xref: /linux/mm/readahead.c (revision 7a5f93ea5862da91488975acaa0c7abd508f192b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 /**
12  * DOC: Readahead Overview
13  *
14  * Readahead is used to read content into the page cache before it is
15  * explicitly requested by the application.  Readahead only ever
16  * attempts to read folios that are not yet in the page cache.  If a
17  * folio is present but not up-to-date, readahead will not try to read
18  * it. In that case a simple ->read_folio() will be requested.
19  *
20  * Readahead is triggered when an application read request (whether a
21  * system call or a page fault) finds that the requested folio is not in
22  * the page cache, or that it is in the page cache and has the
23  * readahead flag set.  This flag indicates that the folio was read
24  * as part of a previous readahead request and now that it has been
25  * accessed, it is time for the next readahead.
26  *
27  * Each readahead request is partly synchronous read, and partly async
28  * readahead.  This is reflected in the struct file_ra_state which
29  * contains ->size being the total number of pages, and ->async_size
30  * which is the number of pages in the async section.  The readahead
31  * flag will be set on the first folio in this async section to trigger
32  * a subsequent readahead.  Once a series of sequential reads has been
33  * established, there should be no need for a synchronous component and
34  * all readahead request will be fully asynchronous.
35  *
36  * When either of the triggers causes a readahead, three numbers need
37  * to be determined: the start of the region to read, the size of the
38  * region, and the size of the async tail.
39  *
40  * The start of the region is simply the first page address at or after
41  * the accessed address, which is not currently populated in the page
42  * cache.  This is found with a simple search in the page cache.
43  *
44  * The size of the async tail is determined by subtracting the size that
45  * was explicitly requested from the determined request size, unless
46  * this would be less than zero - then zero is used.  NOTE THIS
47  * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48  * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49  *
50  * The size of the region is normally determined from the size of the
51  * previous readahead which loaded the preceding pages.  This may be
52  * discovered from the struct file_ra_state for simple sequential reads,
53  * or from examining the state of the page cache when multiple
54  * sequential reads are interleaved.  Specifically: where the readahead
55  * was triggered by the readahead flag, the size of the previous
56  * readahead is assumed to be the number of pages from the triggering
57  * page to the start of the new readahead.  In these cases, the size of
58  * the previous readahead is scaled, often doubled, for the new
59  * readahead, though see get_next_ra_size() for details.
60  *
61  * If the size of the previous read cannot be determined, the number of
62  * preceding pages in the page cache is used to estimate the size of
63  * a previous read.  This estimate could easily be misled by random
64  * reads being coincidentally adjacent, so it is ignored unless it is
65  * larger than the current request, and it is not scaled up, unless it
66  * is at the start of file.
67  *
68  * In general readahead is accelerated at the start of the file, as
69  * reads from there are often sequential.  There are other minor
70  * adjustments to the readahead size in various special cases and these
71  * are best discovered by reading the code.
72  *
73  * The above calculation, based on the previous readahead size,
74  * determines the size of the readahead, to which any requested read
75  * size may be added.
76  *
77  * Readahead requests are sent to the filesystem using the ->readahead()
78  * address space operation, for which mpage_readahead() is a canonical
79  * implementation.  ->readahead() should normally initiate reads on all
80  * folios, but may fail to read any or all folios without causing an I/O
81  * error.  The page cache reading code will issue a ->read_folio() request
82  * for any folio which ->readahead() did not read, and only an error
83  * from this will be final.
84  *
85  * ->readahead() will generally call readahead_folio() repeatedly to get
86  * each folio from those prepared for readahead.  It may fail to read a
87  * folio by:
88  *
89  * * not calling readahead_folio() sufficiently many times, effectively
90  *   ignoring some folios, as might be appropriate if the path to
91  *   storage is congested.
92  *
93  * * failing to actually submit a read request for a given folio,
94  *   possibly due to insufficient resources, or
95  *
96  * * getting an error during subsequent processing of a request.
97  *
98  * In the last two cases, the folio should be unlocked by the filesystem
99  * to indicate that the read attempt has failed.  In the first case the
100  * folio will be unlocked by the VFS.
101  *
102  * Those folios not in the final ``async_size`` of the request should be
103  * considered to be important and ->readahead() should not fail them due
104  * to congestion or temporary resource unavailability, but should wait
105  * for necessary resources (e.g.  memory or indexing information) to
106  * become available.  Folios in the final ``async_size`` may be
107  * considered less urgent and failure to read them is more acceptable.
108  * In this case it is best to use filemap_remove_folio() to remove the
109  * folios from the page cache as is automatically done for folios that
110  * were not fetched with readahead_folio().  This will allow a
111  * subsequent synchronous readahead request to try them again.  If they
112  * are left in the page cache, then they will be read individually using
113  * ->read_folio() which may be less efficient.
114  */
115 
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131 
132 #include "internal.h"
133 
134 /*
135  * Initialise a struct file's readahead state.  Assumes that the caller has
136  * memset *ra to zero.
137  */
138 void
139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140 {
141 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 	ra->prev_pos = -1;
143 }
144 EXPORT_SYMBOL_GPL(file_ra_state_init);
145 
146 static void read_pages(struct readahead_control *rac)
147 {
148 	const struct address_space_operations *aops = rac->mapping->a_ops;
149 	struct folio *folio;
150 	struct blk_plug plug;
151 
152 	if (!readahead_count(rac))
153 		return;
154 
155 	if (unlikely(rac->_workingset))
156 		psi_memstall_enter(&rac->_pflags);
157 	blk_start_plug(&plug);
158 
159 	if (aops->readahead) {
160 		aops->readahead(rac);
161 		/*
162 		 * Clean up the remaining folios.  The sizes in ->ra
163 		 * may be used to size the next readahead, so make sure
164 		 * they accurately reflect what happened.
165 		 */
166 		while ((folio = readahead_folio(rac)) != NULL) {
167 			unsigned long nr = folio_nr_pages(folio);
168 
169 			folio_get(folio);
170 			rac->ra->size -= nr;
171 			if (rac->ra->async_size >= nr) {
172 				rac->ra->async_size -= nr;
173 				filemap_remove_folio(folio);
174 			}
175 			folio_unlock(folio);
176 			folio_put(folio);
177 		}
178 	} else {
179 		while ((folio = readahead_folio(rac)) != NULL)
180 			aops->read_folio(rac->file, folio);
181 	}
182 
183 	blk_finish_plug(&plug);
184 	if (unlikely(rac->_workingset))
185 		psi_memstall_leave(&rac->_pflags);
186 	rac->_workingset = false;
187 
188 	BUG_ON(readahead_count(rac));
189 }
190 
191 /**
192  * page_cache_ra_unbounded - Start unchecked readahead.
193  * @ractl: Readahead control.
194  * @nr_to_read: The number of pages to read.
195  * @lookahead_size: Where to start the next readahead.
196  *
197  * This function is for filesystems to call when they want to start
198  * readahead beyond a file's stated i_size.  This is almost certainly
199  * not the function you want to call.  Use page_cache_async_readahead()
200  * or page_cache_sync_readahead() instead.
201  *
202  * Context: File is referenced by caller.  Mutexes may be held by caller.
203  * May sleep, but will not reenter filesystem to reclaim memory.
204  */
205 void page_cache_ra_unbounded(struct readahead_control *ractl,
206 		unsigned long nr_to_read, unsigned long lookahead_size)
207 {
208 	struct address_space *mapping = ractl->mapping;
209 	unsigned long index = readahead_index(ractl);
210 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
211 	unsigned long mark = ULONG_MAX, i = 0;
212 	unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
213 
214 	/*
215 	 * Partway through the readahead operation, we will have added
216 	 * locked pages to the page cache, but will not yet have submitted
217 	 * them for I/O.  Adding another page may need to allocate memory,
218 	 * which can trigger memory reclaim.  Telling the VM we're in
219 	 * the middle of a filesystem operation will cause it to not
220 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
221 	 * filesystems already specify __GFP_NOFS in their mapping's
222 	 * gfp_mask, but let's be explicit here.
223 	 */
224 	unsigned int nofs = memalloc_nofs_save();
225 
226 	filemap_invalidate_lock_shared(mapping);
227 	index = mapping_align_index(mapping, index);
228 
229 	/*
230 	 * As iterator `i` is aligned to min_nrpages, round_up the
231 	 * difference between nr_to_read and lookahead_size to mark the
232 	 * index that only has lookahead or "async_region" to set the
233 	 * readahead flag.
234 	 */
235 	if (lookahead_size <= nr_to_read) {
236 		unsigned long ra_folio_index;
237 
238 		ra_folio_index = round_up(readahead_index(ractl) +
239 					  nr_to_read - lookahead_size,
240 					  min_nrpages);
241 		mark = ra_folio_index - index;
242 	}
243 	nr_to_read += readahead_index(ractl) - index;
244 	ractl->_index = index;
245 
246 	/*
247 	 * Preallocate as many pages as we will need.
248 	 */
249 	while (i < nr_to_read) {
250 		struct folio *folio = xa_load(&mapping->i_pages, index + i);
251 		int ret;
252 
253 		if (folio && !xa_is_value(folio)) {
254 			/*
255 			 * Page already present?  Kick off the current batch
256 			 * of contiguous pages before continuing with the
257 			 * next batch.  This page may be the one we would
258 			 * have intended to mark as Readahead, but we don't
259 			 * have a stable reference to this page, and it's
260 			 * not worth getting one just for that.
261 			 */
262 			read_pages(ractl);
263 			ractl->_index += min_nrpages;
264 			i = ractl->_index + ractl->_nr_pages - index;
265 			continue;
266 		}
267 
268 		folio = filemap_alloc_folio(gfp_mask,
269 					    mapping_min_folio_order(mapping));
270 		if (!folio)
271 			break;
272 
273 		ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
274 		if (ret < 0) {
275 			folio_put(folio);
276 			if (ret == -ENOMEM)
277 				break;
278 			read_pages(ractl);
279 			ractl->_index += min_nrpages;
280 			i = ractl->_index + ractl->_nr_pages - index;
281 			continue;
282 		}
283 		if (i == mark)
284 			folio_set_readahead(folio);
285 		ractl->_workingset |= folio_test_workingset(folio);
286 		ractl->_nr_pages += min_nrpages;
287 		i += min_nrpages;
288 	}
289 
290 	/*
291 	 * Now start the IO.  We ignore I/O errors - if the folio is not
292 	 * uptodate then the caller will launch read_folio again, and
293 	 * will then handle the error.
294 	 */
295 	read_pages(ractl);
296 	filemap_invalidate_unlock_shared(mapping);
297 	memalloc_nofs_restore(nofs);
298 }
299 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
300 
301 /*
302  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
303  * the pages first, then submits them for I/O. This avoids the very bad
304  * behaviour which would occur if page allocations are causing VM writeback.
305  * We really don't want to intermingle reads and writes like that.
306  */
307 static void do_page_cache_ra(struct readahead_control *ractl,
308 		unsigned long nr_to_read, unsigned long lookahead_size)
309 {
310 	struct inode *inode = ractl->mapping->host;
311 	unsigned long index = readahead_index(ractl);
312 	loff_t isize = i_size_read(inode);
313 	pgoff_t end_index;	/* The last page we want to read */
314 
315 	if (isize == 0)
316 		return;
317 
318 	end_index = (isize - 1) >> PAGE_SHIFT;
319 	if (index > end_index)
320 		return;
321 	/* Don't read past the page containing the last byte of the file */
322 	if (nr_to_read > end_index - index)
323 		nr_to_read = end_index - index + 1;
324 
325 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
326 }
327 
328 /*
329  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
330  * memory at once.
331  */
332 void force_page_cache_ra(struct readahead_control *ractl,
333 		unsigned long nr_to_read)
334 {
335 	struct address_space *mapping = ractl->mapping;
336 	struct file_ra_state *ra = ractl->ra;
337 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
338 	unsigned long max_pages;
339 
340 	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
341 		return;
342 
343 	/*
344 	 * If the request exceeds the readahead window, allow the read to
345 	 * be up to the optimal hardware IO size
346 	 */
347 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
348 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
349 	while (nr_to_read) {
350 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
351 
352 		if (this_chunk > nr_to_read)
353 			this_chunk = nr_to_read;
354 		do_page_cache_ra(ractl, this_chunk, 0);
355 
356 		nr_to_read -= this_chunk;
357 	}
358 }
359 
360 /*
361  * Set the initial window size, round to next power of 2 and square
362  * for small size, x 4 for medium, and x 2 for large
363  * for 128k (32 page) max ra
364  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
365  */
366 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
367 {
368 	unsigned long newsize = roundup_pow_of_two(size);
369 
370 	if (newsize <= max / 32)
371 		newsize = newsize * 4;
372 	else if (newsize <= max / 4)
373 		newsize = newsize * 2;
374 	else
375 		newsize = max;
376 
377 	return newsize;
378 }
379 
380 /*
381  *  Get the previous window size, ramp it up, and
382  *  return it as the new window size.
383  */
384 static unsigned long get_next_ra_size(struct file_ra_state *ra,
385 				      unsigned long max)
386 {
387 	unsigned long cur = ra->size;
388 
389 	if (cur < max / 16)
390 		return 4 * cur;
391 	if (cur <= max / 2)
392 		return 2 * cur;
393 	return max;
394 }
395 
396 /*
397  * On-demand readahead design.
398  *
399  * The fields in struct file_ra_state represent the most-recently-executed
400  * readahead attempt:
401  *
402  *                        |<----- async_size ---------|
403  *     |------------------- size -------------------->|
404  *     |==================#===========================|
405  *     ^start             ^page marked with PG_readahead
406  *
407  * To overlap application thinking time and disk I/O time, we do
408  * `readahead pipelining': Do not wait until the application consumed all
409  * readahead pages and stalled on the missing page at readahead_index;
410  * Instead, submit an asynchronous readahead I/O as soon as there are
411  * only async_size pages left in the readahead window. Normally async_size
412  * will be equal to size, for maximum pipelining.
413  *
414  * In interleaved sequential reads, concurrent streams on the same fd can
415  * be invalidating each other's readahead state. So we flag the new readahead
416  * page at (start+size-async_size) with PG_readahead, and use it as readahead
417  * indicator. The flag won't be set on already cached pages, to avoid the
418  * readahead-for-nothing fuss, saving pointless page cache lookups.
419  *
420  * prev_pos tracks the last visited byte in the _previous_ read request.
421  * It should be maintained by the caller, and will be used for detecting
422  * small random reads. Note that the readahead algorithm checks loosely
423  * for sequential patterns. Hence interleaved reads might be served as
424  * sequential ones.
425  *
426  * There is a special-case: if the first page which the application tries to
427  * read happens to be the first page of the file, it is assumed that a linear
428  * read is about to happen and the window is immediately set to the initial size
429  * based on I/O request size and the max_readahead.
430  *
431  * The code ramps up the readahead size aggressively at first, but slow down as
432  * it approaches max_readhead.
433  */
434 
435 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
436 		pgoff_t mark, unsigned int order, gfp_t gfp)
437 {
438 	int err;
439 	struct folio *folio = filemap_alloc_folio(gfp, order);
440 
441 	if (!folio)
442 		return -ENOMEM;
443 	mark = round_down(mark, 1UL << order);
444 	if (index == mark)
445 		folio_set_readahead(folio);
446 	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
447 	if (err) {
448 		folio_put(folio);
449 		return err;
450 	}
451 
452 	ractl->_nr_pages += 1UL << order;
453 	ractl->_workingset |= folio_test_workingset(folio);
454 	return 0;
455 }
456 
457 void page_cache_ra_order(struct readahead_control *ractl,
458 		struct file_ra_state *ra, unsigned int new_order)
459 {
460 	struct address_space *mapping = ractl->mapping;
461 	pgoff_t index = readahead_index(ractl);
462 	unsigned int min_order = mapping_min_folio_order(mapping);
463 	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
464 	pgoff_t mark = index + ra->size - ra->async_size;
465 	unsigned int nofs;
466 	int err = 0;
467 	gfp_t gfp = readahead_gfp_mask(mapping);
468 	unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping));
469 
470 	/*
471 	 * Fallback when size < min_nrpages as each folio should be
472 	 * at least min_nrpages anyway.
473 	 */
474 	if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size)
475 		goto fallback;
476 
477 	limit = min(limit, index + ra->size - 1);
478 
479 	if (new_order < mapping_max_folio_order(mapping))
480 		new_order += 2;
481 
482 	new_order = min(mapping_max_folio_order(mapping), new_order);
483 	new_order = min_t(unsigned int, new_order, ilog2(ra->size));
484 	new_order = max(new_order, min_order);
485 
486 	/* See comment in page_cache_ra_unbounded() */
487 	nofs = memalloc_nofs_save();
488 	filemap_invalidate_lock_shared(mapping);
489 	/*
490 	 * If the new_order is greater than min_order and index is
491 	 * already aligned to new_order, then this will be noop as index
492 	 * aligned to new_order should also be aligned to min_order.
493 	 */
494 	ractl->_index = mapping_align_index(mapping, index);
495 	index = readahead_index(ractl);
496 
497 	while (index <= limit) {
498 		unsigned int order = new_order;
499 
500 		/* Align with smaller pages if needed */
501 		if (index & ((1UL << order) - 1))
502 			order = __ffs(index);
503 		/* Don't allocate pages past EOF */
504 		while (order > min_order && index + (1UL << order) - 1 > limit)
505 			order--;
506 		err = ra_alloc_folio(ractl, index, mark, order, gfp);
507 		if (err)
508 			break;
509 		index += 1UL << order;
510 	}
511 
512 	read_pages(ractl);
513 	filemap_invalidate_unlock_shared(mapping);
514 	memalloc_nofs_restore(nofs);
515 
516 	/*
517 	 * If there were already pages in the page cache, then we may have
518 	 * left some gaps.  Let the regular readahead code take care of this
519 	 * situation.
520 	 */
521 	if (!err)
522 		return;
523 fallback:
524 	do_page_cache_ra(ractl, ra->size, ra->async_size);
525 }
526 
527 static unsigned long ractl_max_pages(struct readahead_control *ractl,
528 		unsigned long req_size)
529 {
530 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
531 	unsigned long max_pages = ractl->ra->ra_pages;
532 
533 	/*
534 	 * If the request exceeds the readahead window, allow the read to
535 	 * be up to the optimal hardware IO size
536 	 */
537 	if (req_size > max_pages && bdi->io_pages > max_pages)
538 		max_pages = min(req_size, bdi->io_pages);
539 	return max_pages;
540 }
541 
542 void page_cache_sync_ra(struct readahead_control *ractl,
543 		unsigned long req_count)
544 {
545 	pgoff_t index = readahead_index(ractl);
546 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
547 	struct file_ra_state *ra = ractl->ra;
548 	unsigned long max_pages, contig_count;
549 	pgoff_t prev_index, miss;
550 
551 	/*
552 	 * Even if readahead is disabled, issue this request as readahead
553 	 * as we'll need it to satisfy the requested range. The forced
554 	 * readahead will do the right thing and limit the read to just the
555 	 * requested range, which we'll set to 1 page for this case.
556 	 */
557 	if (!ra->ra_pages || blk_cgroup_congested()) {
558 		if (!ractl->file)
559 			return;
560 		req_count = 1;
561 		do_forced_ra = true;
562 	}
563 
564 	/* be dumb */
565 	if (do_forced_ra) {
566 		force_page_cache_ra(ractl, req_count);
567 		return;
568 	}
569 
570 	max_pages = ractl_max_pages(ractl, req_count);
571 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
572 	/*
573 	 * A start of file, oversized read, or sequential cache miss:
574 	 * trivial case: (index - prev_index) == 1
575 	 * unaligned reads: (index - prev_index) == 0
576 	 */
577 	if (!index || req_count > max_pages || index - prev_index <= 1UL) {
578 		ra->start = index;
579 		ra->size = get_init_ra_size(req_count, max_pages);
580 		ra->async_size = ra->size > req_count ? ra->size - req_count :
581 							ra->size >> 1;
582 		goto readit;
583 	}
584 
585 	/*
586 	 * Query the page cache and look for the traces(cached history pages)
587 	 * that a sequential stream would leave behind.
588 	 */
589 	rcu_read_lock();
590 	miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
591 	rcu_read_unlock();
592 	contig_count = index - miss - 1;
593 	/*
594 	 * Standalone, small random read. Read as is, and do not pollute the
595 	 * readahead state.
596 	 */
597 	if (contig_count <= req_count) {
598 		do_page_cache_ra(ractl, req_count, 0);
599 		return;
600 	}
601 	/*
602 	 * File cached from the beginning:
603 	 * it is a strong indication of long-run stream (or whole-file-read)
604 	 */
605 	if (miss == ULONG_MAX)
606 		contig_count *= 2;
607 	ra->start = index;
608 	ra->size = min(contig_count + req_count, max_pages);
609 	ra->async_size = 1;
610 readit:
611 	ractl->_index = ra->start;
612 	page_cache_ra_order(ractl, ra, 0);
613 }
614 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
615 
616 void page_cache_async_ra(struct readahead_control *ractl,
617 		struct folio *folio, unsigned long req_count)
618 {
619 	unsigned long max_pages;
620 	struct file_ra_state *ra = ractl->ra;
621 	pgoff_t index = readahead_index(ractl);
622 	pgoff_t expected, start;
623 	unsigned int order = folio_order(folio);
624 
625 	/* no readahead */
626 	if (!ra->ra_pages)
627 		return;
628 
629 	/*
630 	 * Same bit is used for PG_readahead and PG_reclaim.
631 	 */
632 	if (folio_test_writeback(folio))
633 		return;
634 
635 	folio_clear_readahead(folio);
636 
637 	if (blk_cgroup_congested())
638 		return;
639 
640 	max_pages = ractl_max_pages(ractl, req_count);
641 	/*
642 	 * It's the expected callback index, assume sequential access.
643 	 * Ramp up sizes, and push forward the readahead window.
644 	 */
645 	expected = round_down(ra->start + ra->size - ra->async_size,
646 			1UL << order);
647 	if (index == expected) {
648 		ra->start += ra->size;
649 		ra->size = get_next_ra_size(ra, max_pages);
650 		ra->async_size = ra->size;
651 		goto readit;
652 	}
653 
654 	/*
655 	 * Hit a marked folio without valid readahead state.
656 	 * E.g. interleaved reads.
657 	 * Query the pagecache for async_size, which normally equals to
658 	 * readahead size. Ramp it up and use it as the new readahead size.
659 	 */
660 	rcu_read_lock();
661 	start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
662 	rcu_read_unlock();
663 
664 	if (!start || start - index > max_pages)
665 		return;
666 
667 	ra->start = start;
668 	ra->size = start - index;	/* old async_size */
669 	ra->size += req_count;
670 	ra->size = get_next_ra_size(ra, max_pages);
671 	ra->async_size = ra->size;
672 readit:
673 	ractl->_index = ra->start;
674 	page_cache_ra_order(ractl, ra, order);
675 }
676 EXPORT_SYMBOL_GPL(page_cache_async_ra);
677 
678 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
679 {
680 	CLASS(fd, f)(fd);
681 
682 	if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ))
683 		return -EBADF;
684 
685 	/*
686 	 * The readahead() syscall is intended to run only on files
687 	 * that can execute readahead. If readahead is not possible
688 	 * on this file, then we must return -EINVAL.
689 	 */
690 	if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops ||
691 	    (!S_ISREG(file_inode(fd_file(f))->i_mode) &&
692 	    !S_ISBLK(file_inode(fd_file(f))->i_mode)))
693 		return -EINVAL;
694 
695 	return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
696 }
697 
698 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
699 {
700 	return ksys_readahead(fd, offset, count);
701 }
702 
703 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
704 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
705 {
706 	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
707 }
708 #endif
709 
710 /**
711  * readahead_expand - Expand a readahead request
712  * @ractl: The request to be expanded
713  * @new_start: The revised start
714  * @new_len: The revised size of the request
715  *
716  * Attempt to expand a readahead request outwards from the current size to the
717  * specified size by inserting locked pages before and after the current window
718  * to increase the size to the new window.  This may involve the insertion of
719  * THPs, in which case the window may get expanded even beyond what was
720  * requested.
721  *
722  * The algorithm will stop if it encounters a conflicting page already in the
723  * pagecache and leave a smaller expansion than requested.
724  *
725  * The caller must check for this by examining the revised @ractl object for a
726  * different expansion than was requested.
727  */
728 void readahead_expand(struct readahead_control *ractl,
729 		      loff_t new_start, size_t new_len)
730 {
731 	struct address_space *mapping = ractl->mapping;
732 	struct file_ra_state *ra = ractl->ra;
733 	pgoff_t new_index, new_nr_pages;
734 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
735 	unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
736 	unsigned int min_order = mapping_min_folio_order(mapping);
737 
738 	new_index = new_start / PAGE_SIZE;
739 	/*
740 	 * Readahead code should have aligned the ractl->_index to
741 	 * min_nrpages before calling readahead aops.
742 	 */
743 	VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
744 
745 	/* Expand the leading edge downwards */
746 	while (ractl->_index > new_index) {
747 		unsigned long index = ractl->_index - 1;
748 		struct folio *folio = xa_load(&mapping->i_pages, index);
749 
750 		if (folio && !xa_is_value(folio))
751 			return; /* Folio apparently present */
752 
753 		folio = filemap_alloc_folio(gfp_mask, min_order);
754 		if (!folio)
755 			return;
756 
757 		index = mapping_align_index(mapping, index);
758 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
759 			folio_put(folio);
760 			return;
761 		}
762 		if (unlikely(folio_test_workingset(folio)) &&
763 				!ractl->_workingset) {
764 			ractl->_workingset = true;
765 			psi_memstall_enter(&ractl->_pflags);
766 		}
767 		ractl->_nr_pages += min_nrpages;
768 		ractl->_index = folio->index;
769 	}
770 
771 	new_len += new_start - readahead_pos(ractl);
772 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
773 
774 	/* Expand the trailing edge upwards */
775 	while (ractl->_nr_pages < new_nr_pages) {
776 		unsigned long index = ractl->_index + ractl->_nr_pages;
777 		struct folio *folio = xa_load(&mapping->i_pages, index);
778 
779 		if (folio && !xa_is_value(folio))
780 			return; /* Folio apparently present */
781 
782 		folio = filemap_alloc_folio(gfp_mask, min_order);
783 		if (!folio)
784 			return;
785 
786 		index = mapping_align_index(mapping, index);
787 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
788 			folio_put(folio);
789 			return;
790 		}
791 		if (unlikely(folio_test_workingset(folio)) &&
792 				!ractl->_workingset) {
793 			ractl->_workingset = true;
794 			psi_memstall_enter(&ractl->_pflags);
795 		}
796 		ractl->_nr_pages += min_nrpages;
797 		if (ra) {
798 			ra->size += min_nrpages;
799 			ra->async_size += min_nrpages;
800 		}
801 	}
802 }
803 EXPORT_SYMBOL(readahead_expand);
804