1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 #include <linux/fsnotify.h> 132 133 #include "internal.h" 134 135 /* 136 * Initialise a struct file's readahead state. Assumes that the caller has 137 * memset *ra to zero. 138 */ 139 void 140 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 141 { 142 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 143 ra->prev_pos = -1; 144 } 145 EXPORT_SYMBOL_GPL(file_ra_state_init); 146 147 static void read_pages(struct readahead_control *rac) 148 { 149 const struct address_space_operations *aops = rac->mapping->a_ops; 150 struct folio *folio; 151 struct blk_plug plug; 152 153 if (!readahead_count(rac)) 154 return; 155 156 if (unlikely(rac->_workingset)) 157 psi_memstall_enter(&rac->_pflags); 158 blk_start_plug(&plug); 159 160 if (aops->readahead) { 161 aops->readahead(rac); 162 /* Clean up the remaining folios. */ 163 while ((folio = readahead_folio(rac)) != NULL) { 164 folio_get(folio); 165 filemap_remove_folio(folio); 166 folio_unlock(folio); 167 folio_put(folio); 168 } 169 } else { 170 while ((folio = readahead_folio(rac)) != NULL) 171 aops->read_folio(rac->file, folio); 172 } 173 174 blk_finish_plug(&plug); 175 if (unlikely(rac->_workingset)) 176 psi_memstall_leave(&rac->_pflags); 177 rac->_workingset = false; 178 179 BUG_ON(readahead_count(rac)); 180 } 181 182 static struct folio *ractl_alloc_folio(struct readahead_control *ractl, 183 gfp_t gfp_mask, unsigned int order) 184 { 185 struct folio *folio; 186 187 folio = filemap_alloc_folio(gfp_mask, order); 188 if (folio && ractl->dropbehind) 189 __folio_set_dropbehind(folio); 190 191 return folio; 192 } 193 194 /** 195 * page_cache_ra_unbounded - Start unchecked readahead. 196 * @ractl: Readahead control. 197 * @nr_to_read: The number of pages to read. 198 * @lookahead_size: Where to start the next readahead. 199 * 200 * This function is for filesystems to call when they want to start 201 * readahead beyond a file's stated i_size. This is almost certainly 202 * not the function you want to call. Use page_cache_async_readahead() 203 * or page_cache_sync_readahead() instead. 204 * 205 * Context: File is referenced by caller. Mutexes may be held by caller. 206 * May sleep, but will not reenter filesystem to reclaim memory. 207 */ 208 void page_cache_ra_unbounded(struct readahead_control *ractl, 209 unsigned long nr_to_read, unsigned long lookahead_size) 210 { 211 struct address_space *mapping = ractl->mapping; 212 unsigned long index = readahead_index(ractl); 213 gfp_t gfp_mask = readahead_gfp_mask(mapping); 214 unsigned long mark = ULONG_MAX, i = 0; 215 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping); 216 217 /* 218 * Partway through the readahead operation, we will have added 219 * locked pages to the page cache, but will not yet have submitted 220 * them for I/O. Adding another page may need to allocate memory, 221 * which can trigger memory reclaim. Telling the VM we're in 222 * the middle of a filesystem operation will cause it to not 223 * touch file-backed pages, preventing a deadlock. Most (all?) 224 * filesystems already specify __GFP_NOFS in their mapping's 225 * gfp_mask, but let's be explicit here. 226 */ 227 unsigned int nofs = memalloc_nofs_save(); 228 229 filemap_invalidate_lock_shared(mapping); 230 index = mapping_align_index(mapping, index); 231 232 /* 233 * As iterator `i` is aligned to min_nrpages, round_up the 234 * difference between nr_to_read and lookahead_size to mark the 235 * index that only has lookahead or "async_region" to set the 236 * readahead flag. 237 */ 238 if (lookahead_size <= nr_to_read) { 239 unsigned long ra_folio_index; 240 241 ra_folio_index = round_up(readahead_index(ractl) + 242 nr_to_read - lookahead_size, 243 min_nrpages); 244 mark = ra_folio_index - index; 245 } 246 nr_to_read += readahead_index(ractl) - index; 247 ractl->_index = index; 248 249 /* 250 * Preallocate as many pages as we will need. 251 */ 252 while (i < nr_to_read) { 253 struct folio *folio = xa_load(&mapping->i_pages, index + i); 254 int ret; 255 256 if (folio && !xa_is_value(folio)) { 257 /* 258 * Page already present? Kick off the current batch 259 * of contiguous pages before continuing with the 260 * next batch. This page may be the one we would 261 * have intended to mark as Readahead, but we don't 262 * have a stable reference to this page, and it's 263 * not worth getting one just for that. 264 */ 265 read_pages(ractl); 266 ractl->_index += min_nrpages; 267 i = ractl->_index + ractl->_nr_pages - index; 268 continue; 269 } 270 271 folio = ractl_alloc_folio(ractl, gfp_mask, 272 mapping_min_folio_order(mapping)); 273 if (!folio) 274 break; 275 276 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); 277 if (ret < 0) { 278 folio_put(folio); 279 if (ret == -ENOMEM) 280 break; 281 read_pages(ractl); 282 ractl->_index += min_nrpages; 283 i = ractl->_index + ractl->_nr_pages - index; 284 continue; 285 } 286 if (i == mark) 287 folio_set_readahead(folio); 288 ractl->_workingset |= folio_test_workingset(folio); 289 ractl->_nr_pages += min_nrpages; 290 i += min_nrpages; 291 } 292 293 /* 294 * Now start the IO. We ignore I/O errors - if the folio is not 295 * uptodate then the caller will launch read_folio again, and 296 * will then handle the error. 297 */ 298 read_pages(ractl); 299 filemap_invalidate_unlock_shared(mapping); 300 memalloc_nofs_restore(nofs); 301 } 302 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 303 304 /* 305 * do_page_cache_ra() actually reads a chunk of disk. It allocates 306 * the pages first, then submits them for I/O. This avoids the very bad 307 * behaviour which would occur if page allocations are causing VM writeback. 308 * We really don't want to intermingle reads and writes like that. 309 */ 310 static void do_page_cache_ra(struct readahead_control *ractl, 311 unsigned long nr_to_read, unsigned long lookahead_size) 312 { 313 struct inode *inode = ractl->mapping->host; 314 unsigned long index = readahead_index(ractl); 315 loff_t isize = i_size_read(inode); 316 pgoff_t end_index; /* The last page we want to read */ 317 318 if (isize == 0) 319 return; 320 321 end_index = (isize - 1) >> PAGE_SHIFT; 322 if (index > end_index) 323 return; 324 /* Don't read past the page containing the last byte of the file */ 325 if (nr_to_read > end_index - index) 326 nr_to_read = end_index - index + 1; 327 328 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 329 } 330 331 /* 332 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 333 * memory at once. 334 */ 335 void force_page_cache_ra(struct readahead_control *ractl, 336 unsigned long nr_to_read) 337 { 338 struct address_space *mapping = ractl->mapping; 339 struct file_ra_state *ra = ractl->ra; 340 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 341 unsigned long max_pages; 342 343 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 344 return; 345 346 /* 347 * If the request exceeds the readahead window, allow the read to 348 * be up to the optimal hardware IO size 349 */ 350 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 351 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 352 while (nr_to_read) { 353 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 354 355 if (this_chunk > nr_to_read) 356 this_chunk = nr_to_read; 357 do_page_cache_ra(ractl, this_chunk, 0); 358 359 nr_to_read -= this_chunk; 360 } 361 } 362 363 /* 364 * Set the initial window size, round to next power of 2 and square 365 * for small size, x 4 for medium, and x 2 for large 366 * for 128k (32 page) max ra 367 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 368 */ 369 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 370 { 371 unsigned long newsize = roundup_pow_of_two(size); 372 373 if (newsize <= max / 32) 374 newsize = newsize * 4; 375 else if (newsize <= max / 4) 376 newsize = newsize * 2; 377 else 378 newsize = max; 379 380 return newsize; 381 } 382 383 /* 384 * Get the previous window size, ramp it up, and 385 * return it as the new window size. 386 */ 387 static unsigned long get_next_ra_size(struct file_ra_state *ra, 388 unsigned long max) 389 { 390 unsigned long cur = ra->size; 391 392 if (cur < max / 16) 393 return 4 * cur; 394 if (cur <= max / 2) 395 return 2 * cur; 396 return max; 397 } 398 399 /* 400 * On-demand readahead design. 401 * 402 * The fields in struct file_ra_state represent the most-recently-executed 403 * readahead attempt: 404 * 405 * |<----- async_size ---------| 406 * |------------------- size -------------------->| 407 * |==================#===========================| 408 * ^start ^page marked with PG_readahead 409 * 410 * To overlap application thinking time and disk I/O time, we do 411 * `readahead pipelining': Do not wait until the application consumed all 412 * readahead pages and stalled on the missing page at readahead_index; 413 * Instead, submit an asynchronous readahead I/O as soon as there are 414 * only async_size pages left in the readahead window. Normally async_size 415 * will be equal to size, for maximum pipelining. 416 * 417 * In interleaved sequential reads, concurrent streams on the same fd can 418 * be invalidating each other's readahead state. So we flag the new readahead 419 * page at (start+size-async_size) with PG_readahead, and use it as readahead 420 * indicator. The flag won't be set on already cached pages, to avoid the 421 * readahead-for-nothing fuss, saving pointless page cache lookups. 422 * 423 * prev_pos tracks the last visited byte in the _previous_ read request. 424 * It should be maintained by the caller, and will be used for detecting 425 * small random reads. Note that the readahead algorithm checks loosely 426 * for sequential patterns. Hence interleaved reads might be served as 427 * sequential ones. 428 * 429 * There is a special-case: if the first page which the application tries to 430 * read happens to be the first page of the file, it is assumed that a linear 431 * read is about to happen and the window is immediately set to the initial size 432 * based on I/O request size and the max_readahead. 433 * 434 * The code ramps up the readahead size aggressively at first, but slow down as 435 * it approaches max_readhead. 436 */ 437 438 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 439 pgoff_t mark, unsigned int order, gfp_t gfp) 440 { 441 int err; 442 struct folio *folio = ractl_alloc_folio(ractl, gfp, order); 443 444 if (!folio) 445 return -ENOMEM; 446 mark = round_down(mark, 1UL << order); 447 if (index == mark) 448 folio_set_readahead(folio); 449 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 450 if (err) { 451 folio_put(folio); 452 return err; 453 } 454 455 ractl->_nr_pages += 1UL << order; 456 ractl->_workingset |= folio_test_workingset(folio); 457 return 0; 458 } 459 460 void page_cache_ra_order(struct readahead_control *ractl, 461 struct file_ra_state *ra, unsigned int new_order) 462 { 463 struct address_space *mapping = ractl->mapping; 464 pgoff_t start = readahead_index(ractl); 465 pgoff_t index = start; 466 unsigned int min_order = mapping_min_folio_order(mapping); 467 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 468 pgoff_t mark = index + ra->size - ra->async_size; 469 unsigned int nofs; 470 int err = 0; 471 gfp_t gfp = readahead_gfp_mask(mapping); 472 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping)); 473 474 /* 475 * Fallback when size < min_nrpages as each folio should be 476 * at least min_nrpages anyway. 477 */ 478 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size) 479 goto fallback; 480 481 limit = min(limit, index + ra->size - 1); 482 483 if (new_order < mapping_max_folio_order(mapping)) 484 new_order += 2; 485 486 new_order = min(mapping_max_folio_order(mapping), new_order); 487 new_order = min_t(unsigned int, new_order, ilog2(ra->size)); 488 new_order = max(new_order, min_order); 489 490 /* See comment in page_cache_ra_unbounded() */ 491 nofs = memalloc_nofs_save(); 492 filemap_invalidate_lock_shared(mapping); 493 /* 494 * If the new_order is greater than min_order and index is 495 * already aligned to new_order, then this will be noop as index 496 * aligned to new_order should also be aligned to min_order. 497 */ 498 ractl->_index = mapping_align_index(mapping, index); 499 index = readahead_index(ractl); 500 501 while (index <= limit) { 502 unsigned int order = new_order; 503 504 /* Align with smaller pages if needed */ 505 if (index & ((1UL << order) - 1)) 506 order = __ffs(index); 507 /* Don't allocate pages past EOF */ 508 while (order > min_order && index + (1UL << order) - 1 > limit) 509 order--; 510 err = ra_alloc_folio(ractl, index, mark, order, gfp); 511 if (err) 512 break; 513 index += 1UL << order; 514 } 515 516 read_pages(ractl); 517 filemap_invalidate_unlock_shared(mapping); 518 memalloc_nofs_restore(nofs); 519 520 /* 521 * If there were already pages in the page cache, then we may have 522 * left some gaps. Let the regular readahead code take care of this 523 * situation below. 524 */ 525 if (!err) 526 return; 527 fallback: 528 /* 529 * ->readahead() may have updated readahead window size so we have to 530 * check there's still something to read. 531 */ 532 if (ra->size > index - start) 533 do_page_cache_ra(ractl, ra->size - (index - start), 534 ra->async_size); 535 } 536 537 static unsigned long ractl_max_pages(struct readahead_control *ractl, 538 unsigned long req_size) 539 { 540 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 541 unsigned long max_pages = ractl->ra->ra_pages; 542 543 /* 544 * If the request exceeds the readahead window, allow the read to 545 * be up to the optimal hardware IO size 546 */ 547 if (req_size > max_pages && bdi->io_pages > max_pages) 548 max_pages = min(req_size, bdi->io_pages); 549 return max_pages; 550 } 551 552 void page_cache_sync_ra(struct readahead_control *ractl, 553 unsigned long req_count) 554 { 555 pgoff_t index = readahead_index(ractl); 556 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 557 struct file_ra_state *ra = ractl->ra; 558 unsigned long max_pages, contig_count; 559 pgoff_t prev_index, miss; 560 561 /* 562 * If we have pre-content watches we need to disable readahead to make 563 * sure that we don't find 0 filled pages in cache that we never emitted 564 * events for. Filesystems supporting HSM must make sure to not call 565 * this function with ractl->file unset for files handled by HSM. 566 */ 567 if (ractl->file && unlikely(FMODE_FSNOTIFY_HSM(ractl->file->f_mode))) 568 return; 569 570 /* 571 * Even if readahead is disabled, issue this request as readahead 572 * as we'll need it to satisfy the requested range. The forced 573 * readahead will do the right thing and limit the read to just the 574 * requested range, which we'll set to 1 page for this case. 575 */ 576 if (!ra->ra_pages || blk_cgroup_congested()) { 577 if (!ractl->file) 578 return; 579 req_count = 1; 580 do_forced_ra = true; 581 } 582 583 /* be dumb */ 584 if (do_forced_ra) { 585 force_page_cache_ra(ractl, req_count); 586 return; 587 } 588 589 max_pages = ractl_max_pages(ractl, req_count); 590 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 591 /* 592 * A start of file, oversized read, or sequential cache miss: 593 * trivial case: (index - prev_index) == 1 594 * unaligned reads: (index - prev_index) == 0 595 */ 596 if (!index || req_count > max_pages || index - prev_index <= 1UL) { 597 ra->start = index; 598 ra->size = get_init_ra_size(req_count, max_pages); 599 ra->async_size = ra->size > req_count ? ra->size - req_count : 600 ra->size >> 1; 601 goto readit; 602 } 603 604 /* 605 * Query the page cache and look for the traces(cached history pages) 606 * that a sequential stream would leave behind. 607 */ 608 rcu_read_lock(); 609 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); 610 rcu_read_unlock(); 611 contig_count = index - miss - 1; 612 /* 613 * Standalone, small random read. Read as is, and do not pollute the 614 * readahead state. 615 */ 616 if (contig_count <= req_count) { 617 do_page_cache_ra(ractl, req_count, 0); 618 return; 619 } 620 /* 621 * File cached from the beginning: 622 * it is a strong indication of long-run stream (or whole-file-read) 623 */ 624 if (miss == ULONG_MAX) 625 contig_count *= 2; 626 ra->start = index; 627 ra->size = min(contig_count + req_count, max_pages); 628 ra->async_size = 1; 629 readit: 630 ractl->_index = ra->start; 631 page_cache_ra_order(ractl, ra, 0); 632 } 633 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 634 635 void page_cache_async_ra(struct readahead_control *ractl, 636 struct folio *folio, unsigned long req_count) 637 { 638 unsigned long max_pages; 639 struct file_ra_state *ra = ractl->ra; 640 pgoff_t index = readahead_index(ractl); 641 pgoff_t expected, start; 642 unsigned int order = folio_order(folio); 643 644 /* no readahead */ 645 if (!ra->ra_pages) 646 return; 647 648 /* See the comment in page_cache_sync_ra. */ 649 if (ractl->file && unlikely(FMODE_FSNOTIFY_HSM(ractl->file->f_mode))) 650 return; 651 652 /* 653 * Same bit is used for PG_readahead and PG_reclaim. 654 */ 655 if (folio_test_writeback(folio)) 656 return; 657 658 folio_clear_readahead(folio); 659 660 if (blk_cgroup_congested()) 661 return; 662 663 max_pages = ractl_max_pages(ractl, req_count); 664 /* 665 * It's the expected callback index, assume sequential access. 666 * Ramp up sizes, and push forward the readahead window. 667 */ 668 expected = round_down(ra->start + ra->size - ra->async_size, 669 1UL << order); 670 if (index == expected) { 671 ra->start += ra->size; 672 /* 673 * In the case of MADV_HUGEPAGE, the actual size might exceed 674 * the readahead window. 675 */ 676 ra->size = max(ra->size, get_next_ra_size(ra, max_pages)); 677 ra->async_size = ra->size; 678 goto readit; 679 } 680 681 /* 682 * Hit a marked folio without valid readahead state. 683 * E.g. interleaved reads. 684 * Query the pagecache for async_size, which normally equals to 685 * readahead size. Ramp it up and use it as the new readahead size. 686 */ 687 rcu_read_lock(); 688 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); 689 rcu_read_unlock(); 690 691 if (!start || start - index > max_pages) 692 return; 693 694 ra->start = start; 695 ra->size = start - index; /* old async_size */ 696 ra->size += req_count; 697 ra->size = get_next_ra_size(ra, max_pages); 698 ra->async_size = ra->size; 699 readit: 700 ractl->_index = ra->start; 701 page_cache_ra_order(ractl, ra, order); 702 } 703 EXPORT_SYMBOL_GPL(page_cache_async_ra); 704 705 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 706 { 707 CLASS(fd, f)(fd); 708 709 if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ)) 710 return -EBADF; 711 712 /* 713 * The readahead() syscall is intended to run only on files 714 * that can execute readahead. If readahead is not possible 715 * on this file, then we must return -EINVAL. 716 */ 717 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops || 718 (!S_ISREG(file_inode(fd_file(f))->i_mode) && 719 !S_ISBLK(file_inode(fd_file(f))->i_mode))) 720 return -EINVAL; 721 722 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED); 723 } 724 725 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 726 { 727 return ksys_readahead(fd, offset, count); 728 } 729 730 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 731 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 732 { 733 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 734 } 735 #endif 736 737 /** 738 * readahead_expand - Expand a readahead request 739 * @ractl: The request to be expanded 740 * @new_start: The revised start 741 * @new_len: The revised size of the request 742 * 743 * Attempt to expand a readahead request outwards from the current size to the 744 * specified size by inserting locked pages before and after the current window 745 * to increase the size to the new window. This may involve the insertion of 746 * THPs, in which case the window may get expanded even beyond what was 747 * requested. 748 * 749 * The algorithm will stop if it encounters a conflicting page already in the 750 * pagecache and leave a smaller expansion than requested. 751 * 752 * The caller must check for this by examining the revised @ractl object for a 753 * different expansion than was requested. 754 */ 755 void readahead_expand(struct readahead_control *ractl, 756 loff_t new_start, size_t new_len) 757 { 758 struct address_space *mapping = ractl->mapping; 759 struct file_ra_state *ra = ractl->ra; 760 pgoff_t new_index, new_nr_pages; 761 gfp_t gfp_mask = readahead_gfp_mask(mapping); 762 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping); 763 unsigned int min_order = mapping_min_folio_order(mapping); 764 765 new_index = new_start / PAGE_SIZE; 766 /* 767 * Readahead code should have aligned the ractl->_index to 768 * min_nrpages before calling readahead aops. 769 */ 770 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages)); 771 772 /* Expand the leading edge downwards */ 773 while (ractl->_index > new_index) { 774 unsigned long index = ractl->_index - 1; 775 struct folio *folio = xa_load(&mapping->i_pages, index); 776 777 if (folio && !xa_is_value(folio)) 778 return; /* Folio apparently present */ 779 780 folio = ractl_alloc_folio(ractl, gfp_mask, min_order); 781 if (!folio) 782 return; 783 784 index = mapping_align_index(mapping, index); 785 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 786 folio_put(folio); 787 return; 788 } 789 if (unlikely(folio_test_workingset(folio)) && 790 !ractl->_workingset) { 791 ractl->_workingset = true; 792 psi_memstall_enter(&ractl->_pflags); 793 } 794 ractl->_nr_pages += min_nrpages; 795 ractl->_index = folio->index; 796 } 797 798 new_len += new_start - readahead_pos(ractl); 799 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 800 801 /* Expand the trailing edge upwards */ 802 while (ractl->_nr_pages < new_nr_pages) { 803 unsigned long index = ractl->_index + ractl->_nr_pages; 804 struct folio *folio = xa_load(&mapping->i_pages, index); 805 806 if (folio && !xa_is_value(folio)) 807 return; /* Folio apparently present */ 808 809 folio = ractl_alloc_folio(ractl, gfp_mask, min_order); 810 if (!folio) 811 return; 812 813 index = mapping_align_index(mapping, index); 814 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 815 folio_put(folio); 816 return; 817 } 818 if (unlikely(folio_test_workingset(folio)) && 819 !ractl->_workingset) { 820 ractl->_workingset = true; 821 psi_memstall_enter(&ractl->_pflags); 822 } 823 ractl->_nr_pages += min_nrpages; 824 if (ra) { 825 ra->size += min_nrpages; 826 ra->async_size += min_nrpages; 827 } 828 } 829 } 830 EXPORT_SYMBOL(readahead_expand); 831