1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 132 #include "internal.h" 133 134 /* 135 * Initialise a struct file's readahead state. Assumes that the caller has 136 * memset *ra to zero. 137 */ 138 void 139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 140 { 141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 142 ra->prev_pos = -1; 143 } 144 EXPORT_SYMBOL_GPL(file_ra_state_init); 145 146 static void read_pages(struct readahead_control *rac) 147 { 148 const struct address_space_operations *aops = rac->mapping->a_ops; 149 struct folio *folio; 150 struct blk_plug plug; 151 152 if (!readahead_count(rac)) 153 return; 154 155 if (unlikely(rac->_workingset)) 156 psi_memstall_enter(&rac->_pflags); 157 blk_start_plug(&plug); 158 159 if (aops->readahead) { 160 aops->readahead(rac); 161 /* 162 * Clean up the remaining folios. The sizes in ->ra 163 * may be used to size the next readahead, so make sure 164 * they accurately reflect what happened. 165 */ 166 while ((folio = readahead_folio(rac)) != NULL) { 167 unsigned long nr = folio_nr_pages(folio); 168 169 folio_get(folio); 170 rac->ra->size -= nr; 171 if (rac->ra->async_size >= nr) { 172 rac->ra->async_size -= nr; 173 filemap_remove_folio(folio); 174 } 175 folio_unlock(folio); 176 folio_put(folio); 177 } 178 } else { 179 while ((folio = readahead_folio(rac)) != NULL) 180 aops->read_folio(rac->file, folio); 181 } 182 183 blk_finish_plug(&plug); 184 if (unlikely(rac->_workingset)) 185 psi_memstall_leave(&rac->_pflags); 186 rac->_workingset = false; 187 188 BUG_ON(readahead_count(rac)); 189 } 190 191 /** 192 * page_cache_ra_unbounded - Start unchecked readahead. 193 * @ractl: Readahead control. 194 * @nr_to_read: The number of pages to read. 195 * @lookahead_size: Where to start the next readahead. 196 * 197 * This function is for filesystems to call when they want to start 198 * readahead beyond a file's stated i_size. This is almost certainly 199 * not the function you want to call. Use page_cache_async_readahead() 200 * or page_cache_sync_readahead() instead. 201 * 202 * Context: File is referenced by caller. Mutexes may be held by caller. 203 * May sleep, but will not reenter filesystem to reclaim memory. 204 */ 205 void page_cache_ra_unbounded(struct readahead_control *ractl, 206 unsigned long nr_to_read, unsigned long lookahead_size) 207 { 208 struct address_space *mapping = ractl->mapping; 209 unsigned long index = readahead_index(ractl); 210 gfp_t gfp_mask = readahead_gfp_mask(mapping); 211 unsigned long i; 212 213 /* 214 * Partway through the readahead operation, we will have added 215 * locked pages to the page cache, but will not yet have submitted 216 * them for I/O. Adding another page may need to allocate memory, 217 * which can trigger memory reclaim. Telling the VM we're in 218 * the middle of a filesystem operation will cause it to not 219 * touch file-backed pages, preventing a deadlock. Most (all?) 220 * filesystems already specify __GFP_NOFS in their mapping's 221 * gfp_mask, but let's be explicit here. 222 */ 223 unsigned int nofs = memalloc_nofs_save(); 224 225 filemap_invalidate_lock_shared(mapping); 226 /* 227 * Preallocate as many pages as we will need. 228 */ 229 for (i = 0; i < nr_to_read; i++) { 230 struct folio *folio = xa_load(&mapping->i_pages, index + i); 231 int ret; 232 233 if (folio && !xa_is_value(folio)) { 234 /* 235 * Page already present? Kick off the current batch 236 * of contiguous pages before continuing with the 237 * next batch. This page may be the one we would 238 * have intended to mark as Readahead, but we don't 239 * have a stable reference to this page, and it's 240 * not worth getting one just for that. 241 */ 242 read_pages(ractl); 243 ractl->_index++; 244 i = ractl->_index + ractl->_nr_pages - index - 1; 245 continue; 246 } 247 248 folio = filemap_alloc_folio(gfp_mask, 0); 249 if (!folio) 250 break; 251 252 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); 253 if (ret < 0) { 254 folio_put(folio); 255 if (ret == -ENOMEM) 256 break; 257 read_pages(ractl); 258 ractl->_index++; 259 i = ractl->_index + ractl->_nr_pages - index - 1; 260 continue; 261 } 262 if (i == nr_to_read - lookahead_size) 263 folio_set_readahead(folio); 264 ractl->_workingset |= folio_test_workingset(folio); 265 ractl->_nr_pages++; 266 } 267 268 /* 269 * Now start the IO. We ignore I/O errors - if the folio is not 270 * uptodate then the caller will launch read_folio again, and 271 * will then handle the error. 272 */ 273 read_pages(ractl); 274 filemap_invalidate_unlock_shared(mapping); 275 memalloc_nofs_restore(nofs); 276 } 277 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 278 279 /* 280 * do_page_cache_ra() actually reads a chunk of disk. It allocates 281 * the pages first, then submits them for I/O. This avoids the very bad 282 * behaviour which would occur if page allocations are causing VM writeback. 283 * We really don't want to intermingle reads and writes like that. 284 */ 285 static void do_page_cache_ra(struct readahead_control *ractl, 286 unsigned long nr_to_read, unsigned long lookahead_size) 287 { 288 struct inode *inode = ractl->mapping->host; 289 unsigned long index = readahead_index(ractl); 290 loff_t isize = i_size_read(inode); 291 pgoff_t end_index; /* The last page we want to read */ 292 293 if (isize == 0) 294 return; 295 296 end_index = (isize - 1) >> PAGE_SHIFT; 297 if (index > end_index) 298 return; 299 /* Don't read past the page containing the last byte of the file */ 300 if (nr_to_read > end_index - index) 301 nr_to_read = end_index - index + 1; 302 303 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 304 } 305 306 /* 307 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 308 * memory at once. 309 */ 310 void force_page_cache_ra(struct readahead_control *ractl, 311 unsigned long nr_to_read) 312 { 313 struct address_space *mapping = ractl->mapping; 314 struct file_ra_state *ra = ractl->ra; 315 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 316 unsigned long max_pages; 317 318 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 319 return; 320 321 /* 322 * If the request exceeds the readahead window, allow the read to 323 * be up to the optimal hardware IO size 324 */ 325 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 326 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 327 while (nr_to_read) { 328 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 329 330 if (this_chunk > nr_to_read) 331 this_chunk = nr_to_read; 332 do_page_cache_ra(ractl, this_chunk, 0); 333 334 nr_to_read -= this_chunk; 335 } 336 } 337 338 /* 339 * Set the initial window size, round to next power of 2 and square 340 * for small size, x 4 for medium, and x 2 for large 341 * for 128k (32 page) max ra 342 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 343 */ 344 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 345 { 346 unsigned long newsize = roundup_pow_of_two(size); 347 348 if (newsize <= max / 32) 349 newsize = newsize * 4; 350 else if (newsize <= max / 4) 351 newsize = newsize * 2; 352 else 353 newsize = max; 354 355 return newsize; 356 } 357 358 /* 359 * Get the previous window size, ramp it up, and 360 * return it as the new window size. 361 */ 362 static unsigned long get_next_ra_size(struct file_ra_state *ra, 363 unsigned long max) 364 { 365 unsigned long cur = ra->size; 366 367 if (cur < max / 16) 368 return 4 * cur; 369 if (cur <= max / 2) 370 return 2 * cur; 371 return max; 372 } 373 374 /* 375 * On-demand readahead design. 376 * 377 * The fields in struct file_ra_state represent the most-recently-executed 378 * readahead attempt: 379 * 380 * |<----- async_size ---------| 381 * |------------------- size -------------------->| 382 * |==================#===========================| 383 * ^start ^page marked with PG_readahead 384 * 385 * To overlap application thinking time and disk I/O time, we do 386 * `readahead pipelining': Do not wait until the application consumed all 387 * readahead pages and stalled on the missing page at readahead_index; 388 * Instead, submit an asynchronous readahead I/O as soon as there are 389 * only async_size pages left in the readahead window. Normally async_size 390 * will be equal to size, for maximum pipelining. 391 * 392 * In interleaved sequential reads, concurrent streams on the same fd can 393 * be invalidating each other's readahead state. So we flag the new readahead 394 * page at (start+size-async_size) with PG_readahead, and use it as readahead 395 * indicator. The flag won't be set on already cached pages, to avoid the 396 * readahead-for-nothing fuss, saving pointless page cache lookups. 397 * 398 * prev_pos tracks the last visited byte in the _previous_ read request. 399 * It should be maintained by the caller, and will be used for detecting 400 * small random reads. Note that the readahead algorithm checks loosely 401 * for sequential patterns. Hence interleaved reads might be served as 402 * sequential ones. 403 * 404 * There is a special-case: if the first page which the application tries to 405 * read happens to be the first page of the file, it is assumed that a linear 406 * read is about to happen and the window is immediately set to the initial size 407 * based on I/O request size and the max_readahead. 408 * 409 * The code ramps up the readahead size aggressively at first, but slow down as 410 * it approaches max_readhead. 411 */ 412 413 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 414 pgoff_t mark, unsigned int order, gfp_t gfp) 415 { 416 int err; 417 struct folio *folio = filemap_alloc_folio(gfp, order); 418 419 if (!folio) 420 return -ENOMEM; 421 mark = round_down(mark, 1UL << order); 422 if (index == mark) 423 folio_set_readahead(folio); 424 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 425 if (err) { 426 folio_put(folio); 427 return err; 428 } 429 430 ractl->_nr_pages += 1UL << order; 431 ractl->_workingset |= folio_test_workingset(folio); 432 return 0; 433 } 434 435 void page_cache_ra_order(struct readahead_control *ractl, 436 struct file_ra_state *ra, unsigned int new_order) 437 { 438 struct address_space *mapping = ractl->mapping; 439 pgoff_t start = readahead_index(ractl); 440 pgoff_t index = start; 441 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 442 pgoff_t mark = index + ra->size - ra->async_size; 443 unsigned int nofs; 444 int err = 0; 445 gfp_t gfp = readahead_gfp_mask(mapping); 446 447 if (!mapping_large_folio_support(mapping) || ra->size < 4) 448 goto fallback; 449 450 limit = min(limit, index + ra->size - 1); 451 452 if (new_order < MAX_PAGECACHE_ORDER) 453 new_order += 2; 454 455 new_order = min_t(unsigned int, MAX_PAGECACHE_ORDER, new_order); 456 new_order = min_t(unsigned int, new_order, ilog2(ra->size)); 457 458 /* See comment in page_cache_ra_unbounded() */ 459 nofs = memalloc_nofs_save(); 460 filemap_invalidate_lock_shared(mapping); 461 while (index <= limit) { 462 unsigned int order = new_order; 463 464 /* Align with smaller pages if needed */ 465 if (index & ((1UL << order) - 1)) 466 order = __ffs(index); 467 /* Don't allocate pages past EOF */ 468 while (index + (1UL << order) - 1 > limit) 469 order--; 470 err = ra_alloc_folio(ractl, index, mark, order, gfp); 471 if (err) 472 break; 473 index += 1UL << order; 474 } 475 476 read_pages(ractl); 477 filemap_invalidate_unlock_shared(mapping); 478 memalloc_nofs_restore(nofs); 479 480 /* 481 * If there were already pages in the page cache, then we may have 482 * left some gaps. Let the regular readahead code take care of this 483 * situation. 484 */ 485 if (!err) 486 return; 487 fallback: 488 do_page_cache_ra(ractl, ra->size - (index - start), ra->async_size); 489 } 490 491 static unsigned long ractl_max_pages(struct readahead_control *ractl, 492 unsigned long req_size) 493 { 494 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 495 unsigned long max_pages = ractl->ra->ra_pages; 496 497 /* 498 * If the request exceeds the readahead window, allow the read to 499 * be up to the optimal hardware IO size 500 */ 501 if (req_size > max_pages && bdi->io_pages > max_pages) 502 max_pages = min(req_size, bdi->io_pages); 503 return max_pages; 504 } 505 506 void page_cache_sync_ra(struct readahead_control *ractl, 507 unsigned long req_count) 508 { 509 pgoff_t index = readahead_index(ractl); 510 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 511 struct file_ra_state *ra = ractl->ra; 512 unsigned long max_pages, contig_count; 513 pgoff_t prev_index, miss; 514 515 /* 516 * Even if readahead is disabled, issue this request as readahead 517 * as we'll need it to satisfy the requested range. The forced 518 * readahead will do the right thing and limit the read to just the 519 * requested range, which we'll set to 1 page for this case. 520 */ 521 if (!ra->ra_pages || blk_cgroup_congested()) { 522 if (!ractl->file) 523 return; 524 req_count = 1; 525 do_forced_ra = true; 526 } 527 528 /* be dumb */ 529 if (do_forced_ra) { 530 force_page_cache_ra(ractl, req_count); 531 return; 532 } 533 534 max_pages = ractl_max_pages(ractl, req_count); 535 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 536 /* 537 * A start of file, oversized read, or sequential cache miss: 538 * trivial case: (index - prev_index) == 1 539 * unaligned reads: (index - prev_index) == 0 540 */ 541 if (!index || req_count > max_pages || index - prev_index <= 1UL) { 542 ra->start = index; 543 ra->size = get_init_ra_size(req_count, max_pages); 544 ra->async_size = ra->size > req_count ? ra->size - req_count : 545 ra->size >> 1; 546 goto readit; 547 } 548 549 /* 550 * Query the page cache and look for the traces(cached history pages) 551 * that a sequential stream would leave behind. 552 */ 553 rcu_read_lock(); 554 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); 555 rcu_read_unlock(); 556 contig_count = index - miss - 1; 557 /* 558 * Standalone, small random read. Read as is, and do not pollute the 559 * readahead state. 560 */ 561 if (contig_count <= req_count) { 562 do_page_cache_ra(ractl, req_count, 0); 563 return; 564 } 565 /* 566 * File cached from the beginning: 567 * it is a strong indication of long-run stream (or whole-file-read) 568 */ 569 if (miss == ULONG_MAX) 570 contig_count *= 2; 571 ra->start = index; 572 ra->size = min(contig_count + req_count, max_pages); 573 ra->async_size = 1; 574 readit: 575 ractl->_index = ra->start; 576 page_cache_ra_order(ractl, ra, 0); 577 } 578 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 579 580 void page_cache_async_ra(struct readahead_control *ractl, 581 struct folio *folio, unsigned long req_count) 582 { 583 unsigned long max_pages; 584 struct file_ra_state *ra = ractl->ra; 585 pgoff_t index = readahead_index(ractl); 586 pgoff_t expected, start; 587 unsigned int order = folio_order(folio); 588 589 /* no readahead */ 590 if (!ra->ra_pages) 591 return; 592 593 /* 594 * Same bit is used for PG_readahead and PG_reclaim. 595 */ 596 if (folio_test_writeback(folio)) 597 return; 598 599 folio_clear_readahead(folio); 600 601 if (blk_cgroup_congested()) 602 return; 603 604 max_pages = ractl_max_pages(ractl, req_count); 605 /* 606 * It's the expected callback index, assume sequential access. 607 * Ramp up sizes, and push forward the readahead window. 608 */ 609 expected = round_down(ra->start + ra->size - ra->async_size, 610 1UL << order); 611 if (index == expected) { 612 ra->start += ra->size; 613 ra->size = get_next_ra_size(ra, max_pages); 614 ra->async_size = ra->size; 615 goto readit; 616 } 617 618 /* 619 * Hit a marked folio without valid readahead state. 620 * E.g. interleaved reads. 621 * Query the pagecache for async_size, which normally equals to 622 * readahead size. Ramp it up and use it as the new readahead size. 623 */ 624 rcu_read_lock(); 625 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); 626 rcu_read_unlock(); 627 628 if (!start || start - index > max_pages) 629 return; 630 631 ra->start = start; 632 ra->size = start - index; /* old async_size */ 633 ra->size += req_count; 634 ra->size = get_next_ra_size(ra, max_pages); 635 ra->async_size = ra->size; 636 readit: 637 ractl->_index = ra->start; 638 page_cache_ra_order(ractl, ra, order); 639 } 640 EXPORT_SYMBOL_GPL(page_cache_async_ra); 641 642 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 643 { 644 ssize_t ret; 645 struct fd f; 646 647 ret = -EBADF; 648 f = fdget(fd); 649 if (!f.file || !(f.file->f_mode & FMODE_READ)) 650 goto out; 651 652 /* 653 * The readahead() syscall is intended to run only on files 654 * that can execute readahead. If readahead is not possible 655 * on this file, then we must return -EINVAL. 656 */ 657 ret = -EINVAL; 658 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 659 (!S_ISREG(file_inode(f.file)->i_mode) && 660 !S_ISBLK(file_inode(f.file)->i_mode))) 661 goto out; 662 663 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 664 out: 665 fdput(f); 666 return ret; 667 } 668 669 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 670 { 671 return ksys_readahead(fd, offset, count); 672 } 673 674 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 675 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 676 { 677 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 678 } 679 #endif 680 681 /** 682 * readahead_expand - Expand a readahead request 683 * @ractl: The request to be expanded 684 * @new_start: The revised start 685 * @new_len: The revised size of the request 686 * 687 * Attempt to expand a readahead request outwards from the current size to the 688 * specified size by inserting locked pages before and after the current window 689 * to increase the size to the new window. This may involve the insertion of 690 * THPs, in which case the window may get expanded even beyond what was 691 * requested. 692 * 693 * The algorithm will stop if it encounters a conflicting page already in the 694 * pagecache and leave a smaller expansion than requested. 695 * 696 * The caller must check for this by examining the revised @ractl object for a 697 * different expansion than was requested. 698 */ 699 void readahead_expand(struct readahead_control *ractl, 700 loff_t new_start, size_t new_len) 701 { 702 struct address_space *mapping = ractl->mapping; 703 struct file_ra_state *ra = ractl->ra; 704 pgoff_t new_index, new_nr_pages; 705 gfp_t gfp_mask = readahead_gfp_mask(mapping); 706 707 new_index = new_start / PAGE_SIZE; 708 709 /* Expand the leading edge downwards */ 710 while (ractl->_index > new_index) { 711 unsigned long index = ractl->_index - 1; 712 struct folio *folio = xa_load(&mapping->i_pages, index); 713 714 if (folio && !xa_is_value(folio)) 715 return; /* Folio apparently present */ 716 717 folio = filemap_alloc_folio(gfp_mask, 0); 718 if (!folio) 719 return; 720 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 721 folio_put(folio); 722 return; 723 } 724 if (unlikely(folio_test_workingset(folio)) && 725 !ractl->_workingset) { 726 ractl->_workingset = true; 727 psi_memstall_enter(&ractl->_pflags); 728 } 729 ractl->_nr_pages++; 730 ractl->_index = folio->index; 731 } 732 733 new_len += new_start - readahead_pos(ractl); 734 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 735 736 /* Expand the trailing edge upwards */ 737 while (ractl->_nr_pages < new_nr_pages) { 738 unsigned long index = ractl->_index + ractl->_nr_pages; 739 struct folio *folio = xa_load(&mapping->i_pages, index); 740 741 if (folio && !xa_is_value(folio)) 742 return; /* Folio apparently present */ 743 744 folio = filemap_alloc_folio(gfp_mask, 0); 745 if (!folio) 746 return; 747 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 748 folio_put(folio); 749 return; 750 } 751 if (unlikely(folio_test_workingset(folio)) && 752 !ractl->_workingset) { 753 ractl->_workingset = true; 754 psi_memstall_enter(&ractl->_pflags); 755 } 756 ractl->_nr_pages++; 757 if (ra) { 758 ra->size++; 759 ra->async_size++; 760 } 761 } 762 } 763 EXPORT_SYMBOL(readahead_expand); 764