xref: /linux/mm/readahead.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 #include <linux/mm_inline.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/fadvise.h>
25 #include <linux/sched/mm.h>
26 
27 #include "internal.h"
28 
29 /*
30  * Initialise a struct file's readahead state.  Assumes that the caller has
31  * memset *ra to zero.
32  */
33 void
34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
35 {
36 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
37 	ra->prev_pos = -1;
38 }
39 EXPORT_SYMBOL_GPL(file_ra_state_init);
40 
41 /*
42  * see if a page needs releasing upon read_cache_pages() failure
43  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
44  *   before calling, such as the NFS fs marking pages that are cached locally
45  *   on disk, thus we need to give the fs a chance to clean up in the event of
46  *   an error
47  */
48 static void read_cache_pages_invalidate_page(struct address_space *mapping,
49 					     struct page *page)
50 {
51 	if (page_has_private(page)) {
52 		if (!trylock_page(page))
53 			BUG();
54 		page->mapping = mapping;
55 		do_invalidatepage(page, 0, PAGE_SIZE);
56 		page->mapping = NULL;
57 		unlock_page(page);
58 	}
59 	put_page(page);
60 }
61 
62 /*
63  * release a list of pages, invalidating them first if need be
64  */
65 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
66 					      struct list_head *pages)
67 {
68 	struct page *victim;
69 
70 	while (!list_empty(pages)) {
71 		victim = lru_to_page(pages);
72 		list_del(&victim->lru);
73 		read_cache_pages_invalidate_page(mapping, victim);
74 	}
75 }
76 
77 /**
78  * read_cache_pages - populate an address space with some pages & start reads against them
79  * @mapping: the address_space
80  * @pages: The address of a list_head which contains the target pages.  These
81  *   pages have their ->index populated and are otherwise uninitialised.
82  * @filler: callback routine for filling a single page.
83  * @data: private data for the callback routine.
84  *
85  * Hides the details of the LRU cache etc from the filesystems.
86  *
87  * Returns: %0 on success, error return by @filler otherwise
88  */
89 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
90 			int (*filler)(void *, struct page *), void *data)
91 {
92 	struct page *page;
93 	int ret = 0;
94 
95 	while (!list_empty(pages)) {
96 		page = lru_to_page(pages);
97 		list_del(&page->lru);
98 		if (add_to_page_cache_lru(page, mapping, page->index,
99 				readahead_gfp_mask(mapping))) {
100 			read_cache_pages_invalidate_page(mapping, page);
101 			continue;
102 		}
103 		put_page(page);
104 
105 		ret = filler(data, page);
106 		if (unlikely(ret)) {
107 			read_cache_pages_invalidate_pages(mapping, pages);
108 			break;
109 		}
110 		task_io_account_read(PAGE_SIZE);
111 	}
112 	return ret;
113 }
114 
115 EXPORT_SYMBOL(read_cache_pages);
116 
117 static void read_pages(struct readahead_control *rac, struct list_head *pages,
118 		bool skip_page)
119 {
120 	const struct address_space_operations *aops = rac->mapping->a_ops;
121 	struct page *page;
122 	struct blk_plug plug;
123 
124 	if (!readahead_count(rac))
125 		goto out;
126 
127 	blk_start_plug(&plug);
128 
129 	if (aops->readahead) {
130 		aops->readahead(rac);
131 		/* Clean up the remaining pages */
132 		while ((page = readahead_page(rac))) {
133 			unlock_page(page);
134 			put_page(page);
135 		}
136 	} else if (aops->readpages) {
137 		aops->readpages(rac->file, rac->mapping, pages,
138 				readahead_count(rac));
139 		/* Clean up the remaining pages */
140 		put_pages_list(pages);
141 		rac->_index += rac->_nr_pages;
142 		rac->_nr_pages = 0;
143 	} else {
144 		while ((page = readahead_page(rac))) {
145 			aops->readpage(rac->file, page);
146 			put_page(page);
147 		}
148 	}
149 
150 	blk_finish_plug(&plug);
151 
152 	BUG_ON(!list_empty(pages));
153 	BUG_ON(readahead_count(rac));
154 
155 out:
156 	if (skip_page)
157 		rac->_index++;
158 }
159 
160 /**
161  * page_cache_readahead_unbounded - Start unchecked readahead.
162  * @mapping: File address space.
163  * @file: This instance of the open file; used for authentication.
164  * @index: First page index to read.
165  * @nr_to_read: The number of pages to read.
166  * @lookahead_size: Where to start the next readahead.
167  *
168  * This function is for filesystems to call when they want to start
169  * readahead beyond a file's stated i_size.  This is almost certainly
170  * not the function you want to call.  Use page_cache_async_readahead()
171  * or page_cache_sync_readahead() instead.
172  *
173  * Context: File is referenced by caller.  Mutexes may be held by caller.
174  * May sleep, but will not reenter filesystem to reclaim memory.
175  */
176 void page_cache_readahead_unbounded(struct address_space *mapping,
177 		struct file *file, pgoff_t index, unsigned long nr_to_read,
178 		unsigned long lookahead_size)
179 {
180 	LIST_HEAD(page_pool);
181 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
182 	struct readahead_control rac = {
183 		.mapping = mapping,
184 		.file = file,
185 		._index = index,
186 	};
187 	unsigned long i;
188 
189 	/*
190 	 * Partway through the readahead operation, we will have added
191 	 * locked pages to the page cache, but will not yet have submitted
192 	 * them for I/O.  Adding another page may need to allocate memory,
193 	 * which can trigger memory reclaim.  Telling the VM we're in
194 	 * the middle of a filesystem operation will cause it to not
195 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
196 	 * filesystems already specify __GFP_NOFS in their mapping's
197 	 * gfp_mask, but let's be explicit here.
198 	 */
199 	unsigned int nofs = memalloc_nofs_save();
200 
201 	/*
202 	 * Preallocate as many pages as we will need.
203 	 */
204 	for (i = 0; i < nr_to_read; i++) {
205 		struct page *page = xa_load(&mapping->i_pages, index + i);
206 
207 		BUG_ON(index + i != rac._index + rac._nr_pages);
208 
209 		if (page && !xa_is_value(page)) {
210 			/*
211 			 * Page already present?  Kick off the current batch
212 			 * of contiguous pages before continuing with the
213 			 * next batch.  This page may be the one we would
214 			 * have intended to mark as Readahead, but we don't
215 			 * have a stable reference to this page, and it's
216 			 * not worth getting one just for that.
217 			 */
218 			read_pages(&rac, &page_pool, true);
219 			continue;
220 		}
221 
222 		page = __page_cache_alloc(gfp_mask);
223 		if (!page)
224 			break;
225 		if (mapping->a_ops->readpages) {
226 			page->index = index + i;
227 			list_add(&page->lru, &page_pool);
228 		} else if (add_to_page_cache_lru(page, mapping, index + i,
229 					gfp_mask) < 0) {
230 			put_page(page);
231 			read_pages(&rac, &page_pool, true);
232 			continue;
233 		}
234 		if (i == nr_to_read - lookahead_size)
235 			SetPageReadahead(page);
236 		rac._nr_pages++;
237 	}
238 
239 	/*
240 	 * Now start the IO.  We ignore I/O errors - if the page is not
241 	 * uptodate then the caller will launch readpage again, and
242 	 * will then handle the error.
243 	 */
244 	read_pages(&rac, &page_pool, false);
245 	memalloc_nofs_restore(nofs);
246 }
247 EXPORT_SYMBOL_GPL(page_cache_readahead_unbounded);
248 
249 /*
250  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
251  * the pages first, then submits them for I/O. This avoids the very bad
252  * behaviour which would occur if page allocations are causing VM writeback.
253  * We really don't want to intermingle reads and writes like that.
254  */
255 void __do_page_cache_readahead(struct address_space *mapping,
256 		struct file *file, pgoff_t index, unsigned long nr_to_read,
257 		unsigned long lookahead_size)
258 {
259 	struct inode *inode = mapping->host;
260 	loff_t isize = i_size_read(inode);
261 	pgoff_t end_index;	/* The last page we want to read */
262 
263 	if (isize == 0)
264 		return;
265 
266 	end_index = (isize - 1) >> PAGE_SHIFT;
267 	if (index > end_index)
268 		return;
269 	/* Don't read past the page containing the last byte of the file */
270 	if (nr_to_read > end_index - index)
271 		nr_to_read = end_index - index + 1;
272 
273 	page_cache_readahead_unbounded(mapping, file, index, nr_to_read,
274 			lookahead_size);
275 }
276 
277 /*
278  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
279  * memory at once.
280  */
281 void force_page_cache_readahead(struct address_space *mapping,
282 		struct file *filp, pgoff_t index, unsigned long nr_to_read)
283 {
284 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
285 	struct file_ra_state *ra = &filp->f_ra;
286 	unsigned long max_pages;
287 
288 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
289 			!mapping->a_ops->readahead))
290 		return;
291 
292 	/*
293 	 * If the request exceeds the readahead window, allow the read to
294 	 * be up to the optimal hardware IO size
295 	 */
296 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
297 	nr_to_read = min(nr_to_read, max_pages);
298 	while (nr_to_read) {
299 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
300 
301 		if (this_chunk > nr_to_read)
302 			this_chunk = nr_to_read;
303 		__do_page_cache_readahead(mapping, filp, index, this_chunk, 0);
304 
305 		index += this_chunk;
306 		nr_to_read -= this_chunk;
307 	}
308 }
309 
310 /*
311  * Set the initial window size, round to next power of 2 and square
312  * for small size, x 4 for medium, and x 2 for large
313  * for 128k (32 page) max ra
314  * 1-8 page = 32k initial, > 8 page = 128k initial
315  */
316 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
317 {
318 	unsigned long newsize = roundup_pow_of_two(size);
319 
320 	if (newsize <= max / 32)
321 		newsize = newsize * 4;
322 	else if (newsize <= max / 4)
323 		newsize = newsize * 2;
324 	else
325 		newsize = max;
326 
327 	return newsize;
328 }
329 
330 /*
331  *  Get the previous window size, ramp it up, and
332  *  return it as the new window size.
333  */
334 static unsigned long get_next_ra_size(struct file_ra_state *ra,
335 				      unsigned long max)
336 {
337 	unsigned long cur = ra->size;
338 
339 	if (cur < max / 16)
340 		return 4 * cur;
341 	if (cur <= max / 2)
342 		return 2 * cur;
343 	return max;
344 }
345 
346 /*
347  * On-demand readahead design.
348  *
349  * The fields in struct file_ra_state represent the most-recently-executed
350  * readahead attempt:
351  *
352  *                        |<----- async_size ---------|
353  *     |------------------- size -------------------->|
354  *     |==================#===========================|
355  *     ^start             ^page marked with PG_readahead
356  *
357  * To overlap application thinking time and disk I/O time, we do
358  * `readahead pipelining': Do not wait until the application consumed all
359  * readahead pages and stalled on the missing page at readahead_index;
360  * Instead, submit an asynchronous readahead I/O as soon as there are
361  * only async_size pages left in the readahead window. Normally async_size
362  * will be equal to size, for maximum pipelining.
363  *
364  * In interleaved sequential reads, concurrent streams on the same fd can
365  * be invalidating each other's readahead state. So we flag the new readahead
366  * page at (start+size-async_size) with PG_readahead, and use it as readahead
367  * indicator. The flag won't be set on already cached pages, to avoid the
368  * readahead-for-nothing fuss, saving pointless page cache lookups.
369  *
370  * prev_pos tracks the last visited byte in the _previous_ read request.
371  * It should be maintained by the caller, and will be used for detecting
372  * small random reads. Note that the readahead algorithm checks loosely
373  * for sequential patterns. Hence interleaved reads might be served as
374  * sequential ones.
375  *
376  * There is a special-case: if the first page which the application tries to
377  * read happens to be the first page of the file, it is assumed that a linear
378  * read is about to happen and the window is immediately set to the initial size
379  * based on I/O request size and the max_readahead.
380  *
381  * The code ramps up the readahead size aggressively at first, but slow down as
382  * it approaches max_readhead.
383  */
384 
385 /*
386  * Count contiguously cached pages from @index-1 to @index-@max,
387  * this count is a conservative estimation of
388  * 	- length of the sequential read sequence, or
389  * 	- thrashing threshold in memory tight systems
390  */
391 static pgoff_t count_history_pages(struct address_space *mapping,
392 				   pgoff_t index, unsigned long max)
393 {
394 	pgoff_t head;
395 
396 	rcu_read_lock();
397 	head = page_cache_prev_miss(mapping, index - 1, max);
398 	rcu_read_unlock();
399 
400 	return index - 1 - head;
401 }
402 
403 /*
404  * page cache context based read-ahead
405  */
406 static int try_context_readahead(struct address_space *mapping,
407 				 struct file_ra_state *ra,
408 				 pgoff_t index,
409 				 unsigned long req_size,
410 				 unsigned long max)
411 {
412 	pgoff_t size;
413 
414 	size = count_history_pages(mapping, index, max);
415 
416 	/*
417 	 * not enough history pages:
418 	 * it could be a random read
419 	 */
420 	if (size <= req_size)
421 		return 0;
422 
423 	/*
424 	 * starts from beginning of file:
425 	 * it is a strong indication of long-run stream (or whole-file-read)
426 	 */
427 	if (size >= index)
428 		size *= 2;
429 
430 	ra->start = index;
431 	ra->size = min(size + req_size, max);
432 	ra->async_size = 1;
433 
434 	return 1;
435 }
436 
437 /*
438  * A minimal readahead algorithm for trivial sequential/random reads.
439  */
440 static void ondemand_readahead(struct address_space *mapping,
441 		struct file_ra_state *ra, struct file *filp,
442 		bool hit_readahead_marker, pgoff_t index,
443 		unsigned long req_size)
444 {
445 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
446 	unsigned long max_pages = ra->ra_pages;
447 	unsigned long add_pages;
448 	pgoff_t prev_index;
449 
450 	/*
451 	 * If the request exceeds the readahead window, allow the read to
452 	 * be up to the optimal hardware IO size
453 	 */
454 	if (req_size > max_pages && bdi->io_pages > max_pages)
455 		max_pages = min(req_size, bdi->io_pages);
456 
457 	/*
458 	 * start of file
459 	 */
460 	if (!index)
461 		goto initial_readahead;
462 
463 	/*
464 	 * It's the expected callback index, assume sequential access.
465 	 * Ramp up sizes, and push forward the readahead window.
466 	 */
467 	if ((index == (ra->start + ra->size - ra->async_size) ||
468 	     index == (ra->start + ra->size))) {
469 		ra->start += ra->size;
470 		ra->size = get_next_ra_size(ra, max_pages);
471 		ra->async_size = ra->size;
472 		goto readit;
473 	}
474 
475 	/*
476 	 * Hit a marked page without valid readahead state.
477 	 * E.g. interleaved reads.
478 	 * Query the pagecache for async_size, which normally equals to
479 	 * readahead size. Ramp it up and use it as the new readahead size.
480 	 */
481 	if (hit_readahead_marker) {
482 		pgoff_t start;
483 
484 		rcu_read_lock();
485 		start = page_cache_next_miss(mapping, index + 1, max_pages);
486 		rcu_read_unlock();
487 
488 		if (!start || start - index > max_pages)
489 			return;
490 
491 		ra->start = start;
492 		ra->size = start - index;	/* old async_size */
493 		ra->size += req_size;
494 		ra->size = get_next_ra_size(ra, max_pages);
495 		ra->async_size = ra->size;
496 		goto readit;
497 	}
498 
499 	/*
500 	 * oversize read
501 	 */
502 	if (req_size > max_pages)
503 		goto initial_readahead;
504 
505 	/*
506 	 * sequential cache miss
507 	 * trivial case: (index - prev_index) == 1
508 	 * unaligned reads: (index - prev_index) == 0
509 	 */
510 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
511 	if (index - prev_index <= 1UL)
512 		goto initial_readahead;
513 
514 	/*
515 	 * Query the page cache and look for the traces(cached history pages)
516 	 * that a sequential stream would leave behind.
517 	 */
518 	if (try_context_readahead(mapping, ra, index, req_size, max_pages))
519 		goto readit;
520 
521 	/*
522 	 * standalone, small random read
523 	 * Read as is, and do not pollute the readahead state.
524 	 */
525 	__do_page_cache_readahead(mapping, filp, index, req_size, 0);
526 	return;
527 
528 initial_readahead:
529 	ra->start = index;
530 	ra->size = get_init_ra_size(req_size, max_pages);
531 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
532 
533 readit:
534 	/*
535 	 * Will this read hit the readahead marker made by itself?
536 	 * If so, trigger the readahead marker hit now, and merge
537 	 * the resulted next readahead window into the current one.
538 	 * Take care of maximum IO pages as above.
539 	 */
540 	if (index == ra->start && ra->size == ra->async_size) {
541 		add_pages = get_next_ra_size(ra, max_pages);
542 		if (ra->size + add_pages <= max_pages) {
543 			ra->async_size = add_pages;
544 			ra->size += add_pages;
545 		} else {
546 			ra->size = max_pages;
547 			ra->async_size = max_pages >> 1;
548 		}
549 	}
550 
551 	ra_submit(ra, mapping, filp);
552 }
553 
554 /**
555  * page_cache_sync_readahead - generic file readahead
556  * @mapping: address_space which holds the pagecache and I/O vectors
557  * @ra: file_ra_state which holds the readahead state
558  * @filp: passed on to ->readpage() and ->readpages()
559  * @index: Index of first page to be read.
560  * @req_count: Total number of pages being read by the caller.
561  *
562  * page_cache_sync_readahead() should be called when a cache miss happened:
563  * it will submit the read.  The readahead logic may decide to piggyback more
564  * pages onto the read request if access patterns suggest it will improve
565  * performance.
566  */
567 void page_cache_sync_readahead(struct address_space *mapping,
568 			       struct file_ra_state *ra, struct file *filp,
569 			       pgoff_t index, unsigned long req_count)
570 {
571 	/* no read-ahead */
572 	if (!ra->ra_pages)
573 		return;
574 
575 	if (blk_cgroup_congested())
576 		return;
577 
578 	/* be dumb */
579 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
580 		force_page_cache_readahead(mapping, filp, index, req_count);
581 		return;
582 	}
583 
584 	/* do read-ahead */
585 	ondemand_readahead(mapping, ra, filp, false, index, req_count);
586 }
587 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
588 
589 /**
590  * page_cache_async_readahead - file readahead for marked pages
591  * @mapping: address_space which holds the pagecache and I/O vectors
592  * @ra: file_ra_state which holds the readahead state
593  * @filp: passed on to ->readpage() and ->readpages()
594  * @page: The page at @index which triggered the readahead call.
595  * @index: Index of first page to be read.
596  * @req_count: Total number of pages being read by the caller.
597  *
598  * page_cache_async_readahead() should be called when a page is used which
599  * is marked as PageReadahead; this is a marker to suggest that the application
600  * has used up enough of the readahead window that we should start pulling in
601  * more pages.
602  */
603 void
604 page_cache_async_readahead(struct address_space *mapping,
605 			   struct file_ra_state *ra, struct file *filp,
606 			   struct page *page, pgoff_t index,
607 			   unsigned long req_count)
608 {
609 	/* no read-ahead */
610 	if (!ra->ra_pages)
611 		return;
612 
613 	/*
614 	 * Same bit is used for PG_readahead and PG_reclaim.
615 	 */
616 	if (PageWriteback(page))
617 		return;
618 
619 	ClearPageReadahead(page);
620 
621 	/*
622 	 * Defer asynchronous read-ahead on IO congestion.
623 	 */
624 	if (inode_read_congested(mapping->host))
625 		return;
626 
627 	if (blk_cgroup_congested())
628 		return;
629 
630 	/* do read-ahead */
631 	ondemand_readahead(mapping, ra, filp, true, index, req_count);
632 }
633 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
634 
635 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
636 {
637 	ssize_t ret;
638 	struct fd f;
639 
640 	ret = -EBADF;
641 	f = fdget(fd);
642 	if (!f.file || !(f.file->f_mode & FMODE_READ))
643 		goto out;
644 
645 	/*
646 	 * The readahead() syscall is intended to run only on files
647 	 * that can execute readahead. If readahead is not possible
648 	 * on this file, then we must return -EINVAL.
649 	 */
650 	ret = -EINVAL;
651 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
652 	    !S_ISREG(file_inode(f.file)->i_mode))
653 		goto out;
654 
655 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
656 out:
657 	fdput(f);
658 	return ret;
659 }
660 
661 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
662 {
663 	return ksys_readahead(fd, offset, count);
664 }
665