1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 19 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 20 { 21 } 22 EXPORT_SYMBOL(default_unplug_io_fn); 23 24 /* 25 * Convienent macros for min/max read-ahead pages. 26 * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up. 27 * The latter is necessary for systems with large page size(i.e. 64k). 28 */ 29 #define MAX_RA_PAGES (VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE) 30 #define MIN_RA_PAGES DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE) 31 32 struct backing_dev_info default_backing_dev_info = { 33 .ra_pages = MAX_RA_PAGES, 34 .state = 0, 35 .capabilities = BDI_CAP_MAP_COPY, 36 .unplug_io_fn = default_unplug_io_fn, 37 }; 38 EXPORT_SYMBOL_GPL(default_backing_dev_info); 39 40 /* 41 * Initialise a struct file's readahead state. Assumes that the caller has 42 * memset *ra to zero. 43 */ 44 void 45 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 46 { 47 ra->ra_pages = mapping->backing_dev_info->ra_pages; 48 ra->prev_index = -1; 49 } 50 EXPORT_SYMBOL_GPL(file_ra_state_init); 51 52 #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 53 54 /** 55 * read_cache_pages - populate an address space with some pages & start reads against them 56 * @mapping: the address_space 57 * @pages: The address of a list_head which contains the target pages. These 58 * pages have their ->index populated and are otherwise uninitialised. 59 * @filler: callback routine for filling a single page. 60 * @data: private data for the callback routine. 61 * 62 * Hides the details of the LRU cache etc from the filesystems. 63 */ 64 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 65 int (*filler)(void *, struct page *), void *data) 66 { 67 struct page *page; 68 struct pagevec lru_pvec; 69 int ret = 0; 70 71 pagevec_init(&lru_pvec, 0); 72 73 while (!list_empty(pages)) { 74 page = list_to_page(pages); 75 list_del(&page->lru); 76 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) { 77 page_cache_release(page); 78 continue; 79 } 80 ret = filler(data, page); 81 if (!pagevec_add(&lru_pvec, page)) 82 __pagevec_lru_add(&lru_pvec); 83 if (ret) { 84 put_pages_list(pages); 85 break; 86 } 87 task_io_account_read(PAGE_CACHE_SIZE); 88 } 89 pagevec_lru_add(&lru_pvec); 90 return ret; 91 } 92 93 EXPORT_SYMBOL(read_cache_pages); 94 95 static int read_pages(struct address_space *mapping, struct file *filp, 96 struct list_head *pages, unsigned nr_pages) 97 { 98 unsigned page_idx; 99 struct pagevec lru_pvec; 100 int ret; 101 102 if (mapping->a_ops->readpages) { 103 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 104 /* Clean up the remaining pages */ 105 put_pages_list(pages); 106 goto out; 107 } 108 109 pagevec_init(&lru_pvec, 0); 110 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 111 struct page *page = list_to_page(pages); 112 list_del(&page->lru); 113 if (!add_to_page_cache(page, mapping, 114 page->index, GFP_KERNEL)) { 115 mapping->a_ops->readpage(filp, page); 116 if (!pagevec_add(&lru_pvec, page)) 117 __pagevec_lru_add(&lru_pvec); 118 } else 119 page_cache_release(page); 120 } 121 pagevec_lru_add(&lru_pvec); 122 ret = 0; 123 out: 124 return ret; 125 } 126 127 /* 128 * do_page_cache_readahead actually reads a chunk of disk. It allocates all 129 * the pages first, then submits them all for I/O. This avoids the very bad 130 * behaviour which would occur if page allocations are causing VM writeback. 131 * We really don't want to intermingle reads and writes like that. 132 * 133 * Returns the number of pages requested, or the maximum amount of I/O allowed. 134 * 135 * do_page_cache_readahead() returns -1 if it encountered request queue 136 * congestion. 137 */ 138 static int 139 __do_page_cache_readahead(struct address_space *mapping, struct file *filp, 140 pgoff_t offset, unsigned long nr_to_read, 141 unsigned long lookahead_size) 142 { 143 struct inode *inode = mapping->host; 144 struct page *page; 145 unsigned long end_index; /* The last page we want to read */ 146 LIST_HEAD(page_pool); 147 int page_idx; 148 int ret = 0; 149 loff_t isize = i_size_read(inode); 150 151 if (isize == 0) 152 goto out; 153 154 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 155 156 /* 157 * Preallocate as many pages as we will need. 158 */ 159 read_lock_irq(&mapping->tree_lock); 160 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 161 pgoff_t page_offset = offset + page_idx; 162 163 if (page_offset > end_index) 164 break; 165 166 page = radix_tree_lookup(&mapping->page_tree, page_offset); 167 if (page) 168 continue; 169 170 read_unlock_irq(&mapping->tree_lock); 171 page = page_cache_alloc_cold(mapping); 172 read_lock_irq(&mapping->tree_lock); 173 if (!page) 174 break; 175 page->index = page_offset; 176 list_add(&page->lru, &page_pool); 177 if (page_idx == nr_to_read - lookahead_size) 178 SetPageReadahead(page); 179 ret++; 180 } 181 read_unlock_irq(&mapping->tree_lock); 182 183 /* 184 * Now start the IO. We ignore I/O errors - if the page is not 185 * uptodate then the caller will launch readpage again, and 186 * will then handle the error. 187 */ 188 if (ret) 189 read_pages(mapping, filp, &page_pool, ret); 190 BUG_ON(!list_empty(&page_pool)); 191 out: 192 return ret; 193 } 194 195 /* 196 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 197 * memory at once. 198 */ 199 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 200 pgoff_t offset, unsigned long nr_to_read) 201 { 202 int ret = 0; 203 204 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 205 return -EINVAL; 206 207 while (nr_to_read) { 208 int err; 209 210 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; 211 212 if (this_chunk > nr_to_read) 213 this_chunk = nr_to_read; 214 err = __do_page_cache_readahead(mapping, filp, 215 offset, this_chunk, 0); 216 if (err < 0) { 217 ret = err; 218 break; 219 } 220 ret += err; 221 offset += this_chunk; 222 nr_to_read -= this_chunk; 223 } 224 return ret; 225 } 226 227 /* 228 * This version skips the IO if the queue is read-congested, and will tell the 229 * block layer to abandon the readahead if request allocation would block. 230 * 231 * force_page_cache_readahead() will ignore queue congestion and will block on 232 * request queues. 233 */ 234 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 235 pgoff_t offset, unsigned long nr_to_read) 236 { 237 if (bdi_read_congested(mapping->backing_dev_info)) 238 return -1; 239 240 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0); 241 } 242 243 /* 244 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 245 * sensible upper limit. 246 */ 247 unsigned long max_sane_readahead(unsigned long nr) 248 { 249 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE) 250 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); 251 } 252 253 /* 254 * Submit IO for the read-ahead request in file_ra_state. 255 */ 256 static unsigned long ra_submit(struct file_ra_state *ra, 257 struct address_space *mapping, struct file *filp) 258 { 259 int actual; 260 261 actual = __do_page_cache_readahead(mapping, filp, 262 ra->start, ra->size, ra->async_size); 263 264 return actual; 265 } 266 267 /* 268 * Set the initial window size, round to next power of 2 and square 269 * for small size, x 4 for medium, and x 2 for large 270 * for 128k (32 page) max ra 271 * 1-8 page = 32k initial, > 8 page = 128k initial 272 */ 273 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 274 { 275 unsigned long newsize = roundup_pow_of_two(size); 276 277 if (newsize <= max / 32) 278 newsize = newsize * 4; 279 else if (newsize <= max / 4) 280 newsize = newsize * 2; 281 else 282 newsize = max; 283 284 return newsize; 285 } 286 287 /* 288 * Get the previous window size, ramp it up, and 289 * return it as the new window size. 290 */ 291 static unsigned long get_next_ra_size(struct file_ra_state *ra, 292 unsigned long max) 293 { 294 unsigned long cur = ra->size; 295 unsigned long newsize; 296 297 if (cur < max / 16) 298 newsize = 4 * cur; 299 else 300 newsize = 2 * cur; 301 302 return min(newsize, max); 303 } 304 305 /* 306 * On-demand readahead design. 307 * 308 * The fields in struct file_ra_state represent the most-recently-executed 309 * readahead attempt: 310 * 311 * |<----- async_size ---------| 312 * |------------------- size -------------------->| 313 * |==================#===========================| 314 * ^start ^page marked with PG_readahead 315 * 316 * To overlap application thinking time and disk I/O time, we do 317 * `readahead pipelining': Do not wait until the application consumed all 318 * readahead pages and stalled on the missing page at readahead_index; 319 * Instead, submit an asynchronous readahead I/O as soon as there are 320 * only async_size pages left in the readahead window. Normally async_size 321 * will be equal to size, for maximum pipelining. 322 * 323 * In interleaved sequential reads, concurrent streams on the same fd can 324 * be invalidating each other's readahead state. So we flag the new readahead 325 * page at (start+size-async_size) with PG_readahead, and use it as readahead 326 * indicator. The flag won't be set on already cached pages, to avoid the 327 * readahead-for-nothing fuss, saving pointless page cache lookups. 328 * 329 * prev_index tracks the last visited page in the _previous_ read request. 330 * It should be maintained by the caller, and will be used for detecting 331 * small random reads. Note that the readahead algorithm checks loosely 332 * for sequential patterns. Hence interleaved reads might be served as 333 * sequential ones. 334 * 335 * There is a special-case: if the first page which the application tries to 336 * read happens to be the first page of the file, it is assumed that a linear 337 * read is about to happen and the window is immediately set to the initial size 338 * based on I/O request size and the max_readahead. 339 * 340 * The code ramps up the readahead size aggressively at first, but slow down as 341 * it approaches max_readhead. 342 */ 343 344 /* 345 * A minimal readahead algorithm for trivial sequential/random reads. 346 */ 347 static unsigned long 348 ondemand_readahead(struct address_space *mapping, 349 struct file_ra_state *ra, struct file *filp, 350 bool hit_readahead_marker, pgoff_t offset, 351 unsigned long req_size) 352 { 353 unsigned long max; /* max readahead pages */ 354 int sequential; 355 356 max = ra->ra_pages; 357 sequential = (offset - ra->prev_index <= 1UL) || (req_size > max); 358 359 /* 360 * It's the expected callback offset, assume sequential access. 361 * Ramp up sizes, and push forward the readahead window. 362 */ 363 if (offset && (offset == (ra->start + ra->size - ra->async_size) || 364 offset == (ra->start + ra->size))) { 365 ra->start += ra->size; 366 ra->size = get_next_ra_size(ra, max); 367 ra->async_size = ra->size; 368 goto readit; 369 } 370 371 /* 372 * Standalone, small read. 373 * Read as is, and do not pollute the readahead state. 374 */ 375 if (!hit_readahead_marker && !sequential) { 376 return __do_page_cache_readahead(mapping, filp, 377 offset, req_size, 0); 378 } 379 380 /* 381 * It may be one of 382 * - first read on start of file 383 * - sequential cache miss 384 * - oversize random read 385 * Start readahead for it. 386 */ 387 ra->start = offset; 388 ra->size = get_init_ra_size(req_size, max); 389 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 390 391 /* 392 * Hit on a marked page without valid readahead state. 393 * E.g. interleaved reads. 394 * Not knowing its readahead pos/size, bet on the minimal possible one. 395 */ 396 if (hit_readahead_marker) { 397 ra->start++; 398 ra->size = get_next_ra_size(ra, max); 399 } 400 401 readit: 402 return ra_submit(ra, mapping, filp); 403 } 404 405 /** 406 * page_cache_sync_readahead - generic file readahead 407 * @mapping: address_space which holds the pagecache and I/O vectors 408 * @ra: file_ra_state which holds the readahead state 409 * @filp: passed on to ->readpage() and ->readpages() 410 * @offset: start offset into @mapping, in pagecache page-sized units 411 * @req_size: hint: total size of the read which the caller is performing in 412 * pagecache pages 413 * 414 * page_cache_sync_readahead() should be called when a cache miss happened: 415 * it will submit the read. The readahead logic may decide to piggyback more 416 * pages onto the read request if access patterns suggest it will improve 417 * performance. 418 */ 419 void page_cache_sync_readahead(struct address_space *mapping, 420 struct file_ra_state *ra, struct file *filp, 421 pgoff_t offset, unsigned long req_size) 422 { 423 /* no read-ahead */ 424 if (!ra->ra_pages) 425 return; 426 427 /* do read-ahead */ 428 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 429 } 430 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 431 432 /** 433 * page_cache_async_readahead - file readahead for marked pages 434 * @mapping: address_space which holds the pagecache and I/O vectors 435 * @ra: file_ra_state which holds the readahead state 436 * @filp: passed on to ->readpage() and ->readpages() 437 * @page: the page at @offset which has the PG_readahead flag set 438 * @offset: start offset into @mapping, in pagecache page-sized units 439 * @req_size: hint: total size of the read which the caller is performing in 440 * pagecache pages 441 * 442 * page_cache_async_ondemand() should be called when a page is used which 443 * has the PG_readahead flag: this is a marker to suggest that the application 444 * has used up enough of the readahead window that we should start pulling in 445 * more pages. */ 446 void 447 page_cache_async_readahead(struct address_space *mapping, 448 struct file_ra_state *ra, struct file *filp, 449 struct page *page, pgoff_t offset, 450 unsigned long req_size) 451 { 452 /* no read-ahead */ 453 if (!ra->ra_pages) 454 return; 455 456 /* 457 * Same bit is used for PG_readahead and PG_reclaim. 458 */ 459 if (PageWriteback(page)) 460 return; 461 462 ClearPageReadahead(page); 463 464 /* 465 * Defer asynchronous read-ahead on IO congestion. 466 */ 467 if (bdi_read_congested(mapping->backing_dev_info)) 468 return; 469 470 /* do read-ahead */ 471 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 472 } 473 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 474