xref: /linux/mm/readahead.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/gfp.h>
12 #include <linux/export.h>
13 #include <linux/blkdev.h>
14 #include <linux/backing-dev.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include <linux/pagevec.h>
17 #include <linux/pagemap.h>
18 #include <linux/syscalls.h>
19 #include <linux/file.h>
20 #include <linux/mm_inline.h>
21 
22 #include "internal.h"
23 
24 /*
25  * Initialise a struct file's readahead state.  Assumes that the caller has
26  * memset *ra to zero.
27  */
28 void
29 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
30 {
31 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
32 	ra->prev_pos = -1;
33 }
34 EXPORT_SYMBOL_GPL(file_ra_state_init);
35 
36 /*
37  * see if a page needs releasing upon read_cache_pages() failure
38  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
39  *   before calling, such as the NFS fs marking pages that are cached locally
40  *   on disk, thus we need to give the fs a chance to clean up in the event of
41  *   an error
42  */
43 static void read_cache_pages_invalidate_page(struct address_space *mapping,
44 					     struct page *page)
45 {
46 	if (page_has_private(page)) {
47 		if (!trylock_page(page))
48 			BUG();
49 		page->mapping = mapping;
50 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
51 		page->mapping = NULL;
52 		unlock_page(page);
53 	}
54 	page_cache_release(page);
55 }
56 
57 /*
58  * release a list of pages, invalidating them first if need be
59  */
60 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
61 					      struct list_head *pages)
62 {
63 	struct page *victim;
64 
65 	while (!list_empty(pages)) {
66 		victim = lru_to_page(pages);
67 		list_del(&victim->lru);
68 		read_cache_pages_invalidate_page(mapping, victim);
69 	}
70 }
71 
72 /**
73  * read_cache_pages - populate an address space with some pages & start reads against them
74  * @mapping: the address_space
75  * @pages: The address of a list_head which contains the target pages.  These
76  *   pages have their ->index populated and are otherwise uninitialised.
77  * @filler: callback routine for filling a single page.
78  * @data: private data for the callback routine.
79  *
80  * Hides the details of the LRU cache etc from the filesystems.
81  */
82 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
83 			int (*filler)(void *, struct page *), void *data)
84 {
85 	struct page *page;
86 	int ret = 0;
87 
88 	while (!list_empty(pages)) {
89 		page = lru_to_page(pages);
90 		list_del(&page->lru);
91 		if (add_to_page_cache_lru(page, mapping, page->index,
92 				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
93 			read_cache_pages_invalidate_page(mapping, page);
94 			continue;
95 		}
96 		page_cache_release(page);
97 
98 		ret = filler(data, page);
99 		if (unlikely(ret)) {
100 			read_cache_pages_invalidate_pages(mapping, pages);
101 			break;
102 		}
103 		task_io_account_read(PAGE_CACHE_SIZE);
104 	}
105 	return ret;
106 }
107 
108 EXPORT_SYMBOL(read_cache_pages);
109 
110 static int read_pages(struct address_space *mapping, struct file *filp,
111 		struct list_head *pages, unsigned nr_pages)
112 {
113 	struct blk_plug plug;
114 	unsigned page_idx;
115 	int ret;
116 
117 	blk_start_plug(&plug);
118 
119 	if (mapping->a_ops->readpages) {
120 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
121 		/* Clean up the remaining pages */
122 		put_pages_list(pages);
123 		goto out;
124 	}
125 
126 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
127 		struct page *page = lru_to_page(pages);
128 		list_del(&page->lru);
129 		if (!add_to_page_cache_lru(page, mapping, page->index,
130 				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
131 			mapping->a_ops->readpage(filp, page);
132 		}
133 		page_cache_release(page);
134 	}
135 	ret = 0;
136 
137 out:
138 	blk_finish_plug(&plug);
139 
140 	return ret;
141 }
142 
143 /*
144  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
145  * the pages first, then submits them all for I/O. This avoids the very bad
146  * behaviour which would occur if page allocations are causing VM writeback.
147  * We really don't want to intermingle reads and writes like that.
148  *
149  * Returns the number of pages requested, or the maximum amount of I/O allowed.
150  */
151 int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
152 			pgoff_t offset, unsigned long nr_to_read,
153 			unsigned long lookahead_size)
154 {
155 	struct inode *inode = mapping->host;
156 	struct page *page;
157 	unsigned long end_index;	/* The last page we want to read */
158 	LIST_HEAD(page_pool);
159 	int page_idx;
160 	int ret = 0;
161 	loff_t isize = i_size_read(inode);
162 
163 	if (isize == 0)
164 		goto out;
165 
166 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
167 
168 	/*
169 	 * Preallocate as many pages as we will need.
170 	 */
171 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172 		pgoff_t page_offset = offset + page_idx;
173 
174 		if (page_offset > end_index)
175 			break;
176 
177 		rcu_read_lock();
178 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179 		rcu_read_unlock();
180 		if (page && !radix_tree_exceptional_entry(page))
181 			continue;
182 
183 		page = page_cache_alloc_readahead(mapping);
184 		if (!page)
185 			break;
186 		page->index = page_offset;
187 		list_add(&page->lru, &page_pool);
188 		if (page_idx == nr_to_read - lookahead_size)
189 			SetPageReadahead(page);
190 		ret++;
191 	}
192 
193 	/*
194 	 * Now start the IO.  We ignore I/O errors - if the page is not
195 	 * uptodate then the caller will launch readpage again, and
196 	 * will then handle the error.
197 	 */
198 	if (ret)
199 		read_pages(mapping, filp, &page_pool, ret);
200 	BUG_ON(!list_empty(&page_pool));
201 out:
202 	return ret;
203 }
204 
205 /*
206  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207  * memory at once.
208  */
209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210 		pgoff_t offset, unsigned long nr_to_read)
211 {
212 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
213 		return -EINVAL;
214 
215 	nr_to_read = min(nr_to_read, inode_to_bdi(mapping->host)->ra_pages);
216 	while (nr_to_read) {
217 		int err;
218 
219 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
220 
221 		if (this_chunk > nr_to_read)
222 			this_chunk = nr_to_read;
223 		err = __do_page_cache_readahead(mapping, filp,
224 						offset, this_chunk, 0);
225 		if (err < 0)
226 			return err;
227 
228 		offset += this_chunk;
229 		nr_to_read -= this_chunk;
230 	}
231 	return 0;
232 }
233 
234 /*
235  * Set the initial window size, round to next power of 2 and square
236  * for small size, x 4 for medium, and x 2 for large
237  * for 128k (32 page) max ra
238  * 1-8 page = 32k initial, > 8 page = 128k initial
239  */
240 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
241 {
242 	unsigned long newsize = roundup_pow_of_two(size);
243 
244 	if (newsize <= max / 32)
245 		newsize = newsize * 4;
246 	else if (newsize <= max / 4)
247 		newsize = newsize * 2;
248 	else
249 		newsize = max;
250 
251 	return newsize;
252 }
253 
254 /*
255  *  Get the previous window size, ramp it up, and
256  *  return it as the new window size.
257  */
258 static unsigned long get_next_ra_size(struct file_ra_state *ra,
259 						unsigned long max)
260 {
261 	unsigned long cur = ra->size;
262 	unsigned long newsize;
263 
264 	if (cur < max / 16)
265 		newsize = 4 * cur;
266 	else
267 		newsize = 2 * cur;
268 
269 	return min(newsize, max);
270 }
271 
272 /*
273  * On-demand readahead design.
274  *
275  * The fields in struct file_ra_state represent the most-recently-executed
276  * readahead attempt:
277  *
278  *                        |<----- async_size ---------|
279  *     |------------------- size -------------------->|
280  *     |==================#===========================|
281  *     ^start             ^page marked with PG_readahead
282  *
283  * To overlap application thinking time and disk I/O time, we do
284  * `readahead pipelining': Do not wait until the application consumed all
285  * readahead pages and stalled on the missing page at readahead_index;
286  * Instead, submit an asynchronous readahead I/O as soon as there are
287  * only async_size pages left in the readahead window. Normally async_size
288  * will be equal to size, for maximum pipelining.
289  *
290  * In interleaved sequential reads, concurrent streams on the same fd can
291  * be invalidating each other's readahead state. So we flag the new readahead
292  * page at (start+size-async_size) with PG_readahead, and use it as readahead
293  * indicator. The flag won't be set on already cached pages, to avoid the
294  * readahead-for-nothing fuss, saving pointless page cache lookups.
295  *
296  * prev_pos tracks the last visited byte in the _previous_ read request.
297  * It should be maintained by the caller, and will be used for detecting
298  * small random reads. Note that the readahead algorithm checks loosely
299  * for sequential patterns. Hence interleaved reads might be served as
300  * sequential ones.
301  *
302  * There is a special-case: if the first page which the application tries to
303  * read happens to be the first page of the file, it is assumed that a linear
304  * read is about to happen and the window is immediately set to the initial size
305  * based on I/O request size and the max_readahead.
306  *
307  * The code ramps up the readahead size aggressively at first, but slow down as
308  * it approaches max_readhead.
309  */
310 
311 /*
312  * Count contiguously cached pages from @offset-1 to @offset-@max,
313  * this count is a conservative estimation of
314  * 	- length of the sequential read sequence, or
315  * 	- thrashing threshold in memory tight systems
316  */
317 static pgoff_t count_history_pages(struct address_space *mapping,
318 				   pgoff_t offset, unsigned long max)
319 {
320 	pgoff_t head;
321 
322 	rcu_read_lock();
323 	head = page_cache_prev_hole(mapping, offset - 1, max);
324 	rcu_read_unlock();
325 
326 	return offset - 1 - head;
327 }
328 
329 /*
330  * page cache context based read-ahead
331  */
332 static int try_context_readahead(struct address_space *mapping,
333 				 struct file_ra_state *ra,
334 				 pgoff_t offset,
335 				 unsigned long req_size,
336 				 unsigned long max)
337 {
338 	pgoff_t size;
339 
340 	size = count_history_pages(mapping, offset, max);
341 
342 	/*
343 	 * not enough history pages:
344 	 * it could be a random read
345 	 */
346 	if (size <= req_size)
347 		return 0;
348 
349 	/*
350 	 * starts from beginning of file:
351 	 * it is a strong indication of long-run stream (or whole-file-read)
352 	 */
353 	if (size >= offset)
354 		size *= 2;
355 
356 	ra->start = offset;
357 	ra->size = min(size + req_size, max);
358 	ra->async_size = 1;
359 
360 	return 1;
361 }
362 
363 /*
364  * A minimal readahead algorithm for trivial sequential/random reads.
365  */
366 static unsigned long
367 ondemand_readahead(struct address_space *mapping,
368 		   struct file_ra_state *ra, struct file *filp,
369 		   bool hit_readahead_marker, pgoff_t offset,
370 		   unsigned long req_size)
371 {
372 	unsigned long max = ra->ra_pages;
373 	pgoff_t prev_offset;
374 
375 	/*
376 	 * start of file
377 	 */
378 	if (!offset)
379 		goto initial_readahead;
380 
381 	/*
382 	 * It's the expected callback offset, assume sequential access.
383 	 * Ramp up sizes, and push forward the readahead window.
384 	 */
385 	if ((offset == (ra->start + ra->size - ra->async_size) ||
386 	     offset == (ra->start + ra->size))) {
387 		ra->start += ra->size;
388 		ra->size = get_next_ra_size(ra, max);
389 		ra->async_size = ra->size;
390 		goto readit;
391 	}
392 
393 	/*
394 	 * Hit a marked page without valid readahead state.
395 	 * E.g. interleaved reads.
396 	 * Query the pagecache for async_size, which normally equals to
397 	 * readahead size. Ramp it up and use it as the new readahead size.
398 	 */
399 	if (hit_readahead_marker) {
400 		pgoff_t start;
401 
402 		rcu_read_lock();
403 		start = page_cache_next_hole(mapping, offset + 1, max);
404 		rcu_read_unlock();
405 
406 		if (!start || start - offset > max)
407 			return 0;
408 
409 		ra->start = start;
410 		ra->size = start - offset;	/* old async_size */
411 		ra->size += req_size;
412 		ra->size = get_next_ra_size(ra, max);
413 		ra->async_size = ra->size;
414 		goto readit;
415 	}
416 
417 	/*
418 	 * oversize read
419 	 */
420 	if (req_size > max)
421 		goto initial_readahead;
422 
423 	/*
424 	 * sequential cache miss
425 	 * trivial case: (offset - prev_offset) == 1
426 	 * unaligned reads: (offset - prev_offset) == 0
427 	 */
428 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
429 	if (offset - prev_offset <= 1UL)
430 		goto initial_readahead;
431 
432 	/*
433 	 * Query the page cache and look for the traces(cached history pages)
434 	 * that a sequential stream would leave behind.
435 	 */
436 	if (try_context_readahead(mapping, ra, offset, req_size, max))
437 		goto readit;
438 
439 	/*
440 	 * standalone, small random read
441 	 * Read as is, and do not pollute the readahead state.
442 	 */
443 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
444 
445 initial_readahead:
446 	ra->start = offset;
447 	ra->size = get_init_ra_size(req_size, max);
448 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
449 
450 readit:
451 	/*
452 	 * Will this read hit the readahead marker made by itself?
453 	 * If so, trigger the readahead marker hit now, and merge
454 	 * the resulted next readahead window into the current one.
455 	 */
456 	if (offset == ra->start && ra->size == ra->async_size) {
457 		ra->async_size = get_next_ra_size(ra, max);
458 		ra->size += ra->async_size;
459 	}
460 
461 	return ra_submit(ra, mapping, filp);
462 }
463 
464 /**
465  * page_cache_sync_readahead - generic file readahead
466  * @mapping: address_space which holds the pagecache and I/O vectors
467  * @ra: file_ra_state which holds the readahead state
468  * @filp: passed on to ->readpage() and ->readpages()
469  * @offset: start offset into @mapping, in pagecache page-sized units
470  * @req_size: hint: total size of the read which the caller is performing in
471  *            pagecache pages
472  *
473  * page_cache_sync_readahead() should be called when a cache miss happened:
474  * it will submit the read.  The readahead logic may decide to piggyback more
475  * pages onto the read request if access patterns suggest it will improve
476  * performance.
477  */
478 void page_cache_sync_readahead(struct address_space *mapping,
479 			       struct file_ra_state *ra, struct file *filp,
480 			       pgoff_t offset, unsigned long req_size)
481 {
482 	/* no read-ahead */
483 	if (!ra->ra_pages)
484 		return;
485 
486 	/* be dumb */
487 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
488 		force_page_cache_readahead(mapping, filp, offset, req_size);
489 		return;
490 	}
491 
492 	/* do read-ahead */
493 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
494 }
495 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
496 
497 /**
498  * page_cache_async_readahead - file readahead for marked pages
499  * @mapping: address_space which holds the pagecache and I/O vectors
500  * @ra: file_ra_state which holds the readahead state
501  * @filp: passed on to ->readpage() and ->readpages()
502  * @page: the page at @offset which has the PG_readahead flag set
503  * @offset: start offset into @mapping, in pagecache page-sized units
504  * @req_size: hint: total size of the read which the caller is performing in
505  *            pagecache pages
506  *
507  * page_cache_async_readahead() should be called when a page is used which
508  * has the PG_readahead flag; this is a marker to suggest that the application
509  * has used up enough of the readahead window that we should start pulling in
510  * more pages.
511  */
512 void
513 page_cache_async_readahead(struct address_space *mapping,
514 			   struct file_ra_state *ra, struct file *filp,
515 			   struct page *page, pgoff_t offset,
516 			   unsigned long req_size)
517 {
518 	/* no read-ahead */
519 	if (!ra->ra_pages)
520 		return;
521 
522 	/*
523 	 * Same bit is used for PG_readahead and PG_reclaim.
524 	 */
525 	if (PageWriteback(page))
526 		return;
527 
528 	ClearPageReadahead(page);
529 
530 	/*
531 	 * Defer asynchronous read-ahead on IO congestion.
532 	 */
533 	if (inode_read_congested(mapping->host))
534 		return;
535 
536 	/* do read-ahead */
537 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
538 }
539 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
540 
541 static ssize_t
542 do_readahead(struct address_space *mapping, struct file *filp,
543 	     pgoff_t index, unsigned long nr)
544 {
545 	if (!mapping || !mapping->a_ops)
546 		return -EINVAL;
547 
548 	return force_page_cache_readahead(mapping, filp, index, nr);
549 }
550 
551 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
552 {
553 	ssize_t ret;
554 	struct fd f;
555 
556 	ret = -EBADF;
557 	f = fdget(fd);
558 	if (f.file) {
559 		if (f.file->f_mode & FMODE_READ) {
560 			struct address_space *mapping = f.file->f_mapping;
561 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
562 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
563 			unsigned long len = end - start + 1;
564 			ret = do_readahead(mapping, f.file, start, len);
565 		}
566 		fdput(f);
567 	}
568 	return ret;
569 }
570