xref: /linux/mm/readahead.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 /**
12  * DOC: Readahead Overview
13  *
14  * Readahead is used to read content into the page cache before it is
15  * explicitly requested by the application.  Readahead only ever
16  * attempts to read folios that are not yet in the page cache.  If a
17  * folio is present but not up-to-date, readahead will not try to read
18  * it. In that case a simple ->read_folio() will be requested.
19  *
20  * Readahead is triggered when an application read request (whether a
21  * system call or a page fault) finds that the requested folio is not in
22  * the page cache, or that it is in the page cache and has the
23  * readahead flag set.  This flag indicates that the folio was read
24  * as part of a previous readahead request and now that it has been
25  * accessed, it is time for the next readahead.
26  *
27  * Each readahead request is partly synchronous read, and partly async
28  * readahead.  This is reflected in the struct file_ra_state which
29  * contains ->size being the total number of pages, and ->async_size
30  * which is the number of pages in the async section.  The readahead
31  * flag will be set on the first folio in this async section to trigger
32  * a subsequent readahead.  Once a series of sequential reads has been
33  * established, there should be no need for a synchronous component and
34  * all readahead request will be fully asynchronous.
35  *
36  * When either of the triggers causes a readahead, three numbers need
37  * to be determined: the start of the region to read, the size of the
38  * region, and the size of the async tail.
39  *
40  * The start of the region is simply the first page address at or after
41  * the accessed address, which is not currently populated in the page
42  * cache.  This is found with a simple search in the page cache.
43  *
44  * The size of the async tail is determined by subtracting the size that
45  * was explicitly requested from the determined request size, unless
46  * this would be less than zero - then zero is used.  NOTE THIS
47  * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48  * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49  *
50  * The size of the region is normally determined from the size of the
51  * previous readahead which loaded the preceding pages.  This may be
52  * discovered from the struct file_ra_state for simple sequential reads,
53  * or from examining the state of the page cache when multiple
54  * sequential reads are interleaved.  Specifically: where the readahead
55  * was triggered by the readahead flag, the size of the previous
56  * readahead is assumed to be the number of pages from the triggering
57  * page to the start of the new readahead.  In these cases, the size of
58  * the previous readahead is scaled, often doubled, for the new
59  * readahead, though see get_next_ra_size() for details.
60  *
61  * If the size of the previous read cannot be determined, the number of
62  * preceding pages in the page cache is used to estimate the size of
63  * a previous read.  This estimate could easily be misled by random
64  * reads being coincidentally adjacent, so it is ignored unless it is
65  * larger than the current request, and it is not scaled up, unless it
66  * is at the start of file.
67  *
68  * In general readahead is accelerated at the start of the file, as
69  * reads from there are often sequential.  There are other minor
70  * adjustments to the readahead size in various special cases and these
71  * are best discovered by reading the code.
72  *
73  * The above calculation, based on the previous readahead size,
74  * determines the size of the readahead, to which any requested read
75  * size may be added.
76  *
77  * Readahead requests are sent to the filesystem using the ->readahead()
78  * address space operation, for which mpage_readahead() is a canonical
79  * implementation.  ->readahead() should normally initiate reads on all
80  * folios, but may fail to read any or all folios without causing an I/O
81  * error.  The page cache reading code will issue a ->read_folio() request
82  * for any folio which ->readahead() did not read, and only an error
83  * from this will be final.
84  *
85  * ->readahead() will generally call readahead_folio() repeatedly to get
86  * each folio from those prepared for readahead.  It may fail to read a
87  * folio by:
88  *
89  * * not calling readahead_folio() sufficiently many times, effectively
90  *   ignoring some folios, as might be appropriate if the path to
91  *   storage is congested.
92  *
93  * * failing to actually submit a read request for a given folio,
94  *   possibly due to insufficient resources, or
95  *
96  * * getting an error during subsequent processing of a request.
97  *
98  * In the last two cases, the folio should be unlocked by the filesystem
99  * to indicate that the read attempt has failed.  In the first case the
100  * folio will be unlocked by the VFS.
101  *
102  * Those folios not in the final ``async_size`` of the request should be
103  * considered to be important and ->readahead() should not fail them due
104  * to congestion or temporary resource unavailability, but should wait
105  * for necessary resources (e.g.  memory or indexing information) to
106  * become available.  Folios in the final ``async_size`` may be
107  * considered less urgent and failure to read them is more acceptable.
108  * In this case it is best to use filemap_remove_folio() to remove the
109  * folios from the page cache as is automatically done for folios that
110  * were not fetched with readahead_folio().  This will allow a
111  * subsequent synchronous readahead request to try them again.  If they
112  * are left in the page cache, then they will be read individually using
113  * ->read_folio() which may be less efficient.
114  */
115 
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131 
132 #define CREATE_TRACE_POINTS
133 #include <trace/events/readahead.h>
134 
135 #include "internal.h"
136 
137 /*
138  * Initialise a struct file's readahead state.  Assumes that the caller has
139  * memset *ra to zero.
140  */
141 void
142 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
143 {
144 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
145 	ra->prev_pos = -1;
146 }
147 EXPORT_SYMBOL_GPL(file_ra_state_init);
148 
149 static void read_pages(struct readahead_control *rac)
150 {
151 	const struct address_space_operations *aops = rac->mapping->a_ops;
152 	struct folio *folio;
153 	struct blk_plug plug;
154 
155 	if (!readahead_count(rac))
156 		return;
157 
158 	if (unlikely(rac->_workingset))
159 		psi_memstall_enter(&rac->_pflags);
160 	blk_start_plug(&plug);
161 
162 	if (aops->readahead) {
163 		aops->readahead(rac);
164 		/* Clean up the remaining folios. */
165 		while ((folio = readahead_folio(rac)) != NULL) {
166 			folio_get(folio);
167 			filemap_remove_folio(folio);
168 			folio_unlock(folio);
169 			folio_put(folio);
170 		}
171 	} else {
172 		while ((folio = readahead_folio(rac)) != NULL)
173 			aops->read_folio(rac->file, folio);
174 	}
175 
176 	blk_finish_plug(&plug);
177 	if (unlikely(rac->_workingset))
178 		psi_memstall_leave(&rac->_pflags);
179 	rac->_workingset = false;
180 
181 	BUG_ON(readahead_count(rac));
182 }
183 
184 static struct folio *ractl_alloc_folio(struct readahead_control *ractl,
185 				       gfp_t gfp_mask, unsigned int order)
186 {
187 	struct folio *folio;
188 
189 	folio = filemap_alloc_folio(gfp_mask, order, NULL);
190 	if (folio && ractl->dropbehind)
191 		__folio_set_dropbehind(folio);
192 
193 	return folio;
194 }
195 
196 /**
197  * page_cache_ra_unbounded - Start unchecked readahead.
198  * @ractl: Readahead control.
199  * @nr_to_read: The number of pages to read.
200  * @lookahead_size: Where to start the next readahead.
201  *
202  * This function is for filesystems to call when they want to start
203  * readahead beyond a file's stated i_size.  This is almost certainly
204  * not the function you want to call.  Use page_cache_async_readahead()
205  * or page_cache_sync_readahead() instead.
206  *
207  * Context: File is referenced by caller, and ractl->mapping->invalidate_lock
208  * must be held by the caller at least in shared mode.  Mutexes may be held by
209  * caller.  May sleep, but will not reenter filesystem to reclaim memory.
210  */
211 void page_cache_ra_unbounded(struct readahead_control *ractl,
212 		unsigned long nr_to_read, unsigned long lookahead_size)
213 {
214 	struct address_space *mapping = ractl->mapping;
215 	unsigned long index = readahead_index(ractl);
216 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
217 	unsigned long mark = ULONG_MAX, i = 0;
218 	unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
219 
220 	/*
221 	 * Partway through the readahead operation, we will have added
222 	 * locked pages to the page cache, but will not yet have submitted
223 	 * them for I/O.  Adding another page may need to allocate memory,
224 	 * which can trigger memory reclaim.  Telling the VM we're in
225 	 * the middle of a filesystem operation will cause it to not
226 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
227 	 * filesystems already specify __GFP_NOFS in their mapping's
228 	 * gfp_mask, but let's be explicit here.
229 	 */
230 	unsigned int nofs = memalloc_nofs_save();
231 
232 	lockdep_assert_held(&mapping->invalidate_lock);
233 
234 	trace_page_cache_ra_unbounded(mapping->host, index, nr_to_read,
235 				      lookahead_size);
236 	index = mapping_align_index(mapping, index);
237 
238 	/*
239 	 * As iterator `i` is aligned to min_nrpages, round_up the
240 	 * difference between nr_to_read and lookahead_size to mark the
241 	 * index that only has lookahead or "async_region" to set the
242 	 * readahead flag.
243 	 */
244 	if (lookahead_size <= nr_to_read) {
245 		unsigned long ra_folio_index;
246 
247 		ra_folio_index = round_up(readahead_index(ractl) +
248 					  nr_to_read - lookahead_size,
249 					  min_nrpages);
250 		mark = ra_folio_index - index;
251 	}
252 	nr_to_read += readahead_index(ractl) - index;
253 	ractl->_index = index;
254 
255 	/*
256 	 * Preallocate as many pages as we will need.
257 	 */
258 	while (i < nr_to_read) {
259 		struct folio *folio = xa_load(&mapping->i_pages, index + i);
260 		int ret;
261 
262 		if (folio && !xa_is_value(folio)) {
263 			/*
264 			 * Page already present?  Kick off the current batch
265 			 * of contiguous pages before continuing with the
266 			 * next batch.  This page may be the one we would
267 			 * have intended to mark as Readahead, but we don't
268 			 * have a stable reference to this page, and it's
269 			 * not worth getting one just for that.
270 			 */
271 			read_pages(ractl);
272 			ractl->_index += min_nrpages;
273 			i = ractl->_index + ractl->_nr_pages - index;
274 			continue;
275 		}
276 
277 		folio = ractl_alloc_folio(ractl, gfp_mask,
278 					mapping_min_folio_order(mapping));
279 		if (!folio)
280 			break;
281 
282 		ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
283 		if (ret < 0) {
284 			folio_put(folio);
285 			if (ret == -ENOMEM)
286 				break;
287 			read_pages(ractl);
288 			ractl->_index += min_nrpages;
289 			i = ractl->_index + ractl->_nr_pages - index;
290 			continue;
291 		}
292 		if (i == mark)
293 			folio_set_readahead(folio);
294 		ractl->_workingset |= folio_test_workingset(folio);
295 		ractl->_nr_pages += min_nrpages;
296 		i += min_nrpages;
297 	}
298 
299 	/*
300 	 * Now start the IO.  We ignore I/O errors - if the folio is not
301 	 * uptodate then the caller will launch read_folio again, and
302 	 * will then handle the error.
303 	 */
304 	read_pages(ractl);
305 	memalloc_nofs_restore(nofs);
306 }
307 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
308 
309 /*
310  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
311  * the pages first, then submits them for I/O. This avoids the very bad
312  * behaviour which would occur if page allocations are causing VM writeback.
313  * We really don't want to intermingle reads and writes like that.
314  */
315 static void do_page_cache_ra(struct readahead_control *ractl,
316 		unsigned long nr_to_read, unsigned long lookahead_size)
317 {
318 	struct address_space *mapping = ractl->mapping;
319 	unsigned long index = readahead_index(ractl);
320 	loff_t isize = i_size_read(mapping->host);
321 	pgoff_t end_index;	/* The last page we want to read */
322 
323 	if (isize == 0)
324 		return;
325 
326 	end_index = (isize - 1) >> PAGE_SHIFT;
327 	if (index > end_index)
328 		return;
329 	/* Don't read past the page containing the last byte of the file */
330 	if (nr_to_read > end_index - index)
331 		nr_to_read = end_index - index + 1;
332 
333 	filemap_invalidate_lock_shared(mapping);
334 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
335 	filemap_invalidate_unlock_shared(mapping);
336 }
337 
338 /*
339  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
340  * memory at once.
341  */
342 void force_page_cache_ra(struct readahead_control *ractl,
343 		unsigned long nr_to_read)
344 {
345 	struct address_space *mapping = ractl->mapping;
346 	struct file_ra_state *ra = ractl->ra;
347 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
348 	unsigned long max_pages;
349 
350 	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
351 		return;
352 
353 	/*
354 	 * If the request exceeds the readahead window, allow the read to
355 	 * be up to the optimal hardware IO size
356 	 */
357 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
358 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
359 	while (nr_to_read) {
360 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
361 
362 		if (this_chunk > nr_to_read)
363 			this_chunk = nr_to_read;
364 		do_page_cache_ra(ractl, this_chunk, 0);
365 
366 		nr_to_read -= this_chunk;
367 	}
368 }
369 
370 /*
371  * Set the initial window size, round to next power of 2 and square
372  * for small size, x 4 for medium, and x 2 for large
373  * for 128k (32 page) max ra
374  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
375  */
376 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
377 {
378 	unsigned long newsize = roundup_pow_of_two(size);
379 
380 	if (newsize <= max / 32)
381 		newsize = newsize * 4;
382 	else if (newsize <= max / 4)
383 		newsize = newsize * 2;
384 	else
385 		newsize = max;
386 
387 	return newsize;
388 }
389 
390 /*
391  *  Get the previous window size, ramp it up, and
392  *  return it as the new window size.
393  */
394 static unsigned long get_next_ra_size(struct file_ra_state *ra,
395 				      unsigned long max)
396 {
397 	unsigned long cur = ra->size;
398 
399 	if (cur < max / 16)
400 		return 4 * cur;
401 	if (cur <= max / 2)
402 		return 2 * cur;
403 	return max;
404 }
405 
406 /*
407  * On-demand readahead design.
408  *
409  * The fields in struct file_ra_state represent the most-recently-executed
410  * readahead attempt:
411  *
412  *                        |<----- async_size ---------|
413  *     |------------------- size -------------------->|
414  *     |==================#===========================|
415  *     ^start             ^page marked with PG_readahead
416  *
417  * To overlap application thinking time and disk I/O time, we do
418  * `readahead pipelining': Do not wait until the application consumed all
419  * readahead pages and stalled on the missing page at readahead_index;
420  * Instead, submit an asynchronous readahead I/O as soon as there are
421  * only async_size pages left in the readahead window. Normally async_size
422  * will be equal to size, for maximum pipelining.
423  *
424  * In interleaved sequential reads, concurrent streams on the same fd can
425  * be invalidating each other's readahead state. So we flag the new readahead
426  * page at (start+size-async_size) with PG_readahead, and use it as readahead
427  * indicator. The flag won't be set on already cached pages, to avoid the
428  * readahead-for-nothing fuss, saving pointless page cache lookups.
429  *
430  * prev_pos tracks the last visited byte in the _previous_ read request.
431  * It should be maintained by the caller, and will be used for detecting
432  * small random reads. Note that the readahead algorithm checks loosely
433  * for sequential patterns. Hence interleaved reads might be served as
434  * sequential ones.
435  *
436  * There is a special-case: if the first page which the application tries to
437  * read happens to be the first page of the file, it is assumed that a linear
438  * read is about to happen and the window is immediately set to the initial size
439  * based on I/O request size and the max_readahead.
440  *
441  * The code ramps up the readahead size aggressively at first, but slow down as
442  * it approaches max_readahead.
443  */
444 
445 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
446 		pgoff_t mark, unsigned int order, gfp_t gfp)
447 {
448 	int err;
449 	struct folio *folio = ractl_alloc_folio(ractl, gfp, order);
450 
451 	if (!folio)
452 		return -ENOMEM;
453 	mark = round_down(mark, 1UL << order);
454 	if (index == mark)
455 		folio_set_readahead(folio);
456 	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
457 	if (err) {
458 		folio_put(folio);
459 		return err;
460 	}
461 
462 	ractl->_nr_pages += 1UL << order;
463 	ractl->_workingset |= folio_test_workingset(folio);
464 	return 0;
465 }
466 
467 void page_cache_ra_order(struct readahead_control *ractl,
468 		struct file_ra_state *ra)
469 {
470 	struct address_space *mapping = ractl->mapping;
471 	pgoff_t start = readahead_index(ractl);
472 	pgoff_t index = start;
473 	unsigned int min_order = mapping_min_folio_order(mapping);
474 	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
475 	pgoff_t mark = index + ra->size - ra->async_size;
476 	unsigned int nofs;
477 	int err = 0;
478 	gfp_t gfp = readahead_gfp_mask(mapping);
479 	unsigned int new_order = ra->order;
480 
481 	trace_page_cache_ra_order(mapping->host, start, ra);
482 	if (!mapping_large_folio_support(mapping)) {
483 		ra->order = 0;
484 		goto fallback;
485 	}
486 
487 	limit = min(limit, index + ra->size - 1);
488 
489 	new_order = min(mapping_max_folio_order(mapping), new_order);
490 	new_order = min_t(unsigned int, new_order, ilog2(ra->size));
491 	new_order = max(new_order, min_order);
492 
493 	ra->order = new_order;
494 
495 	/* See comment in page_cache_ra_unbounded() */
496 	nofs = memalloc_nofs_save();
497 	filemap_invalidate_lock_shared(mapping);
498 	/*
499 	 * If the new_order is greater than min_order and index is
500 	 * already aligned to new_order, then this will be noop as index
501 	 * aligned to new_order should also be aligned to min_order.
502 	 */
503 	ractl->_index = mapping_align_index(mapping, index);
504 	index = readahead_index(ractl);
505 
506 	while (index <= limit) {
507 		unsigned int order = new_order;
508 
509 		/* Align with smaller pages if needed */
510 		if (index & ((1UL << order) - 1))
511 			order = __ffs(index);
512 		/* Don't allocate pages past EOF */
513 		while (order > min_order && index + (1UL << order) - 1 > limit)
514 			order--;
515 		err = ra_alloc_folio(ractl, index, mark, order, gfp);
516 		if (err)
517 			break;
518 		index += 1UL << order;
519 	}
520 
521 	read_pages(ractl);
522 	filemap_invalidate_unlock_shared(mapping);
523 	memalloc_nofs_restore(nofs);
524 
525 	/*
526 	 * If there were already pages in the page cache, then we may have
527 	 * left some gaps.  Let the regular readahead code take care of this
528 	 * situation below.
529 	 */
530 	if (!err)
531 		return;
532 fallback:
533 	/*
534 	 * ->readahead() may have updated readahead window size so we have to
535 	 * check there's still something to read.
536 	 */
537 	if (ra->size > index - start)
538 		do_page_cache_ra(ractl, ra->size - (index - start),
539 				 ra->async_size);
540 }
541 
542 static unsigned long ractl_max_pages(struct readahead_control *ractl,
543 		unsigned long req_size)
544 {
545 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
546 	unsigned long max_pages = ractl->ra->ra_pages;
547 
548 	/*
549 	 * If the request exceeds the readahead window, allow the read to
550 	 * be up to the optimal hardware IO size
551 	 */
552 	if (req_size > max_pages && bdi->io_pages > max_pages)
553 		max_pages = min(req_size, bdi->io_pages);
554 	return max_pages;
555 }
556 
557 void page_cache_sync_ra(struct readahead_control *ractl,
558 		unsigned long req_count)
559 {
560 	pgoff_t index = readahead_index(ractl);
561 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
562 	struct file_ra_state *ra = ractl->ra;
563 	unsigned long max_pages, contig_count;
564 	pgoff_t prev_index, miss;
565 
566 	trace_page_cache_sync_ra(ractl->mapping->host, index, ra, req_count);
567 	/*
568 	 * Even if readahead is disabled, issue this request as readahead
569 	 * as we'll need it to satisfy the requested range. The forced
570 	 * readahead will do the right thing and limit the read to just the
571 	 * requested range, which we'll set to 1 page for this case.
572 	 */
573 	if (!ra->ra_pages || blk_cgroup_congested()) {
574 		if (!ractl->file)
575 			return;
576 		req_count = 1;
577 		do_forced_ra = true;
578 	}
579 
580 	/* be dumb */
581 	if (do_forced_ra) {
582 		force_page_cache_ra(ractl, req_count);
583 		return;
584 	}
585 
586 	max_pages = ractl_max_pages(ractl, req_count);
587 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
588 	/*
589 	 * A start of file, oversized read, or sequential cache miss:
590 	 * trivial case: (index - prev_index) == 1
591 	 * unaligned reads: (index - prev_index) == 0
592 	 */
593 	if (!index || req_count > max_pages || index - prev_index <= 1UL) {
594 		ra->start = index;
595 		ra->size = get_init_ra_size(req_count, max_pages);
596 		ra->async_size = ra->size > req_count ? ra->size - req_count :
597 							ra->size >> 1;
598 		goto readit;
599 	}
600 
601 	/*
602 	 * Query the page cache and look for the traces(cached history pages)
603 	 * that a sequential stream would leave behind.
604 	 */
605 	rcu_read_lock();
606 	miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
607 	rcu_read_unlock();
608 	contig_count = index - miss - 1;
609 	/*
610 	 * Standalone, small random read. Read as is, and do not pollute the
611 	 * readahead state.
612 	 */
613 	if (contig_count <= req_count) {
614 		do_page_cache_ra(ractl, req_count, 0);
615 		return;
616 	}
617 	/*
618 	 * File cached from the beginning:
619 	 * it is a strong indication of long-run stream (or whole-file-read)
620 	 */
621 	if (miss == ULONG_MAX)
622 		contig_count *= 2;
623 	ra->start = index;
624 	ra->size = min(contig_count + req_count, max_pages);
625 	ra->async_size = 1;
626 readit:
627 	ra->order = 0;
628 	ractl->_index = ra->start;
629 	page_cache_ra_order(ractl, ra);
630 }
631 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
632 
633 void page_cache_async_ra(struct readahead_control *ractl,
634 		struct folio *folio, unsigned long req_count)
635 {
636 	unsigned long max_pages;
637 	struct file_ra_state *ra = ractl->ra;
638 	pgoff_t index = readahead_index(ractl);
639 	pgoff_t expected, start, end, aligned_end, align;
640 
641 	/* no readahead */
642 	if (!ra->ra_pages)
643 		return;
644 
645 	/*
646 	 * Same bit is used for PG_readahead and PG_reclaim.
647 	 */
648 	if (folio_test_writeback(folio))
649 		return;
650 
651 	trace_page_cache_async_ra(ractl->mapping->host, index, ra, req_count);
652 	folio_clear_readahead(folio);
653 
654 	if (blk_cgroup_congested())
655 		return;
656 
657 	max_pages = ractl_max_pages(ractl, req_count);
658 	/*
659 	 * It's the expected callback index, assume sequential access.
660 	 * Ramp up sizes, and push forward the readahead window.
661 	 */
662 	expected = round_down(ra->start + ra->size - ra->async_size,
663 			folio_nr_pages(folio));
664 	if (index == expected) {
665 		ra->start += ra->size;
666 		/*
667 		 * In the case of MADV_HUGEPAGE, the actual size might exceed
668 		 * the readahead window.
669 		 */
670 		ra->size = max(ra->size, get_next_ra_size(ra, max_pages));
671 		goto readit;
672 	}
673 
674 	/*
675 	 * Hit a marked folio without valid readahead state.
676 	 * E.g. interleaved reads.
677 	 * Query the pagecache for async_size, which normally equals to
678 	 * readahead size. Ramp it up and use it as the new readahead size.
679 	 */
680 	rcu_read_lock();
681 	start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
682 	rcu_read_unlock();
683 
684 	if (!start || start - index > max_pages)
685 		return;
686 
687 	ra->start = start;
688 	ra->size = start - index;	/* old async_size */
689 	ra->size += req_count;
690 	ra->size = get_next_ra_size(ra, max_pages);
691 readit:
692 	ra->order += 2;
693 	align = 1UL << min(ra->order, ffs(max_pages) - 1);
694 	end = ra->start + ra->size;
695 	aligned_end = round_down(end, align);
696 	if (aligned_end > ra->start)
697 		ra->size -= end - aligned_end;
698 	ra->async_size = ra->size;
699 	ractl->_index = ra->start;
700 	page_cache_ra_order(ractl, ra);
701 }
702 EXPORT_SYMBOL_GPL(page_cache_async_ra);
703 
704 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
705 {
706 	struct file *file;
707 	const struct inode *inode;
708 
709 	CLASS(fd, f)(fd);
710 	if (fd_empty(f))
711 		return -EBADF;
712 
713 	file = fd_file(f);
714 	if (!(file->f_mode & FMODE_READ))
715 		return -EBADF;
716 
717 	/*
718 	 * The readahead() syscall is intended to run only on files
719 	 * that can execute readahead. If readahead is not possible
720 	 * on this file, then we must return -EINVAL.
721 	 */
722 	if (!file->f_mapping)
723 		return -EINVAL;
724 	if (!file->f_mapping->a_ops)
725 		return -EINVAL;
726 
727 	inode = file_inode(file);
728 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
729 		return -EINVAL;
730 	if (IS_ANON_FILE(inode))
731 		return -EINVAL;
732 
733 	return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
734 }
735 
736 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
737 {
738 	return ksys_readahead(fd, offset, count);
739 }
740 
741 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
742 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
743 {
744 	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
745 }
746 #endif
747 
748 /**
749  * readahead_expand - Expand a readahead request
750  * @ractl: The request to be expanded
751  * @new_start: The revised start
752  * @new_len: The revised size of the request
753  *
754  * Attempt to expand a readahead request outwards from the current size to the
755  * specified size by inserting locked pages before and after the current window
756  * to increase the size to the new window.  This may involve the insertion of
757  * THPs, in which case the window may get expanded even beyond what was
758  * requested.
759  *
760  * The algorithm will stop if it encounters a conflicting page already in the
761  * pagecache and leave a smaller expansion than requested.
762  *
763  * The caller must check for this by examining the revised @ractl object for a
764  * different expansion than was requested.
765  */
766 void readahead_expand(struct readahead_control *ractl,
767 		      loff_t new_start, size_t new_len)
768 {
769 	struct address_space *mapping = ractl->mapping;
770 	struct file_ra_state *ra = ractl->ra;
771 	pgoff_t new_index, new_nr_pages;
772 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
773 	unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
774 	unsigned int min_order = mapping_min_folio_order(mapping);
775 
776 	new_index = new_start / PAGE_SIZE;
777 	/*
778 	 * Readahead code should have aligned the ractl->_index to
779 	 * min_nrpages before calling readahead aops.
780 	 */
781 	VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
782 
783 	/* Expand the leading edge downwards */
784 	while (ractl->_index > new_index) {
785 		unsigned long index = ractl->_index - 1;
786 		struct folio *folio = xa_load(&mapping->i_pages, index);
787 
788 		if (folio && !xa_is_value(folio))
789 			return; /* Folio apparently present */
790 
791 		folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
792 		if (!folio)
793 			return;
794 
795 		index = mapping_align_index(mapping, index);
796 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
797 			folio_put(folio);
798 			return;
799 		}
800 		if (unlikely(folio_test_workingset(folio)) &&
801 				!ractl->_workingset) {
802 			ractl->_workingset = true;
803 			psi_memstall_enter(&ractl->_pflags);
804 		}
805 		ractl->_nr_pages += min_nrpages;
806 		ractl->_index = folio->index;
807 	}
808 
809 	new_len += new_start - readahead_pos(ractl);
810 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
811 
812 	/* Expand the trailing edge upwards */
813 	while (ractl->_nr_pages < new_nr_pages) {
814 		unsigned long index = ractl->_index + ractl->_nr_pages;
815 		struct folio *folio = xa_load(&mapping->i_pages, index);
816 
817 		if (folio && !xa_is_value(folio))
818 			return; /* Folio apparently present */
819 
820 		folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
821 		if (!folio)
822 			return;
823 
824 		index = mapping_align_index(mapping, index);
825 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
826 			folio_put(folio);
827 			return;
828 		}
829 		if (unlikely(folio_test_workingset(folio)) &&
830 				!ractl->_workingset) {
831 			ractl->_workingset = true;
832 			psi_memstall_enter(&ractl->_pflags);
833 		}
834 		ractl->_nr_pages += min_nrpages;
835 		if (ra) {
836 			ra->size += min_nrpages;
837 			ra->async_size += min_nrpages;
838 		}
839 	}
840 }
841 EXPORT_SYMBOL(readahead_expand);
842