xref: /linux/mm/readahead.c (revision 9052e9c95d908d6c3d7570aadc8898e1d871c8bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 #include <linux/mm_inline.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/fadvise.h>
25 #include <linux/sched/mm.h>
26 
27 #include "internal.h"
28 
29 /*
30  * Initialise a struct file's readahead state.  Assumes that the caller has
31  * memset *ra to zero.
32  */
33 void
34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
35 {
36 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
37 	ra->prev_pos = -1;
38 }
39 EXPORT_SYMBOL_GPL(file_ra_state_init);
40 
41 /*
42  * see if a page needs releasing upon read_cache_pages() failure
43  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
44  *   before calling, such as the NFS fs marking pages that are cached locally
45  *   on disk, thus we need to give the fs a chance to clean up in the event of
46  *   an error
47  */
48 static void read_cache_pages_invalidate_page(struct address_space *mapping,
49 					     struct page *page)
50 {
51 	if (page_has_private(page)) {
52 		if (!trylock_page(page))
53 			BUG();
54 		page->mapping = mapping;
55 		do_invalidatepage(page, 0, PAGE_SIZE);
56 		page->mapping = NULL;
57 		unlock_page(page);
58 	}
59 	put_page(page);
60 }
61 
62 /*
63  * release a list of pages, invalidating them first if need be
64  */
65 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
66 					      struct list_head *pages)
67 {
68 	struct page *victim;
69 
70 	while (!list_empty(pages)) {
71 		victim = lru_to_page(pages);
72 		list_del(&victim->lru);
73 		read_cache_pages_invalidate_page(mapping, victim);
74 	}
75 }
76 
77 /**
78  * read_cache_pages - populate an address space with some pages & start reads against them
79  * @mapping: the address_space
80  * @pages: The address of a list_head which contains the target pages.  These
81  *   pages have their ->index populated and are otherwise uninitialised.
82  * @filler: callback routine for filling a single page.
83  * @data: private data for the callback routine.
84  *
85  * Hides the details of the LRU cache etc from the filesystems.
86  *
87  * Returns: %0 on success, error return by @filler otherwise
88  */
89 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
90 			int (*filler)(void *, struct page *), void *data)
91 {
92 	struct page *page;
93 	int ret = 0;
94 
95 	while (!list_empty(pages)) {
96 		page = lru_to_page(pages);
97 		list_del(&page->lru);
98 		if (add_to_page_cache_lru(page, mapping, page->index,
99 				readahead_gfp_mask(mapping))) {
100 			read_cache_pages_invalidate_page(mapping, page);
101 			continue;
102 		}
103 		put_page(page);
104 
105 		ret = filler(data, page);
106 		if (unlikely(ret)) {
107 			read_cache_pages_invalidate_pages(mapping, pages);
108 			break;
109 		}
110 		task_io_account_read(PAGE_SIZE);
111 	}
112 	return ret;
113 }
114 
115 EXPORT_SYMBOL(read_cache_pages);
116 
117 static void read_pages(struct readahead_control *rac, struct list_head *pages,
118 		bool skip_page)
119 {
120 	const struct address_space_operations *aops = rac->mapping->a_ops;
121 	struct page *page;
122 	struct blk_plug plug;
123 
124 	if (!readahead_count(rac))
125 		goto out;
126 
127 	blk_start_plug(&plug);
128 
129 	if (aops->readahead) {
130 		aops->readahead(rac);
131 		/* Clean up the remaining pages */
132 		while ((page = readahead_page(rac))) {
133 			unlock_page(page);
134 			put_page(page);
135 		}
136 	} else if (aops->readpages) {
137 		aops->readpages(rac->file, rac->mapping, pages,
138 				readahead_count(rac));
139 		/* Clean up the remaining pages */
140 		put_pages_list(pages);
141 		rac->_index += rac->_nr_pages;
142 		rac->_nr_pages = 0;
143 	} else {
144 		while ((page = readahead_page(rac))) {
145 			aops->readpage(rac->file, page);
146 			put_page(page);
147 		}
148 	}
149 
150 	blk_finish_plug(&plug);
151 
152 	BUG_ON(!list_empty(pages));
153 	BUG_ON(readahead_count(rac));
154 
155 out:
156 	if (skip_page)
157 		rac->_index++;
158 }
159 
160 /**
161  * page_cache_ra_unbounded - Start unchecked readahead.
162  * @ractl: Readahead control.
163  * @nr_to_read: The number of pages to read.
164  * @lookahead_size: Where to start the next readahead.
165  *
166  * This function is for filesystems to call when they want to start
167  * readahead beyond a file's stated i_size.  This is almost certainly
168  * not the function you want to call.  Use page_cache_async_readahead()
169  * or page_cache_sync_readahead() instead.
170  *
171  * Context: File is referenced by caller.  Mutexes may be held by caller.
172  * May sleep, but will not reenter filesystem to reclaim memory.
173  */
174 void page_cache_ra_unbounded(struct readahead_control *ractl,
175 		unsigned long nr_to_read, unsigned long lookahead_size)
176 {
177 	struct address_space *mapping = ractl->mapping;
178 	unsigned long index = readahead_index(ractl);
179 	LIST_HEAD(page_pool);
180 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
181 	unsigned long i;
182 
183 	/*
184 	 * Partway through the readahead operation, we will have added
185 	 * locked pages to the page cache, but will not yet have submitted
186 	 * them for I/O.  Adding another page may need to allocate memory,
187 	 * which can trigger memory reclaim.  Telling the VM we're in
188 	 * the middle of a filesystem operation will cause it to not
189 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
190 	 * filesystems already specify __GFP_NOFS in their mapping's
191 	 * gfp_mask, but let's be explicit here.
192 	 */
193 	unsigned int nofs = memalloc_nofs_save();
194 
195 	filemap_invalidate_lock_shared(mapping);
196 	/*
197 	 * Preallocate as many pages as we will need.
198 	 */
199 	for (i = 0; i < nr_to_read; i++) {
200 		struct page *page = xa_load(&mapping->i_pages, index + i);
201 
202 		if (page && !xa_is_value(page)) {
203 			/*
204 			 * Page already present?  Kick off the current batch
205 			 * of contiguous pages before continuing with the
206 			 * next batch.  This page may be the one we would
207 			 * have intended to mark as Readahead, but we don't
208 			 * have a stable reference to this page, and it's
209 			 * not worth getting one just for that.
210 			 */
211 			read_pages(ractl, &page_pool, true);
212 			i = ractl->_index + ractl->_nr_pages - index - 1;
213 			continue;
214 		}
215 
216 		page = __page_cache_alloc(gfp_mask);
217 		if (!page)
218 			break;
219 		if (mapping->a_ops->readpages) {
220 			page->index = index + i;
221 			list_add(&page->lru, &page_pool);
222 		} else if (add_to_page_cache_lru(page, mapping, index + i,
223 					gfp_mask) < 0) {
224 			put_page(page);
225 			read_pages(ractl, &page_pool, true);
226 			i = ractl->_index + ractl->_nr_pages - index - 1;
227 			continue;
228 		}
229 		if (i == nr_to_read - lookahead_size)
230 			SetPageReadahead(page);
231 		ractl->_nr_pages++;
232 	}
233 
234 	/*
235 	 * Now start the IO.  We ignore I/O errors - if the page is not
236 	 * uptodate then the caller will launch readpage again, and
237 	 * will then handle the error.
238 	 */
239 	read_pages(ractl, &page_pool, false);
240 	filemap_invalidate_unlock_shared(mapping);
241 	memalloc_nofs_restore(nofs);
242 }
243 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
244 
245 /*
246  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
247  * the pages first, then submits them for I/O. This avoids the very bad
248  * behaviour which would occur if page allocations are causing VM writeback.
249  * We really don't want to intermingle reads and writes like that.
250  */
251 void do_page_cache_ra(struct readahead_control *ractl,
252 		unsigned long nr_to_read, unsigned long lookahead_size)
253 {
254 	struct inode *inode = ractl->mapping->host;
255 	unsigned long index = readahead_index(ractl);
256 	loff_t isize = i_size_read(inode);
257 	pgoff_t end_index;	/* The last page we want to read */
258 
259 	if (isize == 0)
260 		return;
261 
262 	end_index = (isize - 1) >> PAGE_SHIFT;
263 	if (index > end_index)
264 		return;
265 	/* Don't read past the page containing the last byte of the file */
266 	if (nr_to_read > end_index - index)
267 		nr_to_read = end_index - index + 1;
268 
269 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
270 }
271 
272 /*
273  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
274  * memory at once.
275  */
276 void force_page_cache_ra(struct readahead_control *ractl,
277 		unsigned long nr_to_read)
278 {
279 	struct address_space *mapping = ractl->mapping;
280 	struct file_ra_state *ra = ractl->ra;
281 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
282 	unsigned long max_pages, index;
283 
284 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
285 			!mapping->a_ops->readahead))
286 		return;
287 
288 	/*
289 	 * If the request exceeds the readahead window, allow the read to
290 	 * be up to the optimal hardware IO size
291 	 */
292 	index = readahead_index(ractl);
293 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
294 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
295 	while (nr_to_read) {
296 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
297 
298 		if (this_chunk > nr_to_read)
299 			this_chunk = nr_to_read;
300 		ractl->_index = index;
301 		do_page_cache_ra(ractl, this_chunk, 0);
302 
303 		index += this_chunk;
304 		nr_to_read -= this_chunk;
305 	}
306 }
307 
308 /*
309  * Set the initial window size, round to next power of 2 and square
310  * for small size, x 4 for medium, and x 2 for large
311  * for 128k (32 page) max ra
312  * 1-8 page = 32k initial, > 8 page = 128k initial
313  */
314 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
315 {
316 	unsigned long newsize = roundup_pow_of_two(size);
317 
318 	if (newsize <= max / 32)
319 		newsize = newsize * 4;
320 	else if (newsize <= max / 4)
321 		newsize = newsize * 2;
322 	else
323 		newsize = max;
324 
325 	return newsize;
326 }
327 
328 /*
329  *  Get the previous window size, ramp it up, and
330  *  return it as the new window size.
331  */
332 static unsigned long get_next_ra_size(struct file_ra_state *ra,
333 				      unsigned long max)
334 {
335 	unsigned long cur = ra->size;
336 
337 	if (cur < max / 16)
338 		return 4 * cur;
339 	if (cur <= max / 2)
340 		return 2 * cur;
341 	return max;
342 }
343 
344 /*
345  * On-demand readahead design.
346  *
347  * The fields in struct file_ra_state represent the most-recently-executed
348  * readahead attempt:
349  *
350  *                        |<----- async_size ---------|
351  *     |------------------- size -------------------->|
352  *     |==================#===========================|
353  *     ^start             ^page marked with PG_readahead
354  *
355  * To overlap application thinking time and disk I/O time, we do
356  * `readahead pipelining': Do not wait until the application consumed all
357  * readahead pages and stalled on the missing page at readahead_index;
358  * Instead, submit an asynchronous readahead I/O as soon as there are
359  * only async_size pages left in the readahead window. Normally async_size
360  * will be equal to size, for maximum pipelining.
361  *
362  * In interleaved sequential reads, concurrent streams on the same fd can
363  * be invalidating each other's readahead state. So we flag the new readahead
364  * page at (start+size-async_size) with PG_readahead, and use it as readahead
365  * indicator. The flag won't be set on already cached pages, to avoid the
366  * readahead-for-nothing fuss, saving pointless page cache lookups.
367  *
368  * prev_pos tracks the last visited byte in the _previous_ read request.
369  * It should be maintained by the caller, and will be used for detecting
370  * small random reads. Note that the readahead algorithm checks loosely
371  * for sequential patterns. Hence interleaved reads might be served as
372  * sequential ones.
373  *
374  * There is a special-case: if the first page which the application tries to
375  * read happens to be the first page of the file, it is assumed that a linear
376  * read is about to happen and the window is immediately set to the initial size
377  * based on I/O request size and the max_readahead.
378  *
379  * The code ramps up the readahead size aggressively at first, but slow down as
380  * it approaches max_readhead.
381  */
382 
383 /*
384  * Count contiguously cached pages from @index-1 to @index-@max,
385  * this count is a conservative estimation of
386  * 	- length of the sequential read sequence, or
387  * 	- thrashing threshold in memory tight systems
388  */
389 static pgoff_t count_history_pages(struct address_space *mapping,
390 				   pgoff_t index, unsigned long max)
391 {
392 	pgoff_t head;
393 
394 	rcu_read_lock();
395 	head = page_cache_prev_miss(mapping, index - 1, max);
396 	rcu_read_unlock();
397 
398 	return index - 1 - head;
399 }
400 
401 /*
402  * page cache context based read-ahead
403  */
404 static int try_context_readahead(struct address_space *mapping,
405 				 struct file_ra_state *ra,
406 				 pgoff_t index,
407 				 unsigned long req_size,
408 				 unsigned long max)
409 {
410 	pgoff_t size;
411 
412 	size = count_history_pages(mapping, index, max);
413 
414 	/*
415 	 * not enough history pages:
416 	 * it could be a random read
417 	 */
418 	if (size <= req_size)
419 		return 0;
420 
421 	/*
422 	 * starts from beginning of file:
423 	 * it is a strong indication of long-run stream (or whole-file-read)
424 	 */
425 	if (size >= index)
426 		size *= 2;
427 
428 	ra->start = index;
429 	ra->size = min(size + req_size, max);
430 	ra->async_size = 1;
431 
432 	return 1;
433 }
434 
435 /*
436  * A minimal readahead algorithm for trivial sequential/random reads.
437  */
438 static void ondemand_readahead(struct readahead_control *ractl,
439 		bool hit_readahead_marker, unsigned long req_size)
440 {
441 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
442 	struct file_ra_state *ra = ractl->ra;
443 	unsigned long max_pages = ra->ra_pages;
444 	unsigned long add_pages;
445 	unsigned long index = readahead_index(ractl);
446 	pgoff_t prev_index;
447 
448 	/*
449 	 * If the request exceeds the readahead window, allow the read to
450 	 * be up to the optimal hardware IO size
451 	 */
452 	if (req_size > max_pages && bdi->io_pages > max_pages)
453 		max_pages = min(req_size, bdi->io_pages);
454 
455 	/*
456 	 * start of file
457 	 */
458 	if (!index)
459 		goto initial_readahead;
460 
461 	/*
462 	 * It's the expected callback index, assume sequential access.
463 	 * Ramp up sizes, and push forward the readahead window.
464 	 */
465 	if ((index == (ra->start + ra->size - ra->async_size) ||
466 	     index == (ra->start + ra->size))) {
467 		ra->start += ra->size;
468 		ra->size = get_next_ra_size(ra, max_pages);
469 		ra->async_size = ra->size;
470 		goto readit;
471 	}
472 
473 	/*
474 	 * Hit a marked page without valid readahead state.
475 	 * E.g. interleaved reads.
476 	 * Query the pagecache for async_size, which normally equals to
477 	 * readahead size. Ramp it up and use it as the new readahead size.
478 	 */
479 	if (hit_readahead_marker) {
480 		pgoff_t start;
481 
482 		rcu_read_lock();
483 		start = page_cache_next_miss(ractl->mapping, index + 1,
484 				max_pages);
485 		rcu_read_unlock();
486 
487 		if (!start || start - index > max_pages)
488 			return;
489 
490 		ra->start = start;
491 		ra->size = start - index;	/* old async_size */
492 		ra->size += req_size;
493 		ra->size = get_next_ra_size(ra, max_pages);
494 		ra->async_size = ra->size;
495 		goto readit;
496 	}
497 
498 	/*
499 	 * oversize read
500 	 */
501 	if (req_size > max_pages)
502 		goto initial_readahead;
503 
504 	/*
505 	 * sequential cache miss
506 	 * trivial case: (index - prev_index) == 1
507 	 * unaligned reads: (index - prev_index) == 0
508 	 */
509 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
510 	if (index - prev_index <= 1UL)
511 		goto initial_readahead;
512 
513 	/*
514 	 * Query the page cache and look for the traces(cached history pages)
515 	 * that a sequential stream would leave behind.
516 	 */
517 	if (try_context_readahead(ractl->mapping, ra, index, req_size,
518 			max_pages))
519 		goto readit;
520 
521 	/*
522 	 * standalone, small random read
523 	 * Read as is, and do not pollute the readahead state.
524 	 */
525 	do_page_cache_ra(ractl, req_size, 0);
526 	return;
527 
528 initial_readahead:
529 	ra->start = index;
530 	ra->size = get_init_ra_size(req_size, max_pages);
531 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
532 
533 readit:
534 	/*
535 	 * Will this read hit the readahead marker made by itself?
536 	 * If so, trigger the readahead marker hit now, and merge
537 	 * the resulted next readahead window into the current one.
538 	 * Take care of maximum IO pages as above.
539 	 */
540 	if (index == ra->start && ra->size == ra->async_size) {
541 		add_pages = get_next_ra_size(ra, max_pages);
542 		if (ra->size + add_pages <= max_pages) {
543 			ra->async_size = add_pages;
544 			ra->size += add_pages;
545 		} else {
546 			ra->size = max_pages;
547 			ra->async_size = max_pages >> 1;
548 		}
549 	}
550 
551 	ractl->_index = ra->start;
552 	do_page_cache_ra(ractl, ra->size, ra->async_size);
553 }
554 
555 void page_cache_sync_ra(struct readahead_control *ractl,
556 		unsigned long req_count)
557 {
558 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
559 
560 	/*
561 	 * Even if read-ahead is disabled, issue this request as read-ahead
562 	 * as we'll need it to satisfy the requested range. The forced
563 	 * read-ahead will do the right thing and limit the read to just the
564 	 * requested range, which we'll set to 1 page for this case.
565 	 */
566 	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
567 		if (!ractl->file)
568 			return;
569 		req_count = 1;
570 		do_forced_ra = true;
571 	}
572 
573 	/* be dumb */
574 	if (do_forced_ra) {
575 		force_page_cache_ra(ractl, req_count);
576 		return;
577 	}
578 
579 	/* do read-ahead */
580 	ondemand_readahead(ractl, false, req_count);
581 }
582 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
583 
584 void page_cache_async_ra(struct readahead_control *ractl,
585 		struct page *page, unsigned long req_count)
586 {
587 	/* no read-ahead */
588 	if (!ractl->ra->ra_pages)
589 		return;
590 
591 	/*
592 	 * Same bit is used for PG_readahead and PG_reclaim.
593 	 */
594 	if (PageWriteback(page))
595 		return;
596 
597 	ClearPageReadahead(page);
598 
599 	/*
600 	 * Defer asynchronous read-ahead on IO congestion.
601 	 */
602 	if (inode_read_congested(ractl->mapping->host))
603 		return;
604 
605 	if (blk_cgroup_congested())
606 		return;
607 
608 	/* do read-ahead */
609 	ondemand_readahead(ractl, true, req_count);
610 }
611 EXPORT_SYMBOL_GPL(page_cache_async_ra);
612 
613 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
614 {
615 	ssize_t ret;
616 	struct fd f;
617 
618 	ret = -EBADF;
619 	f = fdget(fd);
620 	if (!f.file || !(f.file->f_mode & FMODE_READ))
621 		goto out;
622 
623 	/*
624 	 * The readahead() syscall is intended to run only on files
625 	 * that can execute readahead. If readahead is not possible
626 	 * on this file, then we must return -EINVAL.
627 	 */
628 	ret = -EINVAL;
629 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
630 	    !S_ISREG(file_inode(f.file)->i_mode))
631 		goto out;
632 
633 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
634 out:
635 	fdput(f);
636 	return ret;
637 }
638 
639 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
640 {
641 	return ksys_readahead(fd, offset, count);
642 }
643 
644 /**
645  * readahead_expand - Expand a readahead request
646  * @ractl: The request to be expanded
647  * @new_start: The revised start
648  * @new_len: The revised size of the request
649  *
650  * Attempt to expand a readahead request outwards from the current size to the
651  * specified size by inserting locked pages before and after the current window
652  * to increase the size to the new window.  This may involve the insertion of
653  * THPs, in which case the window may get expanded even beyond what was
654  * requested.
655  *
656  * The algorithm will stop if it encounters a conflicting page already in the
657  * pagecache and leave a smaller expansion than requested.
658  *
659  * The caller must check for this by examining the revised @ractl object for a
660  * different expansion than was requested.
661  */
662 void readahead_expand(struct readahead_control *ractl,
663 		      loff_t new_start, size_t new_len)
664 {
665 	struct address_space *mapping = ractl->mapping;
666 	struct file_ra_state *ra = ractl->ra;
667 	pgoff_t new_index, new_nr_pages;
668 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
669 
670 	new_index = new_start / PAGE_SIZE;
671 
672 	/* Expand the leading edge downwards */
673 	while (ractl->_index > new_index) {
674 		unsigned long index = ractl->_index - 1;
675 		struct page *page = xa_load(&mapping->i_pages, index);
676 
677 		if (page && !xa_is_value(page))
678 			return; /* Page apparently present */
679 
680 		page = __page_cache_alloc(gfp_mask);
681 		if (!page)
682 			return;
683 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
684 			put_page(page);
685 			return;
686 		}
687 
688 		ractl->_nr_pages++;
689 		ractl->_index = page->index;
690 	}
691 
692 	new_len += new_start - readahead_pos(ractl);
693 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
694 
695 	/* Expand the trailing edge upwards */
696 	while (ractl->_nr_pages < new_nr_pages) {
697 		unsigned long index = ractl->_index + ractl->_nr_pages;
698 		struct page *page = xa_load(&mapping->i_pages, index);
699 
700 		if (page && !xa_is_value(page))
701 			return; /* Page apparently present */
702 
703 		page = __page_cache_alloc(gfp_mask);
704 		if (!page)
705 			return;
706 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
707 			put_page(page);
708 			return;
709 		}
710 		ractl->_nr_pages++;
711 		if (ra) {
712 			ra->size++;
713 			ra->async_size++;
714 		}
715 	}
716 }
717 EXPORT_SYMBOL(readahead_expand);
718