remote CPU could still be writing to the folio. 2153 * If the entry was previously clean then the 2154 * architecture must guarantee that a clear->dirty 2155 * transition on a cached TLB entry is written through 2156 * and traps if the PTE is unmapped. 2157 */ 2158 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2159 2160 set_tlb_ubc_flush_pending(mm, pteval, address); 2161 } else { 2162 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2163 } 2164 } 2165 2166 /* Set the dirty flag on the folio now the pte is gone. */ 2167 if (pte_dirty(pteval)) 2168 folio_mark_dirty(folio); 2169 2170 /* Update high watermark before we lower rss */ 2171 update_hiwater_rss(mm); 2172 2173 if (folio_is_device_private(folio)) { 2174 unsigned long pfn = folio_pfn(folio); 2175 swp_entry_t entry; 2176 pte_t swp_pte; 2177 2178 if (anon_exclusive) 2179 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio, 2180 subpage)); 2181 2182 /* 2183 * Store the pfn of the page in a special migration 2184 * pte. do_swap_page() will wait until the migration 2185 * pte is removed and then restart fault handling. 2186 */ 2187 entry = pte_to_swp_entry(pteval); 2188 if (is_writable_device_private_entry(entry)) 2189 entry = make_writable_migration_entry(pfn); 2190 else if (anon_exclusive) 2191 entry = make_readable_exclusive_migration_entry(pfn); 2192 else 2193 entry = make_readable_migration_entry(pfn); 2194 swp_pte = swp_entry_to_pte(entry); 2195 2196 /* 2197 * pteval maps a zone device page and is therefore 2198 * a swap pte. 2199 */ 2200 if (pte_swp_soft_dirty(pteval)) 2201 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2202 if (pte_swp_uffd_wp(pteval)) 2203 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2204 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2205 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2206 folio_order(folio)); 2207 /* 2208 * No need to invalidate here it will synchronize on 2209 * against the special swap migration pte. 2210 */ 2211 } else if (PageHWPoison(subpage)) { 2212 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2213 if (folio_test_hugetlb(folio)) { 2214 hugetlb_count_sub(folio_nr_pages(folio), mm); 2215 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2216 hsz); 2217 } else { 2218 dec_mm_counter(mm, mm_counter(folio)); 2219 set_pte_at(mm, address, pvmw.pte, pteval); 2220 } 2221 2222 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2223 /* 2224 * The guest indicated that the page content is of no 2225 * interest anymore. Simply discard the pte, vmscan 2226 * will take care of the rest. 2227 * A future reference will then fault in a new zero 2228 * page. When userfaultfd is active, we must not drop 2229 * this page though, as its main user (postcopy 2230 * migration) will not expect userfaults on already 2231 * copied pages. 2232 */ 2233 dec_mm_counter(mm, mm_counter(folio)); 2234 } else { 2235 swp_entry_t entry; 2236 pte_t swp_pte; 2237 2238 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2239 if (folio_test_hugetlb(folio)) 2240 set_huge_pte_at(mm, address, pvmw.pte, 2241 pteval, hsz); 2242 else 2243 set_pte_at(mm, address, pvmw.pte, pteval); 2244 ret = false; 2245 page_vma_mapped_walk_done(&pvmw); 2246 break; 2247 } 2248 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2249 !anon_exclusive, subpage); 2250 2251 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2252 if (folio_test_hugetlb(folio)) { 2253 if (anon_exclusive && 2254 hugetlb_try_share_anon_rmap(folio)) { 2255 set_huge_pte_at(mm, address, pvmw.pte, 2256 pteval, hsz); 2257 ret = false; 2258 page_vma_mapped_walk_done(&pvmw); 2259 break; 2260 } 2261 } else if (anon_exclusive && 2262 folio_try_share_anon_rmap_pte(folio, subpage)) { 2263 set_pte_at(mm, address, pvmw.pte, pteval); 2264 ret = false; 2265 page_vma_mapped_walk_done(&pvmw); 2266 break; 2267 } 2268 2269 /* 2270 * Store the pfn of the page in a special migration 2271 * pte. do_swap_page() will wait until the migration 2272 * pte is removed and then restart fault handling. 2273 */ 2274 if (pte_write(pteval)) 2275 entry = make_writable_migration_entry( 2276 page_to_pfn(subpage)); 2277 else if (anon_exclusive) 2278 entry = make_readable_exclusive_migration_entry( 2279 page_to_pfn(subpage)); 2280 else 2281 entry = make_readable_migration_entry( 2282 page_to_pfn(subpage)); 2283 if (pte_young(pteval)) 2284 entry = make_migration_entry_young(entry); 2285 if (pte_dirty(pteval)) 2286 entry = make_migration_entry_dirty(entry); 2287 swp_pte = swp_entry_to_pte(entry); 2288 if (pte_soft_dirty(pteval)) 2289 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2290 if (pte_uffd_wp(pteval)) 2291 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2292 if (folio_test_hugetlb(folio)) 2293 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2294 hsz); 2295 else 2296 set_pte_at(mm, address, pvmw.pte, swp_pte); 2297 trace_set_migration_pte(address, pte_val(swp_pte), 2298 folio_order(folio)); 2299 /* 2300 * No need to invalidate here it will synchronize on 2301 * against the special swap migration pte. 2302 */ 2303 } 2304 2305 if (unlikely(folio_test_hugetlb(folio))) 2306 hugetlb_remove_rmap(folio); 2307 else 2308 folio_remove_rmap_pte(folio, subpage, vma); 2309 if (vma->vm_flags & VM_LOCKED) 2310 mlock_drain_local(); 2311 folio_put(folio); 2312 } 2313 2314 mmu_notifier_invalidate_range_end(&range); 2315 2316 return ret; 2317 } 2318 2319 /** 2320 * try_to_migrate - try to replace all page table mappings with swap entries 2321 * @folio: the folio to replace page table entries for 2322 * @flags: action and flags 2323 * 2324 * Tries to remove all the page table entries which are mapping this folio and 2325 * replace them with special swap entries. Caller must hold the folio lock. 2326 */ 2327 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2328 { 2329 struct rmap_walk_control rwc = { 2330 .rmap_one = try_to_migrate_one, 2331 .arg = (void *)flags, 2332 .done = folio_not_mapped, 2333 .anon_lock = folio_lock_anon_vma_read, 2334 }; 2335 2336 /* 2337 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2338 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2339 */ 2340 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2341 TTU_SYNC | TTU_BATCH_FLUSH))) 2342 return; 2343 2344 if (folio_is_zone_device(folio) && 2345 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2346 return; 2347 2348 /* 2349 * During exec, a temporary VMA is setup and later moved. 2350 * The VMA is moved under the anon_vma lock but not the 2351 * page tables leading to a race where migration cannot 2352 * find the migration ptes. Rather than increasing the 2353 * locking requirements of exec(), migration skips 2354 * temporary VMAs until after exec() completes. 2355 */ 2356 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2357 rwc.invalid_vma = invalid_migration_vma; 2358 2359 if (flags & TTU_RMAP_LOCKED) 2360 rmap_walk_locked(folio, &rwc); 2361 else 2362 rmap_walk(folio, &rwc); 2363 } 2364 2365 #ifdef CONFIG_DEVICE_PRIVATE 2366 struct make_exclusive_args { 2367 struct mm_struct *mm; 2368 unsigned long address; 2369 void *owner; 2370 bool valid; 2371 }; 2372 2373 static bool page_make_device_exclusive_one(struct folio *folio, 2374 struct vm_area_struct *vma, unsigned long address, void *priv) 2375 { 2376 struct mm_struct *mm = vma->vm_mm; 2377 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2378 struct make_exclusive_args *args = priv; 2379 pte_t pteval; 2380 struct page *subpage; 2381 bool ret = true; 2382 struct mmu_notifier_range range; 2383 swp_entry_t entry; 2384 pte_t swp_pte; 2385 pte_t ptent; 2386 2387 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2388 vma->vm_mm, address, min(vma->vm_end, 2389 address + folio_size(folio)), 2390 args->owner); 2391 mmu_notifier_invalidate_range_start(&range); 2392 2393 while (page_vma_mapped_walk(&pvmw)) { 2394 /* Unexpected PMD-mapped THP? */ 2395 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2396 2397 ptent = ptep_get(pvmw.pte); 2398 if (!pte_present(ptent)) { 2399 ret = false; 2400 page_vma_mapped_walk_done(&pvmw); 2401 break; 2402 } 2403 2404 subpage = folio_page(folio, 2405 pte_pfn(ptent) - folio_pfn(folio)); 2406 address = pvmw.address; 2407 2408 /* Nuke the page table entry. */ 2409 flush_cache_page(vma, address, pte_pfn(ptent)); 2410 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2411 2412 /* Set the dirty flag on the folio now the pte is gone. */ 2413 if (pte_dirty(pteval)) 2414 folio_mark_dirty(folio); 2415 2416 /* 2417 * Check that our target page is still mapped at the expected 2418 * address. 2419 */ 2420 if (args->mm == mm && args->address == address && 2421 pte_write(pteval)) 2422 args->valid = true; 2423 2424 /* 2425 * Store the pfn of the page in a special migration 2426 * pte. do_swap_page() will wait until the migration 2427 * pte is removed and then restart fault handling. 2428 */ 2429 if (pte_write(pteval)) 2430 entry = make_writable_device_exclusive_entry( 2431 page_to_pfn(subpage)); 2432 else 2433 entry = make_readable_device_exclusive_entry( 2434 page_to_pfn(subpage)); 2435 swp_pte = swp_entry_to_pte(entry); 2436 if (pte_soft_dirty(pteval)) 2437 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2438 if (pte_uffd_wp(pteval)) 2439 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2440 2441 set_pte_at(mm, address, pvmw.pte, swp_pte); 2442 2443 /* 2444 * There is a reference on the page for the swap entry which has 2445 * been removed, so shouldn't take another. 2446 */ 2447 folio_remove_rmap_pte(folio, subpage, vma); 2448 } 2449 2450 mmu_notifier_invalidate_range_end(&range); 2451 2452 return ret; 2453 } 2454 2455 /** 2456 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2457 * @folio: The folio to replace page table entries for. 2458 * @mm: The mm_struct where the folio is expected to be mapped. 2459 * @address: Address where the folio is expected to be mapped. 2460 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2461 * 2462 * Tries to remove all the page table entries which are mapping this 2463 * folio and replace them with special device exclusive swap entries to 2464 * grant a device exclusive access to the folio. 2465 * 2466 * Context: Caller must hold the folio lock. 2467 * Return: false if the page is still mapped, or if it could not be unmapped 2468 * from the expected address. Otherwise returns true (success). 2469 */ 2470 static bool folio_make_device_exclusive(struct folio *folio, 2471 struct mm_struct *mm, unsigned long address, void *owner) 2472 { 2473 struct make_exclusive_args args = { 2474 .mm = mm, 2475 .address = address, 2476 .owner = owner, 2477 .valid = false, 2478 }; 2479 struct rmap_walk_control rwc = { 2480 .rmap_one = page_make_device_exclusive_one, 2481 .done = folio_not_mapped, 2482 .anon_lock = folio_lock_anon_vma_read, 2483 .arg = &args, 2484 }; 2485 2486 /* 2487 * Restrict to anonymous folios for now to avoid potential writeback 2488 * issues. 2489 */ 2490 if (!folio_test_anon(folio)) 2491 return false; 2492 2493 rmap_walk(folio, &rwc); 2494 2495 return args.valid && !folio_mapcount(folio); 2496 } 2497 2498 /** 2499 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2500 * @mm: mm_struct of associated target process 2501 * @start: start of the region to mark for exclusive device access 2502 * @end: end address of region 2503 * @pages: returns the pages which were successfully marked for exclusive access 2504 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2505 * 2506 * Returns: number of pages found in the range by GUP. A page is marked for 2507 * exclusive access only if the page pointer is non-NULL. 2508 * 2509 * This function finds ptes mapping page(s) to the given address range, locks 2510 * them and replaces mappings with special swap entries preventing userspace CPU 2511 * access. On fault these entries are replaced with the original mapping after 2512 * calling MMU notifiers. 2513 * 2514 * A driver using this to program access from a device must use a mmu notifier 2515 * critical section to hold a device specific lock during programming. Once 2516 * programming is complete it should drop the page lock and reference after 2517 * which point CPU access to the page will revoke the exclusive access. 2518 */ 2519 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2520 unsigned long end, struct page **pages, 2521 void *owner) 2522 { 2523 long npages = (end - start) >> PAGE_SHIFT; 2524 long i; 2525 2526 npages = get_user_pages_remote(mm, start, npages, 2527 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2528 pages, NULL); 2529 if (npages < 0) 2530 return npages; 2531 2532 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2533 struct folio *folio = page_folio(pages[i]); 2534 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2535 folio_put(folio); 2536 pages[i] = NULL; 2537 continue; 2538 } 2539 2540 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2541 folio_unlock(folio); 2542 folio_put(folio); 2543 pages[i] = NULL; 2544 } 2545 } 2546 2547 return npages; 2548 } 2549 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2550 #endif 2551 2552 void __put_anon_vma(struct anon_vma *anon_vma) 2553 { 2554 struct anon_vma *root = anon_vma->root; 2555 2556 anon_vma_free(anon_vma); 2557 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2558 anon_vma_free(root); 2559 } 2560 2561 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2562 struct rmap_walk_control *rwc) 2563 { 2564 struct anon_vma *anon_vma; 2565 2566 if (rwc->anon_lock) 2567 return rwc->anon_lock(folio, rwc); 2568 2569 /* 2570 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2571 * because that depends on page_mapped(); but not all its usages 2572 * are holding mmap_lock. Users without mmap_lock are required to 2573 * take a reference count to prevent the anon_vma disappearing 2574 */ 2575 anon_vma = folio_anon_vma(folio); 2576 if (!anon_vma) 2577 return NULL; 2578 2579 if (anon_vma_trylock_read(anon_vma)) 2580 goto out; 2581 2582 if (rwc->try_lock) { 2583 anon_vma = NULL; 2584 rwc->contended = true; 2585 goto out; 2586 } 2587 2588 anon_vma_lock_read(anon_vma); 2589 out: 2590 return anon_vma; 2591 } 2592 2593 /* 2594 * rmap_walk_anon - do something to anonymous page using the object-based 2595 * rmap method 2596 * @folio: the folio to be handled 2597 * @rwc: control variable according to each walk type 2598 * @locked: caller holds relevant rmap lock 2599 * 2600 * Find all the mappings of a folio using the mapping pointer and the vma 2601 * chains contained in the anon_vma struct it points to. 2602 */ 2603 static void rmap_walk_anon(struct folio *folio, 2604 struct rmap_walk_control *rwc, bool locked) 2605 { 2606 struct anon_vma *anon_vma; 2607 pgoff_t pgoff_start, pgoff_end; 2608 struct anon_vma_chain *avc; 2609 2610 if (locked) { 2611 anon_vma = folio_anon_vma(folio); 2612 /* anon_vma disappear under us? */ 2613 VM_BUG_ON_FOLIO(!anon_vma, folio); 2614 } else { 2615 anon_vma = rmap_walk_anon_lock(folio, rwc); 2616 } 2617 if (!anon_vma) 2618 return; 2619 2620 pgoff_start = folio_pgoff(folio); 2621 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2622 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2623 pgoff_start, pgoff_end) { 2624 struct vm_area_struct *vma = avc->vma; 2625 unsigned long address = vma_address(vma, pgoff_start, 2626 folio_nr_pages(folio)); 2627 2628 VM_BUG_ON_VMA(address == -EFAULT, vma); 2629 cond_resched(); 2630 2631 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2632 continue; 2633 2634 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2635 break; 2636 if (rwc->done && rwc->done(folio)) 2637 break; 2638 } 2639 2640 if (!locked) 2641 anon_vma_unlock_read(anon_vma); 2642 } 2643 2644 /* 2645 * rmap_walk_file - do something to file page using the object-based rmap method 2646 * @folio: the folio to be handled 2647 * @rwc: control variable according to each walk type 2648 * @locked: caller holds relevant rmap lock 2649 * 2650 * Find all the mappings of a folio using the mapping pointer and the vma chains 2651 * contained in the address_space struct it points to. 2652 */ 2653 static void rmap_walk_file(struct folio *folio, 2654 struct rmap_walk_control *rwc, bool locked) 2655 { 2656 struct address_space *mapping = folio_mapping(folio); 2657 pgoff_t pgoff_start, pgoff_end; 2658 struct vm_area_struct *vma; 2659 2660 /* 2661 * The page lock not only makes sure that page->mapping cannot 2662 * suddenly be NULLified by truncation, it makes sure that the 2663 * structure at mapping cannot be freed and reused yet, 2664 * so we can safely take mapping->i_mmap_rwsem. 2665 */ 2666 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2667 2668 if (!mapping) 2669 return; 2670 2671 pgoff_start = folio_pgoff(folio); 2672 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2673 if (!locked) { 2674 if (i_mmap_trylock_read(mapping)) 2675 goto lookup; 2676 2677 if (rwc->try_lock) { 2678 rwc->contended = true; 2679 return; 2680 } 2681 2682 i_mmap_lock_read(mapping); 2683 } 2684 lookup: 2685 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2686 pgoff_start, pgoff_end) { 2687 unsigned long address = vma_address(vma, pgoff_start, 2688 folio_nr_pages(folio)); 2689 2690 VM_BUG_ON_VMA(address == -EFAULT, vma); 2691 cond_resched(); 2692 2693 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2694 continue; 2695 2696 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2697 goto done; 2698 if (rwc->done && rwc->done(folio)) 2699 goto done; 2700 } 2701 2702 done: 2703 if (!locked) 2704 i_mmap_unlock_read(mapping); 2705 } 2706 2707 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2708 { 2709 if (unlikely(folio_test_ksm(folio))) 2710 rmap_walk_ksm(folio, rwc); 2711 else if (folio_test_anon(folio)) 2712 rmap_walk_anon(folio, rwc, false); 2713 else 2714 rmap_walk_file(folio, rwc, false); 2715 } 2716 2717 /* Like rmap_walk, but caller holds relevant rmap lock */ 2718 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2719 { 2720 /* no ksm support for now */ 2721 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2722 if (folio_test_anon(folio)) 2723 rmap_walk_anon(folio, rwc, true); 2724 else 2725 rmap_walk_file(folio, rwc, true); 2726 } 2727 2728 #ifdef CONFIG_HUGETLB_PAGE 2729 /* 2730 * The following two functions are for anonymous (private mapped) hugepages. 2731 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2732 * and no lru code, because we handle hugepages differently from common pages. 2733 */ 2734 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2735 unsigned long address, rmap_t flags) 2736 { 2737 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2738 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2739 2740 atomic_inc(&folio->_entire_mapcount); 2741 atomic_inc(&folio->_large_mapcount); 2742 if (flags & RMAP_EXCLUSIVE) 2743 SetPageAnonExclusive(&folio->page); 2744 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2745 PageAnonExclusive(&folio->page), folio); 2746 } 2747 2748 void hugetlb_add_new_anon_rmap(struct folio *folio, 2749 struct vm_area_struct *vma, unsigned long address) 2750 { 2751 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2752 2753 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2754 /* increment count (starts at -1) */ 2755 atomic_set(&folio->_entire_mapcount, 0); 2756 atomic_set(&folio->_large_mapcount, 0); 2757 folio_clear_hugetlb_restore_reserve(folio); 2758 __folio_set_anon(folio, vma, address, true); 2759 SetPageAnonExclusive(&folio->page); 2760 } 2761 #endif /* CONFIG_HUGETLB_PAGE */ 2762