xref: /linux/mm/readahead.c (revision afb8d5f4311585a9d79ca45da3e53c382e826e7b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 /**
12  * DOC: Readahead Overview
13  *
14  * Readahead is used to read content into the page cache before it is
15  * explicitly requested by the application.  Readahead only ever
16  * attempts to read folios that are not yet in the page cache.  If a
17  * folio is present but not up-to-date, readahead will not try to read
18  * it. In that case a simple ->read_folio() will be requested.
19  *
20  * Readahead is triggered when an application read request (whether a
21  * system call or a page fault) finds that the requested folio is not in
22  * the page cache, or that it is in the page cache and has the
23  * readahead flag set.  This flag indicates that the folio was read
24  * as part of a previous readahead request and now that it has been
25  * accessed, it is time for the next readahead.
26  *
27  * Each readahead request is partly synchronous read, and partly async
28  * readahead.  This is reflected in the struct file_ra_state which
29  * contains ->size being the total number of pages, and ->async_size
30  * which is the number of pages in the async section.  The readahead
31  * flag will be set on the first folio in this async section to trigger
32  * a subsequent readahead.  Once a series of sequential reads has been
33  * established, there should be no need for a synchronous component and
34  * all readahead request will be fully asynchronous.
35  *
36  * When either of the triggers causes a readahead, three numbers need
37  * to be determined: the start of the region to read, the size of the
38  * region, and the size of the async tail.
39  *
40  * The start of the region is simply the first page address at or after
41  * the accessed address, which is not currently populated in the page
42  * cache.  This is found with a simple search in the page cache.
43  *
44  * The size of the async tail is determined by subtracting the size that
45  * was explicitly requested from the determined request size, unless
46  * this would be less than zero - then zero is used.  NOTE THIS
47  * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48  * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49  *
50  * The size of the region is normally determined from the size of the
51  * previous readahead which loaded the preceding pages.  This may be
52  * discovered from the struct file_ra_state for simple sequential reads,
53  * or from examining the state of the page cache when multiple
54  * sequential reads are interleaved.  Specifically: where the readahead
55  * was triggered by the readahead flag, the size of the previous
56  * readahead is assumed to be the number of pages from the triggering
57  * page to the start of the new readahead.  In these cases, the size of
58  * the previous readahead is scaled, often doubled, for the new
59  * readahead, though see get_next_ra_size() for details.
60  *
61  * If the size of the previous read cannot be determined, the number of
62  * preceding pages in the page cache is used to estimate the size of
63  * a previous read.  This estimate could easily be misled by random
64  * reads being coincidentally adjacent, so it is ignored unless it is
65  * larger than the current request, and it is not scaled up, unless it
66  * is at the start of file.
67  *
68  * In general readahead is accelerated at the start of the file, as
69  * reads from there are often sequential.  There are other minor
70  * adjustments to the readahead size in various special cases and these
71  * are best discovered by reading the code.
72  *
73  * The above calculation, based on the previous readahead size,
74  * determines the size of the readahead, to which any requested read
75  * size may be added.
76  *
77  * Readahead requests are sent to the filesystem using the ->readahead()
78  * address space operation, for which mpage_readahead() is a canonical
79  * implementation.  ->readahead() should normally initiate reads on all
80  * folios, but may fail to read any or all folios without causing an I/O
81  * error.  The page cache reading code will issue a ->read_folio() request
82  * for any folio which ->readahead() did not read, and only an error
83  * from this will be final.
84  *
85  * ->readahead() will generally call readahead_folio() repeatedly to get
86  * each folio from those prepared for readahead.  It may fail to read a
87  * folio by:
88  *
89  * * not calling readahead_folio() sufficiently many times, effectively
90  *   ignoring some folios, as might be appropriate if the path to
91  *   storage is congested.
92  *
93  * * failing to actually submit a read request for a given folio,
94  *   possibly due to insufficient resources, or
95  *
96  * * getting an error during subsequent processing of a request.
97  *
98  * In the last two cases, the folio should be unlocked by the filesystem
99  * to indicate that the read attempt has failed.  In the first case the
100  * folio will be unlocked by the VFS.
101  *
102  * Those folios not in the final ``async_size`` of the request should be
103  * considered to be important and ->readahead() should not fail them due
104  * to congestion or temporary resource unavailability, but should wait
105  * for necessary resources (e.g.  memory or indexing information) to
106  * become available.  Folios in the final ``async_size`` may be
107  * considered less urgent and failure to read them is more acceptable.
108  * In this case it is best to use filemap_remove_folio() to remove the
109  * folios from the page cache as is automatically done for folios that
110  * were not fetched with readahead_folio().  This will allow a
111  * subsequent synchronous readahead request to try them again.  If they
112  * are left in the page cache, then they will be read individually using
113  * ->read_folio() which may be less efficient.
114  */
115 
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagevec.h>
124 #include <linux/pagemap.h>
125 #include <linux/psi.h>
126 #include <linux/syscalls.h>
127 #include <linux/file.h>
128 #include <linux/mm_inline.h>
129 #include <linux/blk-cgroup.h>
130 #include <linux/fadvise.h>
131 #include <linux/sched/mm.h>
132 
133 #include "internal.h"
134 
135 /*
136  * Initialise a struct file's readahead state.  Assumes that the caller has
137  * memset *ra to zero.
138  */
139 void
140 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
141 {
142 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
143 	ra->prev_pos = -1;
144 }
145 EXPORT_SYMBOL_GPL(file_ra_state_init);
146 
147 static void read_pages(struct readahead_control *rac)
148 {
149 	const struct address_space_operations *aops = rac->mapping->a_ops;
150 	struct folio *folio;
151 	struct blk_plug plug;
152 
153 	if (!readahead_count(rac))
154 		return;
155 
156 	if (unlikely(rac->_workingset))
157 		psi_memstall_enter(&rac->_pflags);
158 	blk_start_plug(&plug);
159 
160 	if (aops->readahead) {
161 		aops->readahead(rac);
162 		/*
163 		 * Clean up the remaining folios.  The sizes in ->ra
164 		 * may be used to size the next readahead, so make sure
165 		 * they accurately reflect what happened.
166 		 */
167 		while ((folio = readahead_folio(rac)) != NULL) {
168 			unsigned long nr = folio_nr_pages(folio);
169 
170 			folio_get(folio);
171 			rac->ra->size -= nr;
172 			if (rac->ra->async_size >= nr) {
173 				rac->ra->async_size -= nr;
174 				filemap_remove_folio(folio);
175 			}
176 			folio_unlock(folio);
177 			folio_put(folio);
178 		}
179 	} else {
180 		while ((folio = readahead_folio(rac)) != NULL)
181 			aops->read_folio(rac->file, folio);
182 	}
183 
184 	blk_finish_plug(&plug);
185 	if (unlikely(rac->_workingset))
186 		psi_memstall_leave(&rac->_pflags);
187 	rac->_workingset = false;
188 
189 	BUG_ON(readahead_count(rac));
190 }
191 
192 /**
193  * page_cache_ra_unbounded - Start unchecked readahead.
194  * @ractl: Readahead control.
195  * @nr_to_read: The number of pages to read.
196  * @lookahead_size: Where to start the next readahead.
197  *
198  * This function is for filesystems to call when they want to start
199  * readahead beyond a file's stated i_size.  This is almost certainly
200  * not the function you want to call.  Use page_cache_async_readahead()
201  * or page_cache_sync_readahead() instead.
202  *
203  * Context: File is referenced by caller.  Mutexes may be held by caller.
204  * May sleep, but will not reenter filesystem to reclaim memory.
205  */
206 void page_cache_ra_unbounded(struct readahead_control *ractl,
207 		unsigned long nr_to_read, unsigned long lookahead_size)
208 {
209 	struct address_space *mapping = ractl->mapping;
210 	unsigned long index = readahead_index(ractl);
211 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
212 	unsigned long i;
213 
214 	/*
215 	 * Partway through the readahead operation, we will have added
216 	 * locked pages to the page cache, but will not yet have submitted
217 	 * them for I/O.  Adding another page may need to allocate memory,
218 	 * which can trigger memory reclaim.  Telling the VM we're in
219 	 * the middle of a filesystem operation will cause it to not
220 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
221 	 * filesystems already specify __GFP_NOFS in their mapping's
222 	 * gfp_mask, but let's be explicit here.
223 	 */
224 	unsigned int nofs = memalloc_nofs_save();
225 
226 	filemap_invalidate_lock_shared(mapping);
227 	/*
228 	 * Preallocate as many pages as we will need.
229 	 */
230 	for (i = 0; i < nr_to_read; i++) {
231 		struct folio *folio = xa_load(&mapping->i_pages, index + i);
232 
233 		if (folio && !xa_is_value(folio)) {
234 			/*
235 			 * Page already present?  Kick off the current batch
236 			 * of contiguous pages before continuing with the
237 			 * next batch.  This page may be the one we would
238 			 * have intended to mark as Readahead, but we don't
239 			 * have a stable reference to this page, and it's
240 			 * not worth getting one just for that.
241 			 */
242 			read_pages(ractl);
243 			ractl->_index++;
244 			i = ractl->_index + ractl->_nr_pages - index - 1;
245 			continue;
246 		}
247 
248 		folio = filemap_alloc_folio(gfp_mask, 0);
249 		if (!folio)
250 			break;
251 		if (filemap_add_folio(mapping, folio, index + i,
252 					gfp_mask) < 0) {
253 			folio_put(folio);
254 			read_pages(ractl);
255 			ractl->_index++;
256 			i = ractl->_index + ractl->_nr_pages - index - 1;
257 			continue;
258 		}
259 		if (i == nr_to_read - lookahead_size)
260 			folio_set_readahead(folio);
261 		ractl->_workingset |= folio_test_workingset(folio);
262 		ractl->_nr_pages++;
263 	}
264 
265 	/*
266 	 * Now start the IO.  We ignore I/O errors - if the folio is not
267 	 * uptodate then the caller will launch read_folio again, and
268 	 * will then handle the error.
269 	 */
270 	read_pages(ractl);
271 	filemap_invalidate_unlock_shared(mapping);
272 	memalloc_nofs_restore(nofs);
273 }
274 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
275 
276 /*
277  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
278  * the pages first, then submits them for I/O. This avoids the very bad
279  * behaviour which would occur if page allocations are causing VM writeback.
280  * We really don't want to intermingle reads and writes like that.
281  */
282 static void do_page_cache_ra(struct readahead_control *ractl,
283 		unsigned long nr_to_read, unsigned long lookahead_size)
284 {
285 	struct inode *inode = ractl->mapping->host;
286 	unsigned long index = readahead_index(ractl);
287 	loff_t isize = i_size_read(inode);
288 	pgoff_t end_index;	/* The last page we want to read */
289 
290 	if (isize == 0)
291 		return;
292 
293 	end_index = (isize - 1) >> PAGE_SHIFT;
294 	if (index > end_index)
295 		return;
296 	/* Don't read past the page containing the last byte of the file */
297 	if (nr_to_read > end_index - index)
298 		nr_to_read = end_index - index + 1;
299 
300 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
301 }
302 
303 /*
304  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
305  * memory at once.
306  */
307 void force_page_cache_ra(struct readahead_control *ractl,
308 		unsigned long nr_to_read)
309 {
310 	struct address_space *mapping = ractl->mapping;
311 	struct file_ra_state *ra = ractl->ra;
312 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
313 	unsigned long max_pages, index;
314 
315 	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
316 		return;
317 
318 	/*
319 	 * If the request exceeds the readahead window, allow the read to
320 	 * be up to the optimal hardware IO size
321 	 */
322 	index = readahead_index(ractl);
323 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
324 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
325 	while (nr_to_read) {
326 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
327 
328 		if (this_chunk > nr_to_read)
329 			this_chunk = nr_to_read;
330 		ractl->_index = index;
331 		do_page_cache_ra(ractl, this_chunk, 0);
332 
333 		index += this_chunk;
334 		nr_to_read -= this_chunk;
335 	}
336 }
337 
338 /*
339  * Set the initial window size, round to next power of 2 and square
340  * for small size, x 4 for medium, and x 2 for large
341  * for 128k (32 page) max ra
342  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
343  */
344 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
345 {
346 	unsigned long newsize = roundup_pow_of_two(size);
347 
348 	if (newsize <= max / 32)
349 		newsize = newsize * 4;
350 	else if (newsize <= max / 4)
351 		newsize = newsize * 2;
352 	else
353 		newsize = max;
354 
355 	return newsize;
356 }
357 
358 /*
359  *  Get the previous window size, ramp it up, and
360  *  return it as the new window size.
361  */
362 static unsigned long get_next_ra_size(struct file_ra_state *ra,
363 				      unsigned long max)
364 {
365 	unsigned long cur = ra->size;
366 
367 	if (cur < max / 16)
368 		return 4 * cur;
369 	if (cur <= max / 2)
370 		return 2 * cur;
371 	return max;
372 }
373 
374 /*
375  * On-demand readahead design.
376  *
377  * The fields in struct file_ra_state represent the most-recently-executed
378  * readahead attempt:
379  *
380  *                        |<----- async_size ---------|
381  *     |------------------- size -------------------->|
382  *     |==================#===========================|
383  *     ^start             ^page marked with PG_readahead
384  *
385  * To overlap application thinking time and disk I/O time, we do
386  * `readahead pipelining': Do not wait until the application consumed all
387  * readahead pages and stalled on the missing page at readahead_index;
388  * Instead, submit an asynchronous readahead I/O as soon as there are
389  * only async_size pages left in the readahead window. Normally async_size
390  * will be equal to size, for maximum pipelining.
391  *
392  * In interleaved sequential reads, concurrent streams on the same fd can
393  * be invalidating each other's readahead state. So we flag the new readahead
394  * page at (start+size-async_size) with PG_readahead, and use it as readahead
395  * indicator. The flag won't be set on already cached pages, to avoid the
396  * readahead-for-nothing fuss, saving pointless page cache lookups.
397  *
398  * prev_pos tracks the last visited byte in the _previous_ read request.
399  * It should be maintained by the caller, and will be used for detecting
400  * small random reads. Note that the readahead algorithm checks loosely
401  * for sequential patterns. Hence interleaved reads might be served as
402  * sequential ones.
403  *
404  * There is a special-case: if the first page which the application tries to
405  * read happens to be the first page of the file, it is assumed that a linear
406  * read is about to happen and the window is immediately set to the initial size
407  * based on I/O request size and the max_readahead.
408  *
409  * The code ramps up the readahead size aggressively at first, but slow down as
410  * it approaches max_readhead.
411  */
412 
413 /*
414  * Count contiguously cached pages from @index-1 to @index-@max,
415  * this count is a conservative estimation of
416  * 	- length of the sequential read sequence, or
417  * 	- thrashing threshold in memory tight systems
418  */
419 static pgoff_t count_history_pages(struct address_space *mapping,
420 				   pgoff_t index, unsigned long max)
421 {
422 	pgoff_t head;
423 
424 	rcu_read_lock();
425 	head = page_cache_prev_miss(mapping, index - 1, max);
426 	rcu_read_unlock();
427 
428 	return index - 1 - head;
429 }
430 
431 /*
432  * page cache context based readahead
433  */
434 static int try_context_readahead(struct address_space *mapping,
435 				 struct file_ra_state *ra,
436 				 pgoff_t index,
437 				 unsigned long req_size,
438 				 unsigned long max)
439 {
440 	pgoff_t size;
441 
442 	size = count_history_pages(mapping, index, max);
443 
444 	/*
445 	 * not enough history pages:
446 	 * it could be a random read
447 	 */
448 	if (size <= req_size)
449 		return 0;
450 
451 	/*
452 	 * starts from beginning of file:
453 	 * it is a strong indication of long-run stream (or whole-file-read)
454 	 */
455 	if (size >= index)
456 		size *= 2;
457 
458 	ra->start = index;
459 	ra->size = min(size + req_size, max);
460 	ra->async_size = 1;
461 
462 	return 1;
463 }
464 
465 /*
466  * There are some parts of the kernel which assume that PMD entries
467  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
468  * limit the maximum allocation order to PMD size.  I'm not aware of any
469  * assumptions about maximum order if THP are disabled, but 8 seems like
470  * a good order (that's 1MB if you're using 4kB pages)
471  */
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 #define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
474 #else
475 #define MAX_PAGECACHE_ORDER	8
476 #endif
477 
478 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
479 		pgoff_t mark, unsigned int order, gfp_t gfp)
480 {
481 	int err;
482 	struct folio *folio = filemap_alloc_folio(gfp, order);
483 
484 	if (!folio)
485 		return -ENOMEM;
486 	mark = round_up(mark, 1UL << order);
487 	if (index == mark)
488 		folio_set_readahead(folio);
489 	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
490 	if (err) {
491 		folio_put(folio);
492 		return err;
493 	}
494 
495 	ractl->_nr_pages += 1UL << order;
496 	ractl->_workingset |= folio_test_workingset(folio);
497 	return 0;
498 }
499 
500 void page_cache_ra_order(struct readahead_control *ractl,
501 		struct file_ra_state *ra, unsigned int new_order)
502 {
503 	struct address_space *mapping = ractl->mapping;
504 	pgoff_t index = readahead_index(ractl);
505 	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
506 	pgoff_t mark = index + ra->size - ra->async_size;
507 	int err = 0;
508 	gfp_t gfp = readahead_gfp_mask(mapping);
509 
510 	if (!mapping_large_folio_support(mapping) || ra->size < 4)
511 		goto fallback;
512 
513 	limit = min(limit, index + ra->size - 1);
514 
515 	if (new_order < MAX_PAGECACHE_ORDER) {
516 		new_order += 2;
517 		if (new_order > MAX_PAGECACHE_ORDER)
518 			new_order = MAX_PAGECACHE_ORDER;
519 		while ((1 << new_order) > ra->size)
520 			new_order--;
521 	}
522 
523 	filemap_invalidate_lock_shared(mapping);
524 	while (index <= limit) {
525 		unsigned int order = new_order;
526 
527 		/* Align with smaller pages if needed */
528 		if (index & ((1UL << order) - 1)) {
529 			order = __ffs(index);
530 			if (order == 1)
531 				order = 0;
532 		}
533 		/* Don't allocate pages past EOF */
534 		while (index + (1UL << order) - 1 > limit) {
535 			if (--order == 1)
536 				order = 0;
537 		}
538 		err = ra_alloc_folio(ractl, index, mark, order, gfp);
539 		if (err)
540 			break;
541 		index += 1UL << order;
542 	}
543 
544 	if (index > limit) {
545 		ra->size += index - limit - 1;
546 		ra->async_size += index - limit - 1;
547 	}
548 
549 	read_pages(ractl);
550 	filemap_invalidate_unlock_shared(mapping);
551 
552 	/*
553 	 * If there were already pages in the page cache, then we may have
554 	 * left some gaps.  Let the regular readahead code take care of this
555 	 * situation.
556 	 */
557 	if (!err)
558 		return;
559 fallback:
560 	do_page_cache_ra(ractl, ra->size, ra->async_size);
561 }
562 
563 /*
564  * A minimal readahead algorithm for trivial sequential/random reads.
565  */
566 static void ondemand_readahead(struct readahead_control *ractl,
567 		struct folio *folio, unsigned long req_size)
568 {
569 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
570 	struct file_ra_state *ra = ractl->ra;
571 	unsigned long max_pages = ra->ra_pages;
572 	unsigned long add_pages;
573 	pgoff_t index = readahead_index(ractl);
574 	pgoff_t expected, prev_index;
575 	unsigned int order = folio ? folio_order(folio) : 0;
576 
577 	/*
578 	 * If the request exceeds the readahead window, allow the read to
579 	 * be up to the optimal hardware IO size
580 	 */
581 	if (req_size > max_pages && bdi->io_pages > max_pages)
582 		max_pages = min(req_size, bdi->io_pages);
583 
584 	/*
585 	 * start of file
586 	 */
587 	if (!index)
588 		goto initial_readahead;
589 
590 	/*
591 	 * It's the expected callback index, assume sequential access.
592 	 * Ramp up sizes, and push forward the readahead window.
593 	 */
594 	expected = round_up(ra->start + ra->size - ra->async_size,
595 			1UL << order);
596 	if (index == expected || index == (ra->start + ra->size)) {
597 		ra->start += ra->size;
598 		ra->size = get_next_ra_size(ra, max_pages);
599 		ra->async_size = ra->size;
600 		goto readit;
601 	}
602 
603 	/*
604 	 * Hit a marked folio without valid readahead state.
605 	 * E.g. interleaved reads.
606 	 * Query the pagecache for async_size, which normally equals to
607 	 * readahead size. Ramp it up and use it as the new readahead size.
608 	 */
609 	if (folio) {
610 		pgoff_t start;
611 
612 		rcu_read_lock();
613 		start = page_cache_next_miss(ractl->mapping, index + 1,
614 				max_pages);
615 		rcu_read_unlock();
616 
617 		if (!start || start - index > max_pages)
618 			return;
619 
620 		ra->start = start;
621 		ra->size = start - index;	/* old async_size */
622 		ra->size += req_size;
623 		ra->size = get_next_ra_size(ra, max_pages);
624 		ra->async_size = ra->size;
625 		goto readit;
626 	}
627 
628 	/*
629 	 * oversize read
630 	 */
631 	if (req_size > max_pages)
632 		goto initial_readahead;
633 
634 	/*
635 	 * sequential cache miss
636 	 * trivial case: (index - prev_index) == 1
637 	 * unaligned reads: (index - prev_index) == 0
638 	 */
639 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
640 	if (index - prev_index <= 1UL)
641 		goto initial_readahead;
642 
643 	/*
644 	 * Query the page cache and look for the traces(cached history pages)
645 	 * that a sequential stream would leave behind.
646 	 */
647 	if (try_context_readahead(ractl->mapping, ra, index, req_size,
648 			max_pages))
649 		goto readit;
650 
651 	/*
652 	 * standalone, small random read
653 	 * Read as is, and do not pollute the readahead state.
654 	 */
655 	do_page_cache_ra(ractl, req_size, 0);
656 	return;
657 
658 initial_readahead:
659 	ra->start = index;
660 	ra->size = get_init_ra_size(req_size, max_pages);
661 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
662 
663 readit:
664 	/*
665 	 * Will this read hit the readahead marker made by itself?
666 	 * If so, trigger the readahead marker hit now, and merge
667 	 * the resulted next readahead window into the current one.
668 	 * Take care of maximum IO pages as above.
669 	 */
670 	if (index == ra->start && ra->size == ra->async_size) {
671 		add_pages = get_next_ra_size(ra, max_pages);
672 		if (ra->size + add_pages <= max_pages) {
673 			ra->async_size = add_pages;
674 			ra->size += add_pages;
675 		} else {
676 			ra->size = max_pages;
677 			ra->async_size = max_pages >> 1;
678 		}
679 	}
680 
681 	ractl->_index = ra->start;
682 	page_cache_ra_order(ractl, ra, order);
683 }
684 
685 void page_cache_sync_ra(struct readahead_control *ractl,
686 		unsigned long req_count)
687 {
688 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
689 
690 	/*
691 	 * Even if readahead is disabled, issue this request as readahead
692 	 * as we'll need it to satisfy the requested range. The forced
693 	 * readahead will do the right thing and limit the read to just the
694 	 * requested range, which we'll set to 1 page for this case.
695 	 */
696 	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
697 		if (!ractl->file)
698 			return;
699 		req_count = 1;
700 		do_forced_ra = true;
701 	}
702 
703 	/* be dumb */
704 	if (do_forced_ra) {
705 		force_page_cache_ra(ractl, req_count);
706 		return;
707 	}
708 
709 	ondemand_readahead(ractl, NULL, req_count);
710 }
711 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
712 
713 void page_cache_async_ra(struct readahead_control *ractl,
714 		struct folio *folio, unsigned long req_count)
715 {
716 	/* no readahead */
717 	if (!ractl->ra->ra_pages)
718 		return;
719 
720 	/*
721 	 * Same bit is used for PG_readahead and PG_reclaim.
722 	 */
723 	if (folio_test_writeback(folio))
724 		return;
725 
726 	folio_clear_readahead(folio);
727 
728 	if (blk_cgroup_congested())
729 		return;
730 
731 	ondemand_readahead(ractl, folio, req_count);
732 }
733 EXPORT_SYMBOL_GPL(page_cache_async_ra);
734 
735 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
736 {
737 	ssize_t ret;
738 	struct fd f;
739 
740 	ret = -EBADF;
741 	f = fdget(fd);
742 	if (!f.file || !(f.file->f_mode & FMODE_READ))
743 		goto out;
744 
745 	/*
746 	 * The readahead() syscall is intended to run only on files
747 	 * that can execute readahead. If readahead is not possible
748 	 * on this file, then we must return -EINVAL.
749 	 */
750 	ret = -EINVAL;
751 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
752 	    !S_ISREG(file_inode(f.file)->i_mode))
753 		goto out;
754 
755 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
756 out:
757 	fdput(f);
758 	return ret;
759 }
760 
761 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
762 {
763 	return ksys_readahead(fd, offset, count);
764 }
765 
766 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
767 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
768 {
769 	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
770 }
771 #endif
772 
773 /**
774  * readahead_expand - Expand a readahead request
775  * @ractl: The request to be expanded
776  * @new_start: The revised start
777  * @new_len: The revised size of the request
778  *
779  * Attempt to expand a readahead request outwards from the current size to the
780  * specified size by inserting locked pages before and after the current window
781  * to increase the size to the new window.  This may involve the insertion of
782  * THPs, in which case the window may get expanded even beyond what was
783  * requested.
784  *
785  * The algorithm will stop if it encounters a conflicting page already in the
786  * pagecache and leave a smaller expansion than requested.
787  *
788  * The caller must check for this by examining the revised @ractl object for a
789  * different expansion than was requested.
790  */
791 void readahead_expand(struct readahead_control *ractl,
792 		      loff_t new_start, size_t new_len)
793 {
794 	struct address_space *mapping = ractl->mapping;
795 	struct file_ra_state *ra = ractl->ra;
796 	pgoff_t new_index, new_nr_pages;
797 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
798 
799 	new_index = new_start / PAGE_SIZE;
800 
801 	/* Expand the leading edge downwards */
802 	while (ractl->_index > new_index) {
803 		unsigned long index = ractl->_index - 1;
804 		struct page *page = xa_load(&mapping->i_pages, index);
805 
806 		if (page && !xa_is_value(page))
807 			return; /* Page apparently present */
808 
809 		page = __page_cache_alloc(gfp_mask);
810 		if (!page)
811 			return;
812 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
813 			put_page(page);
814 			return;
815 		}
816 
817 		ractl->_nr_pages++;
818 		ractl->_index = page->index;
819 	}
820 
821 	new_len += new_start - readahead_pos(ractl);
822 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
823 
824 	/* Expand the trailing edge upwards */
825 	while (ractl->_nr_pages < new_nr_pages) {
826 		unsigned long index = ractl->_index + ractl->_nr_pages;
827 		struct page *page = xa_load(&mapping->i_pages, index);
828 
829 		if (page && !xa_is_value(page))
830 			return; /* Page apparently present */
831 
832 		page = __page_cache_alloc(gfp_mask);
833 		if (!page)
834 			return;
835 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
836 			put_page(page);
837 			return;
838 		}
839 		if (unlikely(PageWorkingset(page)) && !ractl->_workingset) {
840 			ractl->_workingset = true;
841 			psi_memstall_enter(&ractl->_pflags);
842 		}
843 		ractl->_nr_pages++;
844 		if (ra) {
845 			ra->size++;
846 			ra->async_size++;
847 		}
848 	}
849 }
850 EXPORT_SYMBOL(readahead_expand);
851