1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 132 #include "internal.h" 133 134 /* 135 * Initialise a struct file's readahead state. Assumes that the caller has 136 * memset *ra to zero. 137 */ 138 void 139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 140 { 141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 142 ra->prev_pos = -1; 143 } 144 EXPORT_SYMBOL_GPL(file_ra_state_init); 145 146 static void read_pages(struct readahead_control *rac) 147 { 148 const struct address_space_operations *aops = rac->mapping->a_ops; 149 struct folio *folio; 150 struct blk_plug plug; 151 152 if (!readahead_count(rac)) 153 return; 154 155 if (unlikely(rac->_workingset)) 156 psi_memstall_enter(&rac->_pflags); 157 blk_start_plug(&plug); 158 159 if (aops->readahead) { 160 aops->readahead(rac); 161 /* 162 * Clean up the remaining folios. The sizes in ->ra 163 * may be used to size the next readahead, so make sure 164 * they accurately reflect what happened. 165 */ 166 while ((folio = readahead_folio(rac)) != NULL) { 167 unsigned long nr = folio_nr_pages(folio); 168 169 folio_get(folio); 170 rac->ra->size -= nr; 171 if (rac->ra->async_size >= nr) { 172 rac->ra->async_size -= nr; 173 filemap_remove_folio(folio); 174 } 175 folio_unlock(folio); 176 folio_put(folio); 177 } 178 } else { 179 while ((folio = readahead_folio(rac)) != NULL) 180 aops->read_folio(rac->file, folio); 181 } 182 183 blk_finish_plug(&plug); 184 if (unlikely(rac->_workingset)) 185 psi_memstall_leave(&rac->_pflags); 186 rac->_workingset = false; 187 188 BUG_ON(readahead_count(rac)); 189 } 190 191 /** 192 * page_cache_ra_unbounded - Start unchecked readahead. 193 * @ractl: Readahead control. 194 * @nr_to_read: The number of pages to read. 195 * @lookahead_size: Where to start the next readahead. 196 * 197 * This function is for filesystems to call when they want to start 198 * readahead beyond a file's stated i_size. This is almost certainly 199 * not the function you want to call. Use page_cache_async_readahead() 200 * or page_cache_sync_readahead() instead. 201 * 202 * Context: File is referenced by caller. Mutexes may be held by caller. 203 * May sleep, but will not reenter filesystem to reclaim memory. 204 */ 205 void page_cache_ra_unbounded(struct readahead_control *ractl, 206 unsigned long nr_to_read, unsigned long lookahead_size) 207 { 208 struct address_space *mapping = ractl->mapping; 209 unsigned long index = readahead_index(ractl); 210 gfp_t gfp_mask = readahead_gfp_mask(mapping); 211 unsigned long i; 212 213 /* 214 * Partway through the readahead operation, we will have added 215 * locked pages to the page cache, but will not yet have submitted 216 * them for I/O. Adding another page may need to allocate memory, 217 * which can trigger memory reclaim. Telling the VM we're in 218 * the middle of a filesystem operation will cause it to not 219 * touch file-backed pages, preventing a deadlock. Most (all?) 220 * filesystems already specify __GFP_NOFS in their mapping's 221 * gfp_mask, but let's be explicit here. 222 */ 223 unsigned int nofs = memalloc_nofs_save(); 224 225 filemap_invalidate_lock_shared(mapping); 226 /* 227 * Preallocate as many pages as we will need. 228 */ 229 for (i = 0; i < nr_to_read; i++) { 230 struct folio *folio = xa_load(&mapping->i_pages, index + i); 231 232 if (folio && !xa_is_value(folio)) { 233 /* 234 * Page already present? Kick off the current batch 235 * of contiguous pages before continuing with the 236 * next batch. This page may be the one we would 237 * have intended to mark as Readahead, but we don't 238 * have a stable reference to this page, and it's 239 * not worth getting one just for that. 240 */ 241 read_pages(ractl); 242 ractl->_index++; 243 i = ractl->_index + ractl->_nr_pages - index - 1; 244 continue; 245 } 246 247 folio = filemap_alloc_folio(gfp_mask, 0); 248 if (!folio) 249 break; 250 if (filemap_add_folio(mapping, folio, index + i, 251 gfp_mask) < 0) { 252 folio_put(folio); 253 read_pages(ractl); 254 ractl->_index++; 255 i = ractl->_index + ractl->_nr_pages - index - 1; 256 continue; 257 } 258 if (i == nr_to_read - lookahead_size) 259 folio_set_readahead(folio); 260 ractl->_workingset |= folio_test_workingset(folio); 261 ractl->_nr_pages++; 262 } 263 264 /* 265 * Now start the IO. We ignore I/O errors - if the folio is not 266 * uptodate then the caller will launch read_folio again, and 267 * will then handle the error. 268 */ 269 read_pages(ractl); 270 filemap_invalidate_unlock_shared(mapping); 271 memalloc_nofs_restore(nofs); 272 } 273 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 274 275 /* 276 * do_page_cache_ra() actually reads a chunk of disk. It allocates 277 * the pages first, then submits them for I/O. This avoids the very bad 278 * behaviour which would occur if page allocations are causing VM writeback. 279 * We really don't want to intermingle reads and writes like that. 280 */ 281 static void do_page_cache_ra(struct readahead_control *ractl, 282 unsigned long nr_to_read, unsigned long lookahead_size) 283 { 284 struct inode *inode = ractl->mapping->host; 285 unsigned long index = readahead_index(ractl); 286 loff_t isize = i_size_read(inode); 287 pgoff_t end_index; /* The last page we want to read */ 288 289 if (isize == 0) 290 return; 291 292 end_index = (isize - 1) >> PAGE_SHIFT; 293 if (index > end_index) 294 return; 295 /* Don't read past the page containing the last byte of the file */ 296 if (nr_to_read > end_index - index) 297 nr_to_read = end_index - index + 1; 298 299 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 300 } 301 302 /* 303 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 304 * memory at once. 305 */ 306 void force_page_cache_ra(struct readahead_control *ractl, 307 unsigned long nr_to_read) 308 { 309 struct address_space *mapping = ractl->mapping; 310 struct file_ra_state *ra = ractl->ra; 311 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 312 unsigned long max_pages, index; 313 314 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 315 return; 316 317 /* 318 * If the request exceeds the readahead window, allow the read to 319 * be up to the optimal hardware IO size 320 */ 321 index = readahead_index(ractl); 322 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 323 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 324 while (nr_to_read) { 325 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 326 327 if (this_chunk > nr_to_read) 328 this_chunk = nr_to_read; 329 ractl->_index = index; 330 do_page_cache_ra(ractl, this_chunk, 0); 331 332 index += this_chunk; 333 nr_to_read -= this_chunk; 334 } 335 } 336 337 /* 338 * Set the initial window size, round to next power of 2 and square 339 * for small size, x 4 for medium, and x 2 for large 340 * for 128k (32 page) max ra 341 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 342 */ 343 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 344 { 345 unsigned long newsize = roundup_pow_of_two(size); 346 347 if (newsize <= max / 32) 348 newsize = newsize * 4; 349 else if (newsize <= max / 4) 350 newsize = newsize * 2; 351 else 352 newsize = max; 353 354 return newsize; 355 } 356 357 /* 358 * Get the previous window size, ramp it up, and 359 * return it as the new window size. 360 */ 361 static unsigned long get_next_ra_size(struct file_ra_state *ra, 362 unsigned long max) 363 { 364 unsigned long cur = ra->size; 365 366 if (cur < max / 16) 367 return 4 * cur; 368 if (cur <= max / 2) 369 return 2 * cur; 370 return max; 371 } 372 373 /* 374 * On-demand readahead design. 375 * 376 * The fields in struct file_ra_state represent the most-recently-executed 377 * readahead attempt: 378 * 379 * |<----- async_size ---------| 380 * |------------------- size -------------------->| 381 * |==================#===========================| 382 * ^start ^page marked with PG_readahead 383 * 384 * To overlap application thinking time and disk I/O time, we do 385 * `readahead pipelining': Do not wait until the application consumed all 386 * readahead pages and stalled on the missing page at readahead_index; 387 * Instead, submit an asynchronous readahead I/O as soon as there are 388 * only async_size pages left in the readahead window. Normally async_size 389 * will be equal to size, for maximum pipelining. 390 * 391 * In interleaved sequential reads, concurrent streams on the same fd can 392 * be invalidating each other's readahead state. So we flag the new readahead 393 * page at (start+size-async_size) with PG_readahead, and use it as readahead 394 * indicator. The flag won't be set on already cached pages, to avoid the 395 * readahead-for-nothing fuss, saving pointless page cache lookups. 396 * 397 * prev_pos tracks the last visited byte in the _previous_ read request. 398 * It should be maintained by the caller, and will be used for detecting 399 * small random reads. Note that the readahead algorithm checks loosely 400 * for sequential patterns. Hence interleaved reads might be served as 401 * sequential ones. 402 * 403 * There is a special-case: if the first page which the application tries to 404 * read happens to be the first page of the file, it is assumed that a linear 405 * read is about to happen and the window is immediately set to the initial size 406 * based on I/O request size and the max_readahead. 407 * 408 * The code ramps up the readahead size aggressively at first, but slow down as 409 * it approaches max_readhead. 410 */ 411 412 /* 413 * Count contiguously cached pages from @index-1 to @index-@max, 414 * this count is a conservative estimation of 415 * - length of the sequential read sequence, or 416 * - thrashing threshold in memory tight systems 417 */ 418 static pgoff_t count_history_pages(struct address_space *mapping, 419 pgoff_t index, unsigned long max) 420 { 421 pgoff_t head; 422 423 rcu_read_lock(); 424 head = page_cache_prev_miss(mapping, index - 1, max); 425 rcu_read_unlock(); 426 427 return index - 1 - head; 428 } 429 430 /* 431 * page cache context based readahead 432 */ 433 static int try_context_readahead(struct address_space *mapping, 434 struct file_ra_state *ra, 435 pgoff_t index, 436 unsigned long req_size, 437 unsigned long max) 438 { 439 pgoff_t size; 440 441 size = count_history_pages(mapping, index, max); 442 443 /* 444 * not enough history pages: 445 * it could be a random read 446 */ 447 if (size <= req_size) 448 return 0; 449 450 /* 451 * starts from beginning of file: 452 * it is a strong indication of long-run stream (or whole-file-read) 453 */ 454 if (size >= index) 455 size *= 2; 456 457 ra->start = index; 458 ra->size = min(size + req_size, max); 459 ra->async_size = 1; 460 461 return 1; 462 } 463 464 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 465 pgoff_t mark, unsigned int order, gfp_t gfp) 466 { 467 int err; 468 struct folio *folio = filemap_alloc_folio(gfp, order); 469 470 if (!folio) 471 return -ENOMEM; 472 mark = round_up(mark, 1UL << order); 473 if (index == mark) 474 folio_set_readahead(folio); 475 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 476 if (err) { 477 folio_put(folio); 478 return err; 479 } 480 481 ractl->_nr_pages += 1UL << order; 482 ractl->_workingset |= folio_test_workingset(folio); 483 return 0; 484 } 485 486 void page_cache_ra_order(struct readahead_control *ractl, 487 struct file_ra_state *ra, unsigned int new_order) 488 { 489 struct address_space *mapping = ractl->mapping; 490 pgoff_t index = readahead_index(ractl); 491 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 492 pgoff_t mark = index + ra->size - ra->async_size; 493 int err = 0; 494 gfp_t gfp = readahead_gfp_mask(mapping); 495 496 if (!mapping_large_folio_support(mapping) || ra->size < 4) 497 goto fallback; 498 499 limit = min(limit, index + ra->size - 1); 500 501 if (new_order < MAX_PAGECACHE_ORDER) { 502 new_order += 2; 503 if (new_order > MAX_PAGECACHE_ORDER) 504 new_order = MAX_PAGECACHE_ORDER; 505 while ((1 << new_order) > ra->size) 506 new_order--; 507 } 508 509 filemap_invalidate_lock_shared(mapping); 510 while (index <= limit) { 511 unsigned int order = new_order; 512 513 /* Align with smaller pages if needed */ 514 if (index & ((1UL << order) - 1)) { 515 order = __ffs(index); 516 if (order == 1) 517 order = 0; 518 } 519 /* Don't allocate pages past EOF */ 520 while (index + (1UL << order) - 1 > limit) { 521 if (--order == 1) 522 order = 0; 523 } 524 err = ra_alloc_folio(ractl, index, mark, order, gfp); 525 if (err) 526 break; 527 index += 1UL << order; 528 } 529 530 if (index > limit) { 531 ra->size += index - limit - 1; 532 ra->async_size += index - limit - 1; 533 } 534 535 read_pages(ractl); 536 filemap_invalidate_unlock_shared(mapping); 537 538 /* 539 * If there were already pages in the page cache, then we may have 540 * left some gaps. Let the regular readahead code take care of this 541 * situation. 542 */ 543 if (!err) 544 return; 545 fallback: 546 do_page_cache_ra(ractl, ra->size, ra->async_size); 547 } 548 549 /* 550 * A minimal readahead algorithm for trivial sequential/random reads. 551 */ 552 static void ondemand_readahead(struct readahead_control *ractl, 553 struct folio *folio, unsigned long req_size) 554 { 555 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 556 struct file_ra_state *ra = ractl->ra; 557 unsigned long max_pages = ra->ra_pages; 558 unsigned long add_pages; 559 pgoff_t index = readahead_index(ractl); 560 pgoff_t expected, prev_index; 561 unsigned int order = folio ? folio_order(folio) : 0; 562 563 /* 564 * If the request exceeds the readahead window, allow the read to 565 * be up to the optimal hardware IO size 566 */ 567 if (req_size > max_pages && bdi->io_pages > max_pages) 568 max_pages = min(req_size, bdi->io_pages); 569 570 /* 571 * start of file 572 */ 573 if (!index) 574 goto initial_readahead; 575 576 /* 577 * It's the expected callback index, assume sequential access. 578 * Ramp up sizes, and push forward the readahead window. 579 */ 580 expected = round_up(ra->start + ra->size - ra->async_size, 581 1UL << order); 582 if (index == expected || index == (ra->start + ra->size)) { 583 ra->start += ra->size; 584 ra->size = get_next_ra_size(ra, max_pages); 585 ra->async_size = ra->size; 586 goto readit; 587 } 588 589 /* 590 * Hit a marked folio without valid readahead state. 591 * E.g. interleaved reads. 592 * Query the pagecache for async_size, which normally equals to 593 * readahead size. Ramp it up and use it as the new readahead size. 594 */ 595 if (folio) { 596 pgoff_t start; 597 598 rcu_read_lock(); 599 start = page_cache_next_miss(ractl->mapping, index + 1, 600 max_pages); 601 rcu_read_unlock(); 602 603 if (!start || start - index > max_pages) 604 return; 605 606 ra->start = start; 607 ra->size = start - index; /* old async_size */ 608 ra->size += req_size; 609 ra->size = get_next_ra_size(ra, max_pages); 610 ra->async_size = ra->size; 611 goto readit; 612 } 613 614 /* 615 * oversize read 616 */ 617 if (req_size > max_pages) 618 goto initial_readahead; 619 620 /* 621 * sequential cache miss 622 * trivial case: (index - prev_index) == 1 623 * unaligned reads: (index - prev_index) == 0 624 */ 625 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 626 if (index - prev_index <= 1UL) 627 goto initial_readahead; 628 629 /* 630 * Query the page cache and look for the traces(cached history pages) 631 * that a sequential stream would leave behind. 632 */ 633 if (try_context_readahead(ractl->mapping, ra, index, req_size, 634 max_pages)) 635 goto readit; 636 637 /* 638 * standalone, small random read 639 * Read as is, and do not pollute the readahead state. 640 */ 641 do_page_cache_ra(ractl, req_size, 0); 642 return; 643 644 initial_readahead: 645 ra->start = index; 646 ra->size = get_init_ra_size(req_size, max_pages); 647 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 648 649 readit: 650 /* 651 * Will this read hit the readahead marker made by itself? 652 * If so, trigger the readahead marker hit now, and merge 653 * the resulted next readahead window into the current one. 654 * Take care of maximum IO pages as above. 655 */ 656 if (index == ra->start && ra->size == ra->async_size) { 657 add_pages = get_next_ra_size(ra, max_pages); 658 if (ra->size + add_pages <= max_pages) { 659 ra->async_size = add_pages; 660 ra->size += add_pages; 661 } else { 662 ra->size = max_pages; 663 ra->async_size = max_pages >> 1; 664 } 665 } 666 667 ractl->_index = ra->start; 668 page_cache_ra_order(ractl, ra, order); 669 } 670 671 void page_cache_sync_ra(struct readahead_control *ractl, 672 unsigned long req_count) 673 { 674 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 675 676 /* 677 * Even if readahead is disabled, issue this request as readahead 678 * as we'll need it to satisfy the requested range. The forced 679 * readahead will do the right thing and limit the read to just the 680 * requested range, which we'll set to 1 page for this case. 681 */ 682 if (!ractl->ra->ra_pages || blk_cgroup_congested()) { 683 if (!ractl->file) 684 return; 685 req_count = 1; 686 do_forced_ra = true; 687 } 688 689 /* be dumb */ 690 if (do_forced_ra) { 691 force_page_cache_ra(ractl, req_count); 692 return; 693 } 694 695 ondemand_readahead(ractl, NULL, req_count); 696 } 697 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 698 699 void page_cache_async_ra(struct readahead_control *ractl, 700 struct folio *folio, unsigned long req_count) 701 { 702 /* no readahead */ 703 if (!ractl->ra->ra_pages) 704 return; 705 706 /* 707 * Same bit is used for PG_readahead and PG_reclaim. 708 */ 709 if (folio_test_writeback(folio)) 710 return; 711 712 folio_clear_readahead(folio); 713 714 if (blk_cgroup_congested()) 715 return; 716 717 ondemand_readahead(ractl, folio, req_count); 718 } 719 EXPORT_SYMBOL_GPL(page_cache_async_ra); 720 721 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 722 { 723 ssize_t ret; 724 struct fd f; 725 726 ret = -EBADF; 727 f = fdget(fd); 728 if (!f.file || !(f.file->f_mode & FMODE_READ)) 729 goto out; 730 731 /* 732 * The readahead() syscall is intended to run only on files 733 * that can execute readahead. If readahead is not possible 734 * on this file, then we must return -EINVAL. 735 */ 736 ret = -EINVAL; 737 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 738 (!S_ISREG(file_inode(f.file)->i_mode) && 739 !S_ISBLK(file_inode(f.file)->i_mode))) 740 goto out; 741 742 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 743 out: 744 fdput(f); 745 return ret; 746 } 747 748 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 749 { 750 return ksys_readahead(fd, offset, count); 751 } 752 753 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 754 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 755 { 756 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 757 } 758 #endif 759 760 /** 761 * readahead_expand - Expand a readahead request 762 * @ractl: The request to be expanded 763 * @new_start: The revised start 764 * @new_len: The revised size of the request 765 * 766 * Attempt to expand a readahead request outwards from the current size to the 767 * specified size by inserting locked pages before and after the current window 768 * to increase the size to the new window. This may involve the insertion of 769 * THPs, in which case the window may get expanded even beyond what was 770 * requested. 771 * 772 * The algorithm will stop if it encounters a conflicting page already in the 773 * pagecache and leave a smaller expansion than requested. 774 * 775 * The caller must check for this by examining the revised @ractl object for a 776 * different expansion than was requested. 777 */ 778 void readahead_expand(struct readahead_control *ractl, 779 loff_t new_start, size_t new_len) 780 { 781 struct address_space *mapping = ractl->mapping; 782 struct file_ra_state *ra = ractl->ra; 783 pgoff_t new_index, new_nr_pages; 784 gfp_t gfp_mask = readahead_gfp_mask(mapping); 785 786 new_index = new_start / PAGE_SIZE; 787 788 /* Expand the leading edge downwards */ 789 while (ractl->_index > new_index) { 790 unsigned long index = ractl->_index - 1; 791 struct folio *folio = xa_load(&mapping->i_pages, index); 792 793 if (folio && !xa_is_value(folio)) 794 return; /* Folio apparently present */ 795 796 folio = filemap_alloc_folio(gfp_mask, 0); 797 if (!folio) 798 return; 799 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 800 folio_put(folio); 801 return; 802 } 803 if (unlikely(folio_test_workingset(folio)) && 804 !ractl->_workingset) { 805 ractl->_workingset = true; 806 psi_memstall_enter(&ractl->_pflags); 807 } 808 ractl->_nr_pages++; 809 ractl->_index = folio->index; 810 } 811 812 new_len += new_start - readahead_pos(ractl); 813 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 814 815 /* Expand the trailing edge upwards */ 816 while (ractl->_nr_pages < new_nr_pages) { 817 unsigned long index = ractl->_index + ractl->_nr_pages; 818 struct folio *folio = xa_load(&mapping->i_pages, index); 819 820 if (folio && !xa_is_value(folio)) 821 return; /* Folio apparently present */ 822 823 folio = filemap_alloc_folio(gfp_mask, 0); 824 if (!folio) 825 return; 826 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 827 folio_put(folio); 828 return; 829 } 830 if (unlikely(folio_test_workingset(folio)) && 831 !ractl->_workingset) { 832 ractl->_workingset = true; 833 psi_memstall_enter(&ractl->_pflags); 834 } 835 ractl->_nr_pages++; 836 if (ra) { 837 ra->size++; 838 ra->async_size++; 839 } 840 } 841 } 842 EXPORT_SYMBOL(readahead_expand); 843