1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 #include <linux/fsnotify.h> 132 133 #include "internal.h" 134 135 /* 136 * Initialise a struct file's readahead state. Assumes that the caller has 137 * memset *ra to zero. 138 */ 139 void 140 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 141 { 142 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 143 ra->prev_pos = -1; 144 } 145 EXPORT_SYMBOL_GPL(file_ra_state_init); 146 147 static void read_pages(struct readahead_control *rac) 148 { 149 const struct address_space_operations *aops = rac->mapping->a_ops; 150 struct folio *folio; 151 struct blk_plug plug; 152 153 if (!readahead_count(rac)) 154 return; 155 156 if (unlikely(rac->_workingset)) 157 psi_memstall_enter(&rac->_pflags); 158 blk_start_plug(&plug); 159 160 if (aops->readahead) { 161 aops->readahead(rac); 162 /* 163 * Clean up the remaining folios. The sizes in ->ra 164 * may be used to size the next readahead, so make sure 165 * they accurately reflect what happened. 166 */ 167 while ((folio = readahead_folio(rac)) != NULL) { 168 unsigned long nr = folio_nr_pages(folio); 169 170 folio_get(folio); 171 rac->ra->size -= nr; 172 if (rac->ra->async_size >= nr) { 173 rac->ra->async_size -= nr; 174 filemap_remove_folio(folio); 175 } 176 folio_unlock(folio); 177 folio_put(folio); 178 } 179 } else { 180 while ((folio = readahead_folio(rac)) != NULL) 181 aops->read_folio(rac->file, folio); 182 } 183 184 blk_finish_plug(&plug); 185 if (unlikely(rac->_workingset)) 186 psi_memstall_leave(&rac->_pflags); 187 rac->_workingset = false; 188 189 BUG_ON(readahead_count(rac)); 190 } 191 192 /** 193 * page_cache_ra_unbounded - Start unchecked readahead. 194 * @ractl: Readahead control. 195 * @nr_to_read: The number of pages to read. 196 * @lookahead_size: Where to start the next readahead. 197 * 198 * This function is for filesystems to call when they want to start 199 * readahead beyond a file's stated i_size. This is almost certainly 200 * not the function you want to call. Use page_cache_async_readahead() 201 * or page_cache_sync_readahead() instead. 202 * 203 * Context: File is referenced by caller. Mutexes may be held by caller. 204 * May sleep, but will not reenter filesystem to reclaim memory. 205 */ 206 void page_cache_ra_unbounded(struct readahead_control *ractl, 207 unsigned long nr_to_read, unsigned long lookahead_size) 208 { 209 struct address_space *mapping = ractl->mapping; 210 unsigned long index = readahead_index(ractl); 211 gfp_t gfp_mask = readahead_gfp_mask(mapping); 212 unsigned long mark = ULONG_MAX, i = 0; 213 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping); 214 215 /* 216 * Partway through the readahead operation, we will have added 217 * locked pages to the page cache, but will not yet have submitted 218 * them for I/O. Adding another page may need to allocate memory, 219 * which can trigger memory reclaim. Telling the VM we're in 220 * the middle of a filesystem operation will cause it to not 221 * touch file-backed pages, preventing a deadlock. Most (all?) 222 * filesystems already specify __GFP_NOFS in their mapping's 223 * gfp_mask, but let's be explicit here. 224 */ 225 unsigned int nofs = memalloc_nofs_save(); 226 227 filemap_invalidate_lock_shared(mapping); 228 index = mapping_align_index(mapping, index); 229 230 /* 231 * As iterator `i` is aligned to min_nrpages, round_up the 232 * difference between nr_to_read and lookahead_size to mark the 233 * index that only has lookahead or "async_region" to set the 234 * readahead flag. 235 */ 236 if (lookahead_size <= nr_to_read) { 237 unsigned long ra_folio_index; 238 239 ra_folio_index = round_up(readahead_index(ractl) + 240 nr_to_read - lookahead_size, 241 min_nrpages); 242 mark = ra_folio_index - index; 243 } 244 nr_to_read += readahead_index(ractl) - index; 245 ractl->_index = index; 246 247 /* 248 * Preallocate as many pages as we will need. 249 */ 250 while (i < nr_to_read) { 251 struct folio *folio = xa_load(&mapping->i_pages, index + i); 252 int ret; 253 254 if (folio && !xa_is_value(folio)) { 255 /* 256 * Page already present? Kick off the current batch 257 * of contiguous pages before continuing with the 258 * next batch. This page may be the one we would 259 * have intended to mark as Readahead, but we don't 260 * have a stable reference to this page, and it's 261 * not worth getting one just for that. 262 */ 263 read_pages(ractl); 264 ractl->_index += min_nrpages; 265 i = ractl->_index + ractl->_nr_pages - index; 266 continue; 267 } 268 269 folio = filemap_alloc_folio(gfp_mask, 270 mapping_min_folio_order(mapping)); 271 if (!folio) 272 break; 273 274 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); 275 if (ret < 0) { 276 folio_put(folio); 277 if (ret == -ENOMEM) 278 break; 279 read_pages(ractl); 280 ractl->_index += min_nrpages; 281 i = ractl->_index + ractl->_nr_pages - index; 282 continue; 283 } 284 if (i == mark) 285 folio_set_readahead(folio); 286 ractl->_workingset |= folio_test_workingset(folio); 287 ractl->_nr_pages += min_nrpages; 288 i += min_nrpages; 289 } 290 291 /* 292 * Now start the IO. We ignore I/O errors - if the folio is not 293 * uptodate then the caller will launch read_folio again, and 294 * will then handle the error. 295 */ 296 read_pages(ractl); 297 filemap_invalidate_unlock_shared(mapping); 298 memalloc_nofs_restore(nofs); 299 } 300 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 301 302 /* 303 * do_page_cache_ra() actually reads a chunk of disk. It allocates 304 * the pages first, then submits them for I/O. This avoids the very bad 305 * behaviour which would occur if page allocations are causing VM writeback. 306 * We really don't want to intermingle reads and writes like that. 307 */ 308 static void do_page_cache_ra(struct readahead_control *ractl, 309 unsigned long nr_to_read, unsigned long lookahead_size) 310 { 311 struct inode *inode = ractl->mapping->host; 312 unsigned long index = readahead_index(ractl); 313 loff_t isize = i_size_read(inode); 314 pgoff_t end_index; /* The last page we want to read */ 315 316 if (isize == 0) 317 return; 318 319 end_index = (isize - 1) >> PAGE_SHIFT; 320 if (index > end_index) 321 return; 322 /* Don't read past the page containing the last byte of the file */ 323 if (nr_to_read > end_index - index) 324 nr_to_read = end_index - index + 1; 325 326 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 327 } 328 329 /* 330 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 331 * memory at once. 332 */ 333 void force_page_cache_ra(struct readahead_control *ractl, 334 unsigned long nr_to_read) 335 { 336 struct address_space *mapping = ractl->mapping; 337 struct file_ra_state *ra = ractl->ra; 338 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 339 unsigned long max_pages; 340 341 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 342 return; 343 344 /* 345 * If the request exceeds the readahead window, allow the read to 346 * be up to the optimal hardware IO size 347 */ 348 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 349 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 350 while (nr_to_read) { 351 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 352 353 if (this_chunk > nr_to_read) 354 this_chunk = nr_to_read; 355 do_page_cache_ra(ractl, this_chunk, 0); 356 357 nr_to_read -= this_chunk; 358 } 359 } 360 361 /* 362 * Set the initial window size, round to next power of 2 and square 363 * for small size, x 4 for medium, and x 2 for large 364 * for 128k (32 page) max ra 365 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 366 */ 367 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 368 { 369 unsigned long newsize = roundup_pow_of_two(size); 370 371 if (newsize <= max / 32) 372 newsize = newsize * 4; 373 else if (newsize <= max / 4) 374 newsize = newsize * 2; 375 else 376 newsize = max; 377 378 return newsize; 379 } 380 381 /* 382 * Get the previous window size, ramp it up, and 383 * return it as the new window size. 384 */ 385 static unsigned long get_next_ra_size(struct file_ra_state *ra, 386 unsigned long max) 387 { 388 unsigned long cur = ra->size; 389 390 if (cur < max / 16) 391 return 4 * cur; 392 if (cur <= max / 2) 393 return 2 * cur; 394 return max; 395 } 396 397 /* 398 * On-demand readahead design. 399 * 400 * The fields in struct file_ra_state represent the most-recently-executed 401 * readahead attempt: 402 * 403 * |<----- async_size ---------| 404 * |------------------- size -------------------->| 405 * |==================#===========================| 406 * ^start ^page marked with PG_readahead 407 * 408 * To overlap application thinking time and disk I/O time, we do 409 * `readahead pipelining': Do not wait until the application consumed all 410 * readahead pages and stalled on the missing page at readahead_index; 411 * Instead, submit an asynchronous readahead I/O as soon as there are 412 * only async_size pages left in the readahead window. Normally async_size 413 * will be equal to size, for maximum pipelining. 414 * 415 * In interleaved sequential reads, concurrent streams on the same fd can 416 * be invalidating each other's readahead state. So we flag the new readahead 417 * page at (start+size-async_size) with PG_readahead, and use it as readahead 418 * indicator. The flag won't be set on already cached pages, to avoid the 419 * readahead-for-nothing fuss, saving pointless page cache lookups. 420 * 421 * prev_pos tracks the last visited byte in the _previous_ read request. 422 * It should be maintained by the caller, and will be used for detecting 423 * small random reads. Note that the readahead algorithm checks loosely 424 * for sequential patterns. Hence interleaved reads might be served as 425 * sequential ones. 426 * 427 * There is a special-case: if the first page which the application tries to 428 * read happens to be the first page of the file, it is assumed that a linear 429 * read is about to happen and the window is immediately set to the initial size 430 * based on I/O request size and the max_readahead. 431 * 432 * The code ramps up the readahead size aggressively at first, but slow down as 433 * it approaches max_readhead. 434 */ 435 436 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 437 pgoff_t mark, unsigned int order, gfp_t gfp) 438 { 439 int err; 440 struct folio *folio = filemap_alloc_folio(gfp, order); 441 442 if (!folio) 443 return -ENOMEM; 444 mark = round_down(mark, 1UL << order); 445 if (index == mark) 446 folio_set_readahead(folio); 447 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 448 if (err) { 449 folio_put(folio); 450 return err; 451 } 452 453 ractl->_nr_pages += 1UL << order; 454 ractl->_workingset |= folio_test_workingset(folio); 455 return 0; 456 } 457 458 void page_cache_ra_order(struct readahead_control *ractl, 459 struct file_ra_state *ra, unsigned int new_order) 460 { 461 struct address_space *mapping = ractl->mapping; 462 pgoff_t index = readahead_index(ractl); 463 unsigned int min_order = mapping_min_folio_order(mapping); 464 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 465 pgoff_t mark = index + ra->size - ra->async_size; 466 unsigned int nofs; 467 int err = 0; 468 gfp_t gfp = readahead_gfp_mask(mapping); 469 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping)); 470 471 /* 472 * Fallback when size < min_nrpages as each folio should be 473 * at least min_nrpages anyway. 474 */ 475 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size) 476 goto fallback; 477 478 limit = min(limit, index + ra->size - 1); 479 480 if (new_order < mapping_max_folio_order(mapping)) 481 new_order += 2; 482 483 new_order = min(mapping_max_folio_order(mapping), new_order); 484 new_order = min_t(unsigned int, new_order, ilog2(ra->size)); 485 new_order = max(new_order, min_order); 486 487 /* See comment in page_cache_ra_unbounded() */ 488 nofs = memalloc_nofs_save(); 489 filemap_invalidate_lock_shared(mapping); 490 /* 491 * If the new_order is greater than min_order and index is 492 * already aligned to new_order, then this will be noop as index 493 * aligned to new_order should also be aligned to min_order. 494 */ 495 ractl->_index = mapping_align_index(mapping, index); 496 index = readahead_index(ractl); 497 498 while (index <= limit) { 499 unsigned int order = new_order; 500 501 /* Align with smaller pages if needed */ 502 if (index & ((1UL << order) - 1)) 503 order = __ffs(index); 504 /* Don't allocate pages past EOF */ 505 while (order > min_order && index + (1UL << order) - 1 > limit) 506 order--; 507 err = ra_alloc_folio(ractl, index, mark, order, gfp); 508 if (err) 509 break; 510 index += 1UL << order; 511 } 512 513 read_pages(ractl); 514 filemap_invalidate_unlock_shared(mapping); 515 memalloc_nofs_restore(nofs); 516 517 /* 518 * If there were already pages in the page cache, then we may have 519 * left some gaps. Let the regular readahead code take care of this 520 * situation. 521 */ 522 if (!err) 523 return; 524 fallback: 525 do_page_cache_ra(ractl, ra->size, ra->async_size); 526 } 527 528 static unsigned long ractl_max_pages(struct readahead_control *ractl, 529 unsigned long req_size) 530 { 531 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 532 unsigned long max_pages = ractl->ra->ra_pages; 533 534 /* 535 * If the request exceeds the readahead window, allow the read to 536 * be up to the optimal hardware IO size 537 */ 538 if (req_size > max_pages && bdi->io_pages > max_pages) 539 max_pages = min(req_size, bdi->io_pages); 540 return max_pages; 541 } 542 543 void page_cache_sync_ra(struct readahead_control *ractl, 544 unsigned long req_count) 545 { 546 pgoff_t index = readahead_index(ractl); 547 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 548 struct file_ra_state *ra = ractl->ra; 549 unsigned long max_pages, contig_count; 550 pgoff_t prev_index, miss; 551 552 /* 553 * If we have pre-content watches we need to disable readahead to make 554 * sure that we don't find 0 filled pages in cache that we never emitted 555 * events for. Filesystems supporting HSM must make sure to not call 556 * this function with ractl->file unset for files handled by HSM. 557 */ 558 if (ractl->file && unlikely(FMODE_FSNOTIFY_HSM(ractl->file->f_mode))) 559 return; 560 561 /* 562 * Even if readahead is disabled, issue this request as readahead 563 * as we'll need it to satisfy the requested range. The forced 564 * readahead will do the right thing and limit the read to just the 565 * requested range, which we'll set to 1 page for this case. 566 */ 567 if (!ra->ra_pages || blk_cgroup_congested()) { 568 if (!ractl->file) 569 return; 570 req_count = 1; 571 do_forced_ra = true; 572 } 573 574 /* be dumb */ 575 if (do_forced_ra) { 576 force_page_cache_ra(ractl, req_count); 577 return; 578 } 579 580 max_pages = ractl_max_pages(ractl, req_count); 581 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 582 /* 583 * A start of file, oversized read, or sequential cache miss: 584 * trivial case: (index - prev_index) == 1 585 * unaligned reads: (index - prev_index) == 0 586 */ 587 if (!index || req_count > max_pages || index - prev_index <= 1UL) { 588 ra->start = index; 589 ra->size = get_init_ra_size(req_count, max_pages); 590 ra->async_size = ra->size > req_count ? ra->size - req_count : 591 ra->size >> 1; 592 goto readit; 593 } 594 595 /* 596 * Query the page cache and look for the traces(cached history pages) 597 * that a sequential stream would leave behind. 598 */ 599 rcu_read_lock(); 600 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); 601 rcu_read_unlock(); 602 contig_count = index - miss - 1; 603 /* 604 * Standalone, small random read. Read as is, and do not pollute the 605 * readahead state. 606 */ 607 if (contig_count <= req_count) { 608 do_page_cache_ra(ractl, req_count, 0); 609 return; 610 } 611 /* 612 * File cached from the beginning: 613 * it is a strong indication of long-run stream (or whole-file-read) 614 */ 615 if (miss == ULONG_MAX) 616 contig_count *= 2; 617 ra->start = index; 618 ra->size = min(contig_count + req_count, max_pages); 619 ra->async_size = 1; 620 readit: 621 ractl->_index = ra->start; 622 page_cache_ra_order(ractl, ra, 0); 623 } 624 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 625 626 void page_cache_async_ra(struct readahead_control *ractl, 627 struct folio *folio, unsigned long req_count) 628 { 629 unsigned long max_pages; 630 struct file_ra_state *ra = ractl->ra; 631 pgoff_t index = readahead_index(ractl); 632 pgoff_t expected, start; 633 unsigned int order = folio_order(folio); 634 635 /* no readahead */ 636 if (!ra->ra_pages) 637 return; 638 639 /* See the comment in page_cache_sync_ra. */ 640 if (ractl->file && unlikely(FMODE_FSNOTIFY_HSM(ractl->file->f_mode))) 641 return; 642 643 /* 644 * Same bit is used for PG_readahead and PG_reclaim. 645 */ 646 if (folio_test_writeback(folio)) 647 return; 648 649 folio_clear_readahead(folio); 650 651 if (blk_cgroup_congested()) 652 return; 653 654 max_pages = ractl_max_pages(ractl, req_count); 655 /* 656 * It's the expected callback index, assume sequential access. 657 * Ramp up sizes, and push forward the readahead window. 658 */ 659 expected = round_down(ra->start + ra->size - ra->async_size, 660 1UL << order); 661 if (index == expected) { 662 ra->start += ra->size; 663 /* 664 * In the case of MADV_HUGEPAGE, the actual size might exceed 665 * the readahead window. 666 */ 667 ra->size = max(ra->size, get_next_ra_size(ra, max_pages)); 668 ra->async_size = ra->size; 669 goto readit; 670 } 671 672 /* 673 * Hit a marked folio without valid readahead state. 674 * E.g. interleaved reads. 675 * Query the pagecache for async_size, which normally equals to 676 * readahead size. Ramp it up and use it as the new readahead size. 677 */ 678 rcu_read_lock(); 679 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); 680 rcu_read_unlock(); 681 682 if (!start || start - index > max_pages) 683 return; 684 685 ra->start = start; 686 ra->size = start - index; /* old async_size */ 687 ra->size += req_count; 688 ra->size = get_next_ra_size(ra, max_pages); 689 ra->async_size = ra->size; 690 readit: 691 ractl->_index = ra->start; 692 page_cache_ra_order(ractl, ra, order); 693 } 694 EXPORT_SYMBOL_GPL(page_cache_async_ra); 695 696 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 697 { 698 CLASS(fd, f)(fd); 699 700 if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ)) 701 return -EBADF; 702 703 /* 704 * The readahead() syscall is intended to run only on files 705 * that can execute readahead. If readahead is not possible 706 * on this file, then we must return -EINVAL. 707 */ 708 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops || 709 (!S_ISREG(file_inode(fd_file(f))->i_mode) && 710 !S_ISBLK(file_inode(fd_file(f))->i_mode))) 711 return -EINVAL; 712 713 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED); 714 } 715 716 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 717 { 718 return ksys_readahead(fd, offset, count); 719 } 720 721 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 722 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 723 { 724 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 725 } 726 #endif 727 728 /** 729 * readahead_expand - Expand a readahead request 730 * @ractl: The request to be expanded 731 * @new_start: The revised start 732 * @new_len: The revised size of the request 733 * 734 * Attempt to expand a readahead request outwards from the current size to the 735 * specified size by inserting locked pages before and after the current window 736 * to increase the size to the new window. This may involve the insertion of 737 * THPs, in which case the window may get expanded even beyond what was 738 * requested. 739 * 740 * The algorithm will stop if it encounters a conflicting page already in the 741 * pagecache and leave a smaller expansion than requested. 742 * 743 * The caller must check for this by examining the revised @ractl object for a 744 * different expansion than was requested. 745 */ 746 void readahead_expand(struct readahead_control *ractl, 747 loff_t new_start, size_t new_len) 748 { 749 struct address_space *mapping = ractl->mapping; 750 struct file_ra_state *ra = ractl->ra; 751 pgoff_t new_index, new_nr_pages; 752 gfp_t gfp_mask = readahead_gfp_mask(mapping); 753 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping); 754 unsigned int min_order = mapping_min_folio_order(mapping); 755 756 new_index = new_start / PAGE_SIZE; 757 /* 758 * Readahead code should have aligned the ractl->_index to 759 * min_nrpages before calling readahead aops. 760 */ 761 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages)); 762 763 /* Expand the leading edge downwards */ 764 while (ractl->_index > new_index) { 765 unsigned long index = ractl->_index - 1; 766 struct folio *folio = xa_load(&mapping->i_pages, index); 767 768 if (folio && !xa_is_value(folio)) 769 return; /* Folio apparently present */ 770 771 folio = filemap_alloc_folio(gfp_mask, min_order); 772 if (!folio) 773 return; 774 775 index = mapping_align_index(mapping, index); 776 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 777 folio_put(folio); 778 return; 779 } 780 if (unlikely(folio_test_workingset(folio)) && 781 !ractl->_workingset) { 782 ractl->_workingset = true; 783 psi_memstall_enter(&ractl->_pflags); 784 } 785 ractl->_nr_pages += min_nrpages; 786 ractl->_index = folio->index; 787 } 788 789 new_len += new_start - readahead_pos(ractl); 790 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 791 792 /* Expand the trailing edge upwards */ 793 while (ractl->_nr_pages < new_nr_pages) { 794 unsigned long index = ractl->_index + ractl->_nr_pages; 795 struct folio *folio = xa_load(&mapping->i_pages, index); 796 797 if (folio && !xa_is_value(folio)) 798 return; /* Folio apparently present */ 799 800 folio = filemap_alloc_folio(gfp_mask, min_order); 801 if (!folio) 802 return; 803 804 index = mapping_align_index(mapping, index); 805 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 806 folio_put(folio); 807 return; 808 } 809 if (unlikely(folio_test_workingset(folio)) && 810 !ractl->_workingset) { 811 ractl->_workingset = true; 812 psi_memstall_enter(&ractl->_pflags); 813 } 814 ractl->_nr_pages += min_nrpages; 815 if (ra) { 816 ra->size += min_nrpages; 817 ra->async_size += min_nrpages; 818 } 819 } 820 } 821 EXPORT_SYMBOL(readahead_expand); 822