1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/export.h> 15 #include <linux/blkdev.h> 16 #include <linux/backing-dev.h> 17 #include <linux/task_io_accounting_ops.h> 18 #include <linux/pagevec.h> 19 #include <linux/pagemap.h> 20 #include <linux/syscalls.h> 21 #include <linux/file.h> 22 #include <linux/mm_inline.h> 23 #include <linux/blk-cgroup.h> 24 #include <linux/fadvise.h> 25 #include <linux/sched/mm.h> 26 27 #include "internal.h" 28 29 /* 30 * Initialise a struct file's readahead state. Assumes that the caller has 31 * memset *ra to zero. 32 */ 33 void 34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 35 { 36 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 37 ra->prev_pos = -1; 38 } 39 EXPORT_SYMBOL_GPL(file_ra_state_init); 40 41 /* 42 * see if a page needs releasing upon read_cache_pages() failure 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 44 * before calling, such as the NFS fs marking pages that are cached locally 45 * on disk, thus we need to give the fs a chance to clean up in the event of 46 * an error 47 */ 48 static void read_cache_pages_invalidate_page(struct address_space *mapping, 49 struct page *page) 50 { 51 if (page_has_private(page)) { 52 if (!trylock_page(page)) 53 BUG(); 54 page->mapping = mapping; 55 do_invalidatepage(page, 0, PAGE_SIZE); 56 page->mapping = NULL; 57 unlock_page(page); 58 } 59 put_page(page); 60 } 61 62 /* 63 * release a list of pages, invalidating them first if need be 64 */ 65 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 66 struct list_head *pages) 67 { 68 struct page *victim; 69 70 while (!list_empty(pages)) { 71 victim = lru_to_page(pages); 72 list_del(&victim->lru); 73 read_cache_pages_invalidate_page(mapping, victim); 74 } 75 } 76 77 /** 78 * read_cache_pages - populate an address space with some pages & start reads against them 79 * @mapping: the address_space 80 * @pages: The address of a list_head which contains the target pages. These 81 * pages have their ->index populated and are otherwise uninitialised. 82 * @filler: callback routine for filling a single page. 83 * @data: private data for the callback routine. 84 * 85 * Hides the details of the LRU cache etc from the filesystems. 86 * 87 * Returns: %0 on success, error return by @filler otherwise 88 */ 89 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 90 int (*filler)(void *, struct page *), void *data) 91 { 92 struct page *page; 93 int ret = 0; 94 95 while (!list_empty(pages)) { 96 page = lru_to_page(pages); 97 list_del(&page->lru); 98 if (add_to_page_cache_lru(page, mapping, page->index, 99 readahead_gfp_mask(mapping))) { 100 read_cache_pages_invalidate_page(mapping, page); 101 continue; 102 } 103 put_page(page); 104 105 ret = filler(data, page); 106 if (unlikely(ret)) { 107 read_cache_pages_invalidate_pages(mapping, pages); 108 break; 109 } 110 task_io_account_read(PAGE_SIZE); 111 } 112 return ret; 113 } 114 115 EXPORT_SYMBOL(read_cache_pages); 116 117 static void read_pages(struct readahead_control *rac, struct list_head *pages, 118 bool skip_page) 119 { 120 const struct address_space_operations *aops = rac->mapping->a_ops; 121 struct page *page; 122 struct blk_plug plug; 123 124 if (!readahead_count(rac)) 125 goto out; 126 127 blk_start_plug(&plug); 128 129 if (aops->readahead) { 130 aops->readahead(rac); 131 /* Clean up the remaining pages */ 132 while ((page = readahead_page(rac))) { 133 unlock_page(page); 134 put_page(page); 135 } 136 } else if (aops->readpages) { 137 aops->readpages(rac->file, rac->mapping, pages, 138 readahead_count(rac)); 139 /* Clean up the remaining pages */ 140 put_pages_list(pages); 141 rac->_index += rac->_nr_pages; 142 rac->_nr_pages = 0; 143 } else { 144 while ((page = readahead_page(rac))) { 145 aops->readpage(rac->file, page); 146 put_page(page); 147 } 148 } 149 150 blk_finish_plug(&plug); 151 152 BUG_ON(!list_empty(pages)); 153 BUG_ON(readahead_count(rac)); 154 155 out: 156 if (skip_page) 157 rac->_index++; 158 } 159 160 /** 161 * page_cache_ra_unbounded - Start unchecked readahead. 162 * @ractl: Readahead control. 163 * @nr_to_read: The number of pages to read. 164 * @lookahead_size: Where to start the next readahead. 165 * 166 * This function is for filesystems to call when they want to start 167 * readahead beyond a file's stated i_size. This is almost certainly 168 * not the function you want to call. Use page_cache_async_readahead() 169 * or page_cache_sync_readahead() instead. 170 * 171 * Context: File is referenced by caller. Mutexes may be held by caller. 172 * May sleep, but will not reenter filesystem to reclaim memory. 173 */ 174 void page_cache_ra_unbounded(struct readahead_control *ractl, 175 unsigned long nr_to_read, unsigned long lookahead_size) 176 { 177 struct address_space *mapping = ractl->mapping; 178 unsigned long index = readahead_index(ractl); 179 LIST_HEAD(page_pool); 180 gfp_t gfp_mask = readahead_gfp_mask(mapping); 181 unsigned long i; 182 183 /* 184 * Partway through the readahead operation, we will have added 185 * locked pages to the page cache, but will not yet have submitted 186 * them for I/O. Adding another page may need to allocate memory, 187 * which can trigger memory reclaim. Telling the VM we're in 188 * the middle of a filesystem operation will cause it to not 189 * touch file-backed pages, preventing a deadlock. Most (all?) 190 * filesystems already specify __GFP_NOFS in their mapping's 191 * gfp_mask, but let's be explicit here. 192 */ 193 unsigned int nofs = memalloc_nofs_save(); 194 195 /* 196 * Preallocate as many pages as we will need. 197 */ 198 for (i = 0; i < nr_to_read; i++) { 199 struct page *page = xa_load(&mapping->i_pages, index + i); 200 201 if (page && !xa_is_value(page)) { 202 /* 203 * Page already present? Kick off the current batch 204 * of contiguous pages before continuing with the 205 * next batch. This page may be the one we would 206 * have intended to mark as Readahead, but we don't 207 * have a stable reference to this page, and it's 208 * not worth getting one just for that. 209 */ 210 read_pages(ractl, &page_pool, true); 211 i = ractl->_index + ractl->_nr_pages - index - 1; 212 continue; 213 } 214 215 page = __page_cache_alloc(gfp_mask); 216 if (!page) 217 break; 218 if (mapping->a_ops->readpages) { 219 page->index = index + i; 220 list_add(&page->lru, &page_pool); 221 } else if (add_to_page_cache_lru(page, mapping, index + i, 222 gfp_mask) < 0) { 223 put_page(page); 224 read_pages(ractl, &page_pool, true); 225 i = ractl->_index + ractl->_nr_pages - index - 1; 226 continue; 227 } 228 if (i == nr_to_read - lookahead_size) 229 SetPageReadahead(page); 230 ractl->_nr_pages++; 231 } 232 233 /* 234 * Now start the IO. We ignore I/O errors - if the page is not 235 * uptodate then the caller will launch readpage again, and 236 * will then handle the error. 237 */ 238 read_pages(ractl, &page_pool, false); 239 memalloc_nofs_restore(nofs); 240 } 241 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 242 243 /* 244 * do_page_cache_ra() actually reads a chunk of disk. It allocates 245 * the pages first, then submits them for I/O. This avoids the very bad 246 * behaviour which would occur if page allocations are causing VM writeback. 247 * We really don't want to intermingle reads and writes like that. 248 */ 249 void do_page_cache_ra(struct readahead_control *ractl, 250 unsigned long nr_to_read, unsigned long lookahead_size) 251 { 252 struct inode *inode = ractl->mapping->host; 253 unsigned long index = readahead_index(ractl); 254 loff_t isize = i_size_read(inode); 255 pgoff_t end_index; /* The last page we want to read */ 256 257 if (isize == 0) 258 return; 259 260 end_index = (isize - 1) >> PAGE_SHIFT; 261 if (index > end_index) 262 return; 263 /* Don't read past the page containing the last byte of the file */ 264 if (nr_to_read > end_index - index) 265 nr_to_read = end_index - index + 1; 266 267 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 268 } 269 270 /* 271 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 272 * memory at once. 273 */ 274 void force_page_cache_ra(struct readahead_control *ractl, 275 unsigned long nr_to_read) 276 { 277 struct address_space *mapping = ractl->mapping; 278 struct file_ra_state *ra = ractl->ra; 279 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 280 unsigned long max_pages, index; 281 282 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages && 283 !mapping->a_ops->readahead)) 284 return; 285 286 /* 287 * If the request exceeds the readahead window, allow the read to 288 * be up to the optimal hardware IO size 289 */ 290 index = readahead_index(ractl); 291 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 292 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 293 while (nr_to_read) { 294 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 295 296 if (this_chunk > nr_to_read) 297 this_chunk = nr_to_read; 298 ractl->_index = index; 299 do_page_cache_ra(ractl, this_chunk, 0); 300 301 index += this_chunk; 302 nr_to_read -= this_chunk; 303 } 304 } 305 306 /* 307 * Set the initial window size, round to next power of 2 and square 308 * for small size, x 4 for medium, and x 2 for large 309 * for 128k (32 page) max ra 310 * 1-8 page = 32k initial, > 8 page = 128k initial 311 */ 312 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 313 { 314 unsigned long newsize = roundup_pow_of_two(size); 315 316 if (newsize <= max / 32) 317 newsize = newsize * 4; 318 else if (newsize <= max / 4) 319 newsize = newsize * 2; 320 else 321 newsize = max; 322 323 return newsize; 324 } 325 326 /* 327 * Get the previous window size, ramp it up, and 328 * return it as the new window size. 329 */ 330 static unsigned long get_next_ra_size(struct file_ra_state *ra, 331 unsigned long max) 332 { 333 unsigned long cur = ra->size; 334 335 if (cur < max / 16) 336 return 4 * cur; 337 if (cur <= max / 2) 338 return 2 * cur; 339 return max; 340 } 341 342 /* 343 * On-demand readahead design. 344 * 345 * The fields in struct file_ra_state represent the most-recently-executed 346 * readahead attempt: 347 * 348 * |<----- async_size ---------| 349 * |------------------- size -------------------->| 350 * |==================#===========================| 351 * ^start ^page marked with PG_readahead 352 * 353 * To overlap application thinking time and disk I/O time, we do 354 * `readahead pipelining': Do not wait until the application consumed all 355 * readahead pages and stalled on the missing page at readahead_index; 356 * Instead, submit an asynchronous readahead I/O as soon as there are 357 * only async_size pages left in the readahead window. Normally async_size 358 * will be equal to size, for maximum pipelining. 359 * 360 * In interleaved sequential reads, concurrent streams on the same fd can 361 * be invalidating each other's readahead state. So we flag the new readahead 362 * page at (start+size-async_size) with PG_readahead, and use it as readahead 363 * indicator. The flag won't be set on already cached pages, to avoid the 364 * readahead-for-nothing fuss, saving pointless page cache lookups. 365 * 366 * prev_pos tracks the last visited byte in the _previous_ read request. 367 * It should be maintained by the caller, and will be used for detecting 368 * small random reads. Note that the readahead algorithm checks loosely 369 * for sequential patterns. Hence interleaved reads might be served as 370 * sequential ones. 371 * 372 * There is a special-case: if the first page which the application tries to 373 * read happens to be the first page of the file, it is assumed that a linear 374 * read is about to happen and the window is immediately set to the initial size 375 * based on I/O request size and the max_readahead. 376 * 377 * The code ramps up the readahead size aggressively at first, but slow down as 378 * it approaches max_readhead. 379 */ 380 381 /* 382 * Count contiguously cached pages from @index-1 to @index-@max, 383 * this count is a conservative estimation of 384 * - length of the sequential read sequence, or 385 * - thrashing threshold in memory tight systems 386 */ 387 static pgoff_t count_history_pages(struct address_space *mapping, 388 pgoff_t index, unsigned long max) 389 { 390 pgoff_t head; 391 392 rcu_read_lock(); 393 head = page_cache_prev_miss(mapping, index - 1, max); 394 rcu_read_unlock(); 395 396 return index - 1 - head; 397 } 398 399 /* 400 * page cache context based read-ahead 401 */ 402 static int try_context_readahead(struct address_space *mapping, 403 struct file_ra_state *ra, 404 pgoff_t index, 405 unsigned long req_size, 406 unsigned long max) 407 { 408 pgoff_t size; 409 410 size = count_history_pages(mapping, index, max); 411 412 /* 413 * not enough history pages: 414 * it could be a random read 415 */ 416 if (size <= req_size) 417 return 0; 418 419 /* 420 * starts from beginning of file: 421 * it is a strong indication of long-run stream (or whole-file-read) 422 */ 423 if (size >= index) 424 size *= 2; 425 426 ra->start = index; 427 ra->size = min(size + req_size, max); 428 ra->async_size = 1; 429 430 return 1; 431 } 432 433 /* 434 * A minimal readahead algorithm for trivial sequential/random reads. 435 */ 436 static void ondemand_readahead(struct readahead_control *ractl, 437 bool hit_readahead_marker, unsigned long req_size) 438 { 439 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 440 struct file_ra_state *ra = ractl->ra; 441 unsigned long max_pages = ra->ra_pages; 442 unsigned long add_pages; 443 unsigned long index = readahead_index(ractl); 444 pgoff_t prev_index; 445 446 /* 447 * If the request exceeds the readahead window, allow the read to 448 * be up to the optimal hardware IO size 449 */ 450 if (req_size > max_pages && bdi->io_pages > max_pages) 451 max_pages = min(req_size, bdi->io_pages); 452 453 /* 454 * start of file 455 */ 456 if (!index) 457 goto initial_readahead; 458 459 /* 460 * It's the expected callback index, assume sequential access. 461 * Ramp up sizes, and push forward the readahead window. 462 */ 463 if ((index == (ra->start + ra->size - ra->async_size) || 464 index == (ra->start + ra->size))) { 465 ra->start += ra->size; 466 ra->size = get_next_ra_size(ra, max_pages); 467 ra->async_size = ra->size; 468 goto readit; 469 } 470 471 /* 472 * Hit a marked page without valid readahead state. 473 * E.g. interleaved reads. 474 * Query the pagecache for async_size, which normally equals to 475 * readahead size. Ramp it up and use it as the new readahead size. 476 */ 477 if (hit_readahead_marker) { 478 pgoff_t start; 479 480 rcu_read_lock(); 481 start = page_cache_next_miss(ractl->mapping, index + 1, 482 max_pages); 483 rcu_read_unlock(); 484 485 if (!start || start - index > max_pages) 486 return; 487 488 ra->start = start; 489 ra->size = start - index; /* old async_size */ 490 ra->size += req_size; 491 ra->size = get_next_ra_size(ra, max_pages); 492 ra->async_size = ra->size; 493 goto readit; 494 } 495 496 /* 497 * oversize read 498 */ 499 if (req_size > max_pages) 500 goto initial_readahead; 501 502 /* 503 * sequential cache miss 504 * trivial case: (index - prev_index) == 1 505 * unaligned reads: (index - prev_index) == 0 506 */ 507 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 508 if (index - prev_index <= 1UL) 509 goto initial_readahead; 510 511 /* 512 * Query the page cache and look for the traces(cached history pages) 513 * that a sequential stream would leave behind. 514 */ 515 if (try_context_readahead(ractl->mapping, ra, index, req_size, 516 max_pages)) 517 goto readit; 518 519 /* 520 * standalone, small random read 521 * Read as is, and do not pollute the readahead state. 522 */ 523 do_page_cache_ra(ractl, req_size, 0); 524 return; 525 526 initial_readahead: 527 ra->start = index; 528 ra->size = get_init_ra_size(req_size, max_pages); 529 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 530 531 readit: 532 /* 533 * Will this read hit the readahead marker made by itself? 534 * If so, trigger the readahead marker hit now, and merge 535 * the resulted next readahead window into the current one. 536 * Take care of maximum IO pages as above. 537 */ 538 if (index == ra->start && ra->size == ra->async_size) { 539 add_pages = get_next_ra_size(ra, max_pages); 540 if (ra->size + add_pages <= max_pages) { 541 ra->async_size = add_pages; 542 ra->size += add_pages; 543 } else { 544 ra->size = max_pages; 545 ra->async_size = max_pages >> 1; 546 } 547 } 548 549 ractl->_index = ra->start; 550 do_page_cache_ra(ractl, ra->size, ra->async_size); 551 } 552 553 void page_cache_sync_ra(struct readahead_control *ractl, 554 unsigned long req_count) 555 { 556 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 557 558 /* 559 * Even if read-ahead is disabled, issue this request as read-ahead 560 * as we'll need it to satisfy the requested range. The forced 561 * read-ahead will do the right thing and limit the read to just the 562 * requested range, which we'll set to 1 page for this case. 563 */ 564 if (!ractl->ra->ra_pages || blk_cgroup_congested()) { 565 if (!ractl->file) 566 return; 567 req_count = 1; 568 do_forced_ra = true; 569 } 570 571 /* be dumb */ 572 if (do_forced_ra) { 573 force_page_cache_ra(ractl, req_count); 574 return; 575 } 576 577 /* do read-ahead */ 578 ondemand_readahead(ractl, false, req_count); 579 } 580 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 581 582 void page_cache_async_ra(struct readahead_control *ractl, 583 struct page *page, unsigned long req_count) 584 { 585 /* no read-ahead */ 586 if (!ractl->ra->ra_pages) 587 return; 588 589 /* 590 * Same bit is used for PG_readahead and PG_reclaim. 591 */ 592 if (PageWriteback(page)) 593 return; 594 595 ClearPageReadahead(page); 596 597 /* 598 * Defer asynchronous read-ahead on IO congestion. 599 */ 600 if (inode_read_congested(ractl->mapping->host)) 601 return; 602 603 if (blk_cgroup_congested()) 604 return; 605 606 /* do read-ahead */ 607 ondemand_readahead(ractl, true, req_count); 608 } 609 EXPORT_SYMBOL_GPL(page_cache_async_ra); 610 611 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 612 { 613 ssize_t ret; 614 struct fd f; 615 616 ret = -EBADF; 617 f = fdget(fd); 618 if (!f.file || !(f.file->f_mode & FMODE_READ)) 619 goto out; 620 621 /* 622 * The readahead() syscall is intended to run only on files 623 * that can execute readahead. If readahead is not possible 624 * on this file, then we must return -EINVAL. 625 */ 626 ret = -EINVAL; 627 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 628 !S_ISREG(file_inode(f.file)->i_mode)) 629 goto out; 630 631 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 632 out: 633 fdput(f); 634 return ret; 635 } 636 637 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 638 { 639 return ksys_readahead(fd, offset, count); 640 } 641 642 /** 643 * readahead_expand - Expand a readahead request 644 * @ractl: The request to be expanded 645 * @new_start: The revised start 646 * @new_len: The revised size of the request 647 * 648 * Attempt to expand a readahead request outwards from the current size to the 649 * specified size by inserting locked pages before and after the current window 650 * to increase the size to the new window. This may involve the insertion of 651 * THPs, in which case the window may get expanded even beyond what was 652 * requested. 653 * 654 * The algorithm will stop if it encounters a conflicting page already in the 655 * pagecache and leave a smaller expansion than requested. 656 * 657 * The caller must check for this by examining the revised @ractl object for a 658 * different expansion than was requested. 659 */ 660 void readahead_expand(struct readahead_control *ractl, 661 loff_t new_start, size_t new_len) 662 { 663 struct address_space *mapping = ractl->mapping; 664 struct file_ra_state *ra = ractl->ra; 665 pgoff_t new_index, new_nr_pages; 666 gfp_t gfp_mask = readahead_gfp_mask(mapping); 667 668 new_index = new_start / PAGE_SIZE; 669 670 /* Expand the leading edge downwards */ 671 while (ractl->_index > new_index) { 672 unsigned long index = ractl->_index - 1; 673 struct page *page = xa_load(&mapping->i_pages, index); 674 675 if (page && !xa_is_value(page)) 676 return; /* Page apparently present */ 677 678 page = __page_cache_alloc(gfp_mask); 679 if (!page) 680 return; 681 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 682 put_page(page); 683 return; 684 } 685 686 ractl->_nr_pages++; 687 ractl->_index = page->index; 688 } 689 690 new_len += new_start - readahead_pos(ractl); 691 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 692 693 /* Expand the trailing edge upwards */ 694 while (ractl->_nr_pages < new_nr_pages) { 695 unsigned long index = ractl->_index + ractl->_nr_pages; 696 struct page *page = xa_load(&mapping->i_pages, index); 697 698 if (page && !xa_is_value(page)) 699 return; /* Page apparently present */ 700 701 page = __page_cache_alloc(gfp_mask); 702 if (!page) 703 return; 704 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 705 put_page(page); 706 return; 707 } 708 ractl->_nr_pages++; 709 if (ra) { 710 ra->size++; 711 ra->async_size++; 712 } 713 } 714 } 715 EXPORT_SYMBOL(readahead_expand); 716