xref: /linux/mm/readahead.c (revision aeb3f46252e26acdc60a1a8e31fb1ca6319d9a07)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	akpm@zip.com.au
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 
19 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
20 {
21 }
22 EXPORT_SYMBOL(default_unplug_io_fn);
23 
24 /*
25  * Convienent macros for min/max read-ahead pages.
26  * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
27  * The latter is necessary for systems with large page size(i.e. 64k).
28  */
29 #define MAX_RA_PAGES	(VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
30 #define MIN_RA_PAGES	DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)
31 
32 struct backing_dev_info default_backing_dev_info = {
33 	.ra_pages	= MAX_RA_PAGES,
34 	.state		= 0,
35 	.capabilities	= BDI_CAP_MAP_COPY,
36 	.unplug_io_fn	= default_unplug_io_fn,
37 };
38 EXPORT_SYMBOL_GPL(default_backing_dev_info);
39 
40 /*
41  * Initialise a struct file's readahead state.  Assumes that the caller has
42  * memset *ra to zero.
43  */
44 void
45 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
46 {
47 	ra->ra_pages = mapping->backing_dev_info->ra_pages;
48 	ra->prev_index = -1;
49 }
50 EXPORT_SYMBOL_GPL(file_ra_state_init);
51 
52 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
53 
54 /**
55  * read_cache_pages - populate an address space with some pages & start reads against them
56  * @mapping: the address_space
57  * @pages: The address of a list_head which contains the target pages.  These
58  *   pages have their ->index populated and are otherwise uninitialised.
59  * @filler: callback routine for filling a single page.
60  * @data: private data for the callback routine.
61  *
62  * Hides the details of the LRU cache etc from the filesystems.
63  */
64 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
65 			int (*filler)(void *, struct page *), void *data)
66 {
67 	struct page *page;
68 	struct pagevec lru_pvec;
69 	int ret = 0;
70 
71 	pagevec_init(&lru_pvec, 0);
72 
73 	while (!list_empty(pages)) {
74 		page = list_to_page(pages);
75 		list_del(&page->lru);
76 		if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
77 			page_cache_release(page);
78 			continue;
79 		}
80 		ret = filler(data, page);
81 		if (!pagevec_add(&lru_pvec, page))
82 			__pagevec_lru_add(&lru_pvec);
83 		if (ret) {
84 			put_pages_list(pages);
85 			break;
86 		}
87 		task_io_account_read(PAGE_CACHE_SIZE);
88 	}
89 	pagevec_lru_add(&lru_pvec);
90 	return ret;
91 }
92 
93 EXPORT_SYMBOL(read_cache_pages);
94 
95 static int read_pages(struct address_space *mapping, struct file *filp,
96 		struct list_head *pages, unsigned nr_pages)
97 {
98 	unsigned page_idx;
99 	struct pagevec lru_pvec;
100 	int ret;
101 
102 	if (mapping->a_ops->readpages) {
103 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
104 		/* Clean up the remaining pages */
105 		put_pages_list(pages);
106 		goto out;
107 	}
108 
109 	pagevec_init(&lru_pvec, 0);
110 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
111 		struct page *page = list_to_page(pages);
112 		list_del(&page->lru);
113 		if (!add_to_page_cache(page, mapping,
114 					page->index, GFP_KERNEL)) {
115 			mapping->a_ops->readpage(filp, page);
116 			if (!pagevec_add(&lru_pvec, page))
117 				__pagevec_lru_add(&lru_pvec);
118 		} else
119 			page_cache_release(page);
120 	}
121 	pagevec_lru_add(&lru_pvec);
122 	ret = 0;
123 out:
124 	return ret;
125 }
126 
127 /*
128  * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
129  * the pages first, then submits them all for I/O. This avoids the very bad
130  * behaviour which would occur if page allocations are causing VM writeback.
131  * We really don't want to intermingle reads and writes like that.
132  *
133  * Returns the number of pages requested, or the maximum amount of I/O allowed.
134  *
135  * do_page_cache_readahead() returns -1 if it encountered request queue
136  * congestion.
137  */
138 static int
139 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
140 			pgoff_t offset, unsigned long nr_to_read,
141 			unsigned long lookahead_size)
142 {
143 	struct inode *inode = mapping->host;
144 	struct page *page;
145 	unsigned long end_index;	/* The last page we want to read */
146 	LIST_HEAD(page_pool);
147 	int page_idx;
148 	int ret = 0;
149 	loff_t isize = i_size_read(inode);
150 
151 	if (isize == 0)
152 		goto out;
153 
154 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
155 
156 	/*
157 	 * Preallocate as many pages as we will need.
158 	 */
159 	read_lock_irq(&mapping->tree_lock);
160 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
161 		pgoff_t page_offset = offset + page_idx;
162 
163 		if (page_offset > end_index)
164 			break;
165 
166 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
167 		if (page)
168 			continue;
169 
170 		read_unlock_irq(&mapping->tree_lock);
171 		page = page_cache_alloc_cold(mapping);
172 		read_lock_irq(&mapping->tree_lock);
173 		if (!page)
174 			break;
175 		page->index = page_offset;
176 		list_add(&page->lru, &page_pool);
177 		if (page_idx == nr_to_read - lookahead_size)
178 			SetPageReadahead(page);
179 		ret++;
180 	}
181 	read_unlock_irq(&mapping->tree_lock);
182 
183 	/*
184 	 * Now start the IO.  We ignore I/O errors - if the page is not
185 	 * uptodate then the caller will launch readpage again, and
186 	 * will then handle the error.
187 	 */
188 	if (ret)
189 		read_pages(mapping, filp, &page_pool, ret);
190 	BUG_ON(!list_empty(&page_pool));
191 out:
192 	return ret;
193 }
194 
195 /*
196  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
197  * memory at once.
198  */
199 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
200 		pgoff_t offset, unsigned long nr_to_read)
201 {
202 	int ret = 0;
203 
204 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
205 		return -EINVAL;
206 
207 	while (nr_to_read) {
208 		int err;
209 
210 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
211 
212 		if (this_chunk > nr_to_read)
213 			this_chunk = nr_to_read;
214 		err = __do_page_cache_readahead(mapping, filp,
215 						offset, this_chunk, 0);
216 		if (err < 0) {
217 			ret = err;
218 			break;
219 		}
220 		ret += err;
221 		offset += this_chunk;
222 		nr_to_read -= this_chunk;
223 	}
224 	return ret;
225 }
226 
227 /*
228  * This version skips the IO if the queue is read-congested, and will tell the
229  * block layer to abandon the readahead if request allocation would block.
230  *
231  * force_page_cache_readahead() will ignore queue congestion and will block on
232  * request queues.
233  */
234 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
235 			pgoff_t offset, unsigned long nr_to_read)
236 {
237 	if (bdi_read_congested(mapping->backing_dev_info))
238 		return -1;
239 
240 	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
241 }
242 
243 /*
244  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
245  * sensible upper limit.
246  */
247 unsigned long max_sane_readahead(unsigned long nr)
248 {
249 	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
250 		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
251 }
252 
253 /*
254  * Submit IO for the read-ahead request in file_ra_state.
255  */
256 static unsigned long ra_submit(struct file_ra_state *ra,
257 		       struct address_space *mapping, struct file *filp)
258 {
259 	int actual;
260 
261 	actual = __do_page_cache_readahead(mapping, filp,
262 					ra->start, ra->size, ra->async_size);
263 
264 	return actual;
265 }
266 
267 /*
268  * Set the initial window size, round to next power of 2 and square
269  * for small size, x 4 for medium, and x 2 for large
270  * for 128k (32 page) max ra
271  * 1-8 page = 32k initial, > 8 page = 128k initial
272  */
273 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
274 {
275 	unsigned long newsize = roundup_pow_of_two(size);
276 
277 	if (newsize <= max / 32)
278 		newsize = newsize * 4;
279 	else if (newsize <= max / 4)
280 		newsize = newsize * 2;
281 	else
282 		newsize = max;
283 
284 	return newsize;
285 }
286 
287 /*
288  *  Get the previous window size, ramp it up, and
289  *  return it as the new window size.
290  */
291 static unsigned long get_next_ra_size(struct file_ra_state *ra,
292 						unsigned long max)
293 {
294 	unsigned long cur = ra->size;
295 	unsigned long newsize;
296 
297 	if (cur < max / 16)
298 		newsize = 4 * cur;
299 	else
300 		newsize = 2 * cur;
301 
302 	return min(newsize, max);
303 }
304 
305 /*
306  * On-demand readahead design.
307  *
308  * The fields in struct file_ra_state represent the most-recently-executed
309  * readahead attempt:
310  *
311  *                        |<----- async_size ---------|
312  *     |------------------- size -------------------->|
313  *     |==================#===========================|
314  *     ^start             ^page marked with PG_readahead
315  *
316  * To overlap application thinking time and disk I/O time, we do
317  * `readahead pipelining': Do not wait until the application consumed all
318  * readahead pages and stalled on the missing page at readahead_index;
319  * Instead, submit an asynchronous readahead I/O as soon as there are
320  * only async_size pages left in the readahead window. Normally async_size
321  * will be equal to size, for maximum pipelining.
322  *
323  * In interleaved sequential reads, concurrent streams on the same fd can
324  * be invalidating each other's readahead state. So we flag the new readahead
325  * page at (start+size-async_size) with PG_readahead, and use it as readahead
326  * indicator. The flag won't be set on already cached pages, to avoid the
327  * readahead-for-nothing fuss, saving pointless page cache lookups.
328  *
329  * prev_index tracks the last visited page in the _previous_ read request.
330  * It should be maintained by the caller, and will be used for detecting
331  * small random reads. Note that the readahead algorithm checks loosely
332  * for sequential patterns. Hence interleaved reads might be served as
333  * sequential ones.
334  *
335  * There is a special-case: if the first page which the application tries to
336  * read happens to be the first page of the file, it is assumed that a linear
337  * read is about to happen and the window is immediately set to the initial size
338  * based on I/O request size and the max_readahead.
339  *
340  * The code ramps up the readahead size aggressively at first, but slow down as
341  * it approaches max_readhead.
342  */
343 
344 /*
345  * A minimal readahead algorithm for trivial sequential/random reads.
346  */
347 static unsigned long
348 ondemand_readahead(struct address_space *mapping,
349 		   struct file_ra_state *ra, struct file *filp,
350 		   bool hit_readahead_marker, pgoff_t offset,
351 		   unsigned long req_size)
352 {
353 	unsigned long max;	/* max readahead pages */
354 	int sequential;
355 
356 	max = ra->ra_pages;
357 	sequential = (offset - ra->prev_index <= 1UL) || (req_size > max);
358 
359 	/*
360 	 * It's the expected callback offset, assume sequential access.
361 	 * Ramp up sizes, and push forward the readahead window.
362 	 */
363 	if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
364 			offset == (ra->start + ra->size))) {
365 		ra->start += ra->size;
366 		ra->size = get_next_ra_size(ra, max);
367 		ra->async_size = ra->size;
368 		goto readit;
369 	}
370 
371 	/*
372 	 * Standalone, small read.
373 	 * Read as is, and do not pollute the readahead state.
374 	 */
375 	if (!hit_readahead_marker && !sequential) {
376 		return __do_page_cache_readahead(mapping, filp,
377 						offset, req_size, 0);
378 	}
379 
380 	/*
381 	 * It may be one of
382 	 * 	- first read on start of file
383 	 * 	- sequential cache miss
384 	 * 	- oversize random read
385 	 * Start readahead for it.
386 	 */
387 	ra->start = offset;
388 	ra->size = get_init_ra_size(req_size, max);
389 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
390 
391 	/*
392 	 * Hit on a marked page without valid readahead state.
393 	 * E.g. interleaved reads.
394 	 * Not knowing its readahead pos/size, bet on the minimal possible one.
395 	 */
396 	if (hit_readahead_marker) {
397 		ra->start++;
398 		ra->size = get_next_ra_size(ra, max);
399 	}
400 
401 readit:
402 	return ra_submit(ra, mapping, filp);
403 }
404 
405 /**
406  * page_cache_sync_readahead - generic file readahead
407  * @mapping: address_space which holds the pagecache and I/O vectors
408  * @ra: file_ra_state which holds the readahead state
409  * @filp: passed on to ->readpage() and ->readpages()
410  * @offset: start offset into @mapping, in pagecache page-sized units
411  * @req_size: hint: total size of the read which the caller is performing in
412  *            pagecache pages
413  *
414  * page_cache_sync_readahead() should be called when a cache miss happened:
415  * it will submit the read.  The readahead logic may decide to piggyback more
416  * pages onto the read request if access patterns suggest it will improve
417  * performance.
418  */
419 void page_cache_sync_readahead(struct address_space *mapping,
420 			       struct file_ra_state *ra, struct file *filp,
421 			       pgoff_t offset, unsigned long req_size)
422 {
423 	/* no read-ahead */
424 	if (!ra->ra_pages)
425 		return;
426 
427 	/* do read-ahead */
428 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
429 }
430 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
431 
432 /**
433  * page_cache_async_readahead - file readahead for marked pages
434  * @mapping: address_space which holds the pagecache and I/O vectors
435  * @ra: file_ra_state which holds the readahead state
436  * @filp: passed on to ->readpage() and ->readpages()
437  * @page: the page at @offset which has the PG_readahead flag set
438  * @offset: start offset into @mapping, in pagecache page-sized units
439  * @req_size: hint: total size of the read which the caller is performing in
440  *            pagecache pages
441  *
442  * page_cache_async_ondemand() should be called when a page is used which
443  * has the PG_readahead flag: this is a marker to suggest that the application
444  * has used up enough of the readahead window that we should start pulling in
445  * more pages. */
446 void
447 page_cache_async_readahead(struct address_space *mapping,
448 			   struct file_ra_state *ra, struct file *filp,
449 			   struct page *page, pgoff_t offset,
450 			   unsigned long req_size)
451 {
452 	/* no read-ahead */
453 	if (!ra->ra_pages)
454 		return;
455 
456 	/*
457 	 * Same bit is used for PG_readahead and PG_reclaim.
458 	 */
459 	if (PageWriteback(page))
460 		return;
461 
462 	ClearPageReadahead(page);
463 
464 	/*
465 	 * Defer asynchronous read-ahead on IO congestion.
466 	 */
467 	if (bdi_read_congested(mapping->backing_dev_info))
468 		return;
469 
470 	/* do read-ahead */
471 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
472 }
473 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
474