1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 19 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 20 { 21 } 22 EXPORT_SYMBOL(default_unplug_io_fn); 23 24 struct backing_dev_info default_backing_dev_info = { 25 .ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE, 26 .state = 0, 27 .capabilities = BDI_CAP_MAP_COPY, 28 .unplug_io_fn = default_unplug_io_fn, 29 }; 30 EXPORT_SYMBOL_GPL(default_backing_dev_info); 31 32 /* 33 * Initialise a struct file's readahead state. Assumes that the caller has 34 * memset *ra to zero. 35 */ 36 void 37 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 38 { 39 ra->ra_pages = mapping->backing_dev_info->ra_pages; 40 ra->prev_page = -1; 41 } 42 EXPORT_SYMBOL_GPL(file_ra_state_init); 43 44 /* 45 * Return max readahead size for this inode in number-of-pages. 46 */ 47 static inline unsigned long get_max_readahead(struct file_ra_state *ra) 48 { 49 return ra->ra_pages; 50 } 51 52 static inline unsigned long get_min_readahead(struct file_ra_state *ra) 53 { 54 return (VM_MIN_READAHEAD * 1024) / PAGE_CACHE_SIZE; 55 } 56 57 static inline void reset_ahead_window(struct file_ra_state *ra) 58 { 59 /* 60 * ... but preserve ahead_start + ahead_size value, 61 * see 'recheck:' label in page_cache_readahead(). 62 * Note: We never use ->ahead_size as rvalue without 63 * checking ->ahead_start != 0 first. 64 */ 65 ra->ahead_size += ra->ahead_start; 66 ra->ahead_start = 0; 67 } 68 69 static inline void ra_off(struct file_ra_state *ra) 70 { 71 ra->start = 0; 72 ra->flags = 0; 73 ra->size = 0; 74 reset_ahead_window(ra); 75 return; 76 } 77 78 /* 79 * Set the initial window size, round to next power of 2 and square 80 * for small size, x 4 for medium, and x 2 for large 81 * for 128k (32 page) max ra 82 * 1-8 page = 32k initial, > 8 page = 128k initial 83 */ 84 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 85 { 86 unsigned long newsize = roundup_pow_of_two(size); 87 88 if (newsize <= max / 32) 89 newsize = newsize * 4; 90 else if (newsize <= max / 4) 91 newsize = newsize * 2; 92 else 93 newsize = max; 94 return newsize; 95 } 96 97 /* 98 * Set the new window size, this is called only when I/O is to be submitted, 99 * not for each call to readahead. If a cache miss occured, reduce next I/O 100 * size, else increase depending on how close to max we are. 101 */ 102 static inline unsigned long get_next_ra_size(struct file_ra_state *ra) 103 { 104 unsigned long max = get_max_readahead(ra); 105 unsigned long min = get_min_readahead(ra); 106 unsigned long cur = ra->size; 107 unsigned long newsize; 108 109 if (ra->flags & RA_FLAG_MISS) { 110 ra->flags &= ~RA_FLAG_MISS; 111 newsize = max((cur - 2), min); 112 } else if (cur < max / 16) { 113 newsize = 4 * cur; 114 } else { 115 newsize = 2 * cur; 116 } 117 return min(newsize, max); 118 } 119 120 #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 121 122 /** 123 * read_cache_pages - populate an address space with some pages & start reads against them 124 * @mapping: the address_space 125 * @pages: The address of a list_head which contains the target pages. These 126 * pages have their ->index populated and are otherwise uninitialised. 127 * @filler: callback routine for filling a single page. 128 * @data: private data for the callback routine. 129 * 130 * Hides the details of the LRU cache etc from the filesystems. 131 */ 132 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 133 int (*filler)(void *, struct page *), void *data) 134 { 135 struct page *page; 136 struct pagevec lru_pvec; 137 int ret = 0; 138 139 pagevec_init(&lru_pvec, 0); 140 141 while (!list_empty(pages)) { 142 page = list_to_page(pages); 143 list_del(&page->lru); 144 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) { 145 page_cache_release(page); 146 continue; 147 } 148 ret = filler(data, page); 149 if (!pagevec_add(&lru_pvec, page)) 150 __pagevec_lru_add(&lru_pvec); 151 if (ret) { 152 put_pages_list(pages); 153 break; 154 } 155 task_io_account_read(PAGE_CACHE_SIZE); 156 } 157 pagevec_lru_add(&lru_pvec); 158 return ret; 159 } 160 161 EXPORT_SYMBOL(read_cache_pages); 162 163 static int read_pages(struct address_space *mapping, struct file *filp, 164 struct list_head *pages, unsigned nr_pages) 165 { 166 unsigned page_idx; 167 struct pagevec lru_pvec; 168 int ret; 169 170 if (mapping->a_ops->readpages) { 171 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 172 /* Clean up the remaining pages */ 173 put_pages_list(pages); 174 goto out; 175 } 176 177 pagevec_init(&lru_pvec, 0); 178 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 179 struct page *page = list_to_page(pages); 180 list_del(&page->lru); 181 if (!add_to_page_cache(page, mapping, 182 page->index, GFP_KERNEL)) { 183 mapping->a_ops->readpage(filp, page); 184 if (!pagevec_add(&lru_pvec, page)) 185 __pagevec_lru_add(&lru_pvec); 186 } else 187 page_cache_release(page); 188 } 189 pagevec_lru_add(&lru_pvec); 190 ret = 0; 191 out: 192 return ret; 193 } 194 195 /* 196 * Readahead design. 197 * 198 * The fields in struct file_ra_state represent the most-recently-executed 199 * readahead attempt: 200 * 201 * start: Page index at which we started the readahead 202 * size: Number of pages in that read 203 * Together, these form the "current window". 204 * Together, start and size represent the `readahead window'. 205 * prev_page: The page which the readahead algorithm most-recently inspected. 206 * It is mainly used to detect sequential file reading. 207 * If page_cache_readahead sees that it is again being called for 208 * a page which it just looked at, it can return immediately without 209 * making any state changes. 210 * ahead_start, 211 * ahead_size: Together, these form the "ahead window". 212 * ra_pages: The externally controlled max readahead for this fd. 213 * 214 * When readahead is in the off state (size == 0), readahead is disabled. 215 * In this state, prev_page is used to detect the resumption of sequential I/O. 216 * 217 * The readahead code manages two windows - the "current" and the "ahead" 218 * windows. The intent is that while the application is walking the pages 219 * in the current window, I/O is underway on the ahead window. When the 220 * current window is fully traversed, it is replaced by the ahead window 221 * and the ahead window is invalidated. When this copying happens, the 222 * new current window's pages are probably still locked. So 223 * we submit a new batch of I/O immediately, creating a new ahead window. 224 * 225 * So: 226 * 227 * ----|----------------|----------------|----- 228 * ^start ^start+size 229 * ^ahead_start ^ahead_start+ahead_size 230 * 231 * ^ When this page is read, we submit I/O for the 232 * ahead window. 233 * 234 * A `readahead hit' occurs when a read request is made against a page which is 235 * the next sequential page. Ahead window calculations are done only when it 236 * is time to submit a new IO. The code ramps up the size agressively at first, 237 * but slow down as it approaches max_readhead. 238 * 239 * Any seek/ramdom IO will result in readahead being turned off. It will resume 240 * at the first sequential access. 241 * 242 * There is a special-case: if the first page which the application tries to 243 * read happens to be the first page of the file, it is assumed that a linear 244 * read is about to happen and the window is immediately set to the initial size 245 * based on I/O request size and the max_readahead. 246 * 247 * This function is to be called for every read request, rather than when 248 * it is time to perform readahead. It is called only once for the entire I/O 249 * regardless of size unless readahead is unable to start enough I/O to satisfy 250 * the request (I/O request > max_readahead). 251 */ 252 253 /* 254 * do_page_cache_readahead actually reads a chunk of disk. It allocates all 255 * the pages first, then submits them all for I/O. This avoids the very bad 256 * behaviour which would occur if page allocations are causing VM writeback. 257 * We really don't want to intermingle reads and writes like that. 258 * 259 * Returns the number of pages requested, or the maximum amount of I/O allowed. 260 * 261 * do_page_cache_readahead() returns -1 if it encountered request queue 262 * congestion. 263 */ 264 static int 265 __do_page_cache_readahead(struct address_space *mapping, struct file *filp, 266 pgoff_t offset, unsigned long nr_to_read) 267 { 268 struct inode *inode = mapping->host; 269 struct page *page; 270 unsigned long end_index; /* The last page we want to read */ 271 LIST_HEAD(page_pool); 272 int page_idx; 273 int ret = 0; 274 loff_t isize = i_size_read(inode); 275 276 if (isize == 0) 277 goto out; 278 279 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 280 281 /* 282 * Preallocate as many pages as we will need. 283 */ 284 read_lock_irq(&mapping->tree_lock); 285 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 286 pgoff_t page_offset = offset + page_idx; 287 288 if (page_offset > end_index) 289 break; 290 291 page = radix_tree_lookup(&mapping->page_tree, page_offset); 292 if (page) 293 continue; 294 295 read_unlock_irq(&mapping->tree_lock); 296 page = page_cache_alloc_cold(mapping); 297 read_lock_irq(&mapping->tree_lock); 298 if (!page) 299 break; 300 page->index = page_offset; 301 list_add(&page->lru, &page_pool); 302 ret++; 303 } 304 read_unlock_irq(&mapping->tree_lock); 305 306 /* 307 * Now start the IO. We ignore I/O errors - if the page is not 308 * uptodate then the caller will launch readpage again, and 309 * will then handle the error. 310 */ 311 if (ret) 312 read_pages(mapping, filp, &page_pool, ret); 313 BUG_ON(!list_empty(&page_pool)); 314 out: 315 return ret; 316 } 317 318 /* 319 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 320 * memory at once. 321 */ 322 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 323 pgoff_t offset, unsigned long nr_to_read) 324 { 325 int ret = 0; 326 327 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 328 return -EINVAL; 329 330 while (nr_to_read) { 331 int err; 332 333 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; 334 335 if (this_chunk > nr_to_read) 336 this_chunk = nr_to_read; 337 err = __do_page_cache_readahead(mapping, filp, 338 offset, this_chunk); 339 if (err < 0) { 340 ret = err; 341 break; 342 } 343 ret += err; 344 offset += this_chunk; 345 nr_to_read -= this_chunk; 346 } 347 return ret; 348 } 349 350 /* 351 * Check how effective readahead is being. If the amount of started IO is 352 * less than expected then the file is partly or fully in pagecache and 353 * readahead isn't helping. 354 * 355 */ 356 static inline int check_ra_success(struct file_ra_state *ra, 357 unsigned long nr_to_read, unsigned long actual) 358 { 359 if (actual == 0) { 360 ra->cache_hit += nr_to_read; 361 if (ra->cache_hit >= VM_MAX_CACHE_HIT) { 362 ra_off(ra); 363 ra->flags |= RA_FLAG_INCACHE; 364 return 0; 365 } 366 } else { 367 ra->cache_hit=0; 368 } 369 return 1; 370 } 371 372 /* 373 * This version skips the IO if the queue is read-congested, and will tell the 374 * block layer to abandon the readahead if request allocation would block. 375 * 376 * force_page_cache_readahead() will ignore queue congestion and will block on 377 * request queues. 378 */ 379 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 380 pgoff_t offset, unsigned long nr_to_read) 381 { 382 if (bdi_read_congested(mapping->backing_dev_info)) 383 return -1; 384 385 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read); 386 } 387 388 /* 389 * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block' 390 * is set wait till the read completes. Otherwise attempt to read without 391 * blocking. 392 * Returns 1 meaning 'success' if read is successful without switching off 393 * readahead mode. Otherwise return failure. 394 */ 395 static int 396 blockable_page_cache_readahead(struct address_space *mapping, struct file *filp, 397 pgoff_t offset, unsigned long nr_to_read, 398 struct file_ra_state *ra, int block) 399 { 400 int actual; 401 402 if (!block && bdi_read_congested(mapping->backing_dev_info)) 403 return 0; 404 405 actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read); 406 407 return check_ra_success(ra, nr_to_read, actual); 408 } 409 410 static int make_ahead_window(struct address_space *mapping, struct file *filp, 411 struct file_ra_state *ra, int force) 412 { 413 int block, ret; 414 415 ra->ahead_size = get_next_ra_size(ra); 416 ra->ahead_start = ra->start + ra->size; 417 418 block = force || (ra->prev_page >= ra->ahead_start); 419 ret = blockable_page_cache_readahead(mapping, filp, 420 ra->ahead_start, ra->ahead_size, ra, block); 421 422 if (!ret && !force) { 423 /* A read failure in blocking mode, implies pages are 424 * all cached. So we can safely assume we have taken 425 * care of all the pages requested in this call. 426 * A read failure in non-blocking mode, implies we are 427 * reading more pages than requested in this call. So 428 * we safely assume we have taken care of all the pages 429 * requested in this call. 430 * 431 * Just reset the ahead window in case we failed due to 432 * congestion. The ahead window will any way be closed 433 * in case we failed due to excessive page cache hits. 434 */ 435 reset_ahead_window(ra); 436 } 437 438 return ret; 439 } 440 441 /** 442 * page_cache_readahead - generic adaptive readahead 443 * @mapping: address_space which holds the pagecache and I/O vectors 444 * @ra: file_ra_state which holds the readahead state 445 * @filp: passed on to ->readpage() and ->readpages() 446 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units 447 * @req_size: hint: total size of the read which the caller is performing in 448 * PAGE_CACHE_SIZE units 449 * 450 * page_cache_readahead() is the main function. If performs the adaptive 451 * readahead window size management and submits the readahead I/O. 452 * 453 * Note that @filp is purely used for passing on to the ->readpage[s]() 454 * handler: it may refer to a different file from @mapping (so we may not use 455 * @filp->f_mapping or @filp->f_path.dentry->d_inode here). 456 * Also, @ra may not be equal to &@filp->f_ra. 457 * 458 */ 459 unsigned long 460 page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra, 461 struct file *filp, pgoff_t offset, unsigned long req_size) 462 { 463 unsigned long max, newsize; 464 int sequential; 465 466 /* 467 * We avoid doing extra work and bogusly perturbing the readahead 468 * window expansion logic. 469 */ 470 if (offset == ra->prev_page && --req_size) 471 ++offset; 472 473 /* Note that prev_page == -1 if it is a first read */ 474 sequential = (offset == ra->prev_page + 1); 475 ra->prev_page = offset; 476 477 max = get_max_readahead(ra); 478 newsize = min(req_size, max); 479 480 /* No readahead or sub-page sized read or file already in cache */ 481 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE)) 482 goto out; 483 484 ra->prev_page += newsize - 1; 485 486 /* 487 * Special case - first read at start of file. We'll assume it's 488 * a whole-file read and grow the window fast. Or detect first 489 * sequential access 490 */ 491 if (sequential && ra->size == 0) { 492 ra->size = get_init_ra_size(newsize, max); 493 ra->start = offset; 494 if (!blockable_page_cache_readahead(mapping, filp, offset, 495 ra->size, ra, 1)) 496 goto out; 497 498 /* 499 * If the request size is larger than our max readahead, we 500 * at least want to be sure that we get 2 IOs in flight and 501 * we know that we will definitly need the new I/O. 502 * once we do this, subsequent calls should be able to overlap 503 * IOs,* thus preventing stalls. so issue the ahead window 504 * immediately. 505 */ 506 if (req_size >= max) 507 make_ahead_window(mapping, filp, ra, 1); 508 509 goto out; 510 } 511 512 /* 513 * Now handle the random case: 514 * partial page reads and first access were handled above, 515 * so this must be the next page otherwise it is random 516 */ 517 if (!sequential) { 518 ra_off(ra); 519 blockable_page_cache_readahead(mapping, filp, offset, 520 newsize, ra, 1); 521 goto out; 522 } 523 524 /* 525 * If we get here we are doing sequential IO and this was not the first 526 * occurence (ie we have an existing window) 527 */ 528 if (ra->ahead_start == 0) { /* no ahead window yet */ 529 if (!make_ahead_window(mapping, filp, ra, 0)) 530 goto recheck; 531 } 532 533 /* 534 * Already have an ahead window, check if we crossed into it. 535 * If so, shift windows and issue a new ahead window. 536 * Only return the #pages that are in the current window, so that 537 * we get called back on the first page of the ahead window which 538 * will allow us to submit more IO. 539 */ 540 if (ra->prev_page >= ra->ahead_start) { 541 ra->start = ra->ahead_start; 542 ra->size = ra->ahead_size; 543 make_ahead_window(mapping, filp, ra, 0); 544 recheck: 545 /* prev_page shouldn't overrun the ahead window */ 546 ra->prev_page = min(ra->prev_page, 547 ra->ahead_start + ra->ahead_size - 1); 548 } 549 550 out: 551 return ra->prev_page + 1; 552 } 553 EXPORT_SYMBOL_GPL(page_cache_readahead); 554 555 /* 556 * handle_ra_miss() is called when it is known that a page which should have 557 * been present in the pagecache (we just did some readahead there) was in fact 558 * not found. This will happen if it was evicted by the VM (readahead 559 * thrashing) 560 * 561 * Turn on the cache miss flag in the RA struct, this will cause the RA code 562 * to reduce the RA size on the next read. 563 */ 564 void handle_ra_miss(struct address_space *mapping, 565 struct file_ra_state *ra, pgoff_t offset) 566 { 567 ra->flags |= RA_FLAG_MISS; 568 ra->flags &= ~RA_FLAG_INCACHE; 569 ra->cache_hit = 0; 570 } 571 572 /* 573 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 574 * sensible upper limit. 575 */ 576 unsigned long max_sane_readahead(unsigned long nr) 577 { 578 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE) 579 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); 580 } 581