xref: /linux/mm/readahead.c (revision dacef016c088f8f69fe1e6e5feab3543df3dab83)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/fadvise.h>
24 #include <linux/sched/mm.h>
25 
26 #include "internal.h"
27 
28 /*
29  * Initialise a struct file's readahead state.  Assumes that the caller has
30  * memset *ra to zero.
31  */
32 void
33 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
34 {
35 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
36 	ra->prev_pos = -1;
37 }
38 EXPORT_SYMBOL_GPL(file_ra_state_init);
39 
40 /*
41  * see if a page needs releasing upon read_cache_pages() failure
42  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
43  *   before calling, such as the NFS fs marking pages that are cached locally
44  *   on disk, thus we need to give the fs a chance to clean up in the event of
45  *   an error
46  */
47 static void read_cache_pages_invalidate_page(struct address_space *mapping,
48 					     struct page *page)
49 {
50 	if (page_has_private(page)) {
51 		if (!trylock_page(page))
52 			BUG();
53 		page->mapping = mapping;
54 		do_invalidatepage(page, 0, PAGE_SIZE);
55 		page->mapping = NULL;
56 		unlock_page(page);
57 	}
58 	put_page(page);
59 }
60 
61 /*
62  * release a list of pages, invalidating them first if need be
63  */
64 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
65 					      struct list_head *pages)
66 {
67 	struct page *victim;
68 
69 	while (!list_empty(pages)) {
70 		victim = lru_to_page(pages);
71 		list_del(&victim->lru);
72 		read_cache_pages_invalidate_page(mapping, victim);
73 	}
74 }
75 
76 /**
77  * read_cache_pages - populate an address space with some pages & start reads against them
78  * @mapping: the address_space
79  * @pages: The address of a list_head which contains the target pages.  These
80  *   pages have their ->index populated and are otherwise uninitialised.
81  * @filler: callback routine for filling a single page.
82  * @data: private data for the callback routine.
83  *
84  * Hides the details of the LRU cache etc from the filesystems.
85  *
86  * Returns: %0 on success, error return by @filler otherwise
87  */
88 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
89 			int (*filler)(void *, struct page *), void *data)
90 {
91 	struct page *page;
92 	int ret = 0;
93 
94 	while (!list_empty(pages)) {
95 		page = lru_to_page(pages);
96 		list_del(&page->lru);
97 		if (add_to_page_cache_lru(page, mapping, page->index,
98 				readahead_gfp_mask(mapping))) {
99 			read_cache_pages_invalidate_page(mapping, page);
100 			continue;
101 		}
102 		put_page(page);
103 
104 		ret = filler(data, page);
105 		if (unlikely(ret)) {
106 			read_cache_pages_invalidate_pages(mapping, pages);
107 			break;
108 		}
109 		task_io_account_read(PAGE_SIZE);
110 	}
111 	return ret;
112 }
113 
114 EXPORT_SYMBOL(read_cache_pages);
115 
116 static void read_pages(struct readahead_control *rac, struct list_head *pages,
117 		bool skip_page)
118 {
119 	const struct address_space_operations *aops = rac->mapping->a_ops;
120 	struct page *page;
121 	struct blk_plug plug;
122 
123 	if (!readahead_count(rac))
124 		goto out;
125 
126 	blk_start_plug(&plug);
127 
128 	if (aops->readahead) {
129 		aops->readahead(rac);
130 		/* Clean up the remaining pages */
131 		while ((page = readahead_page(rac))) {
132 			unlock_page(page);
133 			put_page(page);
134 		}
135 	} else if (aops->readpages) {
136 		aops->readpages(rac->file, rac->mapping, pages,
137 				readahead_count(rac));
138 		/* Clean up the remaining pages */
139 		put_pages_list(pages);
140 		rac->_index += rac->_nr_pages;
141 		rac->_nr_pages = 0;
142 	} else {
143 		while ((page = readahead_page(rac))) {
144 			aops->readpage(rac->file, page);
145 			put_page(page);
146 		}
147 	}
148 
149 	blk_finish_plug(&plug);
150 
151 	BUG_ON(!list_empty(pages));
152 	BUG_ON(readahead_count(rac));
153 
154 out:
155 	if (skip_page)
156 		rac->_index++;
157 }
158 
159 /**
160  * page_cache_ra_unbounded - Start unchecked readahead.
161  * @ractl: Readahead control.
162  * @nr_to_read: The number of pages to read.
163  * @lookahead_size: Where to start the next readahead.
164  *
165  * This function is for filesystems to call when they want to start
166  * readahead beyond a file's stated i_size.  This is almost certainly
167  * not the function you want to call.  Use page_cache_async_readahead()
168  * or page_cache_sync_readahead() instead.
169  *
170  * Context: File is referenced by caller.  Mutexes may be held by caller.
171  * May sleep, but will not reenter filesystem to reclaim memory.
172  */
173 void page_cache_ra_unbounded(struct readahead_control *ractl,
174 		unsigned long nr_to_read, unsigned long lookahead_size)
175 {
176 	struct address_space *mapping = ractl->mapping;
177 	unsigned long index = readahead_index(ractl);
178 	LIST_HEAD(page_pool);
179 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
180 	unsigned long i;
181 
182 	/*
183 	 * Partway through the readahead operation, we will have added
184 	 * locked pages to the page cache, but will not yet have submitted
185 	 * them for I/O.  Adding another page may need to allocate memory,
186 	 * which can trigger memory reclaim.  Telling the VM we're in
187 	 * the middle of a filesystem operation will cause it to not
188 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
189 	 * filesystems already specify __GFP_NOFS in their mapping's
190 	 * gfp_mask, but let's be explicit here.
191 	 */
192 	unsigned int nofs = memalloc_nofs_save();
193 
194 	filemap_invalidate_lock_shared(mapping);
195 	/*
196 	 * Preallocate as many pages as we will need.
197 	 */
198 	for (i = 0; i < nr_to_read; i++) {
199 		struct page *page = xa_load(&mapping->i_pages, index + i);
200 
201 		if (page && !xa_is_value(page)) {
202 			/*
203 			 * Page already present?  Kick off the current batch
204 			 * of contiguous pages before continuing with the
205 			 * next batch.  This page may be the one we would
206 			 * have intended to mark as Readahead, but we don't
207 			 * have a stable reference to this page, and it's
208 			 * not worth getting one just for that.
209 			 */
210 			read_pages(ractl, &page_pool, true);
211 			i = ractl->_index + ractl->_nr_pages - index - 1;
212 			continue;
213 		}
214 
215 		page = __page_cache_alloc(gfp_mask);
216 		if (!page)
217 			break;
218 		if (mapping->a_ops->readpages) {
219 			page->index = index + i;
220 			list_add(&page->lru, &page_pool);
221 		} else if (add_to_page_cache_lru(page, mapping, index + i,
222 					gfp_mask) < 0) {
223 			put_page(page);
224 			read_pages(ractl, &page_pool, true);
225 			i = ractl->_index + ractl->_nr_pages - index - 1;
226 			continue;
227 		}
228 		if (i == nr_to_read - lookahead_size)
229 			SetPageReadahead(page);
230 		ractl->_nr_pages++;
231 	}
232 
233 	/*
234 	 * Now start the IO.  We ignore I/O errors - if the page is not
235 	 * uptodate then the caller will launch readpage again, and
236 	 * will then handle the error.
237 	 */
238 	read_pages(ractl, &page_pool, false);
239 	filemap_invalidate_unlock_shared(mapping);
240 	memalloc_nofs_restore(nofs);
241 }
242 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
243 
244 /*
245  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
246  * the pages first, then submits them for I/O. This avoids the very bad
247  * behaviour which would occur if page allocations are causing VM writeback.
248  * We really don't want to intermingle reads and writes like that.
249  */
250 void do_page_cache_ra(struct readahead_control *ractl,
251 		unsigned long nr_to_read, unsigned long lookahead_size)
252 {
253 	struct inode *inode = ractl->mapping->host;
254 	unsigned long index = readahead_index(ractl);
255 	loff_t isize = i_size_read(inode);
256 	pgoff_t end_index;	/* The last page we want to read */
257 
258 	if (isize == 0)
259 		return;
260 
261 	end_index = (isize - 1) >> PAGE_SHIFT;
262 	if (index > end_index)
263 		return;
264 	/* Don't read past the page containing the last byte of the file */
265 	if (nr_to_read > end_index - index)
266 		nr_to_read = end_index - index + 1;
267 
268 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
269 }
270 
271 /*
272  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
273  * memory at once.
274  */
275 void force_page_cache_ra(struct readahead_control *ractl,
276 		unsigned long nr_to_read)
277 {
278 	struct address_space *mapping = ractl->mapping;
279 	struct file_ra_state *ra = ractl->ra;
280 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
281 	unsigned long max_pages, index;
282 
283 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
284 			!mapping->a_ops->readahead))
285 		return;
286 
287 	/*
288 	 * If the request exceeds the readahead window, allow the read to
289 	 * be up to the optimal hardware IO size
290 	 */
291 	index = readahead_index(ractl);
292 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
293 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
294 	while (nr_to_read) {
295 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
296 
297 		if (this_chunk > nr_to_read)
298 			this_chunk = nr_to_read;
299 		ractl->_index = index;
300 		do_page_cache_ra(ractl, this_chunk, 0);
301 
302 		index += this_chunk;
303 		nr_to_read -= this_chunk;
304 	}
305 }
306 
307 /*
308  * Set the initial window size, round to next power of 2 and square
309  * for small size, x 4 for medium, and x 2 for large
310  * for 128k (32 page) max ra
311  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
312  */
313 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
314 {
315 	unsigned long newsize = roundup_pow_of_two(size);
316 
317 	if (newsize <= max / 32)
318 		newsize = newsize * 4;
319 	else if (newsize <= max / 4)
320 		newsize = newsize * 2;
321 	else
322 		newsize = max;
323 
324 	return newsize;
325 }
326 
327 /*
328  *  Get the previous window size, ramp it up, and
329  *  return it as the new window size.
330  */
331 static unsigned long get_next_ra_size(struct file_ra_state *ra,
332 				      unsigned long max)
333 {
334 	unsigned long cur = ra->size;
335 
336 	if (cur < max / 16)
337 		return 4 * cur;
338 	if (cur <= max / 2)
339 		return 2 * cur;
340 	return max;
341 }
342 
343 /*
344  * On-demand readahead design.
345  *
346  * The fields in struct file_ra_state represent the most-recently-executed
347  * readahead attempt:
348  *
349  *                        |<----- async_size ---------|
350  *     |------------------- size -------------------->|
351  *     |==================#===========================|
352  *     ^start             ^page marked with PG_readahead
353  *
354  * To overlap application thinking time and disk I/O time, we do
355  * `readahead pipelining': Do not wait until the application consumed all
356  * readahead pages and stalled on the missing page at readahead_index;
357  * Instead, submit an asynchronous readahead I/O as soon as there are
358  * only async_size pages left in the readahead window. Normally async_size
359  * will be equal to size, for maximum pipelining.
360  *
361  * In interleaved sequential reads, concurrent streams on the same fd can
362  * be invalidating each other's readahead state. So we flag the new readahead
363  * page at (start+size-async_size) with PG_readahead, and use it as readahead
364  * indicator. The flag won't be set on already cached pages, to avoid the
365  * readahead-for-nothing fuss, saving pointless page cache lookups.
366  *
367  * prev_pos tracks the last visited byte in the _previous_ read request.
368  * It should be maintained by the caller, and will be used for detecting
369  * small random reads. Note that the readahead algorithm checks loosely
370  * for sequential patterns. Hence interleaved reads might be served as
371  * sequential ones.
372  *
373  * There is a special-case: if the first page which the application tries to
374  * read happens to be the first page of the file, it is assumed that a linear
375  * read is about to happen and the window is immediately set to the initial size
376  * based on I/O request size and the max_readahead.
377  *
378  * The code ramps up the readahead size aggressively at first, but slow down as
379  * it approaches max_readhead.
380  */
381 
382 /*
383  * Count contiguously cached pages from @index-1 to @index-@max,
384  * this count is a conservative estimation of
385  * 	- length of the sequential read sequence, or
386  * 	- thrashing threshold in memory tight systems
387  */
388 static pgoff_t count_history_pages(struct address_space *mapping,
389 				   pgoff_t index, unsigned long max)
390 {
391 	pgoff_t head;
392 
393 	rcu_read_lock();
394 	head = page_cache_prev_miss(mapping, index - 1, max);
395 	rcu_read_unlock();
396 
397 	return index - 1 - head;
398 }
399 
400 /*
401  * page cache context based read-ahead
402  */
403 static int try_context_readahead(struct address_space *mapping,
404 				 struct file_ra_state *ra,
405 				 pgoff_t index,
406 				 unsigned long req_size,
407 				 unsigned long max)
408 {
409 	pgoff_t size;
410 
411 	size = count_history_pages(mapping, index, max);
412 
413 	/*
414 	 * not enough history pages:
415 	 * it could be a random read
416 	 */
417 	if (size <= req_size)
418 		return 0;
419 
420 	/*
421 	 * starts from beginning of file:
422 	 * it is a strong indication of long-run stream (or whole-file-read)
423 	 */
424 	if (size >= index)
425 		size *= 2;
426 
427 	ra->start = index;
428 	ra->size = min(size + req_size, max);
429 	ra->async_size = 1;
430 
431 	return 1;
432 }
433 
434 /*
435  * A minimal readahead algorithm for trivial sequential/random reads.
436  */
437 static void ondemand_readahead(struct readahead_control *ractl,
438 		bool hit_readahead_marker, unsigned long req_size)
439 {
440 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
441 	struct file_ra_state *ra = ractl->ra;
442 	unsigned long max_pages = ra->ra_pages;
443 	unsigned long add_pages;
444 	unsigned long index = readahead_index(ractl);
445 	pgoff_t prev_index;
446 
447 	/*
448 	 * If the request exceeds the readahead window, allow the read to
449 	 * be up to the optimal hardware IO size
450 	 */
451 	if (req_size > max_pages && bdi->io_pages > max_pages)
452 		max_pages = min(req_size, bdi->io_pages);
453 
454 	/*
455 	 * start of file
456 	 */
457 	if (!index)
458 		goto initial_readahead;
459 
460 	/*
461 	 * It's the expected callback index, assume sequential access.
462 	 * Ramp up sizes, and push forward the readahead window.
463 	 */
464 	if ((index == (ra->start + ra->size - ra->async_size) ||
465 	     index == (ra->start + ra->size))) {
466 		ra->start += ra->size;
467 		ra->size = get_next_ra_size(ra, max_pages);
468 		ra->async_size = ra->size;
469 		goto readit;
470 	}
471 
472 	/*
473 	 * Hit a marked page without valid readahead state.
474 	 * E.g. interleaved reads.
475 	 * Query the pagecache for async_size, which normally equals to
476 	 * readahead size. Ramp it up and use it as the new readahead size.
477 	 */
478 	if (hit_readahead_marker) {
479 		pgoff_t start;
480 
481 		rcu_read_lock();
482 		start = page_cache_next_miss(ractl->mapping, index + 1,
483 				max_pages);
484 		rcu_read_unlock();
485 
486 		if (!start || start - index > max_pages)
487 			return;
488 
489 		ra->start = start;
490 		ra->size = start - index;	/* old async_size */
491 		ra->size += req_size;
492 		ra->size = get_next_ra_size(ra, max_pages);
493 		ra->async_size = ra->size;
494 		goto readit;
495 	}
496 
497 	/*
498 	 * oversize read
499 	 */
500 	if (req_size > max_pages)
501 		goto initial_readahead;
502 
503 	/*
504 	 * sequential cache miss
505 	 * trivial case: (index - prev_index) == 1
506 	 * unaligned reads: (index - prev_index) == 0
507 	 */
508 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
509 	if (index - prev_index <= 1UL)
510 		goto initial_readahead;
511 
512 	/*
513 	 * Query the page cache and look for the traces(cached history pages)
514 	 * that a sequential stream would leave behind.
515 	 */
516 	if (try_context_readahead(ractl->mapping, ra, index, req_size,
517 			max_pages))
518 		goto readit;
519 
520 	/*
521 	 * standalone, small random read
522 	 * Read as is, and do not pollute the readahead state.
523 	 */
524 	do_page_cache_ra(ractl, req_size, 0);
525 	return;
526 
527 initial_readahead:
528 	ra->start = index;
529 	ra->size = get_init_ra_size(req_size, max_pages);
530 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
531 
532 readit:
533 	/*
534 	 * Will this read hit the readahead marker made by itself?
535 	 * If so, trigger the readahead marker hit now, and merge
536 	 * the resulted next readahead window into the current one.
537 	 * Take care of maximum IO pages as above.
538 	 */
539 	if (index == ra->start && ra->size == ra->async_size) {
540 		add_pages = get_next_ra_size(ra, max_pages);
541 		if (ra->size + add_pages <= max_pages) {
542 			ra->async_size = add_pages;
543 			ra->size += add_pages;
544 		} else {
545 			ra->size = max_pages;
546 			ra->async_size = max_pages >> 1;
547 		}
548 	}
549 
550 	ractl->_index = ra->start;
551 	do_page_cache_ra(ractl, ra->size, ra->async_size);
552 }
553 
554 void page_cache_sync_ra(struct readahead_control *ractl,
555 		unsigned long req_count)
556 {
557 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
558 
559 	/*
560 	 * Even if read-ahead is disabled, issue this request as read-ahead
561 	 * as we'll need it to satisfy the requested range. The forced
562 	 * read-ahead will do the right thing and limit the read to just the
563 	 * requested range, which we'll set to 1 page for this case.
564 	 */
565 	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
566 		if (!ractl->file)
567 			return;
568 		req_count = 1;
569 		do_forced_ra = true;
570 	}
571 
572 	/* be dumb */
573 	if (do_forced_ra) {
574 		force_page_cache_ra(ractl, req_count);
575 		return;
576 	}
577 
578 	/* do read-ahead */
579 	ondemand_readahead(ractl, false, req_count);
580 }
581 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
582 
583 void page_cache_async_ra(struct readahead_control *ractl,
584 		struct page *page, unsigned long req_count)
585 {
586 	/* no read-ahead */
587 	if (!ractl->ra->ra_pages)
588 		return;
589 
590 	/*
591 	 * Same bit is used for PG_readahead and PG_reclaim.
592 	 */
593 	if (PageWriteback(page))
594 		return;
595 
596 	ClearPageReadahead(page);
597 
598 	/*
599 	 * Defer asynchronous read-ahead on IO congestion.
600 	 */
601 	if (inode_read_congested(ractl->mapping->host))
602 		return;
603 
604 	if (blk_cgroup_congested())
605 		return;
606 
607 	/* do read-ahead */
608 	ondemand_readahead(ractl, true, req_count);
609 }
610 EXPORT_SYMBOL_GPL(page_cache_async_ra);
611 
612 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
613 {
614 	ssize_t ret;
615 	struct fd f;
616 
617 	ret = -EBADF;
618 	f = fdget(fd);
619 	if (!f.file || !(f.file->f_mode & FMODE_READ))
620 		goto out;
621 
622 	/*
623 	 * The readahead() syscall is intended to run only on files
624 	 * that can execute readahead. If readahead is not possible
625 	 * on this file, then we must return -EINVAL.
626 	 */
627 	ret = -EINVAL;
628 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
629 	    !S_ISREG(file_inode(f.file)->i_mode))
630 		goto out;
631 
632 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
633 out:
634 	fdput(f);
635 	return ret;
636 }
637 
638 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
639 {
640 	return ksys_readahead(fd, offset, count);
641 }
642 
643 /**
644  * readahead_expand - Expand a readahead request
645  * @ractl: The request to be expanded
646  * @new_start: The revised start
647  * @new_len: The revised size of the request
648  *
649  * Attempt to expand a readahead request outwards from the current size to the
650  * specified size by inserting locked pages before and after the current window
651  * to increase the size to the new window.  This may involve the insertion of
652  * THPs, in which case the window may get expanded even beyond what was
653  * requested.
654  *
655  * The algorithm will stop if it encounters a conflicting page already in the
656  * pagecache and leave a smaller expansion than requested.
657  *
658  * The caller must check for this by examining the revised @ractl object for a
659  * different expansion than was requested.
660  */
661 void readahead_expand(struct readahead_control *ractl,
662 		      loff_t new_start, size_t new_len)
663 {
664 	struct address_space *mapping = ractl->mapping;
665 	struct file_ra_state *ra = ractl->ra;
666 	pgoff_t new_index, new_nr_pages;
667 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
668 
669 	new_index = new_start / PAGE_SIZE;
670 
671 	/* Expand the leading edge downwards */
672 	while (ractl->_index > new_index) {
673 		unsigned long index = ractl->_index - 1;
674 		struct page *page = xa_load(&mapping->i_pages, index);
675 
676 		if (page && !xa_is_value(page))
677 			return; /* Page apparently present */
678 
679 		page = __page_cache_alloc(gfp_mask);
680 		if (!page)
681 			return;
682 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
683 			put_page(page);
684 			return;
685 		}
686 
687 		ractl->_nr_pages++;
688 		ractl->_index = page->index;
689 	}
690 
691 	new_len += new_start - readahead_pos(ractl);
692 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
693 
694 	/* Expand the trailing edge upwards */
695 	while (ractl->_nr_pages < new_nr_pages) {
696 		unsigned long index = ractl->_index + ractl->_nr_pages;
697 		struct page *page = xa_load(&mapping->i_pages, index);
698 
699 		if (page && !xa_is_value(page))
700 			return; /* Page apparently present */
701 
702 		page = __page_cache_alloc(gfp_mask);
703 		if (!page)
704 			return;
705 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
706 			put_page(page);
707 			return;
708 		}
709 		ractl->_nr_pages++;
710 		if (ra) {
711 			ra->size++;
712 			ra->async_size++;
713 		}
714 	}
715 }
716 EXPORT_SYMBOL(readahead_expand);
717