1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 132 #include "internal.h" 133 134 /* 135 * Initialise a struct file's readahead state. Assumes that the caller has 136 * memset *ra to zero. 137 */ 138 void 139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 140 { 141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 142 ra->prev_pos = -1; 143 } 144 EXPORT_SYMBOL_GPL(file_ra_state_init); 145 146 static void read_pages(struct readahead_control *rac) 147 { 148 const struct address_space_operations *aops = rac->mapping->a_ops; 149 struct folio *folio; 150 struct blk_plug plug; 151 152 if (!readahead_count(rac)) 153 return; 154 155 if (unlikely(rac->_workingset)) 156 psi_memstall_enter(&rac->_pflags); 157 blk_start_plug(&plug); 158 159 if (aops->readahead) { 160 aops->readahead(rac); 161 /* 162 * Clean up the remaining folios. The sizes in ->ra 163 * may be used to size the next readahead, so make sure 164 * they accurately reflect what happened. 165 */ 166 while ((folio = readahead_folio(rac)) != NULL) { 167 unsigned long nr = folio_nr_pages(folio); 168 169 folio_get(folio); 170 rac->ra->size -= nr; 171 if (rac->ra->async_size >= nr) { 172 rac->ra->async_size -= nr; 173 filemap_remove_folio(folio); 174 } 175 folio_unlock(folio); 176 folio_put(folio); 177 } 178 } else { 179 while ((folio = readahead_folio(rac)) != NULL) 180 aops->read_folio(rac->file, folio); 181 } 182 183 blk_finish_plug(&plug); 184 if (unlikely(rac->_workingset)) 185 psi_memstall_leave(&rac->_pflags); 186 rac->_workingset = false; 187 188 BUG_ON(readahead_count(rac)); 189 } 190 191 /** 192 * page_cache_ra_unbounded - Start unchecked readahead. 193 * @ractl: Readahead control. 194 * @nr_to_read: The number of pages to read. 195 * @lookahead_size: Where to start the next readahead. 196 * 197 * This function is for filesystems to call when they want to start 198 * readahead beyond a file's stated i_size. This is almost certainly 199 * not the function you want to call. Use page_cache_async_readahead() 200 * or page_cache_sync_readahead() instead. 201 * 202 * Context: File is referenced by caller. Mutexes may be held by caller. 203 * May sleep, but will not reenter filesystem to reclaim memory. 204 */ 205 void page_cache_ra_unbounded(struct readahead_control *ractl, 206 unsigned long nr_to_read, unsigned long lookahead_size) 207 { 208 struct address_space *mapping = ractl->mapping; 209 unsigned long ra_folio_index, index = readahead_index(ractl); 210 gfp_t gfp_mask = readahead_gfp_mask(mapping); 211 unsigned long mark, i = 0; 212 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping); 213 214 /* 215 * Partway through the readahead operation, we will have added 216 * locked pages to the page cache, but will not yet have submitted 217 * them for I/O. Adding another page may need to allocate memory, 218 * which can trigger memory reclaim. Telling the VM we're in 219 * the middle of a filesystem operation will cause it to not 220 * touch file-backed pages, preventing a deadlock. Most (all?) 221 * filesystems already specify __GFP_NOFS in their mapping's 222 * gfp_mask, but let's be explicit here. 223 */ 224 unsigned int nofs = memalloc_nofs_save(); 225 226 filemap_invalidate_lock_shared(mapping); 227 index = mapping_align_index(mapping, index); 228 229 /* 230 * As iterator `i` is aligned to min_nrpages, round_up the 231 * difference between nr_to_read and lookahead_size to mark the 232 * index that only has lookahead or "async_region" to set the 233 * readahead flag. 234 */ 235 ra_folio_index = round_up(readahead_index(ractl) + nr_to_read - lookahead_size, 236 min_nrpages); 237 mark = ra_folio_index - index; 238 nr_to_read += readahead_index(ractl) - index; 239 ractl->_index = index; 240 241 /* 242 * Preallocate as many pages as we will need. 243 */ 244 while (i < nr_to_read) { 245 struct folio *folio = xa_load(&mapping->i_pages, index + i); 246 int ret; 247 248 if (folio && !xa_is_value(folio)) { 249 /* 250 * Page already present? Kick off the current batch 251 * of contiguous pages before continuing with the 252 * next batch. This page may be the one we would 253 * have intended to mark as Readahead, but we don't 254 * have a stable reference to this page, and it's 255 * not worth getting one just for that. 256 */ 257 read_pages(ractl); 258 ractl->_index += min_nrpages; 259 i = ractl->_index + ractl->_nr_pages - index; 260 continue; 261 } 262 263 folio = filemap_alloc_folio(gfp_mask, 264 mapping_min_folio_order(mapping)); 265 if (!folio) 266 break; 267 268 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); 269 if (ret < 0) { 270 folio_put(folio); 271 if (ret == -ENOMEM) 272 break; 273 read_pages(ractl); 274 ractl->_index += min_nrpages; 275 i = ractl->_index + ractl->_nr_pages - index; 276 continue; 277 } 278 if (i == mark) 279 folio_set_readahead(folio); 280 ractl->_workingset |= folio_test_workingset(folio); 281 ractl->_nr_pages += min_nrpages; 282 i += min_nrpages; 283 } 284 285 /* 286 * Now start the IO. We ignore I/O errors - if the folio is not 287 * uptodate then the caller will launch read_folio again, and 288 * will then handle the error. 289 */ 290 read_pages(ractl); 291 filemap_invalidate_unlock_shared(mapping); 292 memalloc_nofs_restore(nofs); 293 } 294 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 295 296 /* 297 * do_page_cache_ra() actually reads a chunk of disk. It allocates 298 * the pages first, then submits them for I/O. This avoids the very bad 299 * behaviour which would occur if page allocations are causing VM writeback. 300 * We really don't want to intermingle reads and writes like that. 301 */ 302 static void do_page_cache_ra(struct readahead_control *ractl, 303 unsigned long nr_to_read, unsigned long lookahead_size) 304 { 305 struct inode *inode = ractl->mapping->host; 306 unsigned long index = readahead_index(ractl); 307 loff_t isize = i_size_read(inode); 308 pgoff_t end_index; /* The last page we want to read */ 309 310 if (isize == 0) 311 return; 312 313 end_index = (isize - 1) >> PAGE_SHIFT; 314 if (index > end_index) 315 return; 316 /* Don't read past the page containing the last byte of the file */ 317 if (nr_to_read > end_index - index) 318 nr_to_read = end_index - index + 1; 319 320 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 321 } 322 323 /* 324 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 325 * memory at once. 326 */ 327 void force_page_cache_ra(struct readahead_control *ractl, 328 unsigned long nr_to_read) 329 { 330 struct address_space *mapping = ractl->mapping; 331 struct file_ra_state *ra = ractl->ra; 332 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 333 unsigned long max_pages; 334 335 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 336 return; 337 338 /* 339 * If the request exceeds the readahead window, allow the read to 340 * be up to the optimal hardware IO size 341 */ 342 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 343 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 344 while (nr_to_read) { 345 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 346 347 if (this_chunk > nr_to_read) 348 this_chunk = nr_to_read; 349 do_page_cache_ra(ractl, this_chunk, 0); 350 351 nr_to_read -= this_chunk; 352 } 353 } 354 355 /* 356 * Set the initial window size, round to next power of 2 and square 357 * for small size, x 4 for medium, and x 2 for large 358 * for 128k (32 page) max ra 359 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 360 */ 361 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 362 { 363 unsigned long newsize = roundup_pow_of_two(size); 364 365 if (newsize <= max / 32) 366 newsize = newsize * 4; 367 else if (newsize <= max / 4) 368 newsize = newsize * 2; 369 else 370 newsize = max; 371 372 return newsize; 373 } 374 375 /* 376 * Get the previous window size, ramp it up, and 377 * return it as the new window size. 378 */ 379 static unsigned long get_next_ra_size(struct file_ra_state *ra, 380 unsigned long max) 381 { 382 unsigned long cur = ra->size; 383 384 if (cur < max / 16) 385 return 4 * cur; 386 if (cur <= max / 2) 387 return 2 * cur; 388 return max; 389 } 390 391 /* 392 * On-demand readahead design. 393 * 394 * The fields in struct file_ra_state represent the most-recently-executed 395 * readahead attempt: 396 * 397 * |<----- async_size ---------| 398 * |------------------- size -------------------->| 399 * |==================#===========================| 400 * ^start ^page marked with PG_readahead 401 * 402 * To overlap application thinking time and disk I/O time, we do 403 * `readahead pipelining': Do not wait until the application consumed all 404 * readahead pages and stalled on the missing page at readahead_index; 405 * Instead, submit an asynchronous readahead I/O as soon as there are 406 * only async_size pages left in the readahead window. Normally async_size 407 * will be equal to size, for maximum pipelining. 408 * 409 * In interleaved sequential reads, concurrent streams on the same fd can 410 * be invalidating each other's readahead state. So we flag the new readahead 411 * page at (start+size-async_size) with PG_readahead, and use it as readahead 412 * indicator. The flag won't be set on already cached pages, to avoid the 413 * readahead-for-nothing fuss, saving pointless page cache lookups. 414 * 415 * prev_pos tracks the last visited byte in the _previous_ read request. 416 * It should be maintained by the caller, and will be used for detecting 417 * small random reads. Note that the readahead algorithm checks loosely 418 * for sequential patterns. Hence interleaved reads might be served as 419 * sequential ones. 420 * 421 * There is a special-case: if the first page which the application tries to 422 * read happens to be the first page of the file, it is assumed that a linear 423 * read is about to happen and the window is immediately set to the initial size 424 * based on I/O request size and the max_readahead. 425 * 426 * The code ramps up the readahead size aggressively at first, but slow down as 427 * it approaches max_readhead. 428 */ 429 430 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 431 pgoff_t mark, unsigned int order, gfp_t gfp) 432 { 433 int err; 434 struct folio *folio = filemap_alloc_folio(gfp, order); 435 436 if (!folio) 437 return -ENOMEM; 438 mark = round_down(mark, 1UL << order); 439 if (index == mark) 440 folio_set_readahead(folio); 441 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 442 if (err) { 443 folio_put(folio); 444 return err; 445 } 446 447 ractl->_nr_pages += 1UL << order; 448 ractl->_workingset |= folio_test_workingset(folio); 449 return 0; 450 } 451 452 void page_cache_ra_order(struct readahead_control *ractl, 453 struct file_ra_state *ra, unsigned int new_order) 454 { 455 struct address_space *mapping = ractl->mapping; 456 pgoff_t start = readahead_index(ractl); 457 pgoff_t index = start; 458 unsigned int min_order = mapping_min_folio_order(mapping); 459 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 460 pgoff_t mark = index + ra->size - ra->async_size; 461 unsigned int nofs; 462 int err = 0; 463 gfp_t gfp = readahead_gfp_mask(mapping); 464 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping)); 465 466 /* 467 * Fallback when size < min_nrpages as each folio should be 468 * at least min_nrpages anyway. 469 */ 470 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size) 471 goto fallback; 472 473 limit = min(limit, index + ra->size - 1); 474 475 if (new_order < mapping_max_folio_order(mapping)) 476 new_order += 2; 477 478 new_order = min(mapping_max_folio_order(mapping), new_order); 479 new_order = min_t(unsigned int, new_order, ilog2(ra->size)); 480 new_order = max(new_order, min_order); 481 482 /* See comment in page_cache_ra_unbounded() */ 483 nofs = memalloc_nofs_save(); 484 filemap_invalidate_lock_shared(mapping); 485 /* 486 * If the new_order is greater than min_order and index is 487 * already aligned to new_order, then this will be noop as index 488 * aligned to new_order should also be aligned to min_order. 489 */ 490 ractl->_index = mapping_align_index(mapping, index); 491 index = readahead_index(ractl); 492 493 while (index <= limit) { 494 unsigned int order = new_order; 495 496 /* Align with smaller pages if needed */ 497 if (index & ((1UL << order) - 1)) 498 order = __ffs(index); 499 /* Don't allocate pages past EOF */ 500 while (order > min_order && index + (1UL << order) - 1 > limit) 501 order--; 502 err = ra_alloc_folio(ractl, index, mark, order, gfp); 503 if (err) 504 break; 505 index += 1UL << order; 506 } 507 508 read_pages(ractl); 509 filemap_invalidate_unlock_shared(mapping); 510 memalloc_nofs_restore(nofs); 511 512 /* 513 * If there were already pages in the page cache, then we may have 514 * left some gaps. Let the regular readahead code take care of this 515 * situation. 516 */ 517 if (!err) 518 return; 519 fallback: 520 do_page_cache_ra(ractl, ra->size - (index - start), ra->async_size); 521 } 522 523 static unsigned long ractl_max_pages(struct readahead_control *ractl, 524 unsigned long req_size) 525 { 526 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 527 unsigned long max_pages = ractl->ra->ra_pages; 528 529 /* 530 * If the request exceeds the readahead window, allow the read to 531 * be up to the optimal hardware IO size 532 */ 533 if (req_size > max_pages && bdi->io_pages > max_pages) 534 max_pages = min(req_size, bdi->io_pages); 535 return max_pages; 536 } 537 538 void page_cache_sync_ra(struct readahead_control *ractl, 539 unsigned long req_count) 540 { 541 pgoff_t index = readahead_index(ractl); 542 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 543 struct file_ra_state *ra = ractl->ra; 544 unsigned long max_pages, contig_count; 545 pgoff_t prev_index, miss; 546 547 /* 548 * Even if readahead is disabled, issue this request as readahead 549 * as we'll need it to satisfy the requested range. The forced 550 * readahead will do the right thing and limit the read to just the 551 * requested range, which we'll set to 1 page for this case. 552 */ 553 if (!ra->ra_pages || blk_cgroup_congested()) { 554 if (!ractl->file) 555 return; 556 req_count = 1; 557 do_forced_ra = true; 558 } 559 560 /* be dumb */ 561 if (do_forced_ra) { 562 force_page_cache_ra(ractl, req_count); 563 return; 564 } 565 566 max_pages = ractl_max_pages(ractl, req_count); 567 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 568 /* 569 * A start of file, oversized read, or sequential cache miss: 570 * trivial case: (index - prev_index) == 1 571 * unaligned reads: (index - prev_index) == 0 572 */ 573 if (!index || req_count > max_pages || index - prev_index <= 1UL) { 574 ra->start = index; 575 ra->size = get_init_ra_size(req_count, max_pages); 576 ra->async_size = ra->size > req_count ? ra->size - req_count : 577 ra->size >> 1; 578 goto readit; 579 } 580 581 /* 582 * Query the page cache and look for the traces(cached history pages) 583 * that a sequential stream would leave behind. 584 */ 585 rcu_read_lock(); 586 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); 587 rcu_read_unlock(); 588 contig_count = index - miss - 1; 589 /* 590 * Standalone, small random read. Read as is, and do not pollute the 591 * readahead state. 592 */ 593 if (contig_count <= req_count) { 594 do_page_cache_ra(ractl, req_count, 0); 595 return; 596 } 597 /* 598 * File cached from the beginning: 599 * it is a strong indication of long-run stream (or whole-file-read) 600 */ 601 if (miss == ULONG_MAX) 602 contig_count *= 2; 603 ra->start = index; 604 ra->size = min(contig_count + req_count, max_pages); 605 ra->async_size = 1; 606 readit: 607 ractl->_index = ra->start; 608 page_cache_ra_order(ractl, ra, 0); 609 } 610 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 611 612 void page_cache_async_ra(struct readahead_control *ractl, 613 struct folio *folio, unsigned long req_count) 614 { 615 unsigned long max_pages; 616 struct file_ra_state *ra = ractl->ra; 617 pgoff_t index = readahead_index(ractl); 618 pgoff_t expected, start; 619 unsigned int order = folio_order(folio); 620 621 /* no readahead */ 622 if (!ra->ra_pages) 623 return; 624 625 /* 626 * Same bit is used for PG_readahead and PG_reclaim. 627 */ 628 if (folio_test_writeback(folio)) 629 return; 630 631 folio_clear_readahead(folio); 632 633 if (blk_cgroup_congested()) 634 return; 635 636 max_pages = ractl_max_pages(ractl, req_count); 637 /* 638 * It's the expected callback index, assume sequential access. 639 * Ramp up sizes, and push forward the readahead window. 640 */ 641 expected = round_down(ra->start + ra->size - ra->async_size, 642 1UL << order); 643 if (index == expected) { 644 ra->start += ra->size; 645 ra->size = get_next_ra_size(ra, max_pages); 646 ra->async_size = ra->size; 647 goto readit; 648 } 649 650 /* 651 * Hit a marked folio without valid readahead state. 652 * E.g. interleaved reads. 653 * Query the pagecache for async_size, which normally equals to 654 * readahead size. Ramp it up and use it as the new readahead size. 655 */ 656 rcu_read_lock(); 657 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); 658 rcu_read_unlock(); 659 660 if (!start || start - index > max_pages) 661 return; 662 663 ra->start = start; 664 ra->size = start - index; /* old async_size */ 665 ra->size += req_count; 666 ra->size = get_next_ra_size(ra, max_pages); 667 ra->async_size = ra->size; 668 readit: 669 ractl->_index = ra->start; 670 page_cache_ra_order(ractl, ra, order); 671 } 672 EXPORT_SYMBOL_GPL(page_cache_async_ra); 673 674 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 675 { 676 ssize_t ret; 677 struct fd f; 678 679 ret = -EBADF; 680 f = fdget(fd); 681 if (!fd_file(f) || !(fd_file(f)->f_mode & FMODE_READ)) 682 goto out; 683 684 /* 685 * The readahead() syscall is intended to run only on files 686 * that can execute readahead. If readahead is not possible 687 * on this file, then we must return -EINVAL. 688 */ 689 ret = -EINVAL; 690 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops || 691 (!S_ISREG(file_inode(fd_file(f))->i_mode) && 692 !S_ISBLK(file_inode(fd_file(f))->i_mode))) 693 goto out; 694 695 ret = vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED); 696 out: 697 fdput(f); 698 return ret; 699 } 700 701 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 702 { 703 return ksys_readahead(fd, offset, count); 704 } 705 706 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 707 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 708 { 709 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 710 } 711 #endif 712 713 /** 714 * readahead_expand - Expand a readahead request 715 * @ractl: The request to be expanded 716 * @new_start: The revised start 717 * @new_len: The revised size of the request 718 * 719 * Attempt to expand a readahead request outwards from the current size to the 720 * specified size by inserting locked pages before and after the current window 721 * to increase the size to the new window. This may involve the insertion of 722 * THPs, in which case the window may get expanded even beyond what was 723 * requested. 724 * 725 * The algorithm will stop if it encounters a conflicting page already in the 726 * pagecache and leave a smaller expansion than requested. 727 * 728 * The caller must check for this by examining the revised @ractl object for a 729 * different expansion than was requested. 730 */ 731 void readahead_expand(struct readahead_control *ractl, 732 loff_t new_start, size_t new_len) 733 { 734 struct address_space *mapping = ractl->mapping; 735 struct file_ra_state *ra = ractl->ra; 736 pgoff_t new_index, new_nr_pages; 737 gfp_t gfp_mask = readahead_gfp_mask(mapping); 738 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping); 739 unsigned int min_order = mapping_min_folio_order(mapping); 740 741 new_index = new_start / PAGE_SIZE; 742 /* 743 * Readahead code should have aligned the ractl->_index to 744 * min_nrpages before calling readahead aops. 745 */ 746 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages)); 747 748 /* Expand the leading edge downwards */ 749 while (ractl->_index > new_index) { 750 unsigned long index = ractl->_index - 1; 751 struct folio *folio = xa_load(&mapping->i_pages, index); 752 753 if (folio && !xa_is_value(folio)) 754 return; /* Folio apparently present */ 755 756 folio = filemap_alloc_folio(gfp_mask, min_order); 757 if (!folio) 758 return; 759 760 index = mapping_align_index(mapping, index); 761 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 762 folio_put(folio); 763 return; 764 } 765 if (unlikely(folio_test_workingset(folio)) && 766 !ractl->_workingset) { 767 ractl->_workingset = true; 768 psi_memstall_enter(&ractl->_pflags); 769 } 770 ractl->_nr_pages += min_nrpages; 771 ractl->_index = folio->index; 772 } 773 774 new_len += new_start - readahead_pos(ractl); 775 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 776 777 /* Expand the trailing edge upwards */ 778 while (ractl->_nr_pages < new_nr_pages) { 779 unsigned long index = ractl->_index + ractl->_nr_pages; 780 struct folio *folio = xa_load(&mapping->i_pages, index); 781 782 if (folio && !xa_is_value(folio)) 783 return; /* Folio apparently present */ 784 785 folio = filemap_alloc_folio(gfp_mask, min_order); 786 if (!folio) 787 return; 788 789 index = mapping_align_index(mapping, index); 790 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 791 folio_put(folio); 792 return; 793 } 794 if (unlikely(folio_test_workingset(folio)) && 795 !ractl->_workingset) { 796 ractl->_workingset = true; 797 psi_memstall_enter(&ractl->_pflags); 798 } 799 ractl->_nr_pages += min_nrpages; 800 if (ra) { 801 ra->size += min_nrpages; 802 ra->async_size += min_nrpages; 803 } 804 } 805 } 806 EXPORT_SYMBOL(readahead_expand); 807