xref: /linux/mm/rmap.c (revision 02bf6cc72cc2a6258411ddf1649f33a65fc9a06e)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 
66 static inline struct anon_vma *anon_vma_alloc(void)
67 {
68 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
69 }
70 
71 void anon_vma_free(struct anon_vma *anon_vma)
72 {
73 	kmem_cache_free(anon_vma_cachep, anon_vma);
74 }
75 
76 /**
77  * anon_vma_prepare - attach an anon_vma to a memory region
78  * @vma: the memory region in question
79  *
80  * This makes sure the memory mapping described by 'vma' has
81  * an 'anon_vma' attached to it, so that we can associate the
82  * anonymous pages mapped into it with that anon_vma.
83  *
84  * The common case will be that we already have one, but if
85  * if not we either need to find an adjacent mapping that we
86  * can re-use the anon_vma from (very common when the only
87  * reason for splitting a vma has been mprotect()), or we
88  * allocate a new one.
89  *
90  * Anon-vma allocations are very subtle, because we may have
91  * optimistically looked up an anon_vma in page_lock_anon_vma()
92  * and that may actually touch the spinlock even in the newly
93  * allocated vma (it depends on RCU to make sure that the
94  * anon_vma isn't actually destroyed).
95  *
96  * As a result, we need to do proper anon_vma locking even
97  * for the new allocation. At the same time, we do not want
98  * to do any locking for the common case of already having
99  * an anon_vma.
100  *
101  * This must be called with the mmap_sem held for reading.
102  */
103 int anon_vma_prepare(struct vm_area_struct *vma)
104 {
105 	struct anon_vma *anon_vma = vma->anon_vma;
106 
107 	might_sleep();
108 	if (unlikely(!anon_vma)) {
109 		struct mm_struct *mm = vma->vm_mm;
110 		struct anon_vma *allocated;
111 
112 		anon_vma = find_mergeable_anon_vma(vma);
113 		allocated = NULL;
114 		if (!anon_vma) {
115 			anon_vma = anon_vma_alloc();
116 			if (unlikely(!anon_vma))
117 				return -ENOMEM;
118 			allocated = anon_vma;
119 		}
120 		spin_lock(&anon_vma->lock);
121 
122 		/* page_table_lock to protect against threads */
123 		spin_lock(&mm->page_table_lock);
124 		if (likely(!vma->anon_vma)) {
125 			vma->anon_vma = anon_vma;
126 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
127 			allocated = NULL;
128 		}
129 		spin_unlock(&mm->page_table_lock);
130 
131 		spin_unlock(&anon_vma->lock);
132 		if (unlikely(allocated))
133 			anon_vma_free(allocated);
134 	}
135 	return 0;
136 }
137 
138 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
139 {
140 	BUG_ON(vma->anon_vma != next->anon_vma);
141 	list_del(&next->anon_vma_node);
142 }
143 
144 void __anon_vma_link(struct vm_area_struct *vma)
145 {
146 	struct anon_vma *anon_vma = vma->anon_vma;
147 
148 	if (anon_vma)
149 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
150 }
151 
152 void anon_vma_link(struct vm_area_struct *vma)
153 {
154 	struct anon_vma *anon_vma = vma->anon_vma;
155 
156 	if (anon_vma) {
157 		spin_lock(&anon_vma->lock);
158 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
159 		spin_unlock(&anon_vma->lock);
160 	}
161 }
162 
163 void anon_vma_unlink(struct vm_area_struct *vma)
164 {
165 	struct anon_vma *anon_vma = vma->anon_vma;
166 	int empty;
167 
168 	if (!anon_vma)
169 		return;
170 
171 	spin_lock(&anon_vma->lock);
172 	list_del(&vma->anon_vma_node);
173 
174 	/* We must garbage collect the anon_vma if it's empty */
175 	empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
176 	spin_unlock(&anon_vma->lock);
177 
178 	if (empty)
179 		anon_vma_free(anon_vma);
180 }
181 
182 static void anon_vma_ctor(void *data)
183 {
184 	struct anon_vma *anon_vma = data;
185 
186 	spin_lock_init(&anon_vma->lock);
187 	ksm_refcount_init(anon_vma);
188 	INIT_LIST_HEAD(&anon_vma->head);
189 }
190 
191 void __init anon_vma_init(void)
192 {
193 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
194 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
195 }
196 
197 /*
198  * Getting a lock on a stable anon_vma from a page off the LRU is
199  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
200  */
201 struct anon_vma *page_lock_anon_vma(struct page *page)
202 {
203 	struct anon_vma *anon_vma;
204 	unsigned long anon_mapping;
205 
206 	rcu_read_lock();
207 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
208 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
209 		goto out;
210 	if (!page_mapped(page))
211 		goto out;
212 
213 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
214 	spin_lock(&anon_vma->lock);
215 	return anon_vma;
216 out:
217 	rcu_read_unlock();
218 	return NULL;
219 }
220 
221 void page_unlock_anon_vma(struct anon_vma *anon_vma)
222 {
223 	spin_unlock(&anon_vma->lock);
224 	rcu_read_unlock();
225 }
226 
227 /*
228  * At what user virtual address is page expected in @vma?
229  * Returns virtual address or -EFAULT if page's index/offset is not
230  * within the range mapped the @vma.
231  */
232 static inline unsigned long
233 vma_address(struct page *page, struct vm_area_struct *vma)
234 {
235 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
236 	unsigned long address;
237 
238 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
239 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
240 		/* page should be within @vma mapping range */
241 		return -EFAULT;
242 	}
243 	return address;
244 }
245 
246 /*
247  * At what user virtual address is page expected in vma?
248  * checking that the page matches the vma.
249  */
250 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
251 {
252 	if (PageAnon(page)) {
253 		if (vma->anon_vma != page_anon_vma(page))
254 			return -EFAULT;
255 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
256 		if (!vma->vm_file ||
257 		    vma->vm_file->f_mapping != page->mapping)
258 			return -EFAULT;
259 	} else
260 		return -EFAULT;
261 	return vma_address(page, vma);
262 }
263 
264 /*
265  * Check that @page is mapped at @address into @mm.
266  *
267  * If @sync is false, page_check_address may perform a racy check to avoid
268  * the page table lock when the pte is not present (helpful when reclaiming
269  * highly shared pages).
270  *
271  * On success returns with pte mapped and locked.
272  */
273 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
274 			  unsigned long address, spinlock_t **ptlp, int sync)
275 {
276 	pgd_t *pgd;
277 	pud_t *pud;
278 	pmd_t *pmd;
279 	pte_t *pte;
280 	spinlock_t *ptl;
281 
282 	pgd = pgd_offset(mm, address);
283 	if (!pgd_present(*pgd))
284 		return NULL;
285 
286 	pud = pud_offset(pgd, address);
287 	if (!pud_present(*pud))
288 		return NULL;
289 
290 	pmd = pmd_offset(pud, address);
291 	if (!pmd_present(*pmd))
292 		return NULL;
293 
294 	pte = pte_offset_map(pmd, address);
295 	/* Make a quick check before getting the lock */
296 	if (!sync && !pte_present(*pte)) {
297 		pte_unmap(pte);
298 		return NULL;
299 	}
300 
301 	ptl = pte_lockptr(mm, pmd);
302 	spin_lock(ptl);
303 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
304 		*ptlp = ptl;
305 		return pte;
306 	}
307 	pte_unmap_unlock(pte, ptl);
308 	return NULL;
309 }
310 
311 /**
312  * page_mapped_in_vma - check whether a page is really mapped in a VMA
313  * @page: the page to test
314  * @vma: the VMA to test
315  *
316  * Returns 1 if the page is mapped into the page tables of the VMA, 0
317  * if the page is not mapped into the page tables of this VMA.  Only
318  * valid for normal file or anonymous VMAs.
319  */
320 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
321 {
322 	unsigned long address;
323 	pte_t *pte;
324 	spinlock_t *ptl;
325 
326 	address = vma_address(page, vma);
327 	if (address == -EFAULT)		/* out of vma range */
328 		return 0;
329 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
330 	if (!pte)			/* the page is not in this mm */
331 		return 0;
332 	pte_unmap_unlock(pte, ptl);
333 
334 	return 1;
335 }
336 
337 /*
338  * Subfunctions of page_referenced: page_referenced_one called
339  * repeatedly from either page_referenced_anon or page_referenced_file.
340  */
341 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
342 			unsigned long address, unsigned int *mapcount,
343 			unsigned long *vm_flags)
344 {
345 	struct mm_struct *mm = vma->vm_mm;
346 	pte_t *pte;
347 	spinlock_t *ptl;
348 	int referenced = 0;
349 
350 	pte = page_check_address(page, mm, address, &ptl, 0);
351 	if (!pte)
352 		goto out;
353 
354 	/*
355 	 * Don't want to elevate referenced for mlocked page that gets this far,
356 	 * in order that it progresses to try_to_unmap and is moved to the
357 	 * unevictable list.
358 	 */
359 	if (vma->vm_flags & VM_LOCKED) {
360 		*mapcount = 1;	/* break early from loop */
361 		*vm_flags |= VM_LOCKED;
362 		goto out_unmap;
363 	}
364 
365 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
366 		/*
367 		 * Don't treat a reference through a sequentially read
368 		 * mapping as such.  If the page has been used in
369 		 * another mapping, we will catch it; if this other
370 		 * mapping is already gone, the unmap path will have
371 		 * set PG_referenced or activated the page.
372 		 */
373 		if (likely(!VM_SequentialReadHint(vma)))
374 			referenced++;
375 	}
376 
377 	/* Pretend the page is referenced if the task has the
378 	   swap token and is in the middle of a page fault. */
379 	if (mm != current->mm && has_swap_token(mm) &&
380 			rwsem_is_locked(&mm->mmap_sem))
381 		referenced++;
382 
383 out_unmap:
384 	(*mapcount)--;
385 	pte_unmap_unlock(pte, ptl);
386 
387 	if (referenced)
388 		*vm_flags |= vma->vm_flags;
389 out:
390 	return referenced;
391 }
392 
393 static int page_referenced_anon(struct page *page,
394 				struct mem_cgroup *mem_cont,
395 				unsigned long *vm_flags)
396 {
397 	unsigned int mapcount;
398 	struct anon_vma *anon_vma;
399 	struct vm_area_struct *vma;
400 	int referenced = 0;
401 
402 	anon_vma = page_lock_anon_vma(page);
403 	if (!anon_vma)
404 		return referenced;
405 
406 	mapcount = page_mapcount(page);
407 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
408 		unsigned long address = vma_address(page, vma);
409 		if (address == -EFAULT)
410 			continue;
411 		/*
412 		 * If we are reclaiming on behalf of a cgroup, skip
413 		 * counting on behalf of references from different
414 		 * cgroups
415 		 */
416 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
417 			continue;
418 		referenced += page_referenced_one(page, vma, address,
419 						  &mapcount, vm_flags);
420 		if (!mapcount)
421 			break;
422 	}
423 
424 	page_unlock_anon_vma(anon_vma);
425 	return referenced;
426 }
427 
428 /**
429  * page_referenced_file - referenced check for object-based rmap
430  * @page: the page we're checking references on.
431  * @mem_cont: target memory controller
432  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
433  *
434  * For an object-based mapped page, find all the places it is mapped and
435  * check/clear the referenced flag.  This is done by following the page->mapping
436  * pointer, then walking the chain of vmas it holds.  It returns the number
437  * of references it found.
438  *
439  * This function is only called from page_referenced for object-based pages.
440  */
441 static int page_referenced_file(struct page *page,
442 				struct mem_cgroup *mem_cont,
443 				unsigned long *vm_flags)
444 {
445 	unsigned int mapcount;
446 	struct address_space *mapping = page->mapping;
447 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
448 	struct vm_area_struct *vma;
449 	struct prio_tree_iter iter;
450 	int referenced = 0;
451 
452 	/*
453 	 * The caller's checks on page->mapping and !PageAnon have made
454 	 * sure that this is a file page: the check for page->mapping
455 	 * excludes the case just before it gets set on an anon page.
456 	 */
457 	BUG_ON(PageAnon(page));
458 
459 	/*
460 	 * The page lock not only makes sure that page->mapping cannot
461 	 * suddenly be NULLified by truncation, it makes sure that the
462 	 * structure at mapping cannot be freed and reused yet,
463 	 * so we can safely take mapping->i_mmap_lock.
464 	 */
465 	BUG_ON(!PageLocked(page));
466 
467 	spin_lock(&mapping->i_mmap_lock);
468 
469 	/*
470 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
471 	 * is more likely to be accurate if we note it after spinning.
472 	 */
473 	mapcount = page_mapcount(page);
474 
475 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
476 		unsigned long address = vma_address(page, vma);
477 		if (address == -EFAULT)
478 			continue;
479 		/*
480 		 * If we are reclaiming on behalf of a cgroup, skip
481 		 * counting on behalf of references from different
482 		 * cgroups
483 		 */
484 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
485 			continue;
486 		referenced += page_referenced_one(page, vma, address,
487 						  &mapcount, vm_flags);
488 		if (!mapcount)
489 			break;
490 	}
491 
492 	spin_unlock(&mapping->i_mmap_lock);
493 	return referenced;
494 }
495 
496 /**
497  * page_referenced - test if the page was referenced
498  * @page: the page to test
499  * @is_locked: caller holds lock on the page
500  * @mem_cont: target memory controller
501  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
502  *
503  * Quick test_and_clear_referenced for all mappings to a page,
504  * returns the number of ptes which referenced the page.
505  */
506 int page_referenced(struct page *page,
507 		    int is_locked,
508 		    struct mem_cgroup *mem_cont,
509 		    unsigned long *vm_flags)
510 {
511 	int referenced = 0;
512 	int we_locked = 0;
513 
514 	if (TestClearPageReferenced(page))
515 		referenced++;
516 
517 	*vm_flags = 0;
518 	if (page_mapped(page) && page_rmapping(page)) {
519 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
520 			we_locked = trylock_page(page);
521 			if (!we_locked) {
522 				referenced++;
523 				goto out;
524 			}
525 		}
526 		if (unlikely(PageKsm(page)))
527 			referenced += page_referenced_ksm(page, mem_cont,
528 								vm_flags);
529 		else if (PageAnon(page))
530 			referenced += page_referenced_anon(page, mem_cont,
531 								vm_flags);
532 		else if (page->mapping)
533 			referenced += page_referenced_file(page, mem_cont,
534 								vm_flags);
535 		if (we_locked)
536 			unlock_page(page);
537 	}
538 out:
539 	if (page_test_and_clear_young(page))
540 		referenced++;
541 
542 	return referenced;
543 }
544 
545 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
546 			    unsigned long address)
547 {
548 	struct mm_struct *mm = vma->vm_mm;
549 	pte_t *pte;
550 	spinlock_t *ptl;
551 	int ret = 0;
552 
553 	pte = page_check_address(page, mm, address, &ptl, 1);
554 	if (!pte)
555 		goto out;
556 
557 	if (pte_dirty(*pte) || pte_write(*pte)) {
558 		pte_t entry;
559 
560 		flush_cache_page(vma, address, pte_pfn(*pte));
561 		entry = ptep_clear_flush_notify(vma, address, pte);
562 		entry = pte_wrprotect(entry);
563 		entry = pte_mkclean(entry);
564 		set_pte_at(mm, address, pte, entry);
565 		ret = 1;
566 	}
567 
568 	pte_unmap_unlock(pte, ptl);
569 out:
570 	return ret;
571 }
572 
573 static int page_mkclean_file(struct address_space *mapping, struct page *page)
574 {
575 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
576 	struct vm_area_struct *vma;
577 	struct prio_tree_iter iter;
578 	int ret = 0;
579 
580 	BUG_ON(PageAnon(page));
581 
582 	spin_lock(&mapping->i_mmap_lock);
583 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
584 		if (vma->vm_flags & VM_SHARED) {
585 			unsigned long address = vma_address(page, vma);
586 			if (address == -EFAULT)
587 				continue;
588 			ret += page_mkclean_one(page, vma, address);
589 		}
590 	}
591 	spin_unlock(&mapping->i_mmap_lock);
592 	return ret;
593 }
594 
595 int page_mkclean(struct page *page)
596 {
597 	int ret = 0;
598 
599 	BUG_ON(!PageLocked(page));
600 
601 	if (page_mapped(page)) {
602 		struct address_space *mapping = page_mapping(page);
603 		if (mapping) {
604 			ret = page_mkclean_file(mapping, page);
605 			if (page_test_dirty(page)) {
606 				page_clear_dirty(page);
607 				ret = 1;
608 			}
609 		}
610 	}
611 
612 	return ret;
613 }
614 EXPORT_SYMBOL_GPL(page_mkclean);
615 
616 /**
617  * __page_set_anon_rmap - setup new anonymous rmap
618  * @page:	the page to add the mapping to
619  * @vma:	the vm area in which the mapping is added
620  * @address:	the user virtual address mapped
621  */
622 static void __page_set_anon_rmap(struct page *page,
623 	struct vm_area_struct *vma, unsigned long address)
624 {
625 	struct anon_vma *anon_vma = vma->anon_vma;
626 
627 	BUG_ON(!anon_vma);
628 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
629 	page->mapping = (struct address_space *) anon_vma;
630 	page->index = linear_page_index(vma, address);
631 }
632 
633 /**
634  * __page_check_anon_rmap - sanity check anonymous rmap addition
635  * @page:	the page to add the mapping to
636  * @vma:	the vm area in which the mapping is added
637  * @address:	the user virtual address mapped
638  */
639 static void __page_check_anon_rmap(struct page *page,
640 	struct vm_area_struct *vma, unsigned long address)
641 {
642 #ifdef CONFIG_DEBUG_VM
643 	/*
644 	 * The page's anon-rmap details (mapping and index) are guaranteed to
645 	 * be set up correctly at this point.
646 	 *
647 	 * We have exclusion against page_add_anon_rmap because the caller
648 	 * always holds the page locked, except if called from page_dup_rmap,
649 	 * in which case the page is already known to be setup.
650 	 *
651 	 * We have exclusion against page_add_new_anon_rmap because those pages
652 	 * are initially only visible via the pagetables, and the pte is locked
653 	 * over the call to page_add_new_anon_rmap.
654 	 */
655 	struct anon_vma *anon_vma = vma->anon_vma;
656 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
657 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
658 	BUG_ON(page->index != linear_page_index(vma, address));
659 #endif
660 }
661 
662 /**
663  * page_add_anon_rmap - add pte mapping to an anonymous page
664  * @page:	the page to add the mapping to
665  * @vma:	the vm area in which the mapping is added
666  * @address:	the user virtual address mapped
667  *
668  * The caller needs to hold the pte lock, and the page must be locked in
669  * the anon_vma case: to serialize mapping,index checking after setting,
670  * and to ensure that PageAnon is not being upgraded racily to PageKsm
671  * (but PageKsm is never downgraded to PageAnon).
672  */
673 void page_add_anon_rmap(struct page *page,
674 	struct vm_area_struct *vma, unsigned long address)
675 {
676 	int first = atomic_inc_and_test(&page->_mapcount);
677 	if (first)
678 		__inc_zone_page_state(page, NR_ANON_PAGES);
679 	if (unlikely(PageKsm(page)))
680 		return;
681 
682 	VM_BUG_ON(!PageLocked(page));
683 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
684 	if (first)
685 		__page_set_anon_rmap(page, vma, address);
686 	else
687 		__page_check_anon_rmap(page, vma, address);
688 }
689 
690 /**
691  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
692  * @page:	the page to add the mapping to
693  * @vma:	the vm area in which the mapping is added
694  * @address:	the user virtual address mapped
695  *
696  * Same as page_add_anon_rmap but must only be called on *new* pages.
697  * This means the inc-and-test can be bypassed.
698  * Page does not have to be locked.
699  */
700 void page_add_new_anon_rmap(struct page *page,
701 	struct vm_area_struct *vma, unsigned long address)
702 {
703 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
704 	SetPageSwapBacked(page);
705 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
706 	__inc_zone_page_state(page, NR_ANON_PAGES);
707 	__page_set_anon_rmap(page, vma, address);
708 	if (page_evictable(page, vma))
709 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
710 	else
711 		add_page_to_unevictable_list(page);
712 }
713 
714 /**
715  * page_add_file_rmap - add pte mapping to a file page
716  * @page: the page to add the mapping to
717  *
718  * The caller needs to hold the pte lock.
719  */
720 void page_add_file_rmap(struct page *page)
721 {
722 	if (atomic_inc_and_test(&page->_mapcount)) {
723 		__inc_zone_page_state(page, NR_FILE_MAPPED);
724 		mem_cgroup_update_file_mapped(page, 1);
725 	}
726 }
727 
728 /**
729  * page_remove_rmap - take down pte mapping from a page
730  * @page: page to remove mapping from
731  *
732  * The caller needs to hold the pte lock.
733  */
734 void page_remove_rmap(struct page *page)
735 {
736 	/* page still mapped by someone else? */
737 	if (!atomic_add_negative(-1, &page->_mapcount))
738 		return;
739 
740 	/*
741 	 * Now that the last pte has gone, s390 must transfer dirty
742 	 * flag from storage key to struct page.  We can usually skip
743 	 * this if the page is anon, so about to be freed; but perhaps
744 	 * not if it's in swapcache - there might be another pte slot
745 	 * containing the swap entry, but page not yet written to swap.
746 	 */
747 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
748 		page_clear_dirty(page);
749 		set_page_dirty(page);
750 	}
751 	if (PageAnon(page)) {
752 		mem_cgroup_uncharge_page(page);
753 		__dec_zone_page_state(page, NR_ANON_PAGES);
754 	} else {
755 		__dec_zone_page_state(page, NR_FILE_MAPPED);
756 		mem_cgroup_update_file_mapped(page, -1);
757 	}
758 	/*
759 	 * It would be tidy to reset the PageAnon mapping here,
760 	 * but that might overwrite a racing page_add_anon_rmap
761 	 * which increments mapcount after us but sets mapping
762 	 * before us: so leave the reset to free_hot_cold_page,
763 	 * and remember that it's only reliable while mapped.
764 	 * Leaving it set also helps swapoff to reinstate ptes
765 	 * faster for those pages still in swapcache.
766 	 */
767 }
768 
769 /*
770  * Subfunctions of try_to_unmap: try_to_unmap_one called
771  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
772  */
773 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
774 		     unsigned long address, enum ttu_flags flags)
775 {
776 	struct mm_struct *mm = vma->vm_mm;
777 	pte_t *pte;
778 	pte_t pteval;
779 	spinlock_t *ptl;
780 	int ret = SWAP_AGAIN;
781 
782 	pte = page_check_address(page, mm, address, &ptl, 0);
783 	if (!pte)
784 		goto out;
785 
786 	/*
787 	 * If the page is mlock()d, we cannot swap it out.
788 	 * If it's recently referenced (perhaps page_referenced
789 	 * skipped over this mm) then we should reactivate it.
790 	 */
791 	if (!(flags & TTU_IGNORE_MLOCK)) {
792 		if (vma->vm_flags & VM_LOCKED)
793 			goto out_mlock;
794 
795 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
796 			goto out_unmap;
797 	}
798 	if (!(flags & TTU_IGNORE_ACCESS)) {
799 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
800 			ret = SWAP_FAIL;
801 			goto out_unmap;
802 		}
803   	}
804 
805 	/* Nuke the page table entry. */
806 	flush_cache_page(vma, address, page_to_pfn(page));
807 	pteval = ptep_clear_flush_notify(vma, address, pte);
808 
809 	/* Move the dirty bit to the physical page now the pte is gone. */
810 	if (pte_dirty(pteval))
811 		set_page_dirty(page);
812 
813 	/* Update high watermark before we lower rss */
814 	update_hiwater_rss(mm);
815 
816 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
817 		if (PageAnon(page))
818 			dec_mm_counter(mm, anon_rss);
819 		else
820 			dec_mm_counter(mm, file_rss);
821 		set_pte_at(mm, address, pte,
822 				swp_entry_to_pte(make_hwpoison_entry(page)));
823 	} else if (PageAnon(page)) {
824 		swp_entry_t entry = { .val = page_private(page) };
825 
826 		if (PageSwapCache(page)) {
827 			/*
828 			 * Store the swap location in the pte.
829 			 * See handle_pte_fault() ...
830 			 */
831 			if (swap_duplicate(entry) < 0) {
832 				set_pte_at(mm, address, pte, pteval);
833 				ret = SWAP_FAIL;
834 				goto out_unmap;
835 			}
836 			if (list_empty(&mm->mmlist)) {
837 				spin_lock(&mmlist_lock);
838 				if (list_empty(&mm->mmlist))
839 					list_add(&mm->mmlist, &init_mm.mmlist);
840 				spin_unlock(&mmlist_lock);
841 			}
842 			dec_mm_counter(mm, anon_rss);
843 		} else if (PAGE_MIGRATION) {
844 			/*
845 			 * Store the pfn of the page in a special migration
846 			 * pte. do_swap_page() will wait until the migration
847 			 * pte is removed and then restart fault handling.
848 			 */
849 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
850 			entry = make_migration_entry(page, pte_write(pteval));
851 		}
852 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
853 		BUG_ON(pte_file(*pte));
854 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
855 		/* Establish migration entry for a file page */
856 		swp_entry_t entry;
857 		entry = make_migration_entry(page, pte_write(pteval));
858 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
859 	} else
860 		dec_mm_counter(mm, file_rss);
861 
862 	page_remove_rmap(page);
863 	page_cache_release(page);
864 
865 out_unmap:
866 	pte_unmap_unlock(pte, ptl);
867 out:
868 	return ret;
869 
870 out_mlock:
871 	pte_unmap_unlock(pte, ptl);
872 
873 
874 	/*
875 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
876 	 * unstable result and race. Plus, We can't wait here because
877 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
878 	 * if trylock failed, the page remain in evictable lru and later
879 	 * vmscan could retry to move the page to unevictable lru if the
880 	 * page is actually mlocked.
881 	 */
882 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
883 		if (vma->vm_flags & VM_LOCKED) {
884 			mlock_vma_page(page);
885 			ret = SWAP_MLOCK;
886 		}
887 		up_read(&vma->vm_mm->mmap_sem);
888 	}
889 	return ret;
890 }
891 
892 /*
893  * objrmap doesn't work for nonlinear VMAs because the assumption that
894  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
895  * Consequently, given a particular page and its ->index, we cannot locate the
896  * ptes which are mapping that page without an exhaustive linear search.
897  *
898  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
899  * maps the file to which the target page belongs.  The ->vm_private_data field
900  * holds the current cursor into that scan.  Successive searches will circulate
901  * around the vma's virtual address space.
902  *
903  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
904  * more scanning pressure is placed against them as well.   Eventually pages
905  * will become fully unmapped and are eligible for eviction.
906  *
907  * For very sparsely populated VMAs this is a little inefficient - chances are
908  * there there won't be many ptes located within the scan cluster.  In this case
909  * maybe we could scan further - to the end of the pte page, perhaps.
910  *
911  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
912  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
913  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
914  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
915  */
916 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
917 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
918 
919 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
920 		struct vm_area_struct *vma, struct page *check_page)
921 {
922 	struct mm_struct *mm = vma->vm_mm;
923 	pgd_t *pgd;
924 	pud_t *pud;
925 	pmd_t *pmd;
926 	pte_t *pte;
927 	pte_t pteval;
928 	spinlock_t *ptl;
929 	struct page *page;
930 	unsigned long address;
931 	unsigned long end;
932 	int ret = SWAP_AGAIN;
933 	int locked_vma = 0;
934 
935 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
936 	end = address + CLUSTER_SIZE;
937 	if (address < vma->vm_start)
938 		address = vma->vm_start;
939 	if (end > vma->vm_end)
940 		end = vma->vm_end;
941 
942 	pgd = pgd_offset(mm, address);
943 	if (!pgd_present(*pgd))
944 		return ret;
945 
946 	pud = pud_offset(pgd, address);
947 	if (!pud_present(*pud))
948 		return ret;
949 
950 	pmd = pmd_offset(pud, address);
951 	if (!pmd_present(*pmd))
952 		return ret;
953 
954 	/*
955 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
956 	 * keep the sem while scanning the cluster for mlocking pages.
957 	 */
958 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
959 		locked_vma = (vma->vm_flags & VM_LOCKED);
960 		if (!locked_vma)
961 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
962 	}
963 
964 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
965 
966 	/* Update high watermark before we lower rss */
967 	update_hiwater_rss(mm);
968 
969 	for (; address < end; pte++, address += PAGE_SIZE) {
970 		if (!pte_present(*pte))
971 			continue;
972 		page = vm_normal_page(vma, address, *pte);
973 		BUG_ON(!page || PageAnon(page));
974 
975 		if (locked_vma) {
976 			mlock_vma_page(page);   /* no-op if already mlocked */
977 			if (page == check_page)
978 				ret = SWAP_MLOCK;
979 			continue;	/* don't unmap */
980 		}
981 
982 		if (ptep_clear_flush_young_notify(vma, address, pte))
983 			continue;
984 
985 		/* Nuke the page table entry. */
986 		flush_cache_page(vma, address, pte_pfn(*pte));
987 		pteval = ptep_clear_flush_notify(vma, address, pte);
988 
989 		/* If nonlinear, store the file page offset in the pte. */
990 		if (page->index != linear_page_index(vma, address))
991 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
992 
993 		/* Move the dirty bit to the physical page now the pte is gone. */
994 		if (pte_dirty(pteval))
995 			set_page_dirty(page);
996 
997 		page_remove_rmap(page);
998 		page_cache_release(page);
999 		dec_mm_counter(mm, file_rss);
1000 		(*mapcount)--;
1001 	}
1002 	pte_unmap_unlock(pte - 1, ptl);
1003 	if (locked_vma)
1004 		up_read(&vma->vm_mm->mmap_sem);
1005 	return ret;
1006 }
1007 
1008 /**
1009  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1010  * rmap method
1011  * @page: the page to unmap/unlock
1012  * @flags: action and flags
1013  *
1014  * Find all the mappings of a page using the mapping pointer and the vma chains
1015  * contained in the anon_vma struct it points to.
1016  *
1017  * This function is only called from try_to_unmap/try_to_munlock for
1018  * anonymous pages.
1019  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1020  * where the page was found will be held for write.  So, we won't recheck
1021  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1022  * 'LOCKED.
1023  */
1024 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1025 {
1026 	struct anon_vma *anon_vma;
1027 	struct vm_area_struct *vma;
1028 	int ret = SWAP_AGAIN;
1029 
1030 	anon_vma = page_lock_anon_vma(page);
1031 	if (!anon_vma)
1032 		return ret;
1033 
1034 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1035 		unsigned long address = vma_address(page, vma);
1036 		if (address == -EFAULT)
1037 			continue;
1038 		ret = try_to_unmap_one(page, vma, address, flags);
1039 		if (ret != SWAP_AGAIN || !page_mapped(page))
1040 			break;
1041 	}
1042 
1043 	page_unlock_anon_vma(anon_vma);
1044 	return ret;
1045 }
1046 
1047 /**
1048  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1049  * @page: the page to unmap/unlock
1050  * @flags: action and flags
1051  *
1052  * Find all the mappings of a page using the mapping pointer and the vma chains
1053  * contained in the address_space struct it points to.
1054  *
1055  * This function is only called from try_to_unmap/try_to_munlock for
1056  * object-based pages.
1057  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1058  * where the page was found will be held for write.  So, we won't recheck
1059  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1060  * 'LOCKED.
1061  */
1062 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1063 {
1064 	struct address_space *mapping = page->mapping;
1065 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1066 	struct vm_area_struct *vma;
1067 	struct prio_tree_iter iter;
1068 	int ret = SWAP_AGAIN;
1069 	unsigned long cursor;
1070 	unsigned long max_nl_cursor = 0;
1071 	unsigned long max_nl_size = 0;
1072 	unsigned int mapcount;
1073 
1074 	spin_lock(&mapping->i_mmap_lock);
1075 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1076 		unsigned long address = vma_address(page, vma);
1077 		if (address == -EFAULT)
1078 			continue;
1079 		ret = try_to_unmap_one(page, vma, address, flags);
1080 		if (ret != SWAP_AGAIN || !page_mapped(page))
1081 			goto out;
1082 	}
1083 
1084 	if (list_empty(&mapping->i_mmap_nonlinear))
1085 		goto out;
1086 
1087 	/*
1088 	 * We don't bother to try to find the munlocked page in nonlinears.
1089 	 * It's costly. Instead, later, page reclaim logic may call
1090 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1091 	 */
1092 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1093 		goto out;
1094 
1095 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1096 						shared.vm_set.list) {
1097 		cursor = (unsigned long) vma->vm_private_data;
1098 		if (cursor > max_nl_cursor)
1099 			max_nl_cursor = cursor;
1100 		cursor = vma->vm_end - vma->vm_start;
1101 		if (cursor > max_nl_size)
1102 			max_nl_size = cursor;
1103 	}
1104 
1105 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1106 		ret = SWAP_FAIL;
1107 		goto out;
1108 	}
1109 
1110 	/*
1111 	 * We don't try to search for this page in the nonlinear vmas,
1112 	 * and page_referenced wouldn't have found it anyway.  Instead
1113 	 * just walk the nonlinear vmas trying to age and unmap some.
1114 	 * The mapcount of the page we came in with is irrelevant,
1115 	 * but even so use it as a guide to how hard we should try?
1116 	 */
1117 	mapcount = page_mapcount(page);
1118 	if (!mapcount)
1119 		goto out;
1120 	cond_resched_lock(&mapping->i_mmap_lock);
1121 
1122 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1123 	if (max_nl_cursor == 0)
1124 		max_nl_cursor = CLUSTER_SIZE;
1125 
1126 	do {
1127 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1128 						shared.vm_set.list) {
1129 			cursor = (unsigned long) vma->vm_private_data;
1130 			while ( cursor < max_nl_cursor &&
1131 				cursor < vma->vm_end - vma->vm_start) {
1132 				if (try_to_unmap_cluster(cursor, &mapcount,
1133 						vma, page) == SWAP_MLOCK)
1134 					ret = SWAP_MLOCK;
1135 				cursor += CLUSTER_SIZE;
1136 				vma->vm_private_data = (void *) cursor;
1137 				if ((int)mapcount <= 0)
1138 					goto out;
1139 			}
1140 			vma->vm_private_data = (void *) max_nl_cursor;
1141 		}
1142 		cond_resched_lock(&mapping->i_mmap_lock);
1143 		max_nl_cursor += CLUSTER_SIZE;
1144 	} while (max_nl_cursor <= max_nl_size);
1145 
1146 	/*
1147 	 * Don't loop forever (perhaps all the remaining pages are
1148 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1149 	 * vmas, now forgetting on which ones it had fallen behind.
1150 	 */
1151 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1152 		vma->vm_private_data = NULL;
1153 out:
1154 	spin_unlock(&mapping->i_mmap_lock);
1155 	return ret;
1156 }
1157 
1158 /**
1159  * try_to_unmap - try to remove all page table mappings to a page
1160  * @page: the page to get unmapped
1161  * @flags: action and flags
1162  *
1163  * Tries to remove all the page table entries which are mapping this
1164  * page, used in the pageout path.  Caller must hold the page lock.
1165  * Return values are:
1166  *
1167  * SWAP_SUCCESS	- we succeeded in removing all mappings
1168  * SWAP_AGAIN	- we missed a mapping, try again later
1169  * SWAP_FAIL	- the page is unswappable
1170  * SWAP_MLOCK	- page is mlocked.
1171  */
1172 int try_to_unmap(struct page *page, enum ttu_flags flags)
1173 {
1174 	int ret;
1175 
1176 	BUG_ON(!PageLocked(page));
1177 
1178 	if (unlikely(PageKsm(page)))
1179 		ret = try_to_unmap_ksm(page, flags);
1180 	else if (PageAnon(page))
1181 		ret = try_to_unmap_anon(page, flags);
1182 	else
1183 		ret = try_to_unmap_file(page, flags);
1184 	if (ret != SWAP_MLOCK && !page_mapped(page))
1185 		ret = SWAP_SUCCESS;
1186 	return ret;
1187 }
1188 
1189 /**
1190  * try_to_munlock - try to munlock a page
1191  * @page: the page to be munlocked
1192  *
1193  * Called from munlock code.  Checks all of the VMAs mapping the page
1194  * to make sure nobody else has this page mlocked. The page will be
1195  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1196  *
1197  * Return values are:
1198  *
1199  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1200  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1201  * SWAP_FAIL	- page cannot be located at present
1202  * SWAP_MLOCK	- page is now mlocked.
1203  */
1204 int try_to_munlock(struct page *page)
1205 {
1206 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1207 
1208 	if (unlikely(PageKsm(page)))
1209 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1210 	else if (PageAnon(page))
1211 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1212 	else
1213 		return try_to_unmap_file(page, TTU_MUNLOCK);
1214 }
1215 
1216 #ifdef CONFIG_MIGRATION
1217 /*
1218  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1219  * Called by migrate.c to remove migration ptes, but might be used more later.
1220  */
1221 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1222 		struct vm_area_struct *, unsigned long, void *), void *arg)
1223 {
1224 	struct anon_vma *anon_vma;
1225 	struct vm_area_struct *vma;
1226 	int ret = SWAP_AGAIN;
1227 
1228 	/*
1229 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1230 	 * because that depends on page_mapped(); but not all its usages
1231 	 * are holding mmap_sem, which also gave the necessary guarantee
1232 	 * (that this anon_vma's slab has not already been destroyed).
1233 	 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1234 	 * is risky, and currently limits the usefulness of rmap_walk().
1235 	 */
1236 	anon_vma = page_anon_vma(page);
1237 	if (!anon_vma)
1238 		return ret;
1239 	spin_lock(&anon_vma->lock);
1240 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1241 		unsigned long address = vma_address(page, vma);
1242 		if (address == -EFAULT)
1243 			continue;
1244 		ret = rmap_one(page, vma, address, arg);
1245 		if (ret != SWAP_AGAIN)
1246 			break;
1247 	}
1248 	spin_unlock(&anon_vma->lock);
1249 	return ret;
1250 }
1251 
1252 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1253 		struct vm_area_struct *, unsigned long, void *), void *arg)
1254 {
1255 	struct address_space *mapping = page->mapping;
1256 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1257 	struct vm_area_struct *vma;
1258 	struct prio_tree_iter iter;
1259 	int ret = SWAP_AGAIN;
1260 
1261 	if (!mapping)
1262 		return ret;
1263 	spin_lock(&mapping->i_mmap_lock);
1264 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1265 		unsigned long address = vma_address(page, vma);
1266 		if (address == -EFAULT)
1267 			continue;
1268 		ret = rmap_one(page, vma, address, arg);
1269 		if (ret != SWAP_AGAIN)
1270 			break;
1271 	}
1272 	/*
1273 	 * No nonlinear handling: being always shared, nonlinear vmas
1274 	 * never contain migration ptes.  Decide what to do about this
1275 	 * limitation to linear when we need rmap_walk() on nonlinear.
1276 	 */
1277 	spin_unlock(&mapping->i_mmap_lock);
1278 	return ret;
1279 }
1280 
1281 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1282 		struct vm_area_struct *, unsigned long, void *), void *arg)
1283 {
1284 	VM_BUG_ON(!PageLocked(page));
1285 
1286 	if (unlikely(PageKsm(page)))
1287 		return rmap_walk_ksm(page, rmap_one, arg);
1288 	else if (PageAnon(page))
1289 		return rmap_walk_anon(page, rmap_one, arg);
1290 	else
1291 		return rmap_walk_file(page, rmap_one, arg);
1292 }
1293 #endif /* CONFIG_MIGRATION */
1294