xref: /linux/mm/readahead.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/gfp.h>
12 #include <linux/export.h>
13 #include <linux/blkdev.h>
14 #include <linux/backing-dev.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include <linux/pagevec.h>
17 #include <linux/pagemap.h>
18 #include <linux/syscalls.h>
19 #include <linux/file.h>
20 #include <linux/mm_inline.h>
21 
22 #include "internal.h"
23 
24 /*
25  * Initialise a struct file's readahead state.  Assumes that the caller has
26  * memset *ra to zero.
27  */
28 void
29 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
30 {
31 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
32 	ra->prev_pos = -1;
33 }
34 EXPORT_SYMBOL_GPL(file_ra_state_init);
35 
36 /*
37  * see if a page needs releasing upon read_cache_pages() failure
38  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
39  *   before calling, such as the NFS fs marking pages that are cached locally
40  *   on disk, thus we need to give the fs a chance to clean up in the event of
41  *   an error
42  */
43 static void read_cache_pages_invalidate_page(struct address_space *mapping,
44 					     struct page *page)
45 {
46 	if (page_has_private(page)) {
47 		if (!trylock_page(page))
48 			BUG();
49 		page->mapping = mapping;
50 		do_invalidatepage(page, 0, PAGE_SIZE);
51 		page->mapping = NULL;
52 		unlock_page(page);
53 	}
54 	put_page(page);
55 }
56 
57 /*
58  * release a list of pages, invalidating them first if need be
59  */
60 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
61 					      struct list_head *pages)
62 {
63 	struct page *victim;
64 
65 	while (!list_empty(pages)) {
66 		victim = lru_to_page(pages);
67 		list_del(&victim->lru);
68 		read_cache_pages_invalidate_page(mapping, victim);
69 	}
70 }
71 
72 /**
73  * read_cache_pages - populate an address space with some pages & start reads against them
74  * @mapping: the address_space
75  * @pages: The address of a list_head which contains the target pages.  These
76  *   pages have their ->index populated and are otherwise uninitialised.
77  * @filler: callback routine for filling a single page.
78  * @data: private data for the callback routine.
79  *
80  * Hides the details of the LRU cache etc from the filesystems.
81  */
82 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
83 			int (*filler)(void *, struct page *), void *data)
84 {
85 	struct page *page;
86 	int ret = 0;
87 
88 	while (!list_empty(pages)) {
89 		page = lru_to_page(pages);
90 		list_del(&page->lru);
91 		if (add_to_page_cache_lru(page, mapping, page->index,
92 				readahead_gfp_mask(mapping))) {
93 			read_cache_pages_invalidate_page(mapping, page);
94 			continue;
95 		}
96 		put_page(page);
97 
98 		ret = filler(data, page);
99 		if (unlikely(ret)) {
100 			read_cache_pages_invalidate_pages(mapping, pages);
101 			break;
102 		}
103 		task_io_account_read(PAGE_SIZE);
104 	}
105 	return ret;
106 }
107 
108 EXPORT_SYMBOL(read_cache_pages);
109 
110 static int read_pages(struct address_space *mapping, struct file *filp,
111 		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
112 {
113 	struct blk_plug plug;
114 	unsigned page_idx;
115 	int ret;
116 
117 	blk_start_plug(&plug);
118 
119 	if (mapping->a_ops->readpages) {
120 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
121 		/* Clean up the remaining pages */
122 		put_pages_list(pages);
123 		goto out;
124 	}
125 
126 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
127 		struct page *page = lru_to_page(pages);
128 		list_del(&page->lru);
129 		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
130 			mapping->a_ops->readpage(filp, page);
131 		put_page(page);
132 	}
133 	ret = 0;
134 
135 out:
136 	blk_finish_plug(&plug);
137 
138 	return ret;
139 }
140 
141 /*
142  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
143  * the pages first, then submits them all for I/O. This avoids the very bad
144  * behaviour which would occur if page allocations are causing VM writeback.
145  * We really don't want to intermingle reads and writes like that.
146  *
147  * Returns the number of pages requested, or the maximum amount of I/O allowed.
148  */
149 int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
150 			pgoff_t offset, unsigned long nr_to_read,
151 			unsigned long lookahead_size)
152 {
153 	struct inode *inode = mapping->host;
154 	struct page *page;
155 	unsigned long end_index;	/* The last page we want to read */
156 	LIST_HEAD(page_pool);
157 	int page_idx;
158 	int ret = 0;
159 	loff_t isize = i_size_read(inode);
160 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
161 
162 	if (isize == 0)
163 		goto out;
164 
165 	end_index = ((isize - 1) >> PAGE_SHIFT);
166 
167 	/*
168 	 * Preallocate as many pages as we will need.
169 	 */
170 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
171 		pgoff_t page_offset = offset + page_idx;
172 
173 		if (page_offset > end_index)
174 			break;
175 
176 		rcu_read_lock();
177 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
178 		rcu_read_unlock();
179 		if (page && !radix_tree_exceptional_entry(page))
180 			continue;
181 
182 		page = __page_cache_alloc(gfp_mask);
183 		if (!page)
184 			break;
185 		page->index = page_offset;
186 		list_add(&page->lru, &page_pool);
187 		if (page_idx == nr_to_read - lookahead_size)
188 			SetPageReadahead(page);
189 		ret++;
190 	}
191 
192 	/*
193 	 * Now start the IO.  We ignore I/O errors - if the page is not
194 	 * uptodate then the caller will launch readpage again, and
195 	 * will then handle the error.
196 	 */
197 	if (ret)
198 		read_pages(mapping, filp, &page_pool, ret, gfp_mask);
199 	BUG_ON(!list_empty(&page_pool));
200 out:
201 	return ret;
202 }
203 
204 /*
205  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
206  * memory at once.
207  */
208 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
209 		pgoff_t offset, unsigned long nr_to_read)
210 {
211 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
212 		return -EINVAL;
213 
214 	nr_to_read = min(nr_to_read, inode_to_bdi(mapping->host)->ra_pages);
215 	while (nr_to_read) {
216 		int err;
217 
218 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
219 
220 		if (this_chunk > nr_to_read)
221 			this_chunk = nr_to_read;
222 		err = __do_page_cache_readahead(mapping, filp,
223 						offset, this_chunk, 0);
224 		if (err < 0)
225 			return err;
226 
227 		offset += this_chunk;
228 		nr_to_read -= this_chunk;
229 	}
230 	return 0;
231 }
232 
233 /*
234  * Set the initial window size, round to next power of 2 and square
235  * for small size, x 4 for medium, and x 2 for large
236  * for 128k (32 page) max ra
237  * 1-8 page = 32k initial, > 8 page = 128k initial
238  */
239 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
240 {
241 	unsigned long newsize = roundup_pow_of_two(size);
242 
243 	if (newsize <= max / 32)
244 		newsize = newsize * 4;
245 	else if (newsize <= max / 4)
246 		newsize = newsize * 2;
247 	else
248 		newsize = max;
249 
250 	return newsize;
251 }
252 
253 /*
254  *  Get the previous window size, ramp it up, and
255  *  return it as the new window size.
256  */
257 static unsigned long get_next_ra_size(struct file_ra_state *ra,
258 						unsigned long max)
259 {
260 	unsigned long cur = ra->size;
261 	unsigned long newsize;
262 
263 	if (cur < max / 16)
264 		newsize = 4 * cur;
265 	else
266 		newsize = 2 * cur;
267 
268 	return min(newsize, max);
269 }
270 
271 /*
272  * On-demand readahead design.
273  *
274  * The fields in struct file_ra_state represent the most-recently-executed
275  * readahead attempt:
276  *
277  *                        |<----- async_size ---------|
278  *     |------------------- size -------------------->|
279  *     |==================#===========================|
280  *     ^start             ^page marked with PG_readahead
281  *
282  * To overlap application thinking time and disk I/O time, we do
283  * `readahead pipelining': Do not wait until the application consumed all
284  * readahead pages and stalled on the missing page at readahead_index;
285  * Instead, submit an asynchronous readahead I/O as soon as there are
286  * only async_size pages left in the readahead window. Normally async_size
287  * will be equal to size, for maximum pipelining.
288  *
289  * In interleaved sequential reads, concurrent streams on the same fd can
290  * be invalidating each other's readahead state. So we flag the new readahead
291  * page at (start+size-async_size) with PG_readahead, and use it as readahead
292  * indicator. The flag won't be set on already cached pages, to avoid the
293  * readahead-for-nothing fuss, saving pointless page cache lookups.
294  *
295  * prev_pos tracks the last visited byte in the _previous_ read request.
296  * It should be maintained by the caller, and will be used for detecting
297  * small random reads. Note that the readahead algorithm checks loosely
298  * for sequential patterns. Hence interleaved reads might be served as
299  * sequential ones.
300  *
301  * There is a special-case: if the first page which the application tries to
302  * read happens to be the first page of the file, it is assumed that a linear
303  * read is about to happen and the window is immediately set to the initial size
304  * based on I/O request size and the max_readahead.
305  *
306  * The code ramps up the readahead size aggressively at first, but slow down as
307  * it approaches max_readhead.
308  */
309 
310 /*
311  * Count contiguously cached pages from @offset-1 to @offset-@max,
312  * this count is a conservative estimation of
313  * 	- length of the sequential read sequence, or
314  * 	- thrashing threshold in memory tight systems
315  */
316 static pgoff_t count_history_pages(struct address_space *mapping,
317 				   pgoff_t offset, unsigned long max)
318 {
319 	pgoff_t head;
320 
321 	rcu_read_lock();
322 	head = page_cache_prev_hole(mapping, offset - 1, max);
323 	rcu_read_unlock();
324 
325 	return offset - 1 - head;
326 }
327 
328 /*
329  * page cache context based read-ahead
330  */
331 static int try_context_readahead(struct address_space *mapping,
332 				 struct file_ra_state *ra,
333 				 pgoff_t offset,
334 				 unsigned long req_size,
335 				 unsigned long max)
336 {
337 	pgoff_t size;
338 
339 	size = count_history_pages(mapping, offset, max);
340 
341 	/*
342 	 * not enough history pages:
343 	 * it could be a random read
344 	 */
345 	if (size <= req_size)
346 		return 0;
347 
348 	/*
349 	 * starts from beginning of file:
350 	 * it is a strong indication of long-run stream (or whole-file-read)
351 	 */
352 	if (size >= offset)
353 		size *= 2;
354 
355 	ra->start = offset;
356 	ra->size = min(size + req_size, max);
357 	ra->async_size = 1;
358 
359 	return 1;
360 }
361 
362 /*
363  * A minimal readahead algorithm for trivial sequential/random reads.
364  */
365 static unsigned long
366 ondemand_readahead(struct address_space *mapping,
367 		   struct file_ra_state *ra, struct file *filp,
368 		   bool hit_readahead_marker, pgoff_t offset,
369 		   unsigned long req_size)
370 {
371 	unsigned long max = ra->ra_pages;
372 	pgoff_t prev_offset;
373 
374 	/*
375 	 * start of file
376 	 */
377 	if (!offset)
378 		goto initial_readahead;
379 
380 	/*
381 	 * It's the expected callback offset, assume sequential access.
382 	 * Ramp up sizes, and push forward the readahead window.
383 	 */
384 	if ((offset == (ra->start + ra->size - ra->async_size) ||
385 	     offset == (ra->start + ra->size))) {
386 		ra->start += ra->size;
387 		ra->size = get_next_ra_size(ra, max);
388 		ra->async_size = ra->size;
389 		goto readit;
390 	}
391 
392 	/*
393 	 * Hit a marked page without valid readahead state.
394 	 * E.g. interleaved reads.
395 	 * Query the pagecache for async_size, which normally equals to
396 	 * readahead size. Ramp it up and use it as the new readahead size.
397 	 */
398 	if (hit_readahead_marker) {
399 		pgoff_t start;
400 
401 		rcu_read_lock();
402 		start = page_cache_next_hole(mapping, offset + 1, max);
403 		rcu_read_unlock();
404 
405 		if (!start || start - offset > max)
406 			return 0;
407 
408 		ra->start = start;
409 		ra->size = start - offset;	/* old async_size */
410 		ra->size += req_size;
411 		ra->size = get_next_ra_size(ra, max);
412 		ra->async_size = ra->size;
413 		goto readit;
414 	}
415 
416 	/*
417 	 * oversize read
418 	 */
419 	if (req_size > max)
420 		goto initial_readahead;
421 
422 	/*
423 	 * sequential cache miss
424 	 * trivial case: (offset - prev_offset) == 1
425 	 * unaligned reads: (offset - prev_offset) == 0
426 	 */
427 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
428 	if (offset - prev_offset <= 1UL)
429 		goto initial_readahead;
430 
431 	/*
432 	 * Query the page cache and look for the traces(cached history pages)
433 	 * that a sequential stream would leave behind.
434 	 */
435 	if (try_context_readahead(mapping, ra, offset, req_size, max))
436 		goto readit;
437 
438 	/*
439 	 * standalone, small random read
440 	 * Read as is, and do not pollute the readahead state.
441 	 */
442 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
443 
444 initial_readahead:
445 	ra->start = offset;
446 	ra->size = get_init_ra_size(req_size, max);
447 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
448 
449 readit:
450 	/*
451 	 * Will this read hit the readahead marker made by itself?
452 	 * If so, trigger the readahead marker hit now, and merge
453 	 * the resulted next readahead window into the current one.
454 	 */
455 	if (offset == ra->start && ra->size == ra->async_size) {
456 		ra->async_size = get_next_ra_size(ra, max);
457 		ra->size += ra->async_size;
458 	}
459 
460 	return ra_submit(ra, mapping, filp);
461 }
462 
463 /**
464  * page_cache_sync_readahead - generic file readahead
465  * @mapping: address_space which holds the pagecache and I/O vectors
466  * @ra: file_ra_state which holds the readahead state
467  * @filp: passed on to ->readpage() and ->readpages()
468  * @offset: start offset into @mapping, in pagecache page-sized units
469  * @req_size: hint: total size of the read which the caller is performing in
470  *            pagecache pages
471  *
472  * page_cache_sync_readahead() should be called when a cache miss happened:
473  * it will submit the read.  The readahead logic may decide to piggyback more
474  * pages onto the read request if access patterns suggest it will improve
475  * performance.
476  */
477 void page_cache_sync_readahead(struct address_space *mapping,
478 			       struct file_ra_state *ra, struct file *filp,
479 			       pgoff_t offset, unsigned long req_size)
480 {
481 	/* no read-ahead */
482 	if (!ra->ra_pages)
483 		return;
484 
485 	/* be dumb */
486 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
487 		force_page_cache_readahead(mapping, filp, offset, req_size);
488 		return;
489 	}
490 
491 	/* do read-ahead */
492 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
493 }
494 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
495 
496 /**
497  * page_cache_async_readahead - file readahead for marked pages
498  * @mapping: address_space which holds the pagecache and I/O vectors
499  * @ra: file_ra_state which holds the readahead state
500  * @filp: passed on to ->readpage() and ->readpages()
501  * @page: the page at @offset which has the PG_readahead flag set
502  * @offset: start offset into @mapping, in pagecache page-sized units
503  * @req_size: hint: total size of the read which the caller is performing in
504  *            pagecache pages
505  *
506  * page_cache_async_readahead() should be called when a page is used which
507  * has the PG_readahead flag; this is a marker to suggest that the application
508  * has used up enough of the readahead window that we should start pulling in
509  * more pages.
510  */
511 void
512 page_cache_async_readahead(struct address_space *mapping,
513 			   struct file_ra_state *ra, struct file *filp,
514 			   struct page *page, pgoff_t offset,
515 			   unsigned long req_size)
516 {
517 	/* no read-ahead */
518 	if (!ra->ra_pages)
519 		return;
520 
521 	/*
522 	 * Same bit is used for PG_readahead and PG_reclaim.
523 	 */
524 	if (PageWriteback(page))
525 		return;
526 
527 	ClearPageReadahead(page);
528 
529 	/*
530 	 * Defer asynchronous read-ahead on IO congestion.
531 	 */
532 	if (inode_read_congested(mapping->host))
533 		return;
534 
535 	/* do read-ahead */
536 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
537 }
538 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
539 
540 static ssize_t
541 do_readahead(struct address_space *mapping, struct file *filp,
542 	     pgoff_t index, unsigned long nr)
543 {
544 	if (!mapping || !mapping->a_ops)
545 		return -EINVAL;
546 
547 	return force_page_cache_readahead(mapping, filp, index, nr);
548 }
549 
550 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
551 {
552 	ssize_t ret;
553 	struct fd f;
554 
555 	ret = -EBADF;
556 	f = fdget(fd);
557 	if (f.file) {
558 		if (f.file->f_mode & FMODE_READ) {
559 			struct address_space *mapping = f.file->f_mapping;
560 			pgoff_t start = offset >> PAGE_SHIFT;
561 			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
562 			unsigned long len = end - start + 1;
563 			ret = do_readahead(mapping, f.file, start, len);
564 		}
565 		fdput(f);
566 	}
567 	return ret;
568 }
569