1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 132 #include "internal.h" 133 134 /* 135 * Initialise a struct file's readahead state. Assumes that the caller has 136 * memset *ra to zero. 137 */ 138 void 139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 140 { 141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 142 ra->prev_pos = -1; 143 } 144 EXPORT_SYMBOL_GPL(file_ra_state_init); 145 146 static void read_pages(struct readahead_control *rac) 147 { 148 const struct address_space_operations *aops = rac->mapping->a_ops; 149 struct folio *folio; 150 struct blk_plug plug; 151 152 if (!readahead_count(rac)) 153 return; 154 155 if (unlikely(rac->_workingset)) 156 psi_memstall_enter(&rac->_pflags); 157 blk_start_plug(&plug); 158 159 if (aops->readahead) { 160 aops->readahead(rac); 161 /* 162 * Clean up the remaining folios. The sizes in ->ra 163 * may be used to size the next readahead, so make sure 164 * they accurately reflect what happened. 165 */ 166 while ((folio = readahead_folio(rac)) != NULL) { 167 unsigned long nr = folio_nr_pages(folio); 168 169 folio_get(folio); 170 rac->ra->size -= nr; 171 if (rac->ra->async_size >= nr) { 172 rac->ra->async_size -= nr; 173 filemap_remove_folio(folio); 174 } 175 folio_unlock(folio); 176 folio_put(folio); 177 } 178 } else { 179 while ((folio = readahead_folio(rac)) != NULL) 180 aops->read_folio(rac->file, folio); 181 } 182 183 blk_finish_plug(&plug); 184 if (unlikely(rac->_workingset)) 185 psi_memstall_leave(&rac->_pflags); 186 rac->_workingset = false; 187 188 BUG_ON(readahead_count(rac)); 189 } 190 191 /** 192 * page_cache_ra_unbounded - Start unchecked readahead. 193 * @ractl: Readahead control. 194 * @nr_to_read: The number of pages to read. 195 * @lookahead_size: Where to start the next readahead. 196 * 197 * This function is for filesystems to call when they want to start 198 * readahead beyond a file's stated i_size. This is almost certainly 199 * not the function you want to call. Use page_cache_async_readahead() 200 * or page_cache_sync_readahead() instead. 201 * 202 * Context: File is referenced by caller. Mutexes may be held by caller. 203 * May sleep, but will not reenter filesystem to reclaim memory. 204 */ 205 void page_cache_ra_unbounded(struct readahead_control *ractl, 206 unsigned long nr_to_read, unsigned long lookahead_size) 207 { 208 struct address_space *mapping = ractl->mapping; 209 unsigned long index = readahead_index(ractl); 210 gfp_t gfp_mask = readahead_gfp_mask(mapping); 211 unsigned long mark = ULONG_MAX, i = 0; 212 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping); 213 214 /* 215 * Partway through the readahead operation, we will have added 216 * locked pages to the page cache, but will not yet have submitted 217 * them for I/O. Adding another page may need to allocate memory, 218 * which can trigger memory reclaim. Telling the VM we're in 219 * the middle of a filesystem operation will cause it to not 220 * touch file-backed pages, preventing a deadlock. Most (all?) 221 * filesystems already specify __GFP_NOFS in their mapping's 222 * gfp_mask, but let's be explicit here. 223 */ 224 unsigned int nofs = memalloc_nofs_save(); 225 226 filemap_invalidate_lock_shared(mapping); 227 index = mapping_align_index(mapping, index); 228 229 /* 230 * As iterator `i` is aligned to min_nrpages, round_up the 231 * difference between nr_to_read and lookahead_size to mark the 232 * index that only has lookahead or "async_region" to set the 233 * readahead flag. 234 */ 235 if (lookahead_size <= nr_to_read) { 236 unsigned long ra_folio_index; 237 238 ra_folio_index = round_up(readahead_index(ractl) + 239 nr_to_read - lookahead_size, 240 min_nrpages); 241 mark = ra_folio_index - index; 242 } 243 nr_to_read += readahead_index(ractl) - index; 244 ractl->_index = index; 245 246 /* 247 * Preallocate as many pages as we will need. 248 */ 249 while (i < nr_to_read) { 250 struct folio *folio = xa_load(&mapping->i_pages, index + i); 251 int ret; 252 253 if (folio && !xa_is_value(folio)) { 254 /* 255 * Page already present? Kick off the current batch 256 * of contiguous pages before continuing with the 257 * next batch. This page may be the one we would 258 * have intended to mark as Readahead, but we don't 259 * have a stable reference to this page, and it's 260 * not worth getting one just for that. 261 */ 262 read_pages(ractl); 263 ractl->_index += min_nrpages; 264 i = ractl->_index + ractl->_nr_pages - index; 265 continue; 266 } 267 268 folio = filemap_alloc_folio(gfp_mask, 269 mapping_min_folio_order(mapping)); 270 if (!folio) 271 break; 272 273 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); 274 if (ret < 0) { 275 folio_put(folio); 276 if (ret == -ENOMEM) 277 break; 278 read_pages(ractl); 279 ractl->_index += min_nrpages; 280 i = ractl->_index + ractl->_nr_pages - index; 281 continue; 282 } 283 if (i == mark) 284 folio_set_readahead(folio); 285 ractl->_workingset |= folio_test_workingset(folio); 286 ractl->_nr_pages += min_nrpages; 287 i += min_nrpages; 288 } 289 290 /* 291 * Now start the IO. We ignore I/O errors - if the folio is not 292 * uptodate then the caller will launch read_folio again, and 293 * will then handle the error. 294 */ 295 read_pages(ractl); 296 filemap_invalidate_unlock_shared(mapping); 297 memalloc_nofs_restore(nofs); 298 } 299 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 300 301 /* 302 * do_page_cache_ra() actually reads a chunk of disk. It allocates 303 * the pages first, then submits them for I/O. This avoids the very bad 304 * behaviour which would occur if page allocations are causing VM writeback. 305 * We really don't want to intermingle reads and writes like that. 306 */ 307 static void do_page_cache_ra(struct readahead_control *ractl, 308 unsigned long nr_to_read, unsigned long lookahead_size) 309 { 310 struct inode *inode = ractl->mapping->host; 311 unsigned long index = readahead_index(ractl); 312 loff_t isize = i_size_read(inode); 313 pgoff_t end_index; /* The last page we want to read */ 314 315 if (isize == 0) 316 return; 317 318 end_index = (isize - 1) >> PAGE_SHIFT; 319 if (index > end_index) 320 return; 321 /* Don't read past the page containing the last byte of the file */ 322 if (nr_to_read > end_index - index) 323 nr_to_read = end_index - index + 1; 324 325 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 326 } 327 328 /* 329 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 330 * memory at once. 331 */ 332 void force_page_cache_ra(struct readahead_control *ractl, 333 unsigned long nr_to_read) 334 { 335 struct address_space *mapping = ractl->mapping; 336 struct file_ra_state *ra = ractl->ra; 337 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 338 unsigned long max_pages; 339 340 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 341 return; 342 343 /* 344 * If the request exceeds the readahead window, allow the read to 345 * be up to the optimal hardware IO size 346 */ 347 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 348 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 349 while (nr_to_read) { 350 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 351 352 if (this_chunk > nr_to_read) 353 this_chunk = nr_to_read; 354 do_page_cache_ra(ractl, this_chunk, 0); 355 356 nr_to_read -= this_chunk; 357 } 358 } 359 360 /* 361 * Set the initial window size, round to next power of 2 and square 362 * for small size, x 4 for medium, and x 2 for large 363 * for 128k (32 page) max ra 364 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 365 */ 366 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 367 { 368 unsigned long newsize = roundup_pow_of_two(size); 369 370 if (newsize <= max / 32) 371 newsize = newsize * 4; 372 else if (newsize <= max / 4) 373 newsize = newsize * 2; 374 else 375 newsize = max; 376 377 return newsize; 378 } 379 380 /* 381 * Get the previous window size, ramp it up, and 382 * return it as the new window size. 383 */ 384 static unsigned long get_next_ra_size(struct file_ra_state *ra, 385 unsigned long max) 386 { 387 unsigned long cur = ra->size; 388 389 if (cur < max / 16) 390 return 4 * cur; 391 if (cur <= max / 2) 392 return 2 * cur; 393 return max; 394 } 395 396 /* 397 * On-demand readahead design. 398 * 399 * The fields in struct file_ra_state represent the most-recently-executed 400 * readahead attempt: 401 * 402 * |<----- async_size ---------| 403 * |------------------- size -------------------->| 404 * |==================#===========================| 405 * ^start ^page marked with PG_readahead 406 * 407 * To overlap application thinking time and disk I/O time, we do 408 * `readahead pipelining': Do not wait until the application consumed all 409 * readahead pages and stalled on the missing page at readahead_index; 410 * Instead, submit an asynchronous readahead I/O as soon as there are 411 * only async_size pages left in the readahead window. Normally async_size 412 * will be equal to size, for maximum pipelining. 413 * 414 * In interleaved sequential reads, concurrent streams on the same fd can 415 * be invalidating each other's readahead state. So we flag the new readahead 416 * page at (start+size-async_size) with PG_readahead, and use it as readahead 417 * indicator. The flag won't be set on already cached pages, to avoid the 418 * readahead-for-nothing fuss, saving pointless page cache lookups. 419 * 420 * prev_pos tracks the last visited byte in the _previous_ read request. 421 * It should be maintained by the caller, and will be used for detecting 422 * small random reads. Note that the readahead algorithm checks loosely 423 * for sequential patterns. Hence interleaved reads might be served as 424 * sequential ones. 425 * 426 * There is a special-case: if the first page which the application tries to 427 * read happens to be the first page of the file, it is assumed that a linear 428 * read is about to happen and the window is immediately set to the initial size 429 * based on I/O request size and the max_readahead. 430 * 431 * The code ramps up the readahead size aggressively at first, but slow down as 432 * it approaches max_readhead. 433 */ 434 435 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 436 pgoff_t mark, unsigned int order, gfp_t gfp) 437 { 438 int err; 439 struct folio *folio = filemap_alloc_folio(gfp, order); 440 441 if (!folio) 442 return -ENOMEM; 443 mark = round_down(mark, 1UL << order); 444 if (index == mark) 445 folio_set_readahead(folio); 446 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 447 if (err) { 448 folio_put(folio); 449 return err; 450 } 451 452 ractl->_nr_pages += 1UL << order; 453 ractl->_workingset |= folio_test_workingset(folio); 454 return 0; 455 } 456 457 void page_cache_ra_order(struct readahead_control *ractl, 458 struct file_ra_state *ra, unsigned int new_order) 459 { 460 struct address_space *mapping = ractl->mapping; 461 pgoff_t start = readahead_index(ractl); 462 pgoff_t index = start; 463 unsigned int min_order = mapping_min_folio_order(mapping); 464 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 465 pgoff_t mark = index + ra->size - ra->async_size; 466 unsigned int nofs; 467 int err = 0; 468 gfp_t gfp = readahead_gfp_mask(mapping); 469 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping)); 470 471 /* 472 * Fallback when size < min_nrpages as each folio should be 473 * at least min_nrpages anyway. 474 */ 475 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size) 476 goto fallback; 477 478 limit = min(limit, index + ra->size - 1); 479 480 if (new_order < mapping_max_folio_order(mapping)) 481 new_order += 2; 482 483 new_order = min(mapping_max_folio_order(mapping), new_order); 484 new_order = min_t(unsigned int, new_order, ilog2(ra->size)); 485 new_order = max(new_order, min_order); 486 487 /* See comment in page_cache_ra_unbounded() */ 488 nofs = memalloc_nofs_save(); 489 filemap_invalidate_lock_shared(mapping); 490 /* 491 * If the new_order is greater than min_order and index is 492 * already aligned to new_order, then this will be noop as index 493 * aligned to new_order should also be aligned to min_order. 494 */ 495 ractl->_index = mapping_align_index(mapping, index); 496 index = readahead_index(ractl); 497 498 while (index <= limit) { 499 unsigned int order = new_order; 500 501 /* Align with smaller pages if needed */ 502 if (index & ((1UL << order) - 1)) 503 order = __ffs(index); 504 /* Don't allocate pages past EOF */ 505 while (order > min_order && index + (1UL << order) - 1 > limit) 506 order--; 507 err = ra_alloc_folio(ractl, index, mark, order, gfp); 508 if (err) 509 break; 510 index += 1UL << order; 511 } 512 513 read_pages(ractl); 514 filemap_invalidate_unlock_shared(mapping); 515 memalloc_nofs_restore(nofs); 516 517 /* 518 * If there were already pages in the page cache, then we may have 519 * left some gaps. Let the regular readahead code take care of this 520 * situation. 521 */ 522 if (!err) 523 return; 524 fallback: 525 do_page_cache_ra(ractl, ra->size - (index - start), ra->async_size); 526 } 527 528 static unsigned long ractl_max_pages(struct readahead_control *ractl, 529 unsigned long req_size) 530 { 531 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 532 unsigned long max_pages = ractl->ra->ra_pages; 533 534 /* 535 * If the request exceeds the readahead window, allow the read to 536 * be up to the optimal hardware IO size 537 */ 538 if (req_size > max_pages && bdi->io_pages > max_pages) 539 max_pages = min(req_size, bdi->io_pages); 540 return max_pages; 541 } 542 543 void page_cache_sync_ra(struct readahead_control *ractl, 544 unsigned long req_count) 545 { 546 pgoff_t index = readahead_index(ractl); 547 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 548 struct file_ra_state *ra = ractl->ra; 549 unsigned long max_pages, contig_count; 550 pgoff_t prev_index, miss; 551 552 /* 553 * Even if readahead is disabled, issue this request as readahead 554 * as we'll need it to satisfy the requested range. The forced 555 * readahead will do the right thing and limit the read to just the 556 * requested range, which we'll set to 1 page for this case. 557 */ 558 if (!ra->ra_pages || blk_cgroup_congested()) { 559 if (!ractl->file) 560 return; 561 req_count = 1; 562 do_forced_ra = true; 563 } 564 565 /* be dumb */ 566 if (do_forced_ra) { 567 force_page_cache_ra(ractl, req_count); 568 return; 569 } 570 571 max_pages = ractl_max_pages(ractl, req_count); 572 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 573 /* 574 * A start of file, oversized read, or sequential cache miss: 575 * trivial case: (index - prev_index) == 1 576 * unaligned reads: (index - prev_index) == 0 577 */ 578 if (!index || req_count > max_pages || index - prev_index <= 1UL) { 579 ra->start = index; 580 ra->size = get_init_ra_size(req_count, max_pages); 581 ra->async_size = ra->size > req_count ? ra->size - req_count : 582 ra->size >> 1; 583 goto readit; 584 } 585 586 /* 587 * Query the page cache and look for the traces(cached history pages) 588 * that a sequential stream would leave behind. 589 */ 590 rcu_read_lock(); 591 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); 592 rcu_read_unlock(); 593 contig_count = index - miss - 1; 594 /* 595 * Standalone, small random read. Read as is, and do not pollute the 596 * readahead state. 597 */ 598 if (contig_count <= req_count) { 599 do_page_cache_ra(ractl, req_count, 0); 600 return; 601 } 602 /* 603 * File cached from the beginning: 604 * it is a strong indication of long-run stream (or whole-file-read) 605 */ 606 if (miss == ULONG_MAX) 607 contig_count *= 2; 608 ra->start = index; 609 ra->size = min(contig_count + req_count, max_pages); 610 ra->async_size = 1; 611 readit: 612 ractl->_index = ra->start; 613 page_cache_ra_order(ractl, ra, 0); 614 } 615 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 616 617 void page_cache_async_ra(struct readahead_control *ractl, 618 struct folio *folio, unsigned long req_count) 619 { 620 unsigned long max_pages; 621 struct file_ra_state *ra = ractl->ra; 622 pgoff_t index = readahead_index(ractl); 623 pgoff_t expected, start; 624 unsigned int order = folio_order(folio); 625 626 /* no readahead */ 627 if (!ra->ra_pages) 628 return; 629 630 /* 631 * Same bit is used for PG_readahead and PG_reclaim. 632 */ 633 if (folio_test_writeback(folio)) 634 return; 635 636 folio_clear_readahead(folio); 637 638 if (blk_cgroup_congested()) 639 return; 640 641 max_pages = ractl_max_pages(ractl, req_count); 642 /* 643 * It's the expected callback index, assume sequential access. 644 * Ramp up sizes, and push forward the readahead window. 645 */ 646 expected = round_down(ra->start + ra->size - ra->async_size, 647 1UL << order); 648 if (index == expected) { 649 ra->start += ra->size; 650 ra->size = get_next_ra_size(ra, max_pages); 651 ra->async_size = ra->size; 652 goto readit; 653 } 654 655 /* 656 * Hit a marked folio without valid readahead state. 657 * E.g. interleaved reads. 658 * Query the pagecache for async_size, which normally equals to 659 * readahead size. Ramp it up and use it as the new readahead size. 660 */ 661 rcu_read_lock(); 662 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); 663 rcu_read_unlock(); 664 665 if (!start || start - index > max_pages) 666 return; 667 668 ra->start = start; 669 ra->size = start - index; /* old async_size */ 670 ra->size += req_count; 671 ra->size = get_next_ra_size(ra, max_pages); 672 ra->async_size = ra->size; 673 readit: 674 ractl->_index = ra->start; 675 page_cache_ra_order(ractl, ra, order); 676 } 677 EXPORT_SYMBOL_GPL(page_cache_async_ra); 678 679 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 680 { 681 CLASS(fd, f)(fd); 682 683 if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ)) 684 return -EBADF; 685 686 /* 687 * The readahead() syscall is intended to run only on files 688 * that can execute readahead. If readahead is not possible 689 * on this file, then we must return -EINVAL. 690 */ 691 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops || 692 (!S_ISREG(file_inode(fd_file(f))->i_mode) && 693 !S_ISBLK(file_inode(fd_file(f))->i_mode))) 694 return -EINVAL; 695 696 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED); 697 } 698 699 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 700 { 701 return ksys_readahead(fd, offset, count); 702 } 703 704 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 705 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 706 { 707 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 708 } 709 #endif 710 711 /** 712 * readahead_expand - Expand a readahead request 713 * @ractl: The request to be expanded 714 * @new_start: The revised start 715 * @new_len: The revised size of the request 716 * 717 * Attempt to expand a readahead request outwards from the current size to the 718 * specified size by inserting locked pages before and after the current window 719 * to increase the size to the new window. This may involve the insertion of 720 * THPs, in which case the window may get expanded even beyond what was 721 * requested. 722 * 723 * The algorithm will stop if it encounters a conflicting page already in the 724 * pagecache and leave a smaller expansion than requested. 725 * 726 * The caller must check for this by examining the revised @ractl object for a 727 * different expansion than was requested. 728 */ 729 void readahead_expand(struct readahead_control *ractl, 730 loff_t new_start, size_t new_len) 731 { 732 struct address_space *mapping = ractl->mapping; 733 struct file_ra_state *ra = ractl->ra; 734 pgoff_t new_index, new_nr_pages; 735 gfp_t gfp_mask = readahead_gfp_mask(mapping); 736 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping); 737 unsigned int min_order = mapping_min_folio_order(mapping); 738 739 new_index = new_start / PAGE_SIZE; 740 /* 741 * Readahead code should have aligned the ractl->_index to 742 * min_nrpages before calling readahead aops. 743 */ 744 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages)); 745 746 /* Expand the leading edge downwards */ 747 while (ractl->_index > new_index) { 748 unsigned long index = ractl->_index - 1; 749 struct folio *folio = xa_load(&mapping->i_pages, index); 750 751 if (folio && !xa_is_value(folio)) 752 return; /* Folio apparently present */ 753 754 folio = filemap_alloc_folio(gfp_mask, min_order); 755 if (!folio) 756 return; 757 758 index = mapping_align_index(mapping, index); 759 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 760 folio_put(folio); 761 return; 762 } 763 if (unlikely(folio_test_workingset(folio)) && 764 !ractl->_workingset) { 765 ractl->_workingset = true; 766 psi_memstall_enter(&ractl->_pflags); 767 } 768 ractl->_nr_pages += min_nrpages; 769 ractl->_index = folio->index; 770 } 771 772 new_len += new_start - readahead_pos(ractl); 773 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 774 775 /* Expand the trailing edge upwards */ 776 while (ractl->_nr_pages < new_nr_pages) { 777 unsigned long index = ractl->_index + ractl->_nr_pages; 778 struct folio *folio = xa_load(&mapping->i_pages, index); 779 780 if (folio && !xa_is_value(folio)) 781 return; /* Folio apparently present */ 782 783 folio = filemap_alloc_folio(gfp_mask, min_order); 784 if (!folio) 785 return; 786 787 index = mapping_align_index(mapping, index); 788 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 789 folio_put(folio); 790 return; 791 } 792 if (unlikely(folio_test_workingset(folio)) && 793 !ractl->_workingset) { 794 ractl->_workingset = true; 795 psi_memstall_enter(&ractl->_pflags); 796 } 797 ractl->_nr_pages += min_nrpages; 798 if (ra) { 799 ra->size += min_nrpages; 800 ra->async_size += min_nrpages; 801 } 802 } 803 } 804 EXPORT_SYMBOL(readahead_expand); 805