xref: /linux/mm/readahead.c (revision f240ec09bb8a08003a6e2cb51682705ab19b78cd)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/dax.h>
12 #include <linux/gfp.h>
13 #include <linux/export.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/fadvise.h>
24 
25 #include "internal.h"
26 
27 /*
28  * Initialise a struct file's readahead state.  Assumes that the caller has
29  * memset *ra to zero.
30  */
31 void
32 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
33 {
34 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
35 	ra->prev_pos = -1;
36 }
37 EXPORT_SYMBOL_GPL(file_ra_state_init);
38 
39 /*
40  * see if a page needs releasing upon read_cache_pages() failure
41  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
42  *   before calling, such as the NFS fs marking pages that are cached locally
43  *   on disk, thus we need to give the fs a chance to clean up in the event of
44  *   an error
45  */
46 static void read_cache_pages_invalidate_page(struct address_space *mapping,
47 					     struct page *page)
48 {
49 	if (page_has_private(page)) {
50 		if (!trylock_page(page))
51 			BUG();
52 		page->mapping = mapping;
53 		do_invalidatepage(page, 0, PAGE_SIZE);
54 		page->mapping = NULL;
55 		unlock_page(page);
56 	}
57 	put_page(page);
58 }
59 
60 /*
61  * release a list of pages, invalidating them first if need be
62  */
63 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
64 					      struct list_head *pages)
65 {
66 	struct page *victim;
67 
68 	while (!list_empty(pages)) {
69 		victim = lru_to_page(pages);
70 		list_del(&victim->lru);
71 		read_cache_pages_invalidate_page(mapping, victim);
72 	}
73 }
74 
75 /**
76  * read_cache_pages - populate an address space with some pages & start reads against them
77  * @mapping: the address_space
78  * @pages: The address of a list_head which contains the target pages.  These
79  *   pages have their ->index populated and are otherwise uninitialised.
80  * @filler: callback routine for filling a single page.
81  * @data: private data for the callback routine.
82  *
83  * Hides the details of the LRU cache etc from the filesystems.
84  *
85  * Returns: %0 on success, error return by @filler otherwise
86  */
87 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
88 			int (*filler)(void *, struct page *), void *data)
89 {
90 	struct page *page;
91 	int ret = 0;
92 
93 	while (!list_empty(pages)) {
94 		page = lru_to_page(pages);
95 		list_del(&page->lru);
96 		if (add_to_page_cache_lru(page, mapping, page->index,
97 				readahead_gfp_mask(mapping))) {
98 			read_cache_pages_invalidate_page(mapping, page);
99 			continue;
100 		}
101 		put_page(page);
102 
103 		ret = filler(data, page);
104 		if (unlikely(ret)) {
105 			read_cache_pages_invalidate_pages(mapping, pages);
106 			break;
107 		}
108 		task_io_account_read(PAGE_SIZE);
109 	}
110 	return ret;
111 }
112 
113 EXPORT_SYMBOL(read_cache_pages);
114 
115 static int read_pages(struct address_space *mapping, struct file *filp,
116 		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
117 {
118 	struct blk_plug plug;
119 	unsigned page_idx;
120 	int ret;
121 
122 	blk_start_plug(&plug);
123 
124 	if (mapping->a_ops->readpages) {
125 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
126 		/* Clean up the remaining pages */
127 		put_pages_list(pages);
128 		goto out;
129 	}
130 
131 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
132 		struct page *page = lru_to_page(pages);
133 		list_del(&page->lru);
134 		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
135 			mapping->a_ops->readpage(filp, page);
136 		put_page(page);
137 	}
138 	ret = 0;
139 
140 out:
141 	blk_finish_plug(&plug);
142 
143 	return ret;
144 }
145 
146 /*
147  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
148  * the pages first, then submits them for I/O. This avoids the very bad
149  * behaviour which would occur if page allocations are causing VM writeback.
150  * We really don't want to intermingle reads and writes like that.
151  *
152  * Returns the number of pages requested, or the maximum amount of I/O allowed.
153  */
154 unsigned int __do_page_cache_readahead(struct address_space *mapping,
155 		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
156 		unsigned long lookahead_size)
157 {
158 	struct inode *inode = mapping->host;
159 	struct page *page;
160 	unsigned long end_index;	/* The last page we want to read */
161 	LIST_HEAD(page_pool);
162 	int page_idx;
163 	unsigned int nr_pages = 0;
164 	loff_t isize = i_size_read(inode);
165 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
166 
167 	if (isize == 0)
168 		goto out;
169 
170 	end_index = ((isize - 1) >> PAGE_SHIFT);
171 
172 	/*
173 	 * Preallocate as many pages as we will need.
174 	 */
175 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
176 		pgoff_t page_offset = offset + page_idx;
177 
178 		if (page_offset > end_index)
179 			break;
180 
181 		page = xa_load(&mapping->i_pages, page_offset);
182 		if (page && !xa_is_value(page)) {
183 			/*
184 			 * Page already present?  Kick off the current batch of
185 			 * contiguous pages before continuing with the next
186 			 * batch.
187 			 */
188 			if (nr_pages)
189 				read_pages(mapping, filp, &page_pool, nr_pages,
190 						gfp_mask);
191 			nr_pages = 0;
192 			continue;
193 		}
194 
195 		page = __page_cache_alloc(gfp_mask);
196 		if (!page)
197 			break;
198 		page->index = page_offset;
199 		list_add(&page->lru, &page_pool);
200 		if (page_idx == nr_to_read - lookahead_size)
201 			SetPageReadahead(page);
202 		nr_pages++;
203 	}
204 
205 	/*
206 	 * Now start the IO.  We ignore I/O errors - if the page is not
207 	 * uptodate then the caller will launch readpage again, and
208 	 * will then handle the error.
209 	 */
210 	if (nr_pages)
211 		read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
212 	BUG_ON(!list_empty(&page_pool));
213 out:
214 	return nr_pages;
215 }
216 
217 /*
218  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
219  * memory at once.
220  */
221 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
222 			       pgoff_t offset, unsigned long nr_to_read)
223 {
224 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
225 	struct file_ra_state *ra = &filp->f_ra;
226 	unsigned long max_pages;
227 
228 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
229 		return -EINVAL;
230 
231 	/*
232 	 * If the request exceeds the readahead window, allow the read to
233 	 * be up to the optimal hardware IO size
234 	 */
235 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
236 	nr_to_read = min(nr_to_read, max_pages);
237 	while (nr_to_read) {
238 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
239 
240 		if (this_chunk > nr_to_read)
241 			this_chunk = nr_to_read;
242 		__do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
243 
244 		offset += this_chunk;
245 		nr_to_read -= this_chunk;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * Set the initial window size, round to next power of 2 and square
252  * for small size, x 4 for medium, and x 2 for large
253  * for 128k (32 page) max ra
254  * 1-8 page = 32k initial, > 8 page = 128k initial
255  */
256 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
257 {
258 	unsigned long newsize = roundup_pow_of_two(size);
259 
260 	if (newsize <= max / 32)
261 		newsize = newsize * 4;
262 	else if (newsize <= max / 4)
263 		newsize = newsize * 2;
264 	else
265 		newsize = max;
266 
267 	return newsize;
268 }
269 
270 /*
271  *  Get the previous window size, ramp it up, and
272  *  return it as the new window size.
273  */
274 static unsigned long get_next_ra_size(struct file_ra_state *ra,
275 				      unsigned long max)
276 {
277 	unsigned long cur = ra->size;
278 
279 	if (cur < max / 16)
280 		return 4 * cur;
281 	if (cur <= max / 2)
282 		return 2 * cur;
283 	return max;
284 }
285 
286 /*
287  * On-demand readahead design.
288  *
289  * The fields in struct file_ra_state represent the most-recently-executed
290  * readahead attempt:
291  *
292  *                        |<----- async_size ---------|
293  *     |------------------- size -------------------->|
294  *     |==================#===========================|
295  *     ^start             ^page marked with PG_readahead
296  *
297  * To overlap application thinking time and disk I/O time, we do
298  * `readahead pipelining': Do not wait until the application consumed all
299  * readahead pages and stalled on the missing page at readahead_index;
300  * Instead, submit an asynchronous readahead I/O as soon as there are
301  * only async_size pages left in the readahead window. Normally async_size
302  * will be equal to size, for maximum pipelining.
303  *
304  * In interleaved sequential reads, concurrent streams on the same fd can
305  * be invalidating each other's readahead state. So we flag the new readahead
306  * page at (start+size-async_size) with PG_readahead, and use it as readahead
307  * indicator. The flag won't be set on already cached pages, to avoid the
308  * readahead-for-nothing fuss, saving pointless page cache lookups.
309  *
310  * prev_pos tracks the last visited byte in the _previous_ read request.
311  * It should be maintained by the caller, and will be used for detecting
312  * small random reads. Note that the readahead algorithm checks loosely
313  * for sequential patterns. Hence interleaved reads might be served as
314  * sequential ones.
315  *
316  * There is a special-case: if the first page which the application tries to
317  * read happens to be the first page of the file, it is assumed that a linear
318  * read is about to happen and the window is immediately set to the initial size
319  * based on I/O request size and the max_readahead.
320  *
321  * The code ramps up the readahead size aggressively at first, but slow down as
322  * it approaches max_readhead.
323  */
324 
325 /*
326  * Count contiguously cached pages from @offset-1 to @offset-@max,
327  * this count is a conservative estimation of
328  * 	- length of the sequential read sequence, or
329  * 	- thrashing threshold in memory tight systems
330  */
331 static pgoff_t count_history_pages(struct address_space *mapping,
332 				   pgoff_t offset, unsigned long max)
333 {
334 	pgoff_t head;
335 
336 	rcu_read_lock();
337 	head = page_cache_prev_miss(mapping, offset - 1, max);
338 	rcu_read_unlock();
339 
340 	return offset - 1 - head;
341 }
342 
343 /*
344  * page cache context based read-ahead
345  */
346 static int try_context_readahead(struct address_space *mapping,
347 				 struct file_ra_state *ra,
348 				 pgoff_t offset,
349 				 unsigned long req_size,
350 				 unsigned long max)
351 {
352 	pgoff_t size;
353 
354 	size = count_history_pages(mapping, offset, max);
355 
356 	/*
357 	 * not enough history pages:
358 	 * it could be a random read
359 	 */
360 	if (size <= req_size)
361 		return 0;
362 
363 	/*
364 	 * starts from beginning of file:
365 	 * it is a strong indication of long-run stream (or whole-file-read)
366 	 */
367 	if (size >= offset)
368 		size *= 2;
369 
370 	ra->start = offset;
371 	ra->size = min(size + req_size, max);
372 	ra->async_size = 1;
373 
374 	return 1;
375 }
376 
377 /*
378  * A minimal readahead algorithm for trivial sequential/random reads.
379  */
380 static unsigned long
381 ondemand_readahead(struct address_space *mapping,
382 		   struct file_ra_state *ra, struct file *filp,
383 		   bool hit_readahead_marker, pgoff_t offset,
384 		   unsigned long req_size)
385 {
386 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
387 	unsigned long max_pages = ra->ra_pages;
388 	unsigned long add_pages;
389 	pgoff_t prev_offset;
390 
391 	/*
392 	 * If the request exceeds the readahead window, allow the read to
393 	 * be up to the optimal hardware IO size
394 	 */
395 	if (req_size > max_pages && bdi->io_pages > max_pages)
396 		max_pages = min(req_size, bdi->io_pages);
397 
398 	/*
399 	 * start of file
400 	 */
401 	if (!offset)
402 		goto initial_readahead;
403 
404 	/*
405 	 * It's the expected callback offset, assume sequential access.
406 	 * Ramp up sizes, and push forward the readahead window.
407 	 */
408 	if ((offset == (ra->start + ra->size - ra->async_size) ||
409 	     offset == (ra->start + ra->size))) {
410 		ra->start += ra->size;
411 		ra->size = get_next_ra_size(ra, max_pages);
412 		ra->async_size = ra->size;
413 		goto readit;
414 	}
415 
416 	/*
417 	 * Hit a marked page without valid readahead state.
418 	 * E.g. interleaved reads.
419 	 * Query the pagecache for async_size, which normally equals to
420 	 * readahead size. Ramp it up and use it as the new readahead size.
421 	 */
422 	if (hit_readahead_marker) {
423 		pgoff_t start;
424 
425 		rcu_read_lock();
426 		start = page_cache_next_miss(mapping, offset + 1, max_pages);
427 		rcu_read_unlock();
428 
429 		if (!start || start - offset > max_pages)
430 			return 0;
431 
432 		ra->start = start;
433 		ra->size = start - offset;	/* old async_size */
434 		ra->size += req_size;
435 		ra->size = get_next_ra_size(ra, max_pages);
436 		ra->async_size = ra->size;
437 		goto readit;
438 	}
439 
440 	/*
441 	 * oversize read
442 	 */
443 	if (req_size > max_pages)
444 		goto initial_readahead;
445 
446 	/*
447 	 * sequential cache miss
448 	 * trivial case: (offset - prev_offset) == 1
449 	 * unaligned reads: (offset - prev_offset) == 0
450 	 */
451 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
452 	if (offset - prev_offset <= 1UL)
453 		goto initial_readahead;
454 
455 	/*
456 	 * Query the page cache and look for the traces(cached history pages)
457 	 * that a sequential stream would leave behind.
458 	 */
459 	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
460 		goto readit;
461 
462 	/*
463 	 * standalone, small random read
464 	 * Read as is, and do not pollute the readahead state.
465 	 */
466 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
467 
468 initial_readahead:
469 	ra->start = offset;
470 	ra->size = get_init_ra_size(req_size, max_pages);
471 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
472 
473 readit:
474 	/*
475 	 * Will this read hit the readahead marker made by itself?
476 	 * If so, trigger the readahead marker hit now, and merge
477 	 * the resulted next readahead window into the current one.
478 	 * Take care of maximum IO pages as above.
479 	 */
480 	if (offset == ra->start && ra->size == ra->async_size) {
481 		add_pages = get_next_ra_size(ra, max_pages);
482 		if (ra->size + add_pages <= max_pages) {
483 			ra->async_size = add_pages;
484 			ra->size += add_pages;
485 		} else {
486 			ra->size = max_pages;
487 			ra->async_size = max_pages >> 1;
488 		}
489 	}
490 
491 	return ra_submit(ra, mapping, filp);
492 }
493 
494 /**
495  * page_cache_sync_readahead - generic file readahead
496  * @mapping: address_space which holds the pagecache and I/O vectors
497  * @ra: file_ra_state which holds the readahead state
498  * @filp: passed on to ->readpage() and ->readpages()
499  * @offset: start offset into @mapping, in pagecache page-sized units
500  * @req_size: hint: total size of the read which the caller is performing in
501  *            pagecache pages
502  *
503  * page_cache_sync_readahead() should be called when a cache miss happened:
504  * it will submit the read.  The readahead logic may decide to piggyback more
505  * pages onto the read request if access patterns suggest it will improve
506  * performance.
507  */
508 void page_cache_sync_readahead(struct address_space *mapping,
509 			       struct file_ra_state *ra, struct file *filp,
510 			       pgoff_t offset, unsigned long req_size)
511 {
512 	/* no read-ahead */
513 	if (!ra->ra_pages)
514 		return;
515 
516 	if (blk_cgroup_congested())
517 		return;
518 
519 	/* be dumb */
520 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
521 		force_page_cache_readahead(mapping, filp, offset, req_size);
522 		return;
523 	}
524 
525 	/* do read-ahead */
526 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
527 }
528 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
529 
530 /**
531  * page_cache_async_readahead - file readahead for marked pages
532  * @mapping: address_space which holds the pagecache and I/O vectors
533  * @ra: file_ra_state which holds the readahead state
534  * @filp: passed on to ->readpage() and ->readpages()
535  * @page: the page at @offset which has the PG_readahead flag set
536  * @offset: start offset into @mapping, in pagecache page-sized units
537  * @req_size: hint: total size of the read which the caller is performing in
538  *            pagecache pages
539  *
540  * page_cache_async_readahead() should be called when a page is used which
541  * has the PG_readahead flag; this is a marker to suggest that the application
542  * has used up enough of the readahead window that we should start pulling in
543  * more pages.
544  */
545 void
546 page_cache_async_readahead(struct address_space *mapping,
547 			   struct file_ra_state *ra, struct file *filp,
548 			   struct page *page, pgoff_t offset,
549 			   unsigned long req_size)
550 {
551 	/* no read-ahead */
552 	if (!ra->ra_pages)
553 		return;
554 
555 	/*
556 	 * Same bit is used for PG_readahead and PG_reclaim.
557 	 */
558 	if (PageWriteback(page))
559 		return;
560 
561 	ClearPageReadahead(page);
562 
563 	/*
564 	 * Defer asynchronous read-ahead on IO congestion.
565 	 */
566 	if (inode_read_congested(mapping->host))
567 		return;
568 
569 	if (blk_cgroup_congested())
570 		return;
571 
572 	/* do read-ahead */
573 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
574 }
575 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
576 
577 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
578 {
579 	ssize_t ret;
580 	struct fd f;
581 
582 	ret = -EBADF;
583 	f = fdget(fd);
584 	if (!f.file || !(f.file->f_mode & FMODE_READ))
585 		goto out;
586 
587 	/*
588 	 * The readahead() syscall is intended to run only on files
589 	 * that can execute readahead. If readahead is not possible
590 	 * on this file, then we must return -EINVAL.
591 	 */
592 	ret = -EINVAL;
593 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
594 	    !S_ISREG(file_inode(f.file)->i_mode))
595 		goto out;
596 
597 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
598 out:
599 	fdput(f);
600 	return ret;
601 }
602 
603 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
604 {
605 	return ksys_readahead(fd, offset, count);
606 }
607