xref: /linux/mm/rmap.c (revision 0c3beacf681ec897e0b36685a9b49d01f5cb2dfb)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                         i_pages lock (widely used)
36  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                       i_pages lock (widely used, in set_page_dirty,
41  *                                 in arch-dependent flush_dcache_mmap_lock,
42  *                                 within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         folio_lock
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 				      unsigned long uaddr)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		arch_flush_tlb_batched_pending(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 				      unsigned long uaddr)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /*
771  * At what user virtual address is page expected in vma?
772  * Caller should check the page is actually part of the vma.
773  */
774 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
775 {
776 	struct folio *folio = page_folio(page);
777 	pgoff_t pgoff;
778 
779 	if (folio_test_anon(folio)) {
780 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
781 		/*
782 		 * Note: swapoff's unuse_vma() is more efficient with this
783 		 * check, and needs it to match anon_vma when KSM is active.
784 		 */
785 		if (!vma->anon_vma || !page__anon_vma ||
786 		    vma->anon_vma->root != page__anon_vma->root)
787 			return -EFAULT;
788 	} else if (!vma->vm_file) {
789 		return -EFAULT;
790 	} else if (vma->vm_file->f_mapping != folio->mapping) {
791 		return -EFAULT;
792 	}
793 
794 	/* The !page__anon_vma above handles KSM folios */
795 	pgoff = folio->index + folio_page_idx(folio, page);
796 	return vma_address(vma, pgoff, 1);
797 }
798 
799 /*
800  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
801  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
802  * represents.
803  */
804 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
805 {
806 	pgd_t *pgd;
807 	p4d_t *p4d;
808 	pud_t *pud;
809 	pmd_t *pmd = NULL;
810 
811 	pgd = pgd_offset(mm, address);
812 	if (!pgd_present(*pgd))
813 		goto out;
814 
815 	p4d = p4d_offset(pgd, address);
816 	if (!p4d_present(*p4d))
817 		goto out;
818 
819 	pud = pud_offset(p4d, address);
820 	if (!pud_present(*pud))
821 		goto out;
822 
823 	pmd = pmd_offset(pud, address);
824 out:
825 	return pmd;
826 }
827 
828 struct folio_referenced_arg {
829 	int mapcount;
830 	int referenced;
831 	unsigned long vm_flags;
832 	struct mem_cgroup *memcg;
833 };
834 
835 /*
836  * arg: folio_referenced_arg will be passed
837  */
838 static bool folio_referenced_one(struct folio *folio,
839 		struct vm_area_struct *vma, unsigned long address, void *arg)
840 {
841 	struct folio_referenced_arg *pra = arg;
842 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
843 	int referenced = 0;
844 	unsigned long start = address, ptes = 0;
845 
846 	while (page_vma_mapped_walk(&pvmw)) {
847 		address = pvmw.address;
848 
849 		if (vma->vm_flags & VM_LOCKED) {
850 			if (!folio_test_large(folio) || !pvmw.pte) {
851 				/* Restore the mlock which got missed */
852 				mlock_vma_folio(folio, vma);
853 				page_vma_mapped_walk_done(&pvmw);
854 				pra->vm_flags |= VM_LOCKED;
855 				return false; /* To break the loop */
856 			}
857 			/*
858 			 * For large folio fully mapped to VMA, will
859 			 * be handled after the pvmw loop.
860 			 *
861 			 * For large folio cross VMA boundaries, it's
862 			 * expected to be picked  by page reclaim. But
863 			 * should skip reference of pages which are in
864 			 * the range of VM_LOCKED vma. As page reclaim
865 			 * should just count the reference of pages out
866 			 * the range of VM_LOCKED vma.
867 			 */
868 			ptes++;
869 			pra->mapcount--;
870 			continue;
871 		}
872 
873 		/*
874 		 * Skip the non-shared swapbacked folio mapped solely by
875 		 * the exiting or OOM-reaped process. This avoids redundant
876 		 * swap-out followed by an immediate unmap.
877 		 */
878 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
879 		    check_stable_address_space(vma->vm_mm)) &&
880 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
881 		    !folio_likely_mapped_shared(folio)) {
882 			pra->referenced = -1;
883 			page_vma_mapped_walk_done(&pvmw);
884 			return false;
885 		}
886 
887 		if (lru_gen_enabled() && pvmw.pte) {
888 			if (lru_gen_look_around(&pvmw))
889 				referenced++;
890 		} else if (pvmw.pte) {
891 			if (ptep_clear_flush_young_notify(vma, address,
892 						pvmw.pte))
893 				referenced++;
894 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
895 			if (pmdp_clear_flush_young_notify(vma, address,
896 						pvmw.pmd))
897 				referenced++;
898 		} else {
899 			/* unexpected pmd-mapped folio? */
900 			WARN_ON_ONCE(1);
901 		}
902 
903 		pra->mapcount--;
904 	}
905 
906 	if ((vma->vm_flags & VM_LOCKED) &&
907 			folio_test_large(folio) &&
908 			folio_within_vma(folio, vma)) {
909 		unsigned long s_align, e_align;
910 
911 		s_align = ALIGN_DOWN(start, PMD_SIZE);
912 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
913 
914 		/* folio doesn't cross page table boundary and fully mapped */
915 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
916 			/* Restore the mlock which got missed */
917 			mlock_vma_folio(folio, vma);
918 			pra->vm_flags |= VM_LOCKED;
919 			return false; /* To break the loop */
920 		}
921 	}
922 
923 	if (referenced)
924 		folio_clear_idle(folio);
925 	if (folio_test_clear_young(folio))
926 		referenced++;
927 
928 	if (referenced) {
929 		pra->referenced++;
930 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
931 	}
932 
933 	if (!pra->mapcount)
934 		return false; /* To break the loop */
935 
936 	return true;
937 }
938 
939 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
940 {
941 	struct folio_referenced_arg *pra = arg;
942 	struct mem_cgroup *memcg = pra->memcg;
943 
944 	/*
945 	 * Ignore references from this mapping if it has no recency. If the
946 	 * folio has been used in another mapping, we will catch it; if this
947 	 * other mapping is already gone, the unmap path will have set the
948 	 * referenced flag or activated the folio in zap_pte_range().
949 	 */
950 	if (!vma_has_recency(vma))
951 		return true;
952 
953 	/*
954 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
955 	 * of references from different cgroups.
956 	 */
957 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
958 		return true;
959 
960 	return false;
961 }
962 
963 /**
964  * folio_referenced() - Test if the folio was referenced.
965  * @folio: The folio to test.
966  * @is_locked: Caller holds lock on the folio.
967  * @memcg: target memory cgroup
968  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
969  *
970  * Quick test_and_clear_referenced for all mappings of a folio,
971  *
972  * Return: The number of mappings which referenced the folio. Return -1 if
973  * the function bailed out due to rmap lock contention.
974  */
975 int folio_referenced(struct folio *folio, int is_locked,
976 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
977 {
978 	bool we_locked = false;
979 	struct folio_referenced_arg pra = {
980 		.mapcount = folio_mapcount(folio),
981 		.memcg = memcg,
982 	};
983 	struct rmap_walk_control rwc = {
984 		.rmap_one = folio_referenced_one,
985 		.arg = (void *)&pra,
986 		.anon_lock = folio_lock_anon_vma_read,
987 		.try_lock = true,
988 		.invalid_vma = invalid_folio_referenced_vma,
989 	};
990 
991 	*vm_flags = 0;
992 	if (!pra.mapcount)
993 		return 0;
994 
995 	if (!folio_raw_mapping(folio))
996 		return 0;
997 
998 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
999 		we_locked = folio_trylock(folio);
1000 		if (!we_locked)
1001 			return 1;
1002 	}
1003 
1004 	rmap_walk(folio, &rwc);
1005 	*vm_flags = pra.vm_flags;
1006 
1007 	if (we_locked)
1008 		folio_unlock(folio);
1009 
1010 	return rwc.contended ? -1 : pra.referenced;
1011 }
1012 
1013 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1014 {
1015 	int cleaned = 0;
1016 	struct vm_area_struct *vma = pvmw->vma;
1017 	struct mmu_notifier_range range;
1018 	unsigned long address = pvmw->address;
1019 
1020 	/*
1021 	 * We have to assume the worse case ie pmd for invalidation. Note that
1022 	 * the folio can not be freed from this function.
1023 	 */
1024 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1025 				vma->vm_mm, address, vma_address_end(pvmw));
1026 	mmu_notifier_invalidate_range_start(&range);
1027 
1028 	while (page_vma_mapped_walk(pvmw)) {
1029 		int ret = 0;
1030 
1031 		address = pvmw->address;
1032 		if (pvmw->pte) {
1033 			pte_t *pte = pvmw->pte;
1034 			pte_t entry = ptep_get(pte);
1035 
1036 			if (!pte_dirty(entry) && !pte_write(entry))
1037 				continue;
1038 
1039 			flush_cache_page(vma, address, pte_pfn(entry));
1040 			entry = ptep_clear_flush(vma, address, pte);
1041 			entry = pte_wrprotect(entry);
1042 			entry = pte_mkclean(entry);
1043 			set_pte_at(vma->vm_mm, address, pte, entry);
1044 			ret = 1;
1045 		} else {
1046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1047 			pmd_t *pmd = pvmw->pmd;
1048 			pmd_t entry;
1049 
1050 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1051 				continue;
1052 
1053 			flush_cache_range(vma, address,
1054 					  address + HPAGE_PMD_SIZE);
1055 			entry = pmdp_invalidate(vma, address, pmd);
1056 			entry = pmd_wrprotect(entry);
1057 			entry = pmd_mkclean(entry);
1058 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1059 			ret = 1;
1060 #else
1061 			/* unexpected pmd-mapped folio? */
1062 			WARN_ON_ONCE(1);
1063 #endif
1064 		}
1065 
1066 		if (ret)
1067 			cleaned++;
1068 	}
1069 
1070 	mmu_notifier_invalidate_range_end(&range);
1071 
1072 	return cleaned;
1073 }
1074 
1075 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1076 			     unsigned long address, void *arg)
1077 {
1078 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1079 	int *cleaned = arg;
1080 
1081 	*cleaned += page_vma_mkclean_one(&pvmw);
1082 
1083 	return true;
1084 }
1085 
1086 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1087 {
1088 	if (vma->vm_flags & VM_SHARED)
1089 		return false;
1090 
1091 	return true;
1092 }
1093 
1094 int folio_mkclean(struct folio *folio)
1095 {
1096 	int cleaned = 0;
1097 	struct address_space *mapping;
1098 	struct rmap_walk_control rwc = {
1099 		.arg = (void *)&cleaned,
1100 		.rmap_one = page_mkclean_one,
1101 		.invalid_vma = invalid_mkclean_vma,
1102 	};
1103 
1104 	BUG_ON(!folio_test_locked(folio));
1105 
1106 	if (!folio_mapped(folio))
1107 		return 0;
1108 
1109 	mapping = folio_mapping(folio);
1110 	if (!mapping)
1111 		return 0;
1112 
1113 	rmap_walk(folio, &rwc);
1114 
1115 	return cleaned;
1116 }
1117 EXPORT_SYMBOL_GPL(folio_mkclean);
1118 
1119 /**
1120  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1121  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1122  *                     within the @vma of shared mappings. And since clean PTEs
1123  *                     should also be readonly, write protects them too.
1124  * @pfn: start pfn.
1125  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1126  * @pgoff: page offset that the @pfn mapped with.
1127  * @vma: vma that @pfn mapped within.
1128  *
1129  * Returns the number of cleaned PTEs (including PMDs).
1130  */
1131 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1132 		      struct vm_area_struct *vma)
1133 {
1134 	struct page_vma_mapped_walk pvmw = {
1135 		.pfn		= pfn,
1136 		.nr_pages	= nr_pages,
1137 		.pgoff		= pgoff,
1138 		.vma		= vma,
1139 		.flags		= PVMW_SYNC,
1140 	};
1141 
1142 	if (invalid_mkclean_vma(vma, NULL))
1143 		return 0;
1144 
1145 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1146 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1147 
1148 	return page_vma_mkclean_one(&pvmw);
1149 }
1150 
1151 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1152 		struct page *page, int nr_pages, enum rmap_level level,
1153 		int *nr_pmdmapped)
1154 {
1155 	atomic_t *mapped = &folio->_nr_pages_mapped;
1156 	const int orig_nr_pages = nr_pages;
1157 	int first = 0, nr = 0;
1158 
1159 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1160 
1161 	switch (level) {
1162 	case RMAP_LEVEL_PTE:
1163 		if (!folio_test_large(folio)) {
1164 			nr = atomic_inc_and_test(&folio->_mapcount);
1165 			break;
1166 		}
1167 
1168 		do {
1169 			first += atomic_inc_and_test(&page->_mapcount);
1170 		} while (page++, --nr_pages > 0);
1171 
1172 		if (first &&
1173 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1174 			nr = first;
1175 
1176 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1177 		break;
1178 	case RMAP_LEVEL_PMD:
1179 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1180 		if (first) {
1181 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1182 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1183 				*nr_pmdmapped = folio_nr_pages(folio);
1184 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1185 				/* Raced ahead of a remove and another add? */
1186 				if (unlikely(nr < 0))
1187 					nr = 0;
1188 			} else {
1189 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1190 				nr = 0;
1191 			}
1192 		}
1193 		atomic_inc(&folio->_large_mapcount);
1194 		break;
1195 	}
1196 	return nr;
1197 }
1198 
1199 /**
1200  * folio_move_anon_rmap - move a folio to our anon_vma
1201  * @folio:	The folio to move to our anon_vma
1202  * @vma:	The vma the folio belongs to
1203  *
1204  * When a folio belongs exclusively to one process after a COW event,
1205  * that folio can be moved into the anon_vma that belongs to just that
1206  * process, so the rmap code will not search the parent or sibling processes.
1207  */
1208 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1209 {
1210 	void *anon_vma = vma->anon_vma;
1211 
1212 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1213 	VM_BUG_ON_VMA(!anon_vma, vma);
1214 
1215 	anon_vma += PAGE_MAPPING_ANON;
1216 	/*
1217 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1218 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1219 	 * folio_test_anon()) will not see one without the other.
1220 	 */
1221 	WRITE_ONCE(folio->mapping, anon_vma);
1222 }
1223 
1224 /**
1225  * __folio_set_anon - set up a new anonymous rmap for a folio
1226  * @folio:	The folio to set up the new anonymous rmap for.
1227  * @vma:	VM area to add the folio to.
1228  * @address:	User virtual address of the mapping
1229  * @exclusive:	Whether the folio is exclusive to the process.
1230  */
1231 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1232 			     unsigned long address, bool exclusive)
1233 {
1234 	struct anon_vma *anon_vma = vma->anon_vma;
1235 
1236 	BUG_ON(!anon_vma);
1237 
1238 	/*
1239 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1240 	 * possible anon_vma for the folio mapping!
1241 	 */
1242 	if (!exclusive)
1243 		anon_vma = anon_vma->root;
1244 
1245 	/*
1246 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1247 	 * Make sure the compiler doesn't split the stores of anon_vma and
1248 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1249 	 * could mistake the mapping for a struct address_space and crash.
1250 	 */
1251 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1252 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1253 	folio->index = linear_page_index(vma, address);
1254 }
1255 
1256 /**
1257  * __page_check_anon_rmap - sanity check anonymous rmap addition
1258  * @folio:	The folio containing @page.
1259  * @page:	the page to check the mapping of
1260  * @vma:	the vm area in which the mapping is added
1261  * @address:	the user virtual address mapped
1262  */
1263 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1264 	struct vm_area_struct *vma, unsigned long address)
1265 {
1266 	/*
1267 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1268 	 * be set up correctly at this point.
1269 	 *
1270 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1271 	 * always holds the page locked.
1272 	 *
1273 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1274 	 * are initially only visible via the pagetables, and the pte is locked
1275 	 * over the call to folio_add_new_anon_rmap.
1276 	 */
1277 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1278 			folio);
1279 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1280 		       page);
1281 }
1282 
1283 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1284 {
1285 	int idx;
1286 
1287 	if (nr) {
1288 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1289 		__lruvec_stat_mod_folio(folio, idx, nr);
1290 	}
1291 	if (nr_pmdmapped) {
1292 		if (folio_test_anon(folio)) {
1293 			idx = NR_ANON_THPS;
1294 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1295 		} else {
1296 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1297 			idx = folio_test_swapbacked(folio) ?
1298 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1299 			__mod_node_page_state(folio_pgdat(folio), idx,
1300 					      nr_pmdmapped);
1301 		}
1302 	}
1303 }
1304 
1305 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1306 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1307 		unsigned long address, rmap_t flags, enum rmap_level level)
1308 {
1309 	int i, nr, nr_pmdmapped = 0;
1310 
1311 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1312 
1313 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1314 
1315 	if (likely(!folio_test_ksm(folio)))
1316 		__page_check_anon_rmap(folio, page, vma, address);
1317 
1318 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1319 
1320 	if (flags & RMAP_EXCLUSIVE) {
1321 		switch (level) {
1322 		case RMAP_LEVEL_PTE:
1323 			for (i = 0; i < nr_pages; i++)
1324 				SetPageAnonExclusive(page + i);
1325 			break;
1326 		case RMAP_LEVEL_PMD:
1327 			SetPageAnonExclusive(page);
1328 			break;
1329 		}
1330 	}
1331 	for (i = 0; i < nr_pages; i++) {
1332 		struct page *cur_page = page + i;
1333 
1334 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1335 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1336 				  (folio_test_large(folio) &&
1337 				   folio_entire_mapcount(folio) > 1)) &&
1338 				 PageAnonExclusive(cur_page), folio);
1339 	}
1340 
1341 	/*
1342 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1343 	 * not easy to check whether the large folio is fully mapped to VMA
1344 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1345 	 * large folio.
1346 	 */
1347 	if (!folio_test_large(folio))
1348 		mlock_vma_folio(folio, vma);
1349 }
1350 
1351 /**
1352  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1353  * @folio:	The folio to add the mappings to
1354  * @page:	The first page to add
1355  * @nr_pages:	The number of pages which will be mapped
1356  * @vma:	The vm area in which the mappings are added
1357  * @address:	The user virtual address of the first page to map
1358  * @flags:	The rmap flags
1359  *
1360  * The page range of folio is defined by [first_page, first_page + nr_pages)
1361  *
1362  * The caller needs to hold the page table lock, and the page must be locked in
1363  * the anon_vma case: to serialize mapping,index checking after setting,
1364  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1365  * (but KSM folios are never downgraded).
1366  */
1367 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1368 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1369 		rmap_t flags)
1370 {
1371 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1372 			      RMAP_LEVEL_PTE);
1373 }
1374 
1375 /**
1376  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1377  * @folio:	The folio to add the mapping to
1378  * @page:	The first page to add
1379  * @vma:	The vm area in which the mapping is added
1380  * @address:	The user virtual address of the first page to map
1381  * @flags:	The rmap flags
1382  *
1383  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1384  *
1385  * The caller needs to hold the page table lock, and the page must be locked in
1386  * the anon_vma case: to serialize mapping,index checking after setting.
1387  */
1388 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1389 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1390 {
1391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1392 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1393 			      RMAP_LEVEL_PMD);
1394 #else
1395 	WARN_ON_ONCE(true);
1396 #endif
1397 }
1398 
1399 /**
1400  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1401  * @folio:	The folio to add the mapping to.
1402  * @vma:	the vm area in which the mapping is added
1403  * @address:	the user virtual address mapped
1404  * @flags:	The rmap flags
1405  *
1406  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1407  * This means the inc-and-test can be bypassed.
1408  * The folio doesn't necessarily need to be locked while it's exclusive
1409  * unless two threads map it concurrently. However, the folio must be
1410  * locked if it's shared.
1411  *
1412  * If the folio is pmd-mappable, it is accounted as a THP.
1413  */
1414 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1415 		unsigned long address, rmap_t flags)
1416 {
1417 	const int nr = folio_nr_pages(folio);
1418 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1419 	int nr_pmdmapped = 0;
1420 
1421 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1422 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1423 	VM_BUG_ON_VMA(address < vma->vm_start ||
1424 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1425 
1426 	/*
1427 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1428 	 * under memory pressure.
1429 	 */
1430 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1431 		__folio_set_swapbacked(folio);
1432 	__folio_set_anon(folio, vma, address, exclusive);
1433 
1434 	if (likely(!folio_test_large(folio))) {
1435 		/* increment count (starts at -1) */
1436 		atomic_set(&folio->_mapcount, 0);
1437 		if (exclusive)
1438 			SetPageAnonExclusive(&folio->page);
1439 	} else if (!folio_test_pmd_mappable(folio)) {
1440 		int i;
1441 
1442 		for (i = 0; i < nr; i++) {
1443 			struct page *page = folio_page(folio, i);
1444 
1445 			/* increment count (starts at -1) */
1446 			atomic_set(&page->_mapcount, 0);
1447 			if (exclusive)
1448 				SetPageAnonExclusive(page);
1449 		}
1450 
1451 		/* increment count (starts at -1) */
1452 		atomic_set(&folio->_large_mapcount, nr - 1);
1453 		atomic_set(&folio->_nr_pages_mapped, nr);
1454 	} else {
1455 		/* increment count (starts at -1) */
1456 		atomic_set(&folio->_entire_mapcount, 0);
1457 		/* increment count (starts at -1) */
1458 		atomic_set(&folio->_large_mapcount, 0);
1459 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1460 		if (exclusive)
1461 			SetPageAnonExclusive(&folio->page);
1462 		nr_pmdmapped = nr;
1463 	}
1464 
1465 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1466 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1467 }
1468 
1469 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1470 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1471 		enum rmap_level level)
1472 {
1473 	int nr, nr_pmdmapped = 0;
1474 
1475 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1476 
1477 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1478 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1479 
1480 	/* See comments in folio_add_anon_rmap_*() */
1481 	if (!folio_test_large(folio))
1482 		mlock_vma_folio(folio, vma);
1483 }
1484 
1485 /**
1486  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1487  * @folio:	The folio to add the mappings to
1488  * @page:	The first page to add
1489  * @nr_pages:	The number of pages that will be mapped using PTEs
1490  * @vma:	The vm area in which the mappings are added
1491  *
1492  * The page range of the folio is defined by [page, page + nr_pages)
1493  *
1494  * The caller needs to hold the page table lock.
1495  */
1496 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1497 		int nr_pages, struct vm_area_struct *vma)
1498 {
1499 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1500 }
1501 
1502 /**
1503  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1504  * @folio:	The folio to add the mapping to
1505  * @page:	The first page to add
1506  * @vma:	The vm area in which the mapping is added
1507  *
1508  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1509  *
1510  * The caller needs to hold the page table lock.
1511  */
1512 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1513 		struct vm_area_struct *vma)
1514 {
1515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1516 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1517 #else
1518 	WARN_ON_ONCE(true);
1519 #endif
1520 }
1521 
1522 static __always_inline void __folio_remove_rmap(struct folio *folio,
1523 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1524 		enum rmap_level level)
1525 {
1526 	atomic_t *mapped = &folio->_nr_pages_mapped;
1527 	int last = 0, nr = 0, nr_pmdmapped = 0;
1528 	bool partially_mapped = false;
1529 
1530 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1531 
1532 	switch (level) {
1533 	case RMAP_LEVEL_PTE:
1534 		if (!folio_test_large(folio)) {
1535 			nr = atomic_add_negative(-1, &folio->_mapcount);
1536 			break;
1537 		}
1538 
1539 		atomic_sub(nr_pages, &folio->_large_mapcount);
1540 		do {
1541 			last += atomic_add_negative(-1, &page->_mapcount);
1542 		} while (page++, --nr_pages > 0);
1543 
1544 		if (last &&
1545 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1546 			nr = last;
1547 
1548 		partially_mapped = nr && atomic_read(mapped);
1549 		break;
1550 	case RMAP_LEVEL_PMD:
1551 		atomic_dec(&folio->_large_mapcount);
1552 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1553 		if (last) {
1554 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1555 			if (likely(nr < ENTIRELY_MAPPED)) {
1556 				nr_pmdmapped = folio_nr_pages(folio);
1557 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1558 				/* Raced ahead of another remove and an add? */
1559 				if (unlikely(nr < 0))
1560 					nr = 0;
1561 			} else {
1562 				/* An add of ENTIRELY_MAPPED raced ahead */
1563 				nr = 0;
1564 			}
1565 		}
1566 
1567 		partially_mapped = nr && nr < nr_pmdmapped;
1568 		break;
1569 	}
1570 
1571 	/*
1572 	 * Queue anon large folio for deferred split if at least one page of
1573 	 * the folio is unmapped and at least one page is still mapped.
1574 	 *
1575 	 * Check partially_mapped first to ensure it is a large folio.
1576 	 */
1577 	if (partially_mapped && folio_test_anon(folio) &&
1578 	    !folio_test_partially_mapped(folio))
1579 		deferred_split_folio(folio, true);
1580 
1581 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1582 
1583 	/*
1584 	 * It would be tidy to reset folio_test_anon mapping when fully
1585 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1586 	 * which increments mapcount after us but sets mapping before us:
1587 	 * so leave the reset to free_pages_prepare, and remember that
1588 	 * it's only reliable while mapped.
1589 	 */
1590 
1591 	munlock_vma_folio(folio, vma);
1592 }
1593 
1594 /**
1595  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1596  * @folio:	The folio to remove the mappings from
1597  * @page:	The first page to remove
1598  * @nr_pages:	The number of pages that will be removed from the mapping
1599  * @vma:	The vm area from which the mappings are removed
1600  *
1601  * The page range of the folio is defined by [page, page + nr_pages)
1602  *
1603  * The caller needs to hold the page table lock.
1604  */
1605 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1606 		int nr_pages, struct vm_area_struct *vma)
1607 {
1608 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1609 }
1610 
1611 /**
1612  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1613  * @folio:	The folio to remove the mapping from
1614  * @page:	The first page to remove
1615  * @vma:	The vm area from which the mapping is removed
1616  *
1617  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1618  *
1619  * The caller needs to hold the page table lock.
1620  */
1621 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1622 		struct vm_area_struct *vma)
1623 {
1624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1625 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1626 #else
1627 	WARN_ON_ONCE(true);
1628 #endif
1629 }
1630 
1631 /*
1632  * @arg: enum ttu_flags will be passed to this argument
1633  */
1634 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1635 		     unsigned long address, void *arg)
1636 {
1637 	struct mm_struct *mm = vma->vm_mm;
1638 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1639 	pte_t pteval;
1640 	struct page *subpage;
1641 	bool anon_exclusive, ret = true;
1642 	struct mmu_notifier_range range;
1643 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1644 	unsigned long pfn;
1645 	unsigned long hsz = 0;
1646 
1647 	/*
1648 	 * When racing against e.g. zap_pte_range() on another cpu,
1649 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1650 	 * try_to_unmap() may return before page_mapped() has become false,
1651 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1652 	 */
1653 	if (flags & TTU_SYNC)
1654 		pvmw.flags = PVMW_SYNC;
1655 
1656 	/*
1657 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1658 	 * For hugetlb, it could be much worse if we need to do pud
1659 	 * invalidation in the case of pmd sharing.
1660 	 *
1661 	 * Note that the folio can not be freed in this function as call of
1662 	 * try_to_unmap() must hold a reference on the folio.
1663 	 */
1664 	range.end = vma_address_end(&pvmw);
1665 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1666 				address, range.end);
1667 	if (folio_test_hugetlb(folio)) {
1668 		/*
1669 		 * If sharing is possible, start and end will be adjusted
1670 		 * accordingly.
1671 		 */
1672 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1673 						     &range.end);
1674 
1675 		/* We need the huge page size for set_huge_pte_at() */
1676 		hsz = huge_page_size(hstate_vma(vma));
1677 	}
1678 	mmu_notifier_invalidate_range_start(&range);
1679 
1680 	while (page_vma_mapped_walk(&pvmw)) {
1681 		/*
1682 		 * If the folio is in an mlock()d vma, we must not swap it out.
1683 		 */
1684 		if (!(flags & TTU_IGNORE_MLOCK) &&
1685 		    (vma->vm_flags & VM_LOCKED)) {
1686 			/* Restore the mlock which got missed */
1687 			if (!folio_test_large(folio))
1688 				mlock_vma_folio(folio, vma);
1689 			goto walk_abort;
1690 		}
1691 
1692 		if (!pvmw.pte) {
1693 			if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1694 						  folio))
1695 				goto walk_done;
1696 
1697 			if (flags & TTU_SPLIT_HUGE_PMD) {
1698 				/*
1699 				 * We temporarily have to drop the PTL and
1700 				 * restart so we can process the PTE-mapped THP.
1701 				 */
1702 				split_huge_pmd_locked(vma, pvmw.address,
1703 						      pvmw.pmd, false, folio);
1704 				flags &= ~TTU_SPLIT_HUGE_PMD;
1705 				page_vma_mapped_walk_restart(&pvmw);
1706 				continue;
1707 			}
1708 		}
1709 
1710 		/* Unexpected PMD-mapped THP? */
1711 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1712 
1713 		pfn = pte_pfn(ptep_get(pvmw.pte));
1714 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1715 		address = pvmw.address;
1716 		anon_exclusive = folio_test_anon(folio) &&
1717 				 PageAnonExclusive(subpage);
1718 
1719 		if (folio_test_hugetlb(folio)) {
1720 			bool anon = folio_test_anon(folio);
1721 
1722 			/*
1723 			 * The try_to_unmap() is only passed a hugetlb page
1724 			 * in the case where the hugetlb page is poisoned.
1725 			 */
1726 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1727 			/*
1728 			 * huge_pmd_unshare may unmap an entire PMD page.
1729 			 * There is no way of knowing exactly which PMDs may
1730 			 * be cached for this mm, so we must flush them all.
1731 			 * start/end were already adjusted above to cover this
1732 			 * range.
1733 			 */
1734 			flush_cache_range(vma, range.start, range.end);
1735 
1736 			/*
1737 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1738 			 * held in write mode.  Caller needs to explicitly
1739 			 * do this outside rmap routines.
1740 			 *
1741 			 * We also must hold hugetlb vma_lock in write mode.
1742 			 * Lock order dictates acquiring vma_lock BEFORE
1743 			 * i_mmap_rwsem.  We can only try lock here and fail
1744 			 * if unsuccessful.
1745 			 */
1746 			if (!anon) {
1747 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1748 				if (!hugetlb_vma_trylock_write(vma))
1749 					goto walk_abort;
1750 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1751 					hugetlb_vma_unlock_write(vma);
1752 					flush_tlb_range(vma,
1753 						range.start, range.end);
1754 					/*
1755 					 * The ref count of the PMD page was
1756 					 * dropped which is part of the way map
1757 					 * counting is done for shared PMDs.
1758 					 * Return 'true' here.  When there is
1759 					 * no other sharing, huge_pmd_unshare
1760 					 * returns false and we will unmap the
1761 					 * actual page and drop map count
1762 					 * to zero.
1763 					 */
1764 					goto walk_done;
1765 				}
1766 				hugetlb_vma_unlock_write(vma);
1767 			}
1768 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1769 		} else {
1770 			flush_cache_page(vma, address, pfn);
1771 			/* Nuke the page table entry. */
1772 			if (should_defer_flush(mm, flags)) {
1773 				/*
1774 				 * We clear the PTE but do not flush so potentially
1775 				 * a remote CPU could still be writing to the folio.
1776 				 * If the entry was previously clean then the
1777 				 * architecture must guarantee that a clear->dirty
1778 				 * transition on a cached TLB entry is written through
1779 				 * and traps if the PTE is unmapped.
1780 				 */
1781 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1782 
1783 				set_tlb_ubc_flush_pending(mm, pteval, address);
1784 			} else {
1785 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1786 			}
1787 		}
1788 
1789 		/*
1790 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1791 		 * we may want to replace a none pte with a marker pte if
1792 		 * it's file-backed, so we don't lose the tracking info.
1793 		 */
1794 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1795 
1796 		/* Set the dirty flag on the folio now the pte is gone. */
1797 		if (pte_dirty(pteval))
1798 			folio_mark_dirty(folio);
1799 
1800 		/* Update high watermark before we lower rss */
1801 		update_hiwater_rss(mm);
1802 
1803 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1804 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1805 			if (folio_test_hugetlb(folio)) {
1806 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1807 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1808 						hsz);
1809 			} else {
1810 				dec_mm_counter(mm, mm_counter(folio));
1811 				set_pte_at(mm, address, pvmw.pte, pteval);
1812 			}
1813 
1814 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1815 			/*
1816 			 * The guest indicated that the page content is of no
1817 			 * interest anymore. Simply discard the pte, vmscan
1818 			 * will take care of the rest.
1819 			 * A future reference will then fault in a new zero
1820 			 * page. When userfaultfd is active, we must not drop
1821 			 * this page though, as its main user (postcopy
1822 			 * migration) will not expect userfaults on already
1823 			 * copied pages.
1824 			 */
1825 			dec_mm_counter(mm, mm_counter(folio));
1826 		} else if (folio_test_anon(folio)) {
1827 			swp_entry_t entry = page_swap_entry(subpage);
1828 			pte_t swp_pte;
1829 			/*
1830 			 * Store the swap location in the pte.
1831 			 * See handle_pte_fault() ...
1832 			 */
1833 			if (unlikely(folio_test_swapbacked(folio) !=
1834 					folio_test_swapcache(folio))) {
1835 				WARN_ON_ONCE(1);
1836 				goto walk_abort;
1837 			}
1838 
1839 			/* MADV_FREE page check */
1840 			if (!folio_test_swapbacked(folio)) {
1841 				int ref_count, map_count;
1842 
1843 				/*
1844 				 * Synchronize with gup_pte_range():
1845 				 * - clear PTE; barrier; read refcount
1846 				 * - inc refcount; barrier; read PTE
1847 				 */
1848 				smp_mb();
1849 
1850 				ref_count = folio_ref_count(folio);
1851 				map_count = folio_mapcount(folio);
1852 
1853 				/*
1854 				 * Order reads for page refcount and dirty flag
1855 				 * (see comments in __remove_mapping()).
1856 				 */
1857 				smp_rmb();
1858 
1859 				/*
1860 				 * The only page refs must be one from isolation
1861 				 * plus the rmap(s) (dropped by discard:).
1862 				 */
1863 				if (ref_count == 1 + map_count &&
1864 				    (!folio_test_dirty(folio) ||
1865 				     /*
1866 				      * Unlike MADV_FREE mappings, VM_DROPPABLE
1867 				      * ones can be dropped even if they've
1868 				      * been dirtied.
1869 				      */
1870 				     (vma->vm_flags & VM_DROPPABLE))) {
1871 					dec_mm_counter(mm, MM_ANONPAGES);
1872 					goto discard;
1873 				}
1874 
1875 				/*
1876 				 * If the folio was redirtied, it cannot be
1877 				 * discarded. Remap the page to page table.
1878 				 */
1879 				set_pte_at(mm, address, pvmw.pte, pteval);
1880 				/*
1881 				 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1882 				 * never get swap backed on failure to drop.
1883 				 */
1884 				if (!(vma->vm_flags & VM_DROPPABLE))
1885 					folio_set_swapbacked(folio);
1886 				goto walk_abort;
1887 			}
1888 
1889 			if (swap_duplicate(entry) < 0) {
1890 				set_pte_at(mm, address, pvmw.pte, pteval);
1891 				goto walk_abort;
1892 			}
1893 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1894 				swap_free(entry);
1895 				set_pte_at(mm, address, pvmw.pte, pteval);
1896 				goto walk_abort;
1897 			}
1898 
1899 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1900 			if (anon_exclusive &&
1901 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1902 				swap_free(entry);
1903 				set_pte_at(mm, address, pvmw.pte, pteval);
1904 				goto walk_abort;
1905 			}
1906 			if (list_empty(&mm->mmlist)) {
1907 				spin_lock(&mmlist_lock);
1908 				if (list_empty(&mm->mmlist))
1909 					list_add(&mm->mmlist, &init_mm.mmlist);
1910 				spin_unlock(&mmlist_lock);
1911 			}
1912 			dec_mm_counter(mm, MM_ANONPAGES);
1913 			inc_mm_counter(mm, MM_SWAPENTS);
1914 			swp_pte = swp_entry_to_pte(entry);
1915 			if (anon_exclusive)
1916 				swp_pte = pte_swp_mkexclusive(swp_pte);
1917 			if (pte_soft_dirty(pteval))
1918 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1919 			if (pte_uffd_wp(pteval))
1920 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1921 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1922 		} else {
1923 			/*
1924 			 * This is a locked file-backed folio,
1925 			 * so it cannot be removed from the page
1926 			 * cache and replaced by a new folio before
1927 			 * mmu_notifier_invalidate_range_end, so no
1928 			 * concurrent thread might update its page table
1929 			 * to point at a new folio while a device is
1930 			 * still using this folio.
1931 			 *
1932 			 * See Documentation/mm/mmu_notifier.rst
1933 			 */
1934 			dec_mm_counter(mm, mm_counter_file(folio));
1935 		}
1936 discard:
1937 		if (unlikely(folio_test_hugetlb(folio)))
1938 			hugetlb_remove_rmap(folio);
1939 		else
1940 			folio_remove_rmap_pte(folio, subpage, vma);
1941 		if (vma->vm_flags & VM_LOCKED)
1942 			mlock_drain_local();
1943 		folio_put(folio);
1944 		continue;
1945 walk_abort:
1946 		ret = false;
1947 walk_done:
1948 		page_vma_mapped_walk_done(&pvmw);
1949 		break;
1950 	}
1951 
1952 	mmu_notifier_invalidate_range_end(&range);
1953 
1954 	return ret;
1955 }
1956 
1957 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1958 {
1959 	return vma_is_temporary_stack(vma);
1960 }
1961 
1962 static int folio_not_mapped(struct folio *folio)
1963 {
1964 	return !folio_mapped(folio);
1965 }
1966 
1967 /**
1968  * try_to_unmap - Try to remove all page table mappings to a folio.
1969  * @folio: The folio to unmap.
1970  * @flags: action and flags
1971  *
1972  * Tries to remove all the page table entries which are mapping this
1973  * folio.  It is the caller's responsibility to check if the folio is
1974  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1975  *
1976  * Context: Caller must hold the folio lock.
1977  */
1978 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1979 {
1980 	struct rmap_walk_control rwc = {
1981 		.rmap_one = try_to_unmap_one,
1982 		.arg = (void *)flags,
1983 		.done = folio_not_mapped,
1984 		.anon_lock = folio_lock_anon_vma_read,
1985 	};
1986 
1987 	if (flags & TTU_RMAP_LOCKED)
1988 		rmap_walk_locked(folio, &rwc);
1989 	else
1990 		rmap_walk(folio, &rwc);
1991 }
1992 
1993 /*
1994  * @arg: enum ttu_flags will be passed to this argument.
1995  *
1996  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1997  * containing migration entries.
1998  */
1999 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2000 		     unsigned long address, void *arg)
2001 {
2002 	struct mm_struct *mm = vma->vm_mm;
2003 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2004 	pte_t pteval;
2005 	struct page *subpage;
2006 	bool anon_exclusive, ret = true;
2007 	struct mmu_notifier_range range;
2008 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2009 	unsigned long pfn;
2010 	unsigned long hsz = 0;
2011 
2012 	/*
2013 	 * When racing against e.g. zap_pte_range() on another cpu,
2014 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2015 	 * try_to_migrate() may return before page_mapped() has become false,
2016 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2017 	 */
2018 	if (flags & TTU_SYNC)
2019 		pvmw.flags = PVMW_SYNC;
2020 
2021 	/*
2022 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2023 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2024 	 */
2025 	if (flags & TTU_SPLIT_HUGE_PMD)
2026 		split_huge_pmd_address(vma, address, true, folio);
2027 
2028 	/*
2029 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2030 	 * For hugetlb, it could be much worse if we need to do pud
2031 	 * invalidation in the case of pmd sharing.
2032 	 *
2033 	 * Note that the page can not be free in this function as call of
2034 	 * try_to_unmap() must hold a reference on the page.
2035 	 */
2036 	range.end = vma_address_end(&pvmw);
2037 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2038 				address, range.end);
2039 	if (folio_test_hugetlb(folio)) {
2040 		/*
2041 		 * If sharing is possible, start and end will be adjusted
2042 		 * accordingly.
2043 		 */
2044 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2045 						     &range.end);
2046 
2047 		/* We need the huge page size for set_huge_pte_at() */
2048 		hsz = huge_page_size(hstate_vma(vma));
2049 	}
2050 	mmu_notifier_invalidate_range_start(&range);
2051 
2052 	while (page_vma_mapped_walk(&pvmw)) {
2053 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2054 		/* PMD-mapped THP migration entry */
2055 		if (!pvmw.pte) {
2056 			subpage = folio_page(folio,
2057 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2058 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2059 					!folio_test_pmd_mappable(folio), folio);
2060 
2061 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2062 				ret = false;
2063 				page_vma_mapped_walk_done(&pvmw);
2064 				break;
2065 			}
2066 			continue;
2067 		}
2068 #endif
2069 
2070 		/* Unexpected PMD-mapped THP? */
2071 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2072 
2073 		pfn = pte_pfn(ptep_get(pvmw.pte));
2074 
2075 		if (folio_is_zone_device(folio)) {
2076 			/*
2077 			 * Our PTE is a non-present device exclusive entry and
2078 			 * calculating the subpage as for the common case would
2079 			 * result in an invalid pointer.
2080 			 *
2081 			 * Since only PAGE_SIZE pages can currently be
2082 			 * migrated, just set it to page. This will need to be
2083 			 * changed when hugepage migrations to device private
2084 			 * memory are supported.
2085 			 */
2086 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2087 			subpage = &folio->page;
2088 		} else {
2089 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2090 		}
2091 		address = pvmw.address;
2092 		anon_exclusive = folio_test_anon(folio) &&
2093 				 PageAnonExclusive(subpage);
2094 
2095 		if (folio_test_hugetlb(folio)) {
2096 			bool anon = folio_test_anon(folio);
2097 
2098 			/*
2099 			 * huge_pmd_unshare may unmap an entire PMD page.
2100 			 * There is no way of knowing exactly which PMDs may
2101 			 * be cached for this mm, so we must flush them all.
2102 			 * start/end were already adjusted above to cover this
2103 			 * range.
2104 			 */
2105 			flush_cache_range(vma, range.start, range.end);
2106 
2107 			/*
2108 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2109 			 * held in write mode.  Caller needs to explicitly
2110 			 * do this outside rmap routines.
2111 			 *
2112 			 * We also must hold hugetlb vma_lock in write mode.
2113 			 * Lock order dictates acquiring vma_lock BEFORE
2114 			 * i_mmap_rwsem.  We can only try lock here and
2115 			 * fail if unsuccessful.
2116 			 */
2117 			if (!anon) {
2118 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2119 				if (!hugetlb_vma_trylock_write(vma)) {
2120 					page_vma_mapped_walk_done(&pvmw);
2121 					ret = false;
2122 					break;
2123 				}
2124 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2125 					hugetlb_vma_unlock_write(vma);
2126 					flush_tlb_range(vma,
2127 						range.start, range.end);
2128 
2129 					/*
2130 					 * The ref count of the PMD page was
2131 					 * dropped which is part of the way map
2132 					 * counting is done for shared PMDs.
2133 					 * Return 'true' here.  When there is
2134 					 * no other sharing, huge_pmd_unshare
2135 					 * returns false and we will unmap the
2136 					 * actual page and drop map count
2137 					 * to zero.
2138 					 */
2139 					page_vma_mapped_walk_done(&pvmw);
2140 					break;
2141 				}
2142 				hugetlb_vma_unlock_write(vma);
2143 			}
2144 			/* Nuke the hugetlb page table entry */
2145 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2146 		} else {
2147 			flush_cache_page(vma, address, pfn);
2148 			/* Nuke the page table entry. */
2149 			if (should_defer_flush(mm, flags)) {
2150 				/*
2151 				 * We clear the PTE but do not flush so potentially
2152 				 * a remote CPU could still be writing to the folio.
2153 				 * If the entry was previously clean then the
2154 				 * architecture must guarantee that a clear->dirty
2155 				 * transition on a cached TLB entry is written through
2156 				 * and traps if the PTE is unmapped.
2157 				 */
2158 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2159 
2160 				set_tlb_ubc_flush_pending(mm, pteval, address);
2161 			} else {
2162 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2163 			}
2164 		}
2165 
2166 		/* Set the dirty flag on the folio now the pte is gone. */
2167 		if (pte_dirty(pteval))
2168 			folio_mark_dirty(folio);
2169 
2170 		/* Update high watermark before we lower rss */
2171 		update_hiwater_rss(mm);
2172 
2173 		if (folio_is_device_private(folio)) {
2174 			unsigned long pfn = folio_pfn(folio);
2175 			swp_entry_t entry;
2176 			pte_t swp_pte;
2177 
2178 			if (anon_exclusive)
2179 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2180 									   subpage));
2181 
2182 			/*
2183 			 * Store the pfn of the page in a special migration
2184 			 * pte. do_swap_page() will wait until the migration
2185 			 * pte is removed and then restart fault handling.
2186 			 */
2187 			entry = pte_to_swp_entry(pteval);
2188 			if (is_writable_device_private_entry(entry))
2189 				entry = make_writable_migration_entry(pfn);
2190 			else if (anon_exclusive)
2191 				entry = make_readable_exclusive_migration_entry(pfn);
2192 			else
2193 				entry = make_readable_migration_entry(pfn);
2194 			swp_pte = swp_entry_to_pte(entry);
2195 
2196 			/*
2197 			 * pteval maps a zone device page and is therefore
2198 			 * a swap pte.
2199 			 */
2200 			if (pte_swp_soft_dirty(pteval))
2201 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2202 			if (pte_swp_uffd_wp(pteval))
2203 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2204 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2205 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2206 						folio_order(folio));
2207 			/*
2208 			 * No need to invalidate here it will synchronize on
2209 			 * against the special swap migration pte.
2210 			 */
2211 		} else if (PageHWPoison(subpage)) {
2212 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2213 			if (folio_test_hugetlb(folio)) {
2214 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2215 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2216 						hsz);
2217 			} else {
2218 				dec_mm_counter(mm, mm_counter(folio));
2219 				set_pte_at(mm, address, pvmw.pte, pteval);
2220 			}
2221 
2222 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2223 			/*
2224 			 * The guest indicated that the page content is of no
2225 			 * interest anymore. Simply discard the pte, vmscan
2226 			 * will take care of the rest.
2227 			 * A future reference will then fault in a new zero
2228 			 * page. When userfaultfd is active, we must not drop
2229 			 * this page though, as its main user (postcopy
2230 			 * migration) will not expect userfaults on already
2231 			 * copied pages.
2232 			 */
2233 			dec_mm_counter(mm, mm_counter(folio));
2234 		} else {
2235 			swp_entry_t entry;
2236 			pte_t swp_pte;
2237 
2238 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2239 				if (folio_test_hugetlb(folio))
2240 					set_huge_pte_at(mm, address, pvmw.pte,
2241 							pteval, hsz);
2242 				else
2243 					set_pte_at(mm, address, pvmw.pte, pteval);
2244 				ret = false;
2245 				page_vma_mapped_walk_done(&pvmw);
2246 				break;
2247 			}
2248 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2249 				       !anon_exclusive, subpage);
2250 
2251 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2252 			if (folio_test_hugetlb(folio)) {
2253 				if (anon_exclusive &&
2254 				    hugetlb_try_share_anon_rmap(folio)) {
2255 					set_huge_pte_at(mm, address, pvmw.pte,
2256 							pteval, hsz);
2257 					ret = false;
2258 					page_vma_mapped_walk_done(&pvmw);
2259 					break;
2260 				}
2261 			} else if (anon_exclusive &&
2262 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2263 				set_pte_at(mm, address, pvmw.pte, pteval);
2264 				ret = false;
2265 				page_vma_mapped_walk_done(&pvmw);
2266 				break;
2267 			}
2268 
2269 			/*
2270 			 * Store the pfn of the page in a special migration
2271 			 * pte. do_swap_page() will wait until the migration
2272 			 * pte is removed and then restart fault handling.
2273 			 */
2274 			if (pte_write(pteval))
2275 				entry = make_writable_migration_entry(
2276 							page_to_pfn(subpage));
2277 			else if (anon_exclusive)
2278 				entry = make_readable_exclusive_migration_entry(
2279 							page_to_pfn(subpage));
2280 			else
2281 				entry = make_readable_migration_entry(
2282 							page_to_pfn(subpage));
2283 			if (pte_young(pteval))
2284 				entry = make_migration_entry_young(entry);
2285 			if (pte_dirty(pteval))
2286 				entry = make_migration_entry_dirty(entry);
2287 			swp_pte = swp_entry_to_pte(entry);
2288 			if (pte_soft_dirty(pteval))
2289 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2290 			if (pte_uffd_wp(pteval))
2291 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2292 			if (folio_test_hugetlb(folio))
2293 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2294 						hsz);
2295 			else
2296 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2297 			trace_set_migration_pte(address, pte_val(swp_pte),
2298 						folio_order(folio));
2299 			/*
2300 			 * No need to invalidate here it will synchronize on
2301 			 * against the special swap migration pte.
2302 			 */
2303 		}
2304 
2305 		if (unlikely(folio_test_hugetlb(folio)))
2306 			hugetlb_remove_rmap(folio);
2307 		else
2308 			folio_remove_rmap_pte(folio, subpage, vma);
2309 		if (vma->vm_flags & VM_LOCKED)
2310 			mlock_drain_local();
2311 		folio_put(folio);
2312 	}
2313 
2314 	mmu_notifier_invalidate_range_end(&range);
2315 
2316 	return ret;
2317 }
2318 
2319 /**
2320  * try_to_migrate - try to replace all page table mappings with swap entries
2321  * @folio: the folio to replace page table entries for
2322  * @flags: action and flags
2323  *
2324  * Tries to remove all the page table entries which are mapping this folio and
2325  * replace them with special swap entries. Caller must hold the folio lock.
2326  */
2327 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2328 {
2329 	struct rmap_walk_control rwc = {
2330 		.rmap_one = try_to_migrate_one,
2331 		.arg = (void *)flags,
2332 		.done = folio_not_mapped,
2333 		.anon_lock = folio_lock_anon_vma_read,
2334 	};
2335 
2336 	/*
2337 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2338 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2339 	 */
2340 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2341 					TTU_SYNC | TTU_BATCH_FLUSH)))
2342 		return;
2343 
2344 	if (folio_is_zone_device(folio) &&
2345 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2346 		return;
2347 
2348 	/*
2349 	 * During exec, a temporary VMA is setup and later moved.
2350 	 * The VMA is moved under the anon_vma lock but not the
2351 	 * page tables leading to a race where migration cannot
2352 	 * find the migration ptes. Rather than increasing the
2353 	 * locking requirements of exec(), migration skips
2354 	 * temporary VMAs until after exec() completes.
2355 	 */
2356 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2357 		rwc.invalid_vma = invalid_migration_vma;
2358 
2359 	if (flags & TTU_RMAP_LOCKED)
2360 		rmap_walk_locked(folio, &rwc);
2361 	else
2362 		rmap_walk(folio, &rwc);
2363 }
2364 
2365 #ifdef CONFIG_DEVICE_PRIVATE
2366 struct make_exclusive_args {
2367 	struct mm_struct *mm;
2368 	unsigned long address;
2369 	void *owner;
2370 	bool valid;
2371 };
2372 
2373 static bool page_make_device_exclusive_one(struct folio *folio,
2374 		struct vm_area_struct *vma, unsigned long address, void *priv)
2375 {
2376 	struct mm_struct *mm = vma->vm_mm;
2377 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2378 	struct make_exclusive_args *args = priv;
2379 	pte_t pteval;
2380 	struct page *subpage;
2381 	bool ret = true;
2382 	struct mmu_notifier_range range;
2383 	swp_entry_t entry;
2384 	pte_t swp_pte;
2385 	pte_t ptent;
2386 
2387 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2388 				      vma->vm_mm, address, min(vma->vm_end,
2389 				      address + folio_size(folio)),
2390 				      args->owner);
2391 	mmu_notifier_invalidate_range_start(&range);
2392 
2393 	while (page_vma_mapped_walk(&pvmw)) {
2394 		/* Unexpected PMD-mapped THP? */
2395 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2396 
2397 		ptent = ptep_get(pvmw.pte);
2398 		if (!pte_present(ptent)) {
2399 			ret = false;
2400 			page_vma_mapped_walk_done(&pvmw);
2401 			break;
2402 		}
2403 
2404 		subpage = folio_page(folio,
2405 				pte_pfn(ptent) - folio_pfn(folio));
2406 		address = pvmw.address;
2407 
2408 		/* Nuke the page table entry. */
2409 		flush_cache_page(vma, address, pte_pfn(ptent));
2410 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2411 
2412 		/* Set the dirty flag on the folio now the pte is gone. */
2413 		if (pte_dirty(pteval))
2414 			folio_mark_dirty(folio);
2415 
2416 		/*
2417 		 * Check that our target page is still mapped at the expected
2418 		 * address.
2419 		 */
2420 		if (args->mm == mm && args->address == address &&
2421 		    pte_write(pteval))
2422 			args->valid = true;
2423 
2424 		/*
2425 		 * Store the pfn of the page in a special migration
2426 		 * pte. do_swap_page() will wait until the migration
2427 		 * pte is removed and then restart fault handling.
2428 		 */
2429 		if (pte_write(pteval))
2430 			entry = make_writable_device_exclusive_entry(
2431 							page_to_pfn(subpage));
2432 		else
2433 			entry = make_readable_device_exclusive_entry(
2434 							page_to_pfn(subpage));
2435 		swp_pte = swp_entry_to_pte(entry);
2436 		if (pte_soft_dirty(pteval))
2437 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2438 		if (pte_uffd_wp(pteval))
2439 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2440 
2441 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2442 
2443 		/*
2444 		 * There is a reference on the page for the swap entry which has
2445 		 * been removed, so shouldn't take another.
2446 		 */
2447 		folio_remove_rmap_pte(folio, subpage, vma);
2448 	}
2449 
2450 	mmu_notifier_invalidate_range_end(&range);
2451 
2452 	return ret;
2453 }
2454 
2455 /**
2456  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2457  * @folio: The folio to replace page table entries for.
2458  * @mm: The mm_struct where the folio is expected to be mapped.
2459  * @address: Address where the folio is expected to be mapped.
2460  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2461  *
2462  * Tries to remove all the page table entries which are mapping this
2463  * folio and replace them with special device exclusive swap entries to
2464  * grant a device exclusive access to the folio.
2465  *
2466  * Context: Caller must hold the folio lock.
2467  * Return: false if the page is still mapped, or if it could not be unmapped
2468  * from the expected address. Otherwise returns true (success).
2469  */
2470 static bool folio_make_device_exclusive(struct folio *folio,
2471 		struct mm_struct *mm, unsigned long address, void *owner)
2472 {
2473 	struct make_exclusive_args args = {
2474 		.mm = mm,
2475 		.address = address,
2476 		.owner = owner,
2477 		.valid = false,
2478 	};
2479 	struct rmap_walk_control rwc = {
2480 		.rmap_one = page_make_device_exclusive_one,
2481 		.done = folio_not_mapped,
2482 		.anon_lock = folio_lock_anon_vma_read,
2483 		.arg = &args,
2484 	};
2485 
2486 	/*
2487 	 * Restrict to anonymous folios for now to avoid potential writeback
2488 	 * issues.
2489 	 */
2490 	if (!folio_test_anon(folio))
2491 		return false;
2492 
2493 	rmap_walk(folio, &rwc);
2494 
2495 	return args.valid && !folio_mapcount(folio);
2496 }
2497 
2498 /**
2499  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2500  * @mm: mm_struct of associated target process
2501  * @start: start of the region to mark for exclusive device access
2502  * @end: end address of region
2503  * @pages: returns the pages which were successfully marked for exclusive access
2504  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2505  *
2506  * Returns: number of pages found in the range by GUP. A page is marked for
2507  * exclusive access only if the page pointer is non-NULL.
2508  *
2509  * This function finds ptes mapping page(s) to the given address range, locks
2510  * them and replaces mappings with special swap entries preventing userspace CPU
2511  * access. On fault these entries are replaced with the original mapping after
2512  * calling MMU notifiers.
2513  *
2514  * A driver using this to program access from a device must use a mmu notifier
2515  * critical section to hold a device specific lock during programming. Once
2516  * programming is complete it should drop the page lock and reference after
2517  * which point CPU access to the page will revoke the exclusive access.
2518  */
2519 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2520 				unsigned long end, struct page **pages,
2521 				void *owner)
2522 {
2523 	long npages = (end - start) >> PAGE_SHIFT;
2524 	long i;
2525 
2526 	npages = get_user_pages_remote(mm, start, npages,
2527 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2528 				       pages, NULL);
2529 	if (npages < 0)
2530 		return npages;
2531 
2532 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2533 		struct folio *folio = page_folio(pages[i]);
2534 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2535 			folio_put(folio);
2536 			pages[i] = NULL;
2537 			continue;
2538 		}
2539 
2540 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2541 			folio_unlock(folio);
2542 			folio_put(folio);
2543 			pages[i] = NULL;
2544 		}
2545 	}
2546 
2547 	return npages;
2548 }
2549 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2550 #endif
2551 
2552 void __put_anon_vma(struct anon_vma *anon_vma)
2553 {
2554 	struct anon_vma *root = anon_vma->root;
2555 
2556 	anon_vma_free(anon_vma);
2557 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2558 		anon_vma_free(root);
2559 }
2560 
2561 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2562 					    struct rmap_walk_control *rwc)
2563 {
2564 	struct anon_vma *anon_vma;
2565 
2566 	if (rwc->anon_lock)
2567 		return rwc->anon_lock(folio, rwc);
2568 
2569 	/*
2570 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2571 	 * because that depends on page_mapped(); but not all its usages
2572 	 * are holding mmap_lock. Users without mmap_lock are required to
2573 	 * take a reference count to prevent the anon_vma disappearing
2574 	 */
2575 	anon_vma = folio_anon_vma(folio);
2576 	if (!anon_vma)
2577 		return NULL;
2578 
2579 	if (anon_vma_trylock_read(anon_vma))
2580 		goto out;
2581 
2582 	if (rwc->try_lock) {
2583 		anon_vma = NULL;
2584 		rwc->contended = true;
2585 		goto out;
2586 	}
2587 
2588 	anon_vma_lock_read(anon_vma);
2589 out:
2590 	return anon_vma;
2591 }
2592 
2593 /*
2594  * rmap_walk_anon - do something to anonymous page using the object-based
2595  * rmap method
2596  * @folio: the folio to be handled
2597  * @rwc: control variable according to each walk type
2598  * @locked: caller holds relevant rmap lock
2599  *
2600  * Find all the mappings of a folio using the mapping pointer and the vma
2601  * chains contained in the anon_vma struct it points to.
2602  */
2603 static void rmap_walk_anon(struct folio *folio,
2604 		struct rmap_walk_control *rwc, bool locked)
2605 {
2606 	struct anon_vma *anon_vma;
2607 	pgoff_t pgoff_start, pgoff_end;
2608 	struct anon_vma_chain *avc;
2609 
2610 	if (locked) {
2611 		anon_vma = folio_anon_vma(folio);
2612 		/* anon_vma disappear under us? */
2613 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2614 	} else {
2615 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2616 	}
2617 	if (!anon_vma)
2618 		return;
2619 
2620 	pgoff_start = folio_pgoff(folio);
2621 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2622 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2623 			pgoff_start, pgoff_end) {
2624 		struct vm_area_struct *vma = avc->vma;
2625 		unsigned long address = vma_address(vma, pgoff_start,
2626 				folio_nr_pages(folio));
2627 
2628 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2629 		cond_resched();
2630 
2631 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2632 			continue;
2633 
2634 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2635 			break;
2636 		if (rwc->done && rwc->done(folio))
2637 			break;
2638 	}
2639 
2640 	if (!locked)
2641 		anon_vma_unlock_read(anon_vma);
2642 }
2643 
2644 /*
2645  * rmap_walk_file - do something to file page using the object-based rmap method
2646  * @folio: the folio to be handled
2647  * @rwc: control variable according to each walk type
2648  * @locked: caller holds relevant rmap lock
2649  *
2650  * Find all the mappings of a folio using the mapping pointer and the vma chains
2651  * contained in the address_space struct it points to.
2652  */
2653 static void rmap_walk_file(struct folio *folio,
2654 		struct rmap_walk_control *rwc, bool locked)
2655 {
2656 	struct address_space *mapping = folio_mapping(folio);
2657 	pgoff_t pgoff_start, pgoff_end;
2658 	struct vm_area_struct *vma;
2659 
2660 	/*
2661 	 * The page lock not only makes sure that page->mapping cannot
2662 	 * suddenly be NULLified by truncation, it makes sure that the
2663 	 * structure at mapping cannot be freed and reused yet,
2664 	 * so we can safely take mapping->i_mmap_rwsem.
2665 	 */
2666 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2667 
2668 	if (!mapping)
2669 		return;
2670 
2671 	pgoff_start = folio_pgoff(folio);
2672 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2673 	if (!locked) {
2674 		if (i_mmap_trylock_read(mapping))
2675 			goto lookup;
2676 
2677 		if (rwc->try_lock) {
2678 			rwc->contended = true;
2679 			return;
2680 		}
2681 
2682 		i_mmap_lock_read(mapping);
2683 	}
2684 lookup:
2685 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2686 			pgoff_start, pgoff_end) {
2687 		unsigned long address = vma_address(vma, pgoff_start,
2688 			       folio_nr_pages(folio));
2689 
2690 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2691 		cond_resched();
2692 
2693 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2694 			continue;
2695 
2696 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2697 			goto done;
2698 		if (rwc->done && rwc->done(folio))
2699 			goto done;
2700 	}
2701 
2702 done:
2703 	if (!locked)
2704 		i_mmap_unlock_read(mapping);
2705 }
2706 
2707 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2708 {
2709 	if (unlikely(folio_test_ksm(folio)))
2710 		rmap_walk_ksm(folio, rwc);
2711 	else if (folio_test_anon(folio))
2712 		rmap_walk_anon(folio, rwc, false);
2713 	else
2714 		rmap_walk_file(folio, rwc, false);
2715 }
2716 
2717 /* Like rmap_walk, but caller holds relevant rmap lock */
2718 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2719 {
2720 	/* no ksm support for now */
2721 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2722 	if (folio_test_anon(folio))
2723 		rmap_walk_anon(folio, rwc, true);
2724 	else
2725 		rmap_walk_file(folio, rwc, true);
2726 }
2727 
2728 #ifdef CONFIG_HUGETLB_PAGE
2729 /*
2730  * The following two functions are for anonymous (private mapped) hugepages.
2731  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2732  * and no lru code, because we handle hugepages differently from common pages.
2733  */
2734 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2735 		unsigned long address, rmap_t flags)
2736 {
2737 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2738 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2739 
2740 	atomic_inc(&folio->_entire_mapcount);
2741 	atomic_inc(&folio->_large_mapcount);
2742 	if (flags & RMAP_EXCLUSIVE)
2743 		SetPageAnonExclusive(&folio->page);
2744 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2745 			 PageAnonExclusive(&folio->page), folio);
2746 }
2747 
2748 void hugetlb_add_new_anon_rmap(struct folio *folio,
2749 		struct vm_area_struct *vma, unsigned long address)
2750 {
2751 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2752 
2753 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2754 	/* increment count (starts at -1) */
2755 	atomic_set(&folio->_entire_mapcount, 0);
2756 	atomic_set(&folio->_large_mapcount, 0);
2757 	folio_clear_hugetlb_restore_reserve(folio);
2758 	__folio_set_anon(folio, vma, address, true);
2759 	SetPageAnonExclusive(&folio->page);
2760 }
2761 #endif /* CONFIG_HUGETLB_PAGE */
2762