1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_mutex 28 * anon_vma->mutex 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty) 36 * sb_lock (within inode_lock in fs/fs-writeback.c) 37 * mapping->tree_lock (widely used, in set_page_dirty, 38 * in arch-dependent flush_dcache_mmap_lock, 39 * within inode_wb_list_lock in __sync_single_inode) 40 * 41 * (code doesn't rely on that order so it could be switched around) 42 * ->tasklist_lock 43 * anon_vma->mutex (memory_failure, collect_procs_anon) 44 * pte map lock 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/rcupdate.h> 56 #include <linux/module.h> 57 #include <linux/memcontrol.h> 58 #include <linux/mmu_notifier.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 62 #include <asm/tlbflush.h> 63 64 #include "internal.h" 65 66 static struct kmem_cache *anon_vma_cachep; 67 static struct kmem_cache *anon_vma_chain_cachep; 68 69 static inline struct anon_vma *anon_vma_alloc(void) 70 { 71 struct anon_vma *anon_vma; 72 73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 74 if (anon_vma) { 75 atomic_set(&anon_vma->refcount, 1); 76 /* 77 * Initialise the anon_vma root to point to itself. If called 78 * from fork, the root will be reset to the parents anon_vma. 79 */ 80 anon_vma->root = anon_vma; 81 } 82 83 return anon_vma; 84 } 85 86 static inline void anon_vma_free(struct anon_vma *anon_vma) 87 { 88 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 89 90 /* 91 * Synchronize against page_lock_anon_vma() such that 92 * we can safely hold the lock without the anon_vma getting 93 * freed. 94 * 95 * Relies on the full mb implied by the atomic_dec_and_test() from 96 * put_anon_vma() against the acquire barrier implied by 97 * mutex_trylock() from page_lock_anon_vma(). This orders: 98 * 99 * page_lock_anon_vma() VS put_anon_vma() 100 * mutex_trylock() atomic_dec_and_test() 101 * LOCK MB 102 * atomic_read() mutex_is_locked() 103 * 104 * LOCK should suffice since the actual taking of the lock must 105 * happen _before_ what follows. 106 */ 107 if (mutex_is_locked(&anon_vma->root->mutex)) { 108 anon_vma_lock(anon_vma); 109 anon_vma_unlock(anon_vma); 110 } 111 112 kmem_cache_free(anon_vma_cachep, anon_vma); 113 } 114 115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 116 { 117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 118 } 119 120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 121 { 122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 123 } 124 125 /** 126 * anon_vma_prepare - attach an anon_vma to a memory region 127 * @vma: the memory region in question 128 * 129 * This makes sure the memory mapping described by 'vma' has 130 * an 'anon_vma' attached to it, so that we can associate the 131 * anonymous pages mapped into it with that anon_vma. 132 * 133 * The common case will be that we already have one, but if 134 * not we either need to find an adjacent mapping that we 135 * can re-use the anon_vma from (very common when the only 136 * reason for splitting a vma has been mprotect()), or we 137 * allocate a new one. 138 * 139 * Anon-vma allocations are very subtle, because we may have 140 * optimistically looked up an anon_vma in page_lock_anon_vma() 141 * and that may actually touch the spinlock even in the newly 142 * allocated vma (it depends on RCU to make sure that the 143 * anon_vma isn't actually destroyed). 144 * 145 * As a result, we need to do proper anon_vma locking even 146 * for the new allocation. At the same time, we do not want 147 * to do any locking for the common case of already having 148 * an anon_vma. 149 * 150 * This must be called with the mmap_sem held for reading. 151 */ 152 int anon_vma_prepare(struct vm_area_struct *vma) 153 { 154 struct anon_vma *anon_vma = vma->anon_vma; 155 struct anon_vma_chain *avc; 156 157 might_sleep(); 158 if (unlikely(!anon_vma)) { 159 struct mm_struct *mm = vma->vm_mm; 160 struct anon_vma *allocated; 161 162 avc = anon_vma_chain_alloc(GFP_KERNEL); 163 if (!avc) 164 goto out_enomem; 165 166 anon_vma = find_mergeable_anon_vma(vma); 167 allocated = NULL; 168 if (!anon_vma) { 169 anon_vma = anon_vma_alloc(); 170 if (unlikely(!anon_vma)) 171 goto out_enomem_free_avc; 172 allocated = anon_vma; 173 } 174 175 anon_vma_lock(anon_vma); 176 /* page_table_lock to protect against threads */ 177 spin_lock(&mm->page_table_lock); 178 if (likely(!vma->anon_vma)) { 179 vma->anon_vma = anon_vma; 180 avc->anon_vma = anon_vma; 181 avc->vma = vma; 182 list_add(&avc->same_vma, &vma->anon_vma_chain); 183 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 184 allocated = NULL; 185 avc = NULL; 186 } 187 spin_unlock(&mm->page_table_lock); 188 anon_vma_unlock(anon_vma); 189 190 if (unlikely(allocated)) 191 put_anon_vma(allocated); 192 if (unlikely(avc)) 193 anon_vma_chain_free(avc); 194 } 195 return 0; 196 197 out_enomem_free_avc: 198 anon_vma_chain_free(avc); 199 out_enomem: 200 return -ENOMEM; 201 } 202 203 /* 204 * This is a useful helper function for locking the anon_vma root as 205 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 206 * have the same vma. 207 * 208 * Such anon_vma's should have the same root, so you'd expect to see 209 * just a single mutex_lock for the whole traversal. 210 */ 211 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 212 { 213 struct anon_vma *new_root = anon_vma->root; 214 if (new_root != root) { 215 if (WARN_ON_ONCE(root)) 216 mutex_unlock(&root->mutex); 217 root = new_root; 218 mutex_lock(&root->mutex); 219 } 220 return root; 221 } 222 223 static inline void unlock_anon_vma_root(struct anon_vma *root) 224 { 225 if (root) 226 mutex_unlock(&root->mutex); 227 } 228 229 static void anon_vma_chain_link(struct vm_area_struct *vma, 230 struct anon_vma_chain *avc, 231 struct anon_vma *anon_vma) 232 { 233 avc->vma = vma; 234 avc->anon_vma = anon_vma; 235 list_add(&avc->same_vma, &vma->anon_vma_chain); 236 237 /* 238 * It's critical to add new vmas to the tail of the anon_vma, 239 * see comment in huge_memory.c:__split_huge_page(). 240 */ 241 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 242 } 243 244 /* 245 * Attach the anon_vmas from src to dst. 246 * Returns 0 on success, -ENOMEM on failure. 247 */ 248 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 249 { 250 struct anon_vma_chain *avc, *pavc; 251 struct anon_vma *root = NULL; 252 253 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 254 struct anon_vma *anon_vma; 255 256 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 257 if (unlikely(!avc)) { 258 unlock_anon_vma_root(root); 259 root = NULL; 260 avc = anon_vma_chain_alloc(GFP_KERNEL); 261 if (!avc) 262 goto enomem_failure; 263 } 264 anon_vma = pavc->anon_vma; 265 root = lock_anon_vma_root(root, anon_vma); 266 anon_vma_chain_link(dst, avc, anon_vma); 267 } 268 unlock_anon_vma_root(root); 269 return 0; 270 271 enomem_failure: 272 unlink_anon_vmas(dst); 273 return -ENOMEM; 274 } 275 276 /* 277 * Attach vma to its own anon_vma, as well as to the anon_vmas that 278 * the corresponding VMA in the parent process is attached to. 279 * Returns 0 on success, non-zero on failure. 280 */ 281 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 282 { 283 struct anon_vma_chain *avc; 284 struct anon_vma *anon_vma; 285 286 /* Don't bother if the parent process has no anon_vma here. */ 287 if (!pvma->anon_vma) 288 return 0; 289 290 /* 291 * First, attach the new VMA to the parent VMA's anon_vmas, 292 * so rmap can find non-COWed pages in child processes. 293 */ 294 if (anon_vma_clone(vma, pvma)) 295 return -ENOMEM; 296 297 /* Then add our own anon_vma. */ 298 anon_vma = anon_vma_alloc(); 299 if (!anon_vma) 300 goto out_error; 301 avc = anon_vma_chain_alloc(GFP_KERNEL); 302 if (!avc) 303 goto out_error_free_anon_vma; 304 305 /* 306 * The root anon_vma's spinlock is the lock actually used when we 307 * lock any of the anon_vmas in this anon_vma tree. 308 */ 309 anon_vma->root = pvma->anon_vma->root; 310 /* 311 * With refcounts, an anon_vma can stay around longer than the 312 * process it belongs to. The root anon_vma needs to be pinned until 313 * this anon_vma is freed, because the lock lives in the root. 314 */ 315 get_anon_vma(anon_vma->root); 316 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 317 vma->anon_vma = anon_vma; 318 anon_vma_lock(anon_vma); 319 anon_vma_chain_link(vma, avc, anon_vma); 320 anon_vma_unlock(anon_vma); 321 322 return 0; 323 324 out_error_free_anon_vma: 325 put_anon_vma(anon_vma); 326 out_error: 327 unlink_anon_vmas(vma); 328 return -ENOMEM; 329 } 330 331 void unlink_anon_vmas(struct vm_area_struct *vma) 332 { 333 struct anon_vma_chain *avc, *next; 334 struct anon_vma *root = NULL; 335 336 /* 337 * Unlink each anon_vma chained to the VMA. This list is ordered 338 * from newest to oldest, ensuring the root anon_vma gets freed last. 339 */ 340 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 341 struct anon_vma *anon_vma = avc->anon_vma; 342 343 root = lock_anon_vma_root(root, anon_vma); 344 list_del(&avc->same_anon_vma); 345 346 /* 347 * Leave empty anon_vmas on the list - we'll need 348 * to free them outside the lock. 349 */ 350 if (list_empty(&anon_vma->head)) 351 continue; 352 353 list_del(&avc->same_vma); 354 anon_vma_chain_free(avc); 355 } 356 unlock_anon_vma_root(root); 357 358 /* 359 * Iterate the list once more, it now only contains empty and unlinked 360 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 361 * needing to acquire the anon_vma->root->mutex. 362 */ 363 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 364 struct anon_vma *anon_vma = avc->anon_vma; 365 366 put_anon_vma(anon_vma); 367 368 list_del(&avc->same_vma); 369 anon_vma_chain_free(avc); 370 } 371 } 372 373 static void anon_vma_ctor(void *data) 374 { 375 struct anon_vma *anon_vma = data; 376 377 mutex_init(&anon_vma->mutex); 378 atomic_set(&anon_vma->refcount, 0); 379 INIT_LIST_HEAD(&anon_vma->head); 380 } 381 382 void __init anon_vma_init(void) 383 { 384 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 385 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 386 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 387 } 388 389 /* 390 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 391 * 392 * Since there is no serialization what so ever against page_remove_rmap() 393 * the best this function can do is return a locked anon_vma that might 394 * have been relevant to this page. 395 * 396 * The page might have been remapped to a different anon_vma or the anon_vma 397 * returned may already be freed (and even reused). 398 * 399 * In case it was remapped to a different anon_vma, the new anon_vma will be a 400 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 401 * ensure that any anon_vma obtained from the page will still be valid for as 402 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 403 * 404 * All users of this function must be very careful when walking the anon_vma 405 * chain and verify that the page in question is indeed mapped in it 406 * [ something equivalent to page_mapped_in_vma() ]. 407 * 408 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 409 * that the anon_vma pointer from page->mapping is valid if there is a 410 * mapcount, we can dereference the anon_vma after observing those. 411 */ 412 struct anon_vma *page_get_anon_vma(struct page *page) 413 { 414 struct anon_vma *anon_vma = NULL; 415 unsigned long anon_mapping; 416 417 rcu_read_lock(); 418 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 419 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 420 goto out; 421 if (!page_mapped(page)) 422 goto out; 423 424 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 425 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 426 anon_vma = NULL; 427 goto out; 428 } 429 430 /* 431 * If this page is still mapped, then its anon_vma cannot have been 432 * freed. But if it has been unmapped, we have no security against the 433 * anon_vma structure being freed and reused (for another anon_vma: 434 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 435 * above cannot corrupt). 436 */ 437 if (!page_mapped(page)) { 438 put_anon_vma(anon_vma); 439 anon_vma = NULL; 440 } 441 out: 442 rcu_read_unlock(); 443 444 return anon_vma; 445 } 446 447 /* 448 * Similar to page_get_anon_vma() except it locks the anon_vma. 449 * 450 * Its a little more complex as it tries to keep the fast path to a single 451 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 452 * reference like with page_get_anon_vma() and then block on the mutex. 453 */ 454 struct anon_vma *page_lock_anon_vma(struct page *page) 455 { 456 struct anon_vma *anon_vma = NULL; 457 struct anon_vma *root_anon_vma; 458 unsigned long anon_mapping; 459 460 rcu_read_lock(); 461 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 462 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 463 goto out; 464 if (!page_mapped(page)) 465 goto out; 466 467 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 468 root_anon_vma = ACCESS_ONCE(anon_vma->root); 469 if (mutex_trylock(&root_anon_vma->mutex)) { 470 /* 471 * If the page is still mapped, then this anon_vma is still 472 * its anon_vma, and holding the mutex ensures that it will 473 * not go away, see anon_vma_free(). 474 */ 475 if (!page_mapped(page)) { 476 mutex_unlock(&root_anon_vma->mutex); 477 anon_vma = NULL; 478 } 479 goto out; 480 } 481 482 /* trylock failed, we got to sleep */ 483 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 484 anon_vma = NULL; 485 goto out; 486 } 487 488 if (!page_mapped(page)) { 489 put_anon_vma(anon_vma); 490 anon_vma = NULL; 491 goto out; 492 } 493 494 /* we pinned the anon_vma, its safe to sleep */ 495 rcu_read_unlock(); 496 anon_vma_lock(anon_vma); 497 498 if (atomic_dec_and_test(&anon_vma->refcount)) { 499 /* 500 * Oops, we held the last refcount, release the lock 501 * and bail -- can't simply use put_anon_vma() because 502 * we'll deadlock on the anon_vma_lock() recursion. 503 */ 504 anon_vma_unlock(anon_vma); 505 __put_anon_vma(anon_vma); 506 anon_vma = NULL; 507 } 508 509 return anon_vma; 510 511 out: 512 rcu_read_unlock(); 513 return anon_vma; 514 } 515 516 void page_unlock_anon_vma(struct anon_vma *anon_vma) 517 { 518 anon_vma_unlock(anon_vma); 519 } 520 521 /* 522 * At what user virtual address is page expected in @vma? 523 * Returns virtual address or -EFAULT if page's index/offset is not 524 * within the range mapped the @vma. 525 */ 526 inline unsigned long 527 vma_address(struct page *page, struct vm_area_struct *vma) 528 { 529 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 530 unsigned long address; 531 532 if (unlikely(is_vm_hugetlb_page(vma))) 533 pgoff = page->index << huge_page_order(page_hstate(page)); 534 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 535 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 536 /* page should be within @vma mapping range */ 537 return -EFAULT; 538 } 539 return address; 540 } 541 542 /* 543 * At what user virtual address is page expected in vma? 544 * Caller should check the page is actually part of the vma. 545 */ 546 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 547 { 548 if (PageAnon(page)) { 549 struct anon_vma *page__anon_vma = page_anon_vma(page); 550 /* 551 * Note: swapoff's unuse_vma() is more efficient with this 552 * check, and needs it to match anon_vma when KSM is active. 553 */ 554 if (!vma->anon_vma || !page__anon_vma || 555 vma->anon_vma->root != page__anon_vma->root) 556 return -EFAULT; 557 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 558 if (!vma->vm_file || 559 vma->vm_file->f_mapping != page->mapping) 560 return -EFAULT; 561 } else 562 return -EFAULT; 563 return vma_address(page, vma); 564 } 565 566 /* 567 * Check that @page is mapped at @address into @mm. 568 * 569 * If @sync is false, page_check_address may perform a racy check to avoid 570 * the page table lock when the pte is not present (helpful when reclaiming 571 * highly shared pages). 572 * 573 * On success returns with pte mapped and locked. 574 */ 575 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 576 unsigned long address, spinlock_t **ptlp, int sync) 577 { 578 pgd_t *pgd; 579 pud_t *pud; 580 pmd_t *pmd; 581 pte_t *pte; 582 spinlock_t *ptl; 583 584 if (unlikely(PageHuge(page))) { 585 pte = huge_pte_offset(mm, address); 586 ptl = &mm->page_table_lock; 587 goto check; 588 } 589 590 pgd = pgd_offset(mm, address); 591 if (!pgd_present(*pgd)) 592 return NULL; 593 594 pud = pud_offset(pgd, address); 595 if (!pud_present(*pud)) 596 return NULL; 597 598 pmd = pmd_offset(pud, address); 599 if (!pmd_present(*pmd)) 600 return NULL; 601 if (pmd_trans_huge(*pmd)) 602 return NULL; 603 604 pte = pte_offset_map(pmd, address); 605 /* Make a quick check before getting the lock */ 606 if (!sync && !pte_present(*pte)) { 607 pte_unmap(pte); 608 return NULL; 609 } 610 611 ptl = pte_lockptr(mm, pmd); 612 check: 613 spin_lock(ptl); 614 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 615 *ptlp = ptl; 616 return pte; 617 } 618 pte_unmap_unlock(pte, ptl); 619 return NULL; 620 } 621 622 /** 623 * page_mapped_in_vma - check whether a page is really mapped in a VMA 624 * @page: the page to test 625 * @vma: the VMA to test 626 * 627 * Returns 1 if the page is mapped into the page tables of the VMA, 0 628 * if the page is not mapped into the page tables of this VMA. Only 629 * valid for normal file or anonymous VMAs. 630 */ 631 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 632 { 633 unsigned long address; 634 pte_t *pte; 635 spinlock_t *ptl; 636 637 address = vma_address(page, vma); 638 if (address == -EFAULT) /* out of vma range */ 639 return 0; 640 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 641 if (!pte) /* the page is not in this mm */ 642 return 0; 643 pte_unmap_unlock(pte, ptl); 644 645 return 1; 646 } 647 648 /* 649 * Subfunctions of page_referenced: page_referenced_one called 650 * repeatedly from either page_referenced_anon or page_referenced_file. 651 */ 652 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 653 unsigned long address, unsigned int *mapcount, 654 unsigned long *vm_flags) 655 { 656 struct mm_struct *mm = vma->vm_mm; 657 int referenced = 0; 658 659 if (unlikely(PageTransHuge(page))) { 660 pmd_t *pmd; 661 662 spin_lock(&mm->page_table_lock); 663 /* 664 * rmap might return false positives; we must filter 665 * these out using page_check_address_pmd(). 666 */ 667 pmd = page_check_address_pmd(page, mm, address, 668 PAGE_CHECK_ADDRESS_PMD_FLAG); 669 if (!pmd) { 670 spin_unlock(&mm->page_table_lock); 671 goto out; 672 } 673 674 if (vma->vm_flags & VM_LOCKED) { 675 spin_unlock(&mm->page_table_lock); 676 *mapcount = 0; /* break early from loop */ 677 *vm_flags |= VM_LOCKED; 678 goto out; 679 } 680 681 /* go ahead even if the pmd is pmd_trans_splitting() */ 682 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 683 referenced++; 684 spin_unlock(&mm->page_table_lock); 685 } else { 686 pte_t *pte; 687 spinlock_t *ptl; 688 689 /* 690 * rmap might return false positives; we must filter 691 * these out using page_check_address(). 692 */ 693 pte = page_check_address(page, mm, address, &ptl, 0); 694 if (!pte) 695 goto out; 696 697 if (vma->vm_flags & VM_LOCKED) { 698 pte_unmap_unlock(pte, ptl); 699 *mapcount = 0; /* break early from loop */ 700 *vm_flags |= VM_LOCKED; 701 goto out; 702 } 703 704 if (ptep_clear_flush_young_notify(vma, address, pte)) { 705 /* 706 * Don't treat a reference through a sequentially read 707 * mapping as such. If the page has been used in 708 * another mapping, we will catch it; if this other 709 * mapping is already gone, the unmap path will have 710 * set PG_referenced or activated the page. 711 */ 712 if (likely(!VM_SequentialReadHint(vma))) 713 referenced++; 714 } 715 pte_unmap_unlock(pte, ptl); 716 } 717 718 /* Pretend the page is referenced if the task has the 719 swap token and is in the middle of a page fault. */ 720 if (mm != current->mm && has_swap_token(mm) && 721 rwsem_is_locked(&mm->mmap_sem)) 722 referenced++; 723 724 (*mapcount)--; 725 726 if (referenced) 727 *vm_flags |= vma->vm_flags; 728 out: 729 return referenced; 730 } 731 732 static int page_referenced_anon(struct page *page, 733 struct mem_cgroup *mem_cont, 734 unsigned long *vm_flags) 735 { 736 unsigned int mapcount; 737 struct anon_vma *anon_vma; 738 struct anon_vma_chain *avc; 739 int referenced = 0; 740 741 anon_vma = page_lock_anon_vma(page); 742 if (!anon_vma) 743 return referenced; 744 745 mapcount = page_mapcount(page); 746 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 747 struct vm_area_struct *vma = avc->vma; 748 unsigned long address = vma_address(page, vma); 749 if (address == -EFAULT) 750 continue; 751 /* 752 * If we are reclaiming on behalf of a cgroup, skip 753 * counting on behalf of references from different 754 * cgroups 755 */ 756 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 757 continue; 758 referenced += page_referenced_one(page, vma, address, 759 &mapcount, vm_flags); 760 if (!mapcount) 761 break; 762 } 763 764 page_unlock_anon_vma(anon_vma); 765 return referenced; 766 } 767 768 /** 769 * page_referenced_file - referenced check for object-based rmap 770 * @page: the page we're checking references on. 771 * @mem_cont: target memory controller 772 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 773 * 774 * For an object-based mapped page, find all the places it is mapped and 775 * check/clear the referenced flag. This is done by following the page->mapping 776 * pointer, then walking the chain of vmas it holds. It returns the number 777 * of references it found. 778 * 779 * This function is only called from page_referenced for object-based pages. 780 */ 781 static int page_referenced_file(struct page *page, 782 struct mem_cgroup *mem_cont, 783 unsigned long *vm_flags) 784 { 785 unsigned int mapcount; 786 struct address_space *mapping = page->mapping; 787 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 788 struct vm_area_struct *vma; 789 struct prio_tree_iter iter; 790 int referenced = 0; 791 792 /* 793 * The caller's checks on page->mapping and !PageAnon have made 794 * sure that this is a file page: the check for page->mapping 795 * excludes the case just before it gets set on an anon page. 796 */ 797 BUG_ON(PageAnon(page)); 798 799 /* 800 * The page lock not only makes sure that page->mapping cannot 801 * suddenly be NULLified by truncation, it makes sure that the 802 * structure at mapping cannot be freed and reused yet, 803 * so we can safely take mapping->i_mmap_mutex. 804 */ 805 BUG_ON(!PageLocked(page)); 806 807 mutex_lock(&mapping->i_mmap_mutex); 808 809 /* 810 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 811 * is more likely to be accurate if we note it after spinning. 812 */ 813 mapcount = page_mapcount(page); 814 815 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 816 unsigned long address = vma_address(page, vma); 817 if (address == -EFAULT) 818 continue; 819 /* 820 * If we are reclaiming on behalf of a cgroup, skip 821 * counting on behalf of references from different 822 * cgroups 823 */ 824 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 825 continue; 826 referenced += page_referenced_one(page, vma, address, 827 &mapcount, vm_flags); 828 if (!mapcount) 829 break; 830 } 831 832 mutex_unlock(&mapping->i_mmap_mutex); 833 return referenced; 834 } 835 836 /** 837 * page_referenced - test if the page was referenced 838 * @page: the page to test 839 * @is_locked: caller holds lock on the page 840 * @mem_cont: target memory controller 841 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 842 * 843 * Quick test_and_clear_referenced for all mappings to a page, 844 * returns the number of ptes which referenced the page. 845 */ 846 int page_referenced(struct page *page, 847 int is_locked, 848 struct mem_cgroup *mem_cont, 849 unsigned long *vm_flags) 850 { 851 int referenced = 0; 852 int we_locked = 0; 853 854 *vm_flags = 0; 855 if (page_mapped(page) && page_rmapping(page)) { 856 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 857 we_locked = trylock_page(page); 858 if (!we_locked) { 859 referenced++; 860 goto out; 861 } 862 } 863 if (unlikely(PageKsm(page))) 864 referenced += page_referenced_ksm(page, mem_cont, 865 vm_flags); 866 else if (PageAnon(page)) 867 referenced += page_referenced_anon(page, mem_cont, 868 vm_flags); 869 else if (page->mapping) 870 referenced += page_referenced_file(page, mem_cont, 871 vm_flags); 872 if (we_locked) 873 unlock_page(page); 874 } 875 out: 876 if (page_test_and_clear_young(page_to_pfn(page))) 877 referenced++; 878 879 return referenced; 880 } 881 882 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 883 unsigned long address) 884 { 885 struct mm_struct *mm = vma->vm_mm; 886 pte_t *pte; 887 spinlock_t *ptl; 888 int ret = 0; 889 890 pte = page_check_address(page, mm, address, &ptl, 1); 891 if (!pte) 892 goto out; 893 894 if (pte_dirty(*pte) || pte_write(*pte)) { 895 pte_t entry; 896 897 flush_cache_page(vma, address, pte_pfn(*pte)); 898 entry = ptep_clear_flush_notify(vma, address, pte); 899 entry = pte_wrprotect(entry); 900 entry = pte_mkclean(entry); 901 set_pte_at(mm, address, pte, entry); 902 ret = 1; 903 } 904 905 pte_unmap_unlock(pte, ptl); 906 out: 907 return ret; 908 } 909 910 static int page_mkclean_file(struct address_space *mapping, struct page *page) 911 { 912 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 913 struct vm_area_struct *vma; 914 struct prio_tree_iter iter; 915 int ret = 0; 916 917 BUG_ON(PageAnon(page)); 918 919 mutex_lock(&mapping->i_mmap_mutex); 920 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 921 if (vma->vm_flags & VM_SHARED) { 922 unsigned long address = vma_address(page, vma); 923 if (address == -EFAULT) 924 continue; 925 ret += page_mkclean_one(page, vma, address); 926 } 927 } 928 mutex_unlock(&mapping->i_mmap_mutex); 929 return ret; 930 } 931 932 int page_mkclean(struct page *page) 933 { 934 int ret = 0; 935 936 BUG_ON(!PageLocked(page)); 937 938 if (page_mapped(page)) { 939 struct address_space *mapping = page_mapping(page); 940 if (mapping) { 941 ret = page_mkclean_file(mapping, page); 942 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 943 ret = 1; 944 } 945 } 946 947 return ret; 948 } 949 EXPORT_SYMBOL_GPL(page_mkclean); 950 951 /** 952 * page_move_anon_rmap - move a page to our anon_vma 953 * @page: the page to move to our anon_vma 954 * @vma: the vma the page belongs to 955 * @address: the user virtual address mapped 956 * 957 * When a page belongs exclusively to one process after a COW event, 958 * that page can be moved into the anon_vma that belongs to just that 959 * process, so the rmap code will not search the parent or sibling 960 * processes. 961 */ 962 void page_move_anon_rmap(struct page *page, 963 struct vm_area_struct *vma, unsigned long address) 964 { 965 struct anon_vma *anon_vma = vma->anon_vma; 966 967 VM_BUG_ON(!PageLocked(page)); 968 VM_BUG_ON(!anon_vma); 969 VM_BUG_ON(page->index != linear_page_index(vma, address)); 970 971 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 972 page->mapping = (struct address_space *) anon_vma; 973 } 974 975 /** 976 * __page_set_anon_rmap - set up new anonymous rmap 977 * @page: Page to add to rmap 978 * @vma: VM area to add page to. 979 * @address: User virtual address of the mapping 980 * @exclusive: the page is exclusively owned by the current process 981 */ 982 static void __page_set_anon_rmap(struct page *page, 983 struct vm_area_struct *vma, unsigned long address, int exclusive) 984 { 985 struct anon_vma *anon_vma = vma->anon_vma; 986 987 BUG_ON(!anon_vma); 988 989 if (PageAnon(page)) 990 return; 991 992 /* 993 * If the page isn't exclusively mapped into this vma, 994 * we must use the _oldest_ possible anon_vma for the 995 * page mapping! 996 */ 997 if (!exclusive) 998 anon_vma = anon_vma->root; 999 1000 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1001 page->mapping = (struct address_space *) anon_vma; 1002 page->index = linear_page_index(vma, address); 1003 } 1004 1005 /** 1006 * __page_check_anon_rmap - sanity check anonymous rmap addition 1007 * @page: the page to add the mapping to 1008 * @vma: the vm area in which the mapping is added 1009 * @address: the user virtual address mapped 1010 */ 1011 static void __page_check_anon_rmap(struct page *page, 1012 struct vm_area_struct *vma, unsigned long address) 1013 { 1014 #ifdef CONFIG_DEBUG_VM 1015 /* 1016 * The page's anon-rmap details (mapping and index) are guaranteed to 1017 * be set up correctly at this point. 1018 * 1019 * We have exclusion against page_add_anon_rmap because the caller 1020 * always holds the page locked, except if called from page_dup_rmap, 1021 * in which case the page is already known to be setup. 1022 * 1023 * We have exclusion against page_add_new_anon_rmap because those pages 1024 * are initially only visible via the pagetables, and the pte is locked 1025 * over the call to page_add_new_anon_rmap. 1026 */ 1027 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1028 BUG_ON(page->index != linear_page_index(vma, address)); 1029 #endif 1030 } 1031 1032 /** 1033 * page_add_anon_rmap - add pte mapping to an anonymous page 1034 * @page: the page to add the mapping to 1035 * @vma: the vm area in which the mapping is added 1036 * @address: the user virtual address mapped 1037 * 1038 * The caller needs to hold the pte lock, and the page must be locked in 1039 * the anon_vma case: to serialize mapping,index checking after setting, 1040 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1041 * (but PageKsm is never downgraded to PageAnon). 1042 */ 1043 void page_add_anon_rmap(struct page *page, 1044 struct vm_area_struct *vma, unsigned long address) 1045 { 1046 do_page_add_anon_rmap(page, vma, address, 0); 1047 } 1048 1049 /* 1050 * Special version of the above for do_swap_page, which often runs 1051 * into pages that are exclusively owned by the current process. 1052 * Everybody else should continue to use page_add_anon_rmap above. 1053 */ 1054 void do_page_add_anon_rmap(struct page *page, 1055 struct vm_area_struct *vma, unsigned long address, int exclusive) 1056 { 1057 int first = atomic_inc_and_test(&page->_mapcount); 1058 if (first) { 1059 if (!PageTransHuge(page)) 1060 __inc_zone_page_state(page, NR_ANON_PAGES); 1061 else 1062 __inc_zone_page_state(page, 1063 NR_ANON_TRANSPARENT_HUGEPAGES); 1064 } 1065 if (unlikely(PageKsm(page))) 1066 return; 1067 1068 VM_BUG_ON(!PageLocked(page)); 1069 /* address might be in next vma when migration races vma_adjust */ 1070 if (first) 1071 __page_set_anon_rmap(page, vma, address, exclusive); 1072 else 1073 __page_check_anon_rmap(page, vma, address); 1074 } 1075 1076 /** 1077 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1078 * @page: the page to add the mapping to 1079 * @vma: the vm area in which the mapping is added 1080 * @address: the user virtual address mapped 1081 * 1082 * Same as page_add_anon_rmap but must only be called on *new* pages. 1083 * This means the inc-and-test can be bypassed. 1084 * Page does not have to be locked. 1085 */ 1086 void page_add_new_anon_rmap(struct page *page, 1087 struct vm_area_struct *vma, unsigned long address) 1088 { 1089 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1090 SetPageSwapBacked(page); 1091 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1092 if (!PageTransHuge(page)) 1093 __inc_zone_page_state(page, NR_ANON_PAGES); 1094 else 1095 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1096 __page_set_anon_rmap(page, vma, address, 1); 1097 if (page_evictable(page, vma)) 1098 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1099 else 1100 add_page_to_unevictable_list(page); 1101 } 1102 1103 /** 1104 * page_add_file_rmap - add pte mapping to a file page 1105 * @page: the page to add the mapping to 1106 * 1107 * The caller needs to hold the pte lock. 1108 */ 1109 void page_add_file_rmap(struct page *page) 1110 { 1111 if (atomic_inc_and_test(&page->_mapcount)) { 1112 __inc_zone_page_state(page, NR_FILE_MAPPED); 1113 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1114 } 1115 } 1116 1117 /** 1118 * page_remove_rmap - take down pte mapping from a page 1119 * @page: page to remove mapping from 1120 * 1121 * The caller needs to hold the pte lock. 1122 */ 1123 void page_remove_rmap(struct page *page) 1124 { 1125 /* page still mapped by someone else? */ 1126 if (!atomic_add_negative(-1, &page->_mapcount)) 1127 return; 1128 1129 /* 1130 * Now that the last pte has gone, s390 must transfer dirty 1131 * flag from storage key to struct page. We can usually skip 1132 * this if the page is anon, so about to be freed; but perhaps 1133 * not if it's in swapcache - there might be another pte slot 1134 * containing the swap entry, but page not yet written to swap. 1135 */ 1136 if ((!PageAnon(page) || PageSwapCache(page)) && 1137 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1138 set_page_dirty(page); 1139 /* 1140 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1141 * and not charged by memcg for now. 1142 */ 1143 if (unlikely(PageHuge(page))) 1144 return; 1145 if (PageAnon(page)) { 1146 mem_cgroup_uncharge_page(page); 1147 if (!PageTransHuge(page)) 1148 __dec_zone_page_state(page, NR_ANON_PAGES); 1149 else 1150 __dec_zone_page_state(page, 1151 NR_ANON_TRANSPARENT_HUGEPAGES); 1152 } else { 1153 __dec_zone_page_state(page, NR_FILE_MAPPED); 1154 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1155 } 1156 /* 1157 * It would be tidy to reset the PageAnon mapping here, 1158 * but that might overwrite a racing page_add_anon_rmap 1159 * which increments mapcount after us but sets mapping 1160 * before us: so leave the reset to free_hot_cold_page, 1161 * and remember that it's only reliable while mapped. 1162 * Leaving it set also helps swapoff to reinstate ptes 1163 * faster for those pages still in swapcache. 1164 */ 1165 } 1166 1167 /* 1168 * Subfunctions of try_to_unmap: try_to_unmap_one called 1169 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 1170 */ 1171 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1172 unsigned long address, enum ttu_flags flags) 1173 { 1174 struct mm_struct *mm = vma->vm_mm; 1175 pte_t *pte; 1176 pte_t pteval; 1177 spinlock_t *ptl; 1178 int ret = SWAP_AGAIN; 1179 1180 pte = page_check_address(page, mm, address, &ptl, 0); 1181 if (!pte) 1182 goto out; 1183 1184 /* 1185 * If the page is mlock()d, we cannot swap it out. 1186 * If it's recently referenced (perhaps page_referenced 1187 * skipped over this mm) then we should reactivate it. 1188 */ 1189 if (!(flags & TTU_IGNORE_MLOCK)) { 1190 if (vma->vm_flags & VM_LOCKED) 1191 goto out_mlock; 1192 1193 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1194 goto out_unmap; 1195 } 1196 if (!(flags & TTU_IGNORE_ACCESS)) { 1197 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1198 ret = SWAP_FAIL; 1199 goto out_unmap; 1200 } 1201 } 1202 1203 /* Nuke the page table entry. */ 1204 flush_cache_page(vma, address, page_to_pfn(page)); 1205 pteval = ptep_clear_flush_notify(vma, address, pte); 1206 1207 /* Move the dirty bit to the physical page now the pte is gone. */ 1208 if (pte_dirty(pteval)) 1209 set_page_dirty(page); 1210 1211 /* Update high watermark before we lower rss */ 1212 update_hiwater_rss(mm); 1213 1214 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1215 if (PageAnon(page)) 1216 dec_mm_counter(mm, MM_ANONPAGES); 1217 else 1218 dec_mm_counter(mm, MM_FILEPAGES); 1219 set_pte_at(mm, address, pte, 1220 swp_entry_to_pte(make_hwpoison_entry(page))); 1221 } else if (PageAnon(page)) { 1222 swp_entry_t entry = { .val = page_private(page) }; 1223 1224 if (PageSwapCache(page)) { 1225 /* 1226 * Store the swap location in the pte. 1227 * See handle_pte_fault() ... 1228 */ 1229 if (swap_duplicate(entry) < 0) { 1230 set_pte_at(mm, address, pte, pteval); 1231 ret = SWAP_FAIL; 1232 goto out_unmap; 1233 } 1234 if (list_empty(&mm->mmlist)) { 1235 spin_lock(&mmlist_lock); 1236 if (list_empty(&mm->mmlist)) 1237 list_add(&mm->mmlist, &init_mm.mmlist); 1238 spin_unlock(&mmlist_lock); 1239 } 1240 dec_mm_counter(mm, MM_ANONPAGES); 1241 inc_mm_counter(mm, MM_SWAPENTS); 1242 } else if (PAGE_MIGRATION) { 1243 /* 1244 * Store the pfn of the page in a special migration 1245 * pte. do_swap_page() will wait until the migration 1246 * pte is removed and then restart fault handling. 1247 */ 1248 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1249 entry = make_migration_entry(page, pte_write(pteval)); 1250 } 1251 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1252 BUG_ON(pte_file(*pte)); 1253 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1254 /* Establish migration entry for a file page */ 1255 swp_entry_t entry; 1256 entry = make_migration_entry(page, pte_write(pteval)); 1257 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1258 } else 1259 dec_mm_counter(mm, MM_FILEPAGES); 1260 1261 page_remove_rmap(page); 1262 page_cache_release(page); 1263 1264 out_unmap: 1265 pte_unmap_unlock(pte, ptl); 1266 out: 1267 return ret; 1268 1269 out_mlock: 1270 pte_unmap_unlock(pte, ptl); 1271 1272 1273 /* 1274 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1275 * unstable result and race. Plus, We can't wait here because 1276 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1277 * if trylock failed, the page remain in evictable lru and later 1278 * vmscan could retry to move the page to unevictable lru if the 1279 * page is actually mlocked. 1280 */ 1281 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1282 if (vma->vm_flags & VM_LOCKED) { 1283 mlock_vma_page(page); 1284 ret = SWAP_MLOCK; 1285 } 1286 up_read(&vma->vm_mm->mmap_sem); 1287 } 1288 return ret; 1289 } 1290 1291 /* 1292 * objrmap doesn't work for nonlinear VMAs because the assumption that 1293 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1294 * Consequently, given a particular page and its ->index, we cannot locate the 1295 * ptes which are mapping that page without an exhaustive linear search. 1296 * 1297 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1298 * maps the file to which the target page belongs. The ->vm_private_data field 1299 * holds the current cursor into that scan. Successive searches will circulate 1300 * around the vma's virtual address space. 1301 * 1302 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1303 * more scanning pressure is placed against them as well. Eventually pages 1304 * will become fully unmapped and are eligible for eviction. 1305 * 1306 * For very sparsely populated VMAs this is a little inefficient - chances are 1307 * there there won't be many ptes located within the scan cluster. In this case 1308 * maybe we could scan further - to the end of the pte page, perhaps. 1309 * 1310 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1311 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1312 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1313 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1314 */ 1315 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1316 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1317 1318 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1319 struct vm_area_struct *vma, struct page *check_page) 1320 { 1321 struct mm_struct *mm = vma->vm_mm; 1322 pgd_t *pgd; 1323 pud_t *pud; 1324 pmd_t *pmd; 1325 pte_t *pte; 1326 pte_t pteval; 1327 spinlock_t *ptl; 1328 struct page *page; 1329 unsigned long address; 1330 unsigned long end; 1331 int ret = SWAP_AGAIN; 1332 int locked_vma = 0; 1333 1334 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1335 end = address + CLUSTER_SIZE; 1336 if (address < vma->vm_start) 1337 address = vma->vm_start; 1338 if (end > vma->vm_end) 1339 end = vma->vm_end; 1340 1341 pgd = pgd_offset(mm, address); 1342 if (!pgd_present(*pgd)) 1343 return ret; 1344 1345 pud = pud_offset(pgd, address); 1346 if (!pud_present(*pud)) 1347 return ret; 1348 1349 pmd = pmd_offset(pud, address); 1350 if (!pmd_present(*pmd)) 1351 return ret; 1352 1353 /* 1354 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1355 * keep the sem while scanning the cluster for mlocking pages. 1356 */ 1357 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1358 locked_vma = (vma->vm_flags & VM_LOCKED); 1359 if (!locked_vma) 1360 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1361 } 1362 1363 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1364 1365 /* Update high watermark before we lower rss */ 1366 update_hiwater_rss(mm); 1367 1368 for (; address < end; pte++, address += PAGE_SIZE) { 1369 if (!pte_present(*pte)) 1370 continue; 1371 page = vm_normal_page(vma, address, *pte); 1372 BUG_ON(!page || PageAnon(page)); 1373 1374 if (locked_vma) { 1375 mlock_vma_page(page); /* no-op if already mlocked */ 1376 if (page == check_page) 1377 ret = SWAP_MLOCK; 1378 continue; /* don't unmap */ 1379 } 1380 1381 if (ptep_clear_flush_young_notify(vma, address, pte)) 1382 continue; 1383 1384 /* Nuke the page table entry. */ 1385 flush_cache_page(vma, address, pte_pfn(*pte)); 1386 pteval = ptep_clear_flush_notify(vma, address, pte); 1387 1388 /* If nonlinear, store the file page offset in the pte. */ 1389 if (page->index != linear_page_index(vma, address)) 1390 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1391 1392 /* Move the dirty bit to the physical page now the pte is gone. */ 1393 if (pte_dirty(pteval)) 1394 set_page_dirty(page); 1395 1396 page_remove_rmap(page); 1397 page_cache_release(page); 1398 dec_mm_counter(mm, MM_FILEPAGES); 1399 (*mapcount)--; 1400 } 1401 pte_unmap_unlock(pte - 1, ptl); 1402 if (locked_vma) 1403 up_read(&vma->vm_mm->mmap_sem); 1404 return ret; 1405 } 1406 1407 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1408 { 1409 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1410 1411 if (!maybe_stack) 1412 return false; 1413 1414 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1415 VM_STACK_INCOMPLETE_SETUP) 1416 return true; 1417 1418 return false; 1419 } 1420 1421 /** 1422 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1423 * rmap method 1424 * @page: the page to unmap/unlock 1425 * @flags: action and flags 1426 * 1427 * Find all the mappings of a page using the mapping pointer and the vma chains 1428 * contained in the anon_vma struct it points to. 1429 * 1430 * This function is only called from try_to_unmap/try_to_munlock for 1431 * anonymous pages. 1432 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1433 * where the page was found will be held for write. So, we won't recheck 1434 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1435 * 'LOCKED. 1436 */ 1437 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1438 { 1439 struct anon_vma *anon_vma; 1440 struct anon_vma_chain *avc; 1441 int ret = SWAP_AGAIN; 1442 1443 anon_vma = page_lock_anon_vma(page); 1444 if (!anon_vma) 1445 return ret; 1446 1447 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1448 struct vm_area_struct *vma = avc->vma; 1449 unsigned long address; 1450 1451 /* 1452 * During exec, a temporary VMA is setup and later moved. 1453 * The VMA is moved under the anon_vma lock but not the 1454 * page tables leading to a race where migration cannot 1455 * find the migration ptes. Rather than increasing the 1456 * locking requirements of exec(), migration skips 1457 * temporary VMAs until after exec() completes. 1458 */ 1459 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1460 is_vma_temporary_stack(vma)) 1461 continue; 1462 1463 address = vma_address(page, vma); 1464 if (address == -EFAULT) 1465 continue; 1466 ret = try_to_unmap_one(page, vma, address, flags); 1467 if (ret != SWAP_AGAIN || !page_mapped(page)) 1468 break; 1469 } 1470 1471 page_unlock_anon_vma(anon_vma); 1472 return ret; 1473 } 1474 1475 /** 1476 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1477 * @page: the page to unmap/unlock 1478 * @flags: action and flags 1479 * 1480 * Find all the mappings of a page using the mapping pointer and the vma chains 1481 * contained in the address_space struct it points to. 1482 * 1483 * This function is only called from try_to_unmap/try_to_munlock for 1484 * object-based pages. 1485 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1486 * where the page was found will be held for write. So, we won't recheck 1487 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1488 * 'LOCKED. 1489 */ 1490 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1491 { 1492 struct address_space *mapping = page->mapping; 1493 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1494 struct vm_area_struct *vma; 1495 struct prio_tree_iter iter; 1496 int ret = SWAP_AGAIN; 1497 unsigned long cursor; 1498 unsigned long max_nl_cursor = 0; 1499 unsigned long max_nl_size = 0; 1500 unsigned int mapcount; 1501 1502 mutex_lock(&mapping->i_mmap_mutex); 1503 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1504 unsigned long address = vma_address(page, vma); 1505 if (address == -EFAULT) 1506 continue; 1507 ret = try_to_unmap_one(page, vma, address, flags); 1508 if (ret != SWAP_AGAIN || !page_mapped(page)) 1509 goto out; 1510 } 1511 1512 if (list_empty(&mapping->i_mmap_nonlinear)) 1513 goto out; 1514 1515 /* 1516 * We don't bother to try to find the munlocked page in nonlinears. 1517 * It's costly. Instead, later, page reclaim logic may call 1518 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1519 */ 1520 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1521 goto out; 1522 1523 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1524 shared.vm_set.list) { 1525 cursor = (unsigned long) vma->vm_private_data; 1526 if (cursor > max_nl_cursor) 1527 max_nl_cursor = cursor; 1528 cursor = vma->vm_end - vma->vm_start; 1529 if (cursor > max_nl_size) 1530 max_nl_size = cursor; 1531 } 1532 1533 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1534 ret = SWAP_FAIL; 1535 goto out; 1536 } 1537 1538 /* 1539 * We don't try to search for this page in the nonlinear vmas, 1540 * and page_referenced wouldn't have found it anyway. Instead 1541 * just walk the nonlinear vmas trying to age and unmap some. 1542 * The mapcount of the page we came in with is irrelevant, 1543 * but even so use it as a guide to how hard we should try? 1544 */ 1545 mapcount = page_mapcount(page); 1546 if (!mapcount) 1547 goto out; 1548 cond_resched(); 1549 1550 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1551 if (max_nl_cursor == 0) 1552 max_nl_cursor = CLUSTER_SIZE; 1553 1554 do { 1555 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1556 shared.vm_set.list) { 1557 cursor = (unsigned long) vma->vm_private_data; 1558 while ( cursor < max_nl_cursor && 1559 cursor < vma->vm_end - vma->vm_start) { 1560 if (try_to_unmap_cluster(cursor, &mapcount, 1561 vma, page) == SWAP_MLOCK) 1562 ret = SWAP_MLOCK; 1563 cursor += CLUSTER_SIZE; 1564 vma->vm_private_data = (void *) cursor; 1565 if ((int)mapcount <= 0) 1566 goto out; 1567 } 1568 vma->vm_private_data = (void *) max_nl_cursor; 1569 } 1570 cond_resched(); 1571 max_nl_cursor += CLUSTER_SIZE; 1572 } while (max_nl_cursor <= max_nl_size); 1573 1574 /* 1575 * Don't loop forever (perhaps all the remaining pages are 1576 * in locked vmas). Reset cursor on all unreserved nonlinear 1577 * vmas, now forgetting on which ones it had fallen behind. 1578 */ 1579 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1580 vma->vm_private_data = NULL; 1581 out: 1582 mutex_unlock(&mapping->i_mmap_mutex); 1583 return ret; 1584 } 1585 1586 /** 1587 * try_to_unmap - try to remove all page table mappings to a page 1588 * @page: the page to get unmapped 1589 * @flags: action and flags 1590 * 1591 * Tries to remove all the page table entries which are mapping this 1592 * page, used in the pageout path. Caller must hold the page lock. 1593 * Return values are: 1594 * 1595 * SWAP_SUCCESS - we succeeded in removing all mappings 1596 * SWAP_AGAIN - we missed a mapping, try again later 1597 * SWAP_FAIL - the page is unswappable 1598 * SWAP_MLOCK - page is mlocked. 1599 */ 1600 int try_to_unmap(struct page *page, enum ttu_flags flags) 1601 { 1602 int ret; 1603 1604 BUG_ON(!PageLocked(page)); 1605 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1606 1607 if (unlikely(PageKsm(page))) 1608 ret = try_to_unmap_ksm(page, flags); 1609 else if (PageAnon(page)) 1610 ret = try_to_unmap_anon(page, flags); 1611 else 1612 ret = try_to_unmap_file(page, flags); 1613 if (ret != SWAP_MLOCK && !page_mapped(page)) 1614 ret = SWAP_SUCCESS; 1615 return ret; 1616 } 1617 1618 /** 1619 * try_to_munlock - try to munlock a page 1620 * @page: the page to be munlocked 1621 * 1622 * Called from munlock code. Checks all of the VMAs mapping the page 1623 * to make sure nobody else has this page mlocked. The page will be 1624 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1625 * 1626 * Return values are: 1627 * 1628 * SWAP_AGAIN - no vma is holding page mlocked, or, 1629 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1630 * SWAP_FAIL - page cannot be located at present 1631 * SWAP_MLOCK - page is now mlocked. 1632 */ 1633 int try_to_munlock(struct page *page) 1634 { 1635 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1636 1637 if (unlikely(PageKsm(page))) 1638 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1639 else if (PageAnon(page)) 1640 return try_to_unmap_anon(page, TTU_MUNLOCK); 1641 else 1642 return try_to_unmap_file(page, TTU_MUNLOCK); 1643 } 1644 1645 void __put_anon_vma(struct anon_vma *anon_vma) 1646 { 1647 struct anon_vma *root = anon_vma->root; 1648 1649 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1650 anon_vma_free(root); 1651 1652 anon_vma_free(anon_vma); 1653 } 1654 1655 #ifdef CONFIG_MIGRATION 1656 /* 1657 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1658 * Called by migrate.c to remove migration ptes, but might be used more later. 1659 */ 1660 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1661 struct vm_area_struct *, unsigned long, void *), void *arg) 1662 { 1663 struct anon_vma *anon_vma; 1664 struct anon_vma_chain *avc; 1665 int ret = SWAP_AGAIN; 1666 1667 /* 1668 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1669 * because that depends on page_mapped(); but not all its usages 1670 * are holding mmap_sem. Users without mmap_sem are required to 1671 * take a reference count to prevent the anon_vma disappearing 1672 */ 1673 anon_vma = page_anon_vma(page); 1674 if (!anon_vma) 1675 return ret; 1676 anon_vma_lock(anon_vma); 1677 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1678 struct vm_area_struct *vma = avc->vma; 1679 unsigned long address = vma_address(page, vma); 1680 if (address == -EFAULT) 1681 continue; 1682 ret = rmap_one(page, vma, address, arg); 1683 if (ret != SWAP_AGAIN) 1684 break; 1685 } 1686 anon_vma_unlock(anon_vma); 1687 return ret; 1688 } 1689 1690 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1691 struct vm_area_struct *, unsigned long, void *), void *arg) 1692 { 1693 struct address_space *mapping = page->mapping; 1694 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1695 struct vm_area_struct *vma; 1696 struct prio_tree_iter iter; 1697 int ret = SWAP_AGAIN; 1698 1699 if (!mapping) 1700 return ret; 1701 mutex_lock(&mapping->i_mmap_mutex); 1702 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1703 unsigned long address = vma_address(page, vma); 1704 if (address == -EFAULT) 1705 continue; 1706 ret = rmap_one(page, vma, address, arg); 1707 if (ret != SWAP_AGAIN) 1708 break; 1709 } 1710 /* 1711 * No nonlinear handling: being always shared, nonlinear vmas 1712 * never contain migration ptes. Decide what to do about this 1713 * limitation to linear when we need rmap_walk() on nonlinear. 1714 */ 1715 mutex_unlock(&mapping->i_mmap_mutex); 1716 return ret; 1717 } 1718 1719 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1720 struct vm_area_struct *, unsigned long, void *), void *arg) 1721 { 1722 VM_BUG_ON(!PageLocked(page)); 1723 1724 if (unlikely(PageKsm(page))) 1725 return rmap_walk_ksm(page, rmap_one, arg); 1726 else if (PageAnon(page)) 1727 return rmap_walk_anon(page, rmap_one, arg); 1728 else 1729 return rmap_walk_file(page, rmap_one, arg); 1730 } 1731 #endif /* CONFIG_MIGRATION */ 1732 1733 #ifdef CONFIG_HUGETLB_PAGE 1734 /* 1735 * The following three functions are for anonymous (private mapped) hugepages. 1736 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1737 * and no lru code, because we handle hugepages differently from common pages. 1738 */ 1739 static void __hugepage_set_anon_rmap(struct page *page, 1740 struct vm_area_struct *vma, unsigned long address, int exclusive) 1741 { 1742 struct anon_vma *anon_vma = vma->anon_vma; 1743 1744 BUG_ON(!anon_vma); 1745 1746 if (PageAnon(page)) 1747 return; 1748 if (!exclusive) 1749 anon_vma = anon_vma->root; 1750 1751 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1752 page->mapping = (struct address_space *) anon_vma; 1753 page->index = linear_page_index(vma, address); 1754 } 1755 1756 void hugepage_add_anon_rmap(struct page *page, 1757 struct vm_area_struct *vma, unsigned long address) 1758 { 1759 struct anon_vma *anon_vma = vma->anon_vma; 1760 int first; 1761 1762 BUG_ON(!PageLocked(page)); 1763 BUG_ON(!anon_vma); 1764 /* address might be in next vma when migration races vma_adjust */ 1765 first = atomic_inc_and_test(&page->_mapcount); 1766 if (first) 1767 __hugepage_set_anon_rmap(page, vma, address, 0); 1768 } 1769 1770 void hugepage_add_new_anon_rmap(struct page *page, 1771 struct vm_area_struct *vma, unsigned long address) 1772 { 1773 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1774 atomic_set(&page->_mapcount, 0); 1775 __hugepage_set_anon_rmap(page, vma, address, 1); 1776 } 1777 #endif /* CONFIG_HUGETLB_PAGE */ 1778