xref: /linux/mm/rmap.c (revision 033b5650010652c069494df58424c4b98412fe3b)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_mutex
28  *         anon_vma->mutex
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35  *               inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
37  *                 mapping->tree_lock (widely used, in set_page_dirty,
38  *                           in arch-dependent flush_dcache_mmap_lock,
39  *                           within inode_wb_list_lock in __sync_single_inode)
40  *
41  * (code doesn't rely on that order so it could be switched around)
42  * ->tasklist_lock
43  *   anon_vma->mutex      (memory_failure, collect_procs_anon)
44  *     pte map lock
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 
62 #include <asm/tlbflush.h>
63 
64 #include "internal.h"
65 
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68 
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 	struct anon_vma *anon_vma;
72 
73 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 	if (anon_vma) {
75 		atomic_set(&anon_vma->refcount, 1);
76 		/*
77 		 * Initialise the anon_vma root to point to itself. If called
78 		 * from fork, the root will be reset to the parents anon_vma.
79 		 */
80 		anon_vma->root = anon_vma;
81 	}
82 
83 	return anon_vma;
84 }
85 
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 
90 	/*
91 	 * Synchronize against page_lock_anon_vma() such that
92 	 * we can safely hold the lock without the anon_vma getting
93 	 * freed.
94 	 *
95 	 * Relies on the full mb implied by the atomic_dec_and_test() from
96 	 * put_anon_vma() against the acquire barrier implied by
97 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 	 *
99 	 * page_lock_anon_vma()		VS	put_anon_vma()
100 	 *   mutex_trylock()			  atomic_dec_and_test()
101 	 *   LOCK				  MB
102 	 *   atomic_read()			  mutex_is_locked()
103 	 *
104 	 * LOCK should suffice since the actual taking of the lock must
105 	 * happen _before_ what follows.
106 	 */
107 	if (mutex_is_locked(&anon_vma->root->mutex)) {
108 		anon_vma_lock(anon_vma);
109 		anon_vma_unlock(anon_vma);
110 	}
111 
112 	kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114 
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119 
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124 
125 /**
126  * anon_vma_prepare - attach an anon_vma to a memory region
127  * @vma: the memory region in question
128  *
129  * This makes sure the memory mapping described by 'vma' has
130  * an 'anon_vma' attached to it, so that we can associate the
131  * anonymous pages mapped into it with that anon_vma.
132  *
133  * The common case will be that we already have one, but if
134  * not we either need to find an adjacent mapping that we
135  * can re-use the anon_vma from (very common when the only
136  * reason for splitting a vma has been mprotect()), or we
137  * allocate a new one.
138  *
139  * Anon-vma allocations are very subtle, because we may have
140  * optimistically looked up an anon_vma in page_lock_anon_vma()
141  * and that may actually touch the spinlock even in the newly
142  * allocated vma (it depends on RCU to make sure that the
143  * anon_vma isn't actually destroyed).
144  *
145  * As a result, we need to do proper anon_vma locking even
146  * for the new allocation. At the same time, we do not want
147  * to do any locking for the common case of already having
148  * an anon_vma.
149  *
150  * This must be called with the mmap_sem held for reading.
151  */
152 int anon_vma_prepare(struct vm_area_struct *vma)
153 {
154 	struct anon_vma *anon_vma = vma->anon_vma;
155 	struct anon_vma_chain *avc;
156 
157 	might_sleep();
158 	if (unlikely(!anon_vma)) {
159 		struct mm_struct *mm = vma->vm_mm;
160 		struct anon_vma *allocated;
161 
162 		avc = anon_vma_chain_alloc(GFP_KERNEL);
163 		if (!avc)
164 			goto out_enomem;
165 
166 		anon_vma = find_mergeable_anon_vma(vma);
167 		allocated = NULL;
168 		if (!anon_vma) {
169 			anon_vma = anon_vma_alloc();
170 			if (unlikely(!anon_vma))
171 				goto out_enomem_free_avc;
172 			allocated = anon_vma;
173 		}
174 
175 		anon_vma_lock(anon_vma);
176 		/* page_table_lock to protect against threads */
177 		spin_lock(&mm->page_table_lock);
178 		if (likely(!vma->anon_vma)) {
179 			vma->anon_vma = anon_vma;
180 			avc->anon_vma = anon_vma;
181 			avc->vma = vma;
182 			list_add(&avc->same_vma, &vma->anon_vma_chain);
183 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 			allocated = NULL;
185 			avc = NULL;
186 		}
187 		spin_unlock(&mm->page_table_lock);
188 		anon_vma_unlock(anon_vma);
189 
190 		if (unlikely(allocated))
191 			put_anon_vma(allocated);
192 		if (unlikely(avc))
193 			anon_vma_chain_free(avc);
194 	}
195 	return 0;
196 
197  out_enomem_free_avc:
198 	anon_vma_chain_free(avc);
199  out_enomem:
200 	return -ENOMEM;
201 }
202 
203 /*
204  * This is a useful helper function for locking the anon_vma root as
205  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
206  * have the same vma.
207  *
208  * Such anon_vma's should have the same root, so you'd expect to see
209  * just a single mutex_lock for the whole traversal.
210  */
211 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
212 {
213 	struct anon_vma *new_root = anon_vma->root;
214 	if (new_root != root) {
215 		if (WARN_ON_ONCE(root))
216 			mutex_unlock(&root->mutex);
217 		root = new_root;
218 		mutex_lock(&root->mutex);
219 	}
220 	return root;
221 }
222 
223 static inline void unlock_anon_vma_root(struct anon_vma *root)
224 {
225 	if (root)
226 		mutex_unlock(&root->mutex);
227 }
228 
229 static void anon_vma_chain_link(struct vm_area_struct *vma,
230 				struct anon_vma_chain *avc,
231 				struct anon_vma *anon_vma)
232 {
233 	avc->vma = vma;
234 	avc->anon_vma = anon_vma;
235 	list_add(&avc->same_vma, &vma->anon_vma_chain);
236 
237 	/*
238 	 * It's critical to add new vmas to the tail of the anon_vma,
239 	 * see comment in huge_memory.c:__split_huge_page().
240 	 */
241 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
242 }
243 
244 /*
245  * Attach the anon_vmas from src to dst.
246  * Returns 0 on success, -ENOMEM on failure.
247  */
248 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
249 {
250 	struct anon_vma_chain *avc, *pavc;
251 	struct anon_vma *root = NULL;
252 
253 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
254 		struct anon_vma *anon_vma;
255 
256 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
257 		if (unlikely(!avc)) {
258 			unlock_anon_vma_root(root);
259 			root = NULL;
260 			avc = anon_vma_chain_alloc(GFP_KERNEL);
261 			if (!avc)
262 				goto enomem_failure;
263 		}
264 		anon_vma = pavc->anon_vma;
265 		root = lock_anon_vma_root(root, anon_vma);
266 		anon_vma_chain_link(dst, avc, anon_vma);
267 	}
268 	unlock_anon_vma_root(root);
269 	return 0;
270 
271  enomem_failure:
272 	unlink_anon_vmas(dst);
273 	return -ENOMEM;
274 }
275 
276 /*
277  * Attach vma to its own anon_vma, as well as to the anon_vmas that
278  * the corresponding VMA in the parent process is attached to.
279  * Returns 0 on success, non-zero on failure.
280  */
281 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
282 {
283 	struct anon_vma_chain *avc;
284 	struct anon_vma *anon_vma;
285 
286 	/* Don't bother if the parent process has no anon_vma here. */
287 	if (!pvma->anon_vma)
288 		return 0;
289 
290 	/*
291 	 * First, attach the new VMA to the parent VMA's anon_vmas,
292 	 * so rmap can find non-COWed pages in child processes.
293 	 */
294 	if (anon_vma_clone(vma, pvma))
295 		return -ENOMEM;
296 
297 	/* Then add our own anon_vma. */
298 	anon_vma = anon_vma_alloc();
299 	if (!anon_vma)
300 		goto out_error;
301 	avc = anon_vma_chain_alloc(GFP_KERNEL);
302 	if (!avc)
303 		goto out_error_free_anon_vma;
304 
305 	/*
306 	 * The root anon_vma's spinlock is the lock actually used when we
307 	 * lock any of the anon_vmas in this anon_vma tree.
308 	 */
309 	anon_vma->root = pvma->anon_vma->root;
310 	/*
311 	 * With refcounts, an anon_vma can stay around longer than the
312 	 * process it belongs to. The root anon_vma needs to be pinned until
313 	 * this anon_vma is freed, because the lock lives in the root.
314 	 */
315 	get_anon_vma(anon_vma->root);
316 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
317 	vma->anon_vma = anon_vma;
318 	anon_vma_lock(anon_vma);
319 	anon_vma_chain_link(vma, avc, anon_vma);
320 	anon_vma_unlock(anon_vma);
321 
322 	return 0;
323 
324  out_error_free_anon_vma:
325 	put_anon_vma(anon_vma);
326  out_error:
327 	unlink_anon_vmas(vma);
328 	return -ENOMEM;
329 }
330 
331 void unlink_anon_vmas(struct vm_area_struct *vma)
332 {
333 	struct anon_vma_chain *avc, *next;
334 	struct anon_vma *root = NULL;
335 
336 	/*
337 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
338 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
339 	 */
340 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
341 		struct anon_vma *anon_vma = avc->anon_vma;
342 
343 		root = lock_anon_vma_root(root, anon_vma);
344 		list_del(&avc->same_anon_vma);
345 
346 		/*
347 		 * Leave empty anon_vmas on the list - we'll need
348 		 * to free them outside the lock.
349 		 */
350 		if (list_empty(&anon_vma->head))
351 			continue;
352 
353 		list_del(&avc->same_vma);
354 		anon_vma_chain_free(avc);
355 	}
356 	unlock_anon_vma_root(root);
357 
358 	/*
359 	 * Iterate the list once more, it now only contains empty and unlinked
360 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
361 	 * needing to acquire the anon_vma->root->mutex.
362 	 */
363 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
364 		struct anon_vma *anon_vma = avc->anon_vma;
365 
366 		put_anon_vma(anon_vma);
367 
368 		list_del(&avc->same_vma);
369 		anon_vma_chain_free(avc);
370 	}
371 }
372 
373 static void anon_vma_ctor(void *data)
374 {
375 	struct anon_vma *anon_vma = data;
376 
377 	mutex_init(&anon_vma->mutex);
378 	atomic_set(&anon_vma->refcount, 0);
379 	INIT_LIST_HEAD(&anon_vma->head);
380 }
381 
382 void __init anon_vma_init(void)
383 {
384 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
385 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
386 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
387 }
388 
389 /*
390  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
391  *
392  * Since there is no serialization what so ever against page_remove_rmap()
393  * the best this function can do is return a locked anon_vma that might
394  * have been relevant to this page.
395  *
396  * The page might have been remapped to a different anon_vma or the anon_vma
397  * returned may already be freed (and even reused).
398  *
399  * In case it was remapped to a different anon_vma, the new anon_vma will be a
400  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
401  * ensure that any anon_vma obtained from the page will still be valid for as
402  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
403  *
404  * All users of this function must be very careful when walking the anon_vma
405  * chain and verify that the page in question is indeed mapped in it
406  * [ something equivalent to page_mapped_in_vma() ].
407  *
408  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
409  * that the anon_vma pointer from page->mapping is valid if there is a
410  * mapcount, we can dereference the anon_vma after observing those.
411  */
412 struct anon_vma *page_get_anon_vma(struct page *page)
413 {
414 	struct anon_vma *anon_vma = NULL;
415 	unsigned long anon_mapping;
416 
417 	rcu_read_lock();
418 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
419 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
420 		goto out;
421 	if (!page_mapped(page))
422 		goto out;
423 
424 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
425 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
426 		anon_vma = NULL;
427 		goto out;
428 	}
429 
430 	/*
431 	 * If this page is still mapped, then its anon_vma cannot have been
432 	 * freed.  But if it has been unmapped, we have no security against the
433 	 * anon_vma structure being freed and reused (for another anon_vma:
434 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
435 	 * above cannot corrupt).
436 	 */
437 	if (!page_mapped(page)) {
438 		put_anon_vma(anon_vma);
439 		anon_vma = NULL;
440 	}
441 out:
442 	rcu_read_unlock();
443 
444 	return anon_vma;
445 }
446 
447 /*
448  * Similar to page_get_anon_vma() except it locks the anon_vma.
449  *
450  * Its a little more complex as it tries to keep the fast path to a single
451  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
452  * reference like with page_get_anon_vma() and then block on the mutex.
453  */
454 struct anon_vma *page_lock_anon_vma(struct page *page)
455 {
456 	struct anon_vma *anon_vma = NULL;
457 	struct anon_vma *root_anon_vma;
458 	unsigned long anon_mapping;
459 
460 	rcu_read_lock();
461 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
462 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
463 		goto out;
464 	if (!page_mapped(page))
465 		goto out;
466 
467 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
468 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
469 	if (mutex_trylock(&root_anon_vma->mutex)) {
470 		/*
471 		 * If the page is still mapped, then this anon_vma is still
472 		 * its anon_vma, and holding the mutex ensures that it will
473 		 * not go away, see anon_vma_free().
474 		 */
475 		if (!page_mapped(page)) {
476 			mutex_unlock(&root_anon_vma->mutex);
477 			anon_vma = NULL;
478 		}
479 		goto out;
480 	}
481 
482 	/* trylock failed, we got to sleep */
483 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
484 		anon_vma = NULL;
485 		goto out;
486 	}
487 
488 	if (!page_mapped(page)) {
489 		put_anon_vma(anon_vma);
490 		anon_vma = NULL;
491 		goto out;
492 	}
493 
494 	/* we pinned the anon_vma, its safe to sleep */
495 	rcu_read_unlock();
496 	anon_vma_lock(anon_vma);
497 
498 	if (atomic_dec_and_test(&anon_vma->refcount)) {
499 		/*
500 		 * Oops, we held the last refcount, release the lock
501 		 * and bail -- can't simply use put_anon_vma() because
502 		 * we'll deadlock on the anon_vma_lock() recursion.
503 		 */
504 		anon_vma_unlock(anon_vma);
505 		__put_anon_vma(anon_vma);
506 		anon_vma = NULL;
507 	}
508 
509 	return anon_vma;
510 
511 out:
512 	rcu_read_unlock();
513 	return anon_vma;
514 }
515 
516 void page_unlock_anon_vma(struct anon_vma *anon_vma)
517 {
518 	anon_vma_unlock(anon_vma);
519 }
520 
521 /*
522  * At what user virtual address is page expected in @vma?
523  * Returns virtual address or -EFAULT if page's index/offset is not
524  * within the range mapped the @vma.
525  */
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
530 	unsigned long address;
531 
532 	if (unlikely(is_vm_hugetlb_page(vma)))
533 		pgoff = page->index << huge_page_order(page_hstate(page));
534 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
535 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
536 		/* page should be within @vma mapping range */
537 		return -EFAULT;
538 	}
539 	return address;
540 }
541 
542 /*
543  * At what user virtual address is page expected in vma?
544  * Caller should check the page is actually part of the vma.
545  */
546 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
547 {
548 	if (PageAnon(page)) {
549 		struct anon_vma *page__anon_vma = page_anon_vma(page);
550 		/*
551 		 * Note: swapoff's unuse_vma() is more efficient with this
552 		 * check, and needs it to match anon_vma when KSM is active.
553 		 */
554 		if (!vma->anon_vma || !page__anon_vma ||
555 		    vma->anon_vma->root != page__anon_vma->root)
556 			return -EFAULT;
557 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
558 		if (!vma->vm_file ||
559 		    vma->vm_file->f_mapping != page->mapping)
560 			return -EFAULT;
561 	} else
562 		return -EFAULT;
563 	return vma_address(page, vma);
564 }
565 
566 /*
567  * Check that @page is mapped at @address into @mm.
568  *
569  * If @sync is false, page_check_address may perform a racy check to avoid
570  * the page table lock when the pte is not present (helpful when reclaiming
571  * highly shared pages).
572  *
573  * On success returns with pte mapped and locked.
574  */
575 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
576 			  unsigned long address, spinlock_t **ptlp, int sync)
577 {
578 	pgd_t *pgd;
579 	pud_t *pud;
580 	pmd_t *pmd;
581 	pte_t *pte;
582 	spinlock_t *ptl;
583 
584 	if (unlikely(PageHuge(page))) {
585 		pte = huge_pte_offset(mm, address);
586 		ptl = &mm->page_table_lock;
587 		goto check;
588 	}
589 
590 	pgd = pgd_offset(mm, address);
591 	if (!pgd_present(*pgd))
592 		return NULL;
593 
594 	pud = pud_offset(pgd, address);
595 	if (!pud_present(*pud))
596 		return NULL;
597 
598 	pmd = pmd_offset(pud, address);
599 	if (!pmd_present(*pmd))
600 		return NULL;
601 	if (pmd_trans_huge(*pmd))
602 		return NULL;
603 
604 	pte = pte_offset_map(pmd, address);
605 	/* Make a quick check before getting the lock */
606 	if (!sync && !pte_present(*pte)) {
607 		pte_unmap(pte);
608 		return NULL;
609 	}
610 
611 	ptl = pte_lockptr(mm, pmd);
612 check:
613 	spin_lock(ptl);
614 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
615 		*ptlp = ptl;
616 		return pte;
617 	}
618 	pte_unmap_unlock(pte, ptl);
619 	return NULL;
620 }
621 
622 /**
623  * page_mapped_in_vma - check whether a page is really mapped in a VMA
624  * @page: the page to test
625  * @vma: the VMA to test
626  *
627  * Returns 1 if the page is mapped into the page tables of the VMA, 0
628  * if the page is not mapped into the page tables of this VMA.  Only
629  * valid for normal file or anonymous VMAs.
630  */
631 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
632 {
633 	unsigned long address;
634 	pte_t *pte;
635 	spinlock_t *ptl;
636 
637 	address = vma_address(page, vma);
638 	if (address == -EFAULT)		/* out of vma range */
639 		return 0;
640 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
641 	if (!pte)			/* the page is not in this mm */
642 		return 0;
643 	pte_unmap_unlock(pte, ptl);
644 
645 	return 1;
646 }
647 
648 /*
649  * Subfunctions of page_referenced: page_referenced_one called
650  * repeatedly from either page_referenced_anon or page_referenced_file.
651  */
652 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
653 			unsigned long address, unsigned int *mapcount,
654 			unsigned long *vm_flags)
655 {
656 	struct mm_struct *mm = vma->vm_mm;
657 	int referenced = 0;
658 
659 	if (unlikely(PageTransHuge(page))) {
660 		pmd_t *pmd;
661 
662 		spin_lock(&mm->page_table_lock);
663 		/*
664 		 * rmap might return false positives; we must filter
665 		 * these out using page_check_address_pmd().
666 		 */
667 		pmd = page_check_address_pmd(page, mm, address,
668 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
669 		if (!pmd) {
670 			spin_unlock(&mm->page_table_lock);
671 			goto out;
672 		}
673 
674 		if (vma->vm_flags & VM_LOCKED) {
675 			spin_unlock(&mm->page_table_lock);
676 			*mapcount = 0;	/* break early from loop */
677 			*vm_flags |= VM_LOCKED;
678 			goto out;
679 		}
680 
681 		/* go ahead even if the pmd is pmd_trans_splitting() */
682 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
683 			referenced++;
684 		spin_unlock(&mm->page_table_lock);
685 	} else {
686 		pte_t *pte;
687 		spinlock_t *ptl;
688 
689 		/*
690 		 * rmap might return false positives; we must filter
691 		 * these out using page_check_address().
692 		 */
693 		pte = page_check_address(page, mm, address, &ptl, 0);
694 		if (!pte)
695 			goto out;
696 
697 		if (vma->vm_flags & VM_LOCKED) {
698 			pte_unmap_unlock(pte, ptl);
699 			*mapcount = 0;	/* break early from loop */
700 			*vm_flags |= VM_LOCKED;
701 			goto out;
702 		}
703 
704 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
705 			/*
706 			 * Don't treat a reference through a sequentially read
707 			 * mapping as such.  If the page has been used in
708 			 * another mapping, we will catch it; if this other
709 			 * mapping is already gone, the unmap path will have
710 			 * set PG_referenced or activated the page.
711 			 */
712 			if (likely(!VM_SequentialReadHint(vma)))
713 				referenced++;
714 		}
715 		pte_unmap_unlock(pte, ptl);
716 	}
717 
718 	/* Pretend the page is referenced if the task has the
719 	   swap token and is in the middle of a page fault. */
720 	if (mm != current->mm && has_swap_token(mm) &&
721 			rwsem_is_locked(&mm->mmap_sem))
722 		referenced++;
723 
724 	(*mapcount)--;
725 
726 	if (referenced)
727 		*vm_flags |= vma->vm_flags;
728 out:
729 	return referenced;
730 }
731 
732 static int page_referenced_anon(struct page *page,
733 				struct mem_cgroup *mem_cont,
734 				unsigned long *vm_flags)
735 {
736 	unsigned int mapcount;
737 	struct anon_vma *anon_vma;
738 	struct anon_vma_chain *avc;
739 	int referenced = 0;
740 
741 	anon_vma = page_lock_anon_vma(page);
742 	if (!anon_vma)
743 		return referenced;
744 
745 	mapcount = page_mapcount(page);
746 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
747 		struct vm_area_struct *vma = avc->vma;
748 		unsigned long address = vma_address(page, vma);
749 		if (address == -EFAULT)
750 			continue;
751 		/*
752 		 * If we are reclaiming on behalf of a cgroup, skip
753 		 * counting on behalf of references from different
754 		 * cgroups
755 		 */
756 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
757 			continue;
758 		referenced += page_referenced_one(page, vma, address,
759 						  &mapcount, vm_flags);
760 		if (!mapcount)
761 			break;
762 	}
763 
764 	page_unlock_anon_vma(anon_vma);
765 	return referenced;
766 }
767 
768 /**
769  * page_referenced_file - referenced check for object-based rmap
770  * @page: the page we're checking references on.
771  * @mem_cont: target memory controller
772  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
773  *
774  * For an object-based mapped page, find all the places it is mapped and
775  * check/clear the referenced flag.  This is done by following the page->mapping
776  * pointer, then walking the chain of vmas it holds.  It returns the number
777  * of references it found.
778  *
779  * This function is only called from page_referenced for object-based pages.
780  */
781 static int page_referenced_file(struct page *page,
782 				struct mem_cgroup *mem_cont,
783 				unsigned long *vm_flags)
784 {
785 	unsigned int mapcount;
786 	struct address_space *mapping = page->mapping;
787 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
788 	struct vm_area_struct *vma;
789 	struct prio_tree_iter iter;
790 	int referenced = 0;
791 
792 	/*
793 	 * The caller's checks on page->mapping and !PageAnon have made
794 	 * sure that this is a file page: the check for page->mapping
795 	 * excludes the case just before it gets set on an anon page.
796 	 */
797 	BUG_ON(PageAnon(page));
798 
799 	/*
800 	 * The page lock not only makes sure that page->mapping cannot
801 	 * suddenly be NULLified by truncation, it makes sure that the
802 	 * structure at mapping cannot be freed and reused yet,
803 	 * so we can safely take mapping->i_mmap_mutex.
804 	 */
805 	BUG_ON(!PageLocked(page));
806 
807 	mutex_lock(&mapping->i_mmap_mutex);
808 
809 	/*
810 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
811 	 * is more likely to be accurate if we note it after spinning.
812 	 */
813 	mapcount = page_mapcount(page);
814 
815 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
816 		unsigned long address = vma_address(page, vma);
817 		if (address == -EFAULT)
818 			continue;
819 		/*
820 		 * If we are reclaiming on behalf of a cgroup, skip
821 		 * counting on behalf of references from different
822 		 * cgroups
823 		 */
824 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
825 			continue;
826 		referenced += page_referenced_one(page, vma, address,
827 						  &mapcount, vm_flags);
828 		if (!mapcount)
829 			break;
830 	}
831 
832 	mutex_unlock(&mapping->i_mmap_mutex);
833 	return referenced;
834 }
835 
836 /**
837  * page_referenced - test if the page was referenced
838  * @page: the page to test
839  * @is_locked: caller holds lock on the page
840  * @mem_cont: target memory controller
841  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
842  *
843  * Quick test_and_clear_referenced for all mappings to a page,
844  * returns the number of ptes which referenced the page.
845  */
846 int page_referenced(struct page *page,
847 		    int is_locked,
848 		    struct mem_cgroup *mem_cont,
849 		    unsigned long *vm_flags)
850 {
851 	int referenced = 0;
852 	int we_locked = 0;
853 
854 	*vm_flags = 0;
855 	if (page_mapped(page) && page_rmapping(page)) {
856 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
857 			we_locked = trylock_page(page);
858 			if (!we_locked) {
859 				referenced++;
860 				goto out;
861 			}
862 		}
863 		if (unlikely(PageKsm(page)))
864 			referenced += page_referenced_ksm(page, mem_cont,
865 								vm_flags);
866 		else if (PageAnon(page))
867 			referenced += page_referenced_anon(page, mem_cont,
868 								vm_flags);
869 		else if (page->mapping)
870 			referenced += page_referenced_file(page, mem_cont,
871 								vm_flags);
872 		if (we_locked)
873 			unlock_page(page);
874 	}
875 out:
876 	if (page_test_and_clear_young(page_to_pfn(page)))
877 		referenced++;
878 
879 	return referenced;
880 }
881 
882 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
883 			    unsigned long address)
884 {
885 	struct mm_struct *mm = vma->vm_mm;
886 	pte_t *pte;
887 	spinlock_t *ptl;
888 	int ret = 0;
889 
890 	pte = page_check_address(page, mm, address, &ptl, 1);
891 	if (!pte)
892 		goto out;
893 
894 	if (pte_dirty(*pte) || pte_write(*pte)) {
895 		pte_t entry;
896 
897 		flush_cache_page(vma, address, pte_pfn(*pte));
898 		entry = ptep_clear_flush_notify(vma, address, pte);
899 		entry = pte_wrprotect(entry);
900 		entry = pte_mkclean(entry);
901 		set_pte_at(mm, address, pte, entry);
902 		ret = 1;
903 	}
904 
905 	pte_unmap_unlock(pte, ptl);
906 out:
907 	return ret;
908 }
909 
910 static int page_mkclean_file(struct address_space *mapping, struct page *page)
911 {
912 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
913 	struct vm_area_struct *vma;
914 	struct prio_tree_iter iter;
915 	int ret = 0;
916 
917 	BUG_ON(PageAnon(page));
918 
919 	mutex_lock(&mapping->i_mmap_mutex);
920 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
921 		if (vma->vm_flags & VM_SHARED) {
922 			unsigned long address = vma_address(page, vma);
923 			if (address == -EFAULT)
924 				continue;
925 			ret += page_mkclean_one(page, vma, address);
926 		}
927 	}
928 	mutex_unlock(&mapping->i_mmap_mutex);
929 	return ret;
930 }
931 
932 int page_mkclean(struct page *page)
933 {
934 	int ret = 0;
935 
936 	BUG_ON(!PageLocked(page));
937 
938 	if (page_mapped(page)) {
939 		struct address_space *mapping = page_mapping(page);
940 		if (mapping) {
941 			ret = page_mkclean_file(mapping, page);
942 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
943 				ret = 1;
944 		}
945 	}
946 
947 	return ret;
948 }
949 EXPORT_SYMBOL_GPL(page_mkclean);
950 
951 /**
952  * page_move_anon_rmap - move a page to our anon_vma
953  * @page:	the page to move to our anon_vma
954  * @vma:	the vma the page belongs to
955  * @address:	the user virtual address mapped
956  *
957  * When a page belongs exclusively to one process after a COW event,
958  * that page can be moved into the anon_vma that belongs to just that
959  * process, so the rmap code will not search the parent or sibling
960  * processes.
961  */
962 void page_move_anon_rmap(struct page *page,
963 	struct vm_area_struct *vma, unsigned long address)
964 {
965 	struct anon_vma *anon_vma = vma->anon_vma;
966 
967 	VM_BUG_ON(!PageLocked(page));
968 	VM_BUG_ON(!anon_vma);
969 	VM_BUG_ON(page->index != linear_page_index(vma, address));
970 
971 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
972 	page->mapping = (struct address_space *) anon_vma;
973 }
974 
975 /**
976  * __page_set_anon_rmap - set up new anonymous rmap
977  * @page:	Page to add to rmap
978  * @vma:	VM area to add page to.
979  * @address:	User virtual address of the mapping
980  * @exclusive:	the page is exclusively owned by the current process
981  */
982 static void __page_set_anon_rmap(struct page *page,
983 	struct vm_area_struct *vma, unsigned long address, int exclusive)
984 {
985 	struct anon_vma *anon_vma = vma->anon_vma;
986 
987 	BUG_ON(!anon_vma);
988 
989 	if (PageAnon(page))
990 		return;
991 
992 	/*
993 	 * If the page isn't exclusively mapped into this vma,
994 	 * we must use the _oldest_ possible anon_vma for the
995 	 * page mapping!
996 	 */
997 	if (!exclusive)
998 		anon_vma = anon_vma->root;
999 
1000 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1001 	page->mapping = (struct address_space *) anon_vma;
1002 	page->index = linear_page_index(vma, address);
1003 }
1004 
1005 /**
1006  * __page_check_anon_rmap - sanity check anonymous rmap addition
1007  * @page:	the page to add the mapping to
1008  * @vma:	the vm area in which the mapping is added
1009  * @address:	the user virtual address mapped
1010  */
1011 static void __page_check_anon_rmap(struct page *page,
1012 	struct vm_area_struct *vma, unsigned long address)
1013 {
1014 #ifdef CONFIG_DEBUG_VM
1015 	/*
1016 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1017 	 * be set up correctly at this point.
1018 	 *
1019 	 * We have exclusion against page_add_anon_rmap because the caller
1020 	 * always holds the page locked, except if called from page_dup_rmap,
1021 	 * in which case the page is already known to be setup.
1022 	 *
1023 	 * We have exclusion against page_add_new_anon_rmap because those pages
1024 	 * are initially only visible via the pagetables, and the pte is locked
1025 	 * over the call to page_add_new_anon_rmap.
1026 	 */
1027 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1028 	BUG_ON(page->index != linear_page_index(vma, address));
1029 #endif
1030 }
1031 
1032 /**
1033  * page_add_anon_rmap - add pte mapping to an anonymous page
1034  * @page:	the page to add the mapping to
1035  * @vma:	the vm area in which the mapping is added
1036  * @address:	the user virtual address mapped
1037  *
1038  * The caller needs to hold the pte lock, and the page must be locked in
1039  * the anon_vma case: to serialize mapping,index checking after setting,
1040  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1041  * (but PageKsm is never downgraded to PageAnon).
1042  */
1043 void page_add_anon_rmap(struct page *page,
1044 	struct vm_area_struct *vma, unsigned long address)
1045 {
1046 	do_page_add_anon_rmap(page, vma, address, 0);
1047 }
1048 
1049 /*
1050  * Special version of the above for do_swap_page, which often runs
1051  * into pages that are exclusively owned by the current process.
1052  * Everybody else should continue to use page_add_anon_rmap above.
1053  */
1054 void do_page_add_anon_rmap(struct page *page,
1055 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1056 {
1057 	int first = atomic_inc_and_test(&page->_mapcount);
1058 	if (first) {
1059 		if (!PageTransHuge(page))
1060 			__inc_zone_page_state(page, NR_ANON_PAGES);
1061 		else
1062 			__inc_zone_page_state(page,
1063 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1064 	}
1065 	if (unlikely(PageKsm(page)))
1066 		return;
1067 
1068 	VM_BUG_ON(!PageLocked(page));
1069 	/* address might be in next vma when migration races vma_adjust */
1070 	if (first)
1071 		__page_set_anon_rmap(page, vma, address, exclusive);
1072 	else
1073 		__page_check_anon_rmap(page, vma, address);
1074 }
1075 
1076 /**
1077  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1078  * @page:	the page to add the mapping to
1079  * @vma:	the vm area in which the mapping is added
1080  * @address:	the user virtual address mapped
1081  *
1082  * Same as page_add_anon_rmap but must only be called on *new* pages.
1083  * This means the inc-and-test can be bypassed.
1084  * Page does not have to be locked.
1085  */
1086 void page_add_new_anon_rmap(struct page *page,
1087 	struct vm_area_struct *vma, unsigned long address)
1088 {
1089 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1090 	SetPageSwapBacked(page);
1091 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1092 	if (!PageTransHuge(page))
1093 		__inc_zone_page_state(page, NR_ANON_PAGES);
1094 	else
1095 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1096 	__page_set_anon_rmap(page, vma, address, 1);
1097 	if (page_evictable(page, vma))
1098 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1099 	else
1100 		add_page_to_unevictable_list(page);
1101 }
1102 
1103 /**
1104  * page_add_file_rmap - add pte mapping to a file page
1105  * @page: the page to add the mapping to
1106  *
1107  * The caller needs to hold the pte lock.
1108  */
1109 void page_add_file_rmap(struct page *page)
1110 {
1111 	if (atomic_inc_and_test(&page->_mapcount)) {
1112 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1113 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1114 	}
1115 }
1116 
1117 /**
1118  * page_remove_rmap - take down pte mapping from a page
1119  * @page: page to remove mapping from
1120  *
1121  * The caller needs to hold the pte lock.
1122  */
1123 void page_remove_rmap(struct page *page)
1124 {
1125 	/* page still mapped by someone else? */
1126 	if (!atomic_add_negative(-1, &page->_mapcount))
1127 		return;
1128 
1129 	/*
1130 	 * Now that the last pte has gone, s390 must transfer dirty
1131 	 * flag from storage key to struct page.  We can usually skip
1132 	 * this if the page is anon, so about to be freed; but perhaps
1133 	 * not if it's in swapcache - there might be another pte slot
1134 	 * containing the swap entry, but page not yet written to swap.
1135 	 */
1136 	if ((!PageAnon(page) || PageSwapCache(page)) &&
1137 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1138 		set_page_dirty(page);
1139 	/*
1140 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1141 	 * and not charged by memcg for now.
1142 	 */
1143 	if (unlikely(PageHuge(page)))
1144 		return;
1145 	if (PageAnon(page)) {
1146 		mem_cgroup_uncharge_page(page);
1147 		if (!PageTransHuge(page))
1148 			__dec_zone_page_state(page, NR_ANON_PAGES);
1149 		else
1150 			__dec_zone_page_state(page,
1151 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1152 	} else {
1153 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1154 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1155 	}
1156 	/*
1157 	 * It would be tidy to reset the PageAnon mapping here,
1158 	 * but that might overwrite a racing page_add_anon_rmap
1159 	 * which increments mapcount after us but sets mapping
1160 	 * before us: so leave the reset to free_hot_cold_page,
1161 	 * and remember that it's only reliable while mapped.
1162 	 * Leaving it set also helps swapoff to reinstate ptes
1163 	 * faster for those pages still in swapcache.
1164 	 */
1165 }
1166 
1167 /*
1168  * Subfunctions of try_to_unmap: try_to_unmap_one called
1169  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1170  */
1171 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1172 		     unsigned long address, enum ttu_flags flags)
1173 {
1174 	struct mm_struct *mm = vma->vm_mm;
1175 	pte_t *pte;
1176 	pte_t pteval;
1177 	spinlock_t *ptl;
1178 	int ret = SWAP_AGAIN;
1179 
1180 	pte = page_check_address(page, mm, address, &ptl, 0);
1181 	if (!pte)
1182 		goto out;
1183 
1184 	/*
1185 	 * If the page is mlock()d, we cannot swap it out.
1186 	 * If it's recently referenced (perhaps page_referenced
1187 	 * skipped over this mm) then we should reactivate it.
1188 	 */
1189 	if (!(flags & TTU_IGNORE_MLOCK)) {
1190 		if (vma->vm_flags & VM_LOCKED)
1191 			goto out_mlock;
1192 
1193 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1194 			goto out_unmap;
1195 	}
1196 	if (!(flags & TTU_IGNORE_ACCESS)) {
1197 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1198 			ret = SWAP_FAIL;
1199 			goto out_unmap;
1200 		}
1201   	}
1202 
1203 	/* Nuke the page table entry. */
1204 	flush_cache_page(vma, address, page_to_pfn(page));
1205 	pteval = ptep_clear_flush_notify(vma, address, pte);
1206 
1207 	/* Move the dirty bit to the physical page now the pte is gone. */
1208 	if (pte_dirty(pteval))
1209 		set_page_dirty(page);
1210 
1211 	/* Update high watermark before we lower rss */
1212 	update_hiwater_rss(mm);
1213 
1214 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1215 		if (PageAnon(page))
1216 			dec_mm_counter(mm, MM_ANONPAGES);
1217 		else
1218 			dec_mm_counter(mm, MM_FILEPAGES);
1219 		set_pte_at(mm, address, pte,
1220 				swp_entry_to_pte(make_hwpoison_entry(page)));
1221 	} else if (PageAnon(page)) {
1222 		swp_entry_t entry = { .val = page_private(page) };
1223 
1224 		if (PageSwapCache(page)) {
1225 			/*
1226 			 * Store the swap location in the pte.
1227 			 * See handle_pte_fault() ...
1228 			 */
1229 			if (swap_duplicate(entry) < 0) {
1230 				set_pte_at(mm, address, pte, pteval);
1231 				ret = SWAP_FAIL;
1232 				goto out_unmap;
1233 			}
1234 			if (list_empty(&mm->mmlist)) {
1235 				spin_lock(&mmlist_lock);
1236 				if (list_empty(&mm->mmlist))
1237 					list_add(&mm->mmlist, &init_mm.mmlist);
1238 				spin_unlock(&mmlist_lock);
1239 			}
1240 			dec_mm_counter(mm, MM_ANONPAGES);
1241 			inc_mm_counter(mm, MM_SWAPENTS);
1242 		} else if (PAGE_MIGRATION) {
1243 			/*
1244 			 * Store the pfn of the page in a special migration
1245 			 * pte. do_swap_page() will wait until the migration
1246 			 * pte is removed and then restart fault handling.
1247 			 */
1248 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1249 			entry = make_migration_entry(page, pte_write(pteval));
1250 		}
1251 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1252 		BUG_ON(pte_file(*pte));
1253 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1254 		/* Establish migration entry for a file page */
1255 		swp_entry_t entry;
1256 		entry = make_migration_entry(page, pte_write(pteval));
1257 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1258 	} else
1259 		dec_mm_counter(mm, MM_FILEPAGES);
1260 
1261 	page_remove_rmap(page);
1262 	page_cache_release(page);
1263 
1264 out_unmap:
1265 	pte_unmap_unlock(pte, ptl);
1266 out:
1267 	return ret;
1268 
1269 out_mlock:
1270 	pte_unmap_unlock(pte, ptl);
1271 
1272 
1273 	/*
1274 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1275 	 * unstable result and race. Plus, We can't wait here because
1276 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1277 	 * if trylock failed, the page remain in evictable lru and later
1278 	 * vmscan could retry to move the page to unevictable lru if the
1279 	 * page is actually mlocked.
1280 	 */
1281 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1282 		if (vma->vm_flags & VM_LOCKED) {
1283 			mlock_vma_page(page);
1284 			ret = SWAP_MLOCK;
1285 		}
1286 		up_read(&vma->vm_mm->mmap_sem);
1287 	}
1288 	return ret;
1289 }
1290 
1291 /*
1292  * objrmap doesn't work for nonlinear VMAs because the assumption that
1293  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1294  * Consequently, given a particular page and its ->index, we cannot locate the
1295  * ptes which are mapping that page without an exhaustive linear search.
1296  *
1297  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1298  * maps the file to which the target page belongs.  The ->vm_private_data field
1299  * holds the current cursor into that scan.  Successive searches will circulate
1300  * around the vma's virtual address space.
1301  *
1302  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1303  * more scanning pressure is placed against them as well.   Eventually pages
1304  * will become fully unmapped and are eligible for eviction.
1305  *
1306  * For very sparsely populated VMAs this is a little inefficient - chances are
1307  * there there won't be many ptes located within the scan cluster.  In this case
1308  * maybe we could scan further - to the end of the pte page, perhaps.
1309  *
1310  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1311  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1312  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1313  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1314  */
1315 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1316 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1317 
1318 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1319 		struct vm_area_struct *vma, struct page *check_page)
1320 {
1321 	struct mm_struct *mm = vma->vm_mm;
1322 	pgd_t *pgd;
1323 	pud_t *pud;
1324 	pmd_t *pmd;
1325 	pte_t *pte;
1326 	pte_t pteval;
1327 	spinlock_t *ptl;
1328 	struct page *page;
1329 	unsigned long address;
1330 	unsigned long end;
1331 	int ret = SWAP_AGAIN;
1332 	int locked_vma = 0;
1333 
1334 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1335 	end = address + CLUSTER_SIZE;
1336 	if (address < vma->vm_start)
1337 		address = vma->vm_start;
1338 	if (end > vma->vm_end)
1339 		end = vma->vm_end;
1340 
1341 	pgd = pgd_offset(mm, address);
1342 	if (!pgd_present(*pgd))
1343 		return ret;
1344 
1345 	pud = pud_offset(pgd, address);
1346 	if (!pud_present(*pud))
1347 		return ret;
1348 
1349 	pmd = pmd_offset(pud, address);
1350 	if (!pmd_present(*pmd))
1351 		return ret;
1352 
1353 	/*
1354 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1355 	 * keep the sem while scanning the cluster for mlocking pages.
1356 	 */
1357 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1358 		locked_vma = (vma->vm_flags & VM_LOCKED);
1359 		if (!locked_vma)
1360 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1361 	}
1362 
1363 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1364 
1365 	/* Update high watermark before we lower rss */
1366 	update_hiwater_rss(mm);
1367 
1368 	for (; address < end; pte++, address += PAGE_SIZE) {
1369 		if (!pte_present(*pte))
1370 			continue;
1371 		page = vm_normal_page(vma, address, *pte);
1372 		BUG_ON(!page || PageAnon(page));
1373 
1374 		if (locked_vma) {
1375 			mlock_vma_page(page);   /* no-op if already mlocked */
1376 			if (page == check_page)
1377 				ret = SWAP_MLOCK;
1378 			continue;	/* don't unmap */
1379 		}
1380 
1381 		if (ptep_clear_flush_young_notify(vma, address, pte))
1382 			continue;
1383 
1384 		/* Nuke the page table entry. */
1385 		flush_cache_page(vma, address, pte_pfn(*pte));
1386 		pteval = ptep_clear_flush_notify(vma, address, pte);
1387 
1388 		/* If nonlinear, store the file page offset in the pte. */
1389 		if (page->index != linear_page_index(vma, address))
1390 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1391 
1392 		/* Move the dirty bit to the physical page now the pte is gone. */
1393 		if (pte_dirty(pteval))
1394 			set_page_dirty(page);
1395 
1396 		page_remove_rmap(page);
1397 		page_cache_release(page);
1398 		dec_mm_counter(mm, MM_FILEPAGES);
1399 		(*mapcount)--;
1400 	}
1401 	pte_unmap_unlock(pte - 1, ptl);
1402 	if (locked_vma)
1403 		up_read(&vma->vm_mm->mmap_sem);
1404 	return ret;
1405 }
1406 
1407 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1408 {
1409 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1410 
1411 	if (!maybe_stack)
1412 		return false;
1413 
1414 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1415 						VM_STACK_INCOMPLETE_SETUP)
1416 		return true;
1417 
1418 	return false;
1419 }
1420 
1421 /**
1422  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1423  * rmap method
1424  * @page: the page to unmap/unlock
1425  * @flags: action and flags
1426  *
1427  * Find all the mappings of a page using the mapping pointer and the vma chains
1428  * contained in the anon_vma struct it points to.
1429  *
1430  * This function is only called from try_to_unmap/try_to_munlock for
1431  * anonymous pages.
1432  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1433  * where the page was found will be held for write.  So, we won't recheck
1434  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1435  * 'LOCKED.
1436  */
1437 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1438 {
1439 	struct anon_vma *anon_vma;
1440 	struct anon_vma_chain *avc;
1441 	int ret = SWAP_AGAIN;
1442 
1443 	anon_vma = page_lock_anon_vma(page);
1444 	if (!anon_vma)
1445 		return ret;
1446 
1447 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1448 		struct vm_area_struct *vma = avc->vma;
1449 		unsigned long address;
1450 
1451 		/*
1452 		 * During exec, a temporary VMA is setup and later moved.
1453 		 * The VMA is moved under the anon_vma lock but not the
1454 		 * page tables leading to a race where migration cannot
1455 		 * find the migration ptes. Rather than increasing the
1456 		 * locking requirements of exec(), migration skips
1457 		 * temporary VMAs until after exec() completes.
1458 		 */
1459 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1460 				is_vma_temporary_stack(vma))
1461 			continue;
1462 
1463 		address = vma_address(page, vma);
1464 		if (address == -EFAULT)
1465 			continue;
1466 		ret = try_to_unmap_one(page, vma, address, flags);
1467 		if (ret != SWAP_AGAIN || !page_mapped(page))
1468 			break;
1469 	}
1470 
1471 	page_unlock_anon_vma(anon_vma);
1472 	return ret;
1473 }
1474 
1475 /**
1476  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1477  * @page: the page to unmap/unlock
1478  * @flags: action and flags
1479  *
1480  * Find all the mappings of a page using the mapping pointer and the vma chains
1481  * contained in the address_space struct it points to.
1482  *
1483  * This function is only called from try_to_unmap/try_to_munlock for
1484  * object-based pages.
1485  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1486  * where the page was found will be held for write.  So, we won't recheck
1487  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1488  * 'LOCKED.
1489  */
1490 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1491 {
1492 	struct address_space *mapping = page->mapping;
1493 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1494 	struct vm_area_struct *vma;
1495 	struct prio_tree_iter iter;
1496 	int ret = SWAP_AGAIN;
1497 	unsigned long cursor;
1498 	unsigned long max_nl_cursor = 0;
1499 	unsigned long max_nl_size = 0;
1500 	unsigned int mapcount;
1501 
1502 	mutex_lock(&mapping->i_mmap_mutex);
1503 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1504 		unsigned long address = vma_address(page, vma);
1505 		if (address == -EFAULT)
1506 			continue;
1507 		ret = try_to_unmap_one(page, vma, address, flags);
1508 		if (ret != SWAP_AGAIN || !page_mapped(page))
1509 			goto out;
1510 	}
1511 
1512 	if (list_empty(&mapping->i_mmap_nonlinear))
1513 		goto out;
1514 
1515 	/*
1516 	 * We don't bother to try to find the munlocked page in nonlinears.
1517 	 * It's costly. Instead, later, page reclaim logic may call
1518 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1519 	 */
1520 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1521 		goto out;
1522 
1523 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1524 						shared.vm_set.list) {
1525 		cursor = (unsigned long) vma->vm_private_data;
1526 		if (cursor > max_nl_cursor)
1527 			max_nl_cursor = cursor;
1528 		cursor = vma->vm_end - vma->vm_start;
1529 		if (cursor > max_nl_size)
1530 			max_nl_size = cursor;
1531 	}
1532 
1533 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1534 		ret = SWAP_FAIL;
1535 		goto out;
1536 	}
1537 
1538 	/*
1539 	 * We don't try to search for this page in the nonlinear vmas,
1540 	 * and page_referenced wouldn't have found it anyway.  Instead
1541 	 * just walk the nonlinear vmas trying to age and unmap some.
1542 	 * The mapcount of the page we came in with is irrelevant,
1543 	 * but even so use it as a guide to how hard we should try?
1544 	 */
1545 	mapcount = page_mapcount(page);
1546 	if (!mapcount)
1547 		goto out;
1548 	cond_resched();
1549 
1550 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1551 	if (max_nl_cursor == 0)
1552 		max_nl_cursor = CLUSTER_SIZE;
1553 
1554 	do {
1555 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1556 						shared.vm_set.list) {
1557 			cursor = (unsigned long) vma->vm_private_data;
1558 			while ( cursor < max_nl_cursor &&
1559 				cursor < vma->vm_end - vma->vm_start) {
1560 				if (try_to_unmap_cluster(cursor, &mapcount,
1561 						vma, page) == SWAP_MLOCK)
1562 					ret = SWAP_MLOCK;
1563 				cursor += CLUSTER_SIZE;
1564 				vma->vm_private_data = (void *) cursor;
1565 				if ((int)mapcount <= 0)
1566 					goto out;
1567 			}
1568 			vma->vm_private_data = (void *) max_nl_cursor;
1569 		}
1570 		cond_resched();
1571 		max_nl_cursor += CLUSTER_SIZE;
1572 	} while (max_nl_cursor <= max_nl_size);
1573 
1574 	/*
1575 	 * Don't loop forever (perhaps all the remaining pages are
1576 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1577 	 * vmas, now forgetting on which ones it had fallen behind.
1578 	 */
1579 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1580 		vma->vm_private_data = NULL;
1581 out:
1582 	mutex_unlock(&mapping->i_mmap_mutex);
1583 	return ret;
1584 }
1585 
1586 /**
1587  * try_to_unmap - try to remove all page table mappings to a page
1588  * @page: the page to get unmapped
1589  * @flags: action and flags
1590  *
1591  * Tries to remove all the page table entries which are mapping this
1592  * page, used in the pageout path.  Caller must hold the page lock.
1593  * Return values are:
1594  *
1595  * SWAP_SUCCESS	- we succeeded in removing all mappings
1596  * SWAP_AGAIN	- we missed a mapping, try again later
1597  * SWAP_FAIL	- the page is unswappable
1598  * SWAP_MLOCK	- page is mlocked.
1599  */
1600 int try_to_unmap(struct page *page, enum ttu_flags flags)
1601 {
1602 	int ret;
1603 
1604 	BUG_ON(!PageLocked(page));
1605 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1606 
1607 	if (unlikely(PageKsm(page)))
1608 		ret = try_to_unmap_ksm(page, flags);
1609 	else if (PageAnon(page))
1610 		ret = try_to_unmap_anon(page, flags);
1611 	else
1612 		ret = try_to_unmap_file(page, flags);
1613 	if (ret != SWAP_MLOCK && !page_mapped(page))
1614 		ret = SWAP_SUCCESS;
1615 	return ret;
1616 }
1617 
1618 /**
1619  * try_to_munlock - try to munlock a page
1620  * @page: the page to be munlocked
1621  *
1622  * Called from munlock code.  Checks all of the VMAs mapping the page
1623  * to make sure nobody else has this page mlocked. The page will be
1624  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1625  *
1626  * Return values are:
1627  *
1628  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1629  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1630  * SWAP_FAIL	- page cannot be located at present
1631  * SWAP_MLOCK	- page is now mlocked.
1632  */
1633 int try_to_munlock(struct page *page)
1634 {
1635 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1636 
1637 	if (unlikely(PageKsm(page)))
1638 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1639 	else if (PageAnon(page))
1640 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1641 	else
1642 		return try_to_unmap_file(page, TTU_MUNLOCK);
1643 }
1644 
1645 void __put_anon_vma(struct anon_vma *anon_vma)
1646 {
1647 	struct anon_vma *root = anon_vma->root;
1648 
1649 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1650 		anon_vma_free(root);
1651 
1652 	anon_vma_free(anon_vma);
1653 }
1654 
1655 #ifdef CONFIG_MIGRATION
1656 /*
1657  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1658  * Called by migrate.c to remove migration ptes, but might be used more later.
1659  */
1660 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1661 		struct vm_area_struct *, unsigned long, void *), void *arg)
1662 {
1663 	struct anon_vma *anon_vma;
1664 	struct anon_vma_chain *avc;
1665 	int ret = SWAP_AGAIN;
1666 
1667 	/*
1668 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1669 	 * because that depends on page_mapped(); but not all its usages
1670 	 * are holding mmap_sem. Users without mmap_sem are required to
1671 	 * take a reference count to prevent the anon_vma disappearing
1672 	 */
1673 	anon_vma = page_anon_vma(page);
1674 	if (!anon_vma)
1675 		return ret;
1676 	anon_vma_lock(anon_vma);
1677 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1678 		struct vm_area_struct *vma = avc->vma;
1679 		unsigned long address = vma_address(page, vma);
1680 		if (address == -EFAULT)
1681 			continue;
1682 		ret = rmap_one(page, vma, address, arg);
1683 		if (ret != SWAP_AGAIN)
1684 			break;
1685 	}
1686 	anon_vma_unlock(anon_vma);
1687 	return ret;
1688 }
1689 
1690 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1691 		struct vm_area_struct *, unsigned long, void *), void *arg)
1692 {
1693 	struct address_space *mapping = page->mapping;
1694 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1695 	struct vm_area_struct *vma;
1696 	struct prio_tree_iter iter;
1697 	int ret = SWAP_AGAIN;
1698 
1699 	if (!mapping)
1700 		return ret;
1701 	mutex_lock(&mapping->i_mmap_mutex);
1702 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1703 		unsigned long address = vma_address(page, vma);
1704 		if (address == -EFAULT)
1705 			continue;
1706 		ret = rmap_one(page, vma, address, arg);
1707 		if (ret != SWAP_AGAIN)
1708 			break;
1709 	}
1710 	/*
1711 	 * No nonlinear handling: being always shared, nonlinear vmas
1712 	 * never contain migration ptes.  Decide what to do about this
1713 	 * limitation to linear when we need rmap_walk() on nonlinear.
1714 	 */
1715 	mutex_unlock(&mapping->i_mmap_mutex);
1716 	return ret;
1717 }
1718 
1719 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1720 		struct vm_area_struct *, unsigned long, void *), void *arg)
1721 {
1722 	VM_BUG_ON(!PageLocked(page));
1723 
1724 	if (unlikely(PageKsm(page)))
1725 		return rmap_walk_ksm(page, rmap_one, arg);
1726 	else if (PageAnon(page))
1727 		return rmap_walk_anon(page, rmap_one, arg);
1728 	else
1729 		return rmap_walk_file(page, rmap_one, arg);
1730 }
1731 #endif /* CONFIG_MIGRATION */
1732 
1733 #ifdef CONFIG_HUGETLB_PAGE
1734 /*
1735  * The following three functions are for anonymous (private mapped) hugepages.
1736  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1737  * and no lru code, because we handle hugepages differently from common pages.
1738  */
1739 static void __hugepage_set_anon_rmap(struct page *page,
1740 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1741 {
1742 	struct anon_vma *anon_vma = vma->anon_vma;
1743 
1744 	BUG_ON(!anon_vma);
1745 
1746 	if (PageAnon(page))
1747 		return;
1748 	if (!exclusive)
1749 		anon_vma = anon_vma->root;
1750 
1751 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1752 	page->mapping = (struct address_space *) anon_vma;
1753 	page->index = linear_page_index(vma, address);
1754 }
1755 
1756 void hugepage_add_anon_rmap(struct page *page,
1757 			    struct vm_area_struct *vma, unsigned long address)
1758 {
1759 	struct anon_vma *anon_vma = vma->anon_vma;
1760 	int first;
1761 
1762 	BUG_ON(!PageLocked(page));
1763 	BUG_ON(!anon_vma);
1764 	/* address might be in next vma when migration races vma_adjust */
1765 	first = atomic_inc_and_test(&page->_mapcount);
1766 	if (first)
1767 		__hugepage_set_anon_rmap(page, vma, address, 0);
1768 }
1769 
1770 void hugepage_add_new_anon_rmap(struct page *page,
1771 			struct vm_area_struct *vma, unsigned long address)
1772 {
1773 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1774 	atomic_set(&page->_mapcount, 0);
1775 	__hugepage_set_anon_rmap(page, vma, address, 1);
1776 }
1777 #endif /* CONFIG_HUGETLB_PAGE */
1778