xref: /linux/mm/readahead.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 /**
12  * DOC: Readahead Overview
13  *
14  * Readahead is used to read content into the page cache before it is
15  * explicitly requested by the application.  Readahead only ever
16  * attempts to read folios that are not yet in the page cache.  If a
17  * folio is present but not up-to-date, readahead will not try to read
18  * it. In that case a simple ->read_folio() will be requested.
19  *
20  * Readahead is triggered when an application read request (whether a
21  * system call or a page fault) finds that the requested folio is not in
22  * the page cache, or that it is in the page cache and has the
23  * readahead flag set.  This flag indicates that the folio was read
24  * as part of a previous readahead request and now that it has been
25  * accessed, it is time for the next readahead.
26  *
27  * Each readahead request is partly synchronous read, and partly async
28  * readahead.  This is reflected in the struct file_ra_state which
29  * contains ->size being the total number of pages, and ->async_size
30  * which is the number of pages in the async section.  The readahead
31  * flag will be set on the first folio in this async section to trigger
32  * a subsequent readahead.  Once a series of sequential reads has been
33  * established, there should be no need for a synchronous component and
34  * all readahead request will be fully asynchronous.
35  *
36  * When either of the triggers causes a readahead, three numbers need
37  * to be determined: the start of the region to read, the size of the
38  * region, and the size of the async tail.
39  *
40  * The start of the region is simply the first page address at or after
41  * the accessed address, which is not currently populated in the page
42  * cache.  This is found with a simple search in the page cache.
43  *
44  * The size of the async tail is determined by subtracting the size that
45  * was explicitly requested from the determined request size, unless
46  * this would be less than zero - then zero is used.  NOTE THIS
47  * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48  * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49  *
50  * The size of the region is normally determined from the size of the
51  * previous readahead which loaded the preceding pages.  This may be
52  * discovered from the struct file_ra_state for simple sequential reads,
53  * or from examining the state of the page cache when multiple
54  * sequential reads are interleaved.  Specifically: where the readahead
55  * was triggered by the readahead flag, the size of the previous
56  * readahead is assumed to be the number of pages from the triggering
57  * page to the start of the new readahead.  In these cases, the size of
58  * the previous readahead is scaled, often doubled, for the new
59  * readahead, though see get_next_ra_size() for details.
60  *
61  * If the size of the previous read cannot be determined, the number of
62  * preceding pages in the page cache is used to estimate the size of
63  * a previous read.  This estimate could easily be misled by random
64  * reads being coincidentally adjacent, so it is ignored unless it is
65  * larger than the current request, and it is not scaled up, unless it
66  * is at the start of file.
67  *
68  * In general readahead is accelerated at the start of the file, as
69  * reads from there are often sequential.  There are other minor
70  * adjustments to the readahead size in various special cases and these
71  * are best discovered by reading the code.
72  *
73  * The above calculation, based on the previous readahead size,
74  * determines the size of the readahead, to which any requested read
75  * size may be added.
76  *
77  * Readahead requests are sent to the filesystem using the ->readahead()
78  * address space operation, for which mpage_readahead() is a canonical
79  * implementation.  ->readahead() should normally initiate reads on all
80  * folios, but may fail to read any or all folios without causing an I/O
81  * error.  The page cache reading code will issue a ->read_folio() request
82  * for any folio which ->readahead() did not read, and only an error
83  * from this will be final.
84  *
85  * ->readahead() will generally call readahead_folio() repeatedly to get
86  * each folio from those prepared for readahead.  It may fail to read a
87  * folio by:
88  *
89  * * not calling readahead_folio() sufficiently many times, effectively
90  *   ignoring some folios, as might be appropriate if the path to
91  *   storage is congested.
92  *
93  * * failing to actually submit a read request for a given folio,
94  *   possibly due to insufficient resources, or
95  *
96  * * getting an error during subsequent processing of a request.
97  *
98  * In the last two cases, the folio should be unlocked by the filesystem
99  * to indicate that the read attempt has failed.  In the first case the
100  * folio will be unlocked by the VFS.
101  *
102  * Those folios not in the final ``async_size`` of the request should be
103  * considered to be important and ->readahead() should not fail them due
104  * to congestion or temporary resource unavailability, but should wait
105  * for necessary resources (e.g.  memory or indexing information) to
106  * become available.  Folios in the final ``async_size`` may be
107  * considered less urgent and failure to read them is more acceptable.
108  * In this case it is best to use filemap_remove_folio() to remove the
109  * folios from the page cache as is automatically done for folios that
110  * were not fetched with readahead_folio().  This will allow a
111  * subsequent synchronous readahead request to try them again.  If they
112  * are left in the page cache, then they will be read individually using
113  * ->read_folio() which may be less efficient.
114  */
115 
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131 
132 #include "internal.h"
133 
134 /*
135  * Initialise a struct file's readahead state.  Assumes that the caller has
136  * memset *ra to zero.
137  */
138 void
139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140 {
141 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 	ra->prev_pos = -1;
143 }
144 EXPORT_SYMBOL_GPL(file_ra_state_init);
145 
146 static void read_pages(struct readahead_control *rac)
147 {
148 	const struct address_space_operations *aops = rac->mapping->a_ops;
149 	struct folio *folio;
150 	struct blk_plug plug;
151 
152 	if (!readahead_count(rac))
153 		return;
154 
155 	if (unlikely(rac->_workingset))
156 		psi_memstall_enter(&rac->_pflags);
157 	blk_start_plug(&plug);
158 
159 	if (aops->readahead) {
160 		aops->readahead(rac);
161 		/*
162 		 * Clean up the remaining folios.  The sizes in ->ra
163 		 * may be used to size the next readahead, so make sure
164 		 * they accurately reflect what happened.
165 		 */
166 		while ((folio = readahead_folio(rac)) != NULL) {
167 			unsigned long nr = folio_nr_pages(folio);
168 
169 			folio_get(folio);
170 			rac->ra->size -= nr;
171 			if (rac->ra->async_size >= nr) {
172 				rac->ra->async_size -= nr;
173 				filemap_remove_folio(folio);
174 			}
175 			folio_unlock(folio);
176 			folio_put(folio);
177 		}
178 	} else {
179 		while ((folio = readahead_folio(rac)) != NULL)
180 			aops->read_folio(rac->file, folio);
181 	}
182 
183 	blk_finish_plug(&plug);
184 	if (unlikely(rac->_workingset))
185 		psi_memstall_leave(&rac->_pflags);
186 	rac->_workingset = false;
187 
188 	BUG_ON(readahead_count(rac));
189 }
190 
191 /**
192  * page_cache_ra_unbounded - Start unchecked readahead.
193  * @ractl: Readahead control.
194  * @nr_to_read: The number of pages to read.
195  * @lookahead_size: Where to start the next readahead.
196  *
197  * This function is for filesystems to call when they want to start
198  * readahead beyond a file's stated i_size.  This is almost certainly
199  * not the function you want to call.  Use page_cache_async_readahead()
200  * or page_cache_sync_readahead() instead.
201  *
202  * Context: File is referenced by caller.  Mutexes may be held by caller.
203  * May sleep, but will not reenter filesystem to reclaim memory.
204  */
205 void page_cache_ra_unbounded(struct readahead_control *ractl,
206 		unsigned long nr_to_read, unsigned long lookahead_size)
207 {
208 	struct address_space *mapping = ractl->mapping;
209 	unsigned long index = readahead_index(ractl);
210 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
211 	unsigned long i;
212 
213 	/*
214 	 * Partway through the readahead operation, we will have added
215 	 * locked pages to the page cache, but will not yet have submitted
216 	 * them for I/O.  Adding another page may need to allocate memory,
217 	 * which can trigger memory reclaim.  Telling the VM we're in
218 	 * the middle of a filesystem operation will cause it to not
219 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
220 	 * filesystems already specify __GFP_NOFS in their mapping's
221 	 * gfp_mask, but let's be explicit here.
222 	 */
223 	unsigned int nofs = memalloc_nofs_save();
224 
225 	filemap_invalidate_lock_shared(mapping);
226 	/*
227 	 * Preallocate as many pages as we will need.
228 	 */
229 	for (i = 0; i < nr_to_read; i++) {
230 		struct folio *folio = xa_load(&mapping->i_pages, index + i);
231 		int ret;
232 
233 		if (folio && !xa_is_value(folio)) {
234 			/*
235 			 * Page already present?  Kick off the current batch
236 			 * of contiguous pages before continuing with the
237 			 * next batch.  This page may be the one we would
238 			 * have intended to mark as Readahead, but we don't
239 			 * have a stable reference to this page, and it's
240 			 * not worth getting one just for that.
241 			 */
242 			read_pages(ractl);
243 			ractl->_index++;
244 			i = ractl->_index + ractl->_nr_pages - index - 1;
245 			continue;
246 		}
247 
248 		folio = filemap_alloc_folio(gfp_mask, 0);
249 		if (!folio)
250 			break;
251 
252 		ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
253 		if (ret < 0) {
254 			folio_put(folio);
255 			if (ret == -ENOMEM)
256 				break;
257 			read_pages(ractl);
258 			ractl->_index++;
259 			i = ractl->_index + ractl->_nr_pages - index - 1;
260 			continue;
261 		}
262 		if (i == nr_to_read - lookahead_size)
263 			folio_set_readahead(folio);
264 		ractl->_workingset |= folio_test_workingset(folio);
265 		ractl->_nr_pages++;
266 	}
267 
268 	/*
269 	 * Now start the IO.  We ignore I/O errors - if the folio is not
270 	 * uptodate then the caller will launch read_folio again, and
271 	 * will then handle the error.
272 	 */
273 	read_pages(ractl);
274 	filemap_invalidate_unlock_shared(mapping);
275 	memalloc_nofs_restore(nofs);
276 }
277 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
278 
279 /*
280  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
281  * the pages first, then submits them for I/O. This avoids the very bad
282  * behaviour which would occur if page allocations are causing VM writeback.
283  * We really don't want to intermingle reads and writes like that.
284  */
285 static void do_page_cache_ra(struct readahead_control *ractl,
286 		unsigned long nr_to_read, unsigned long lookahead_size)
287 {
288 	struct inode *inode = ractl->mapping->host;
289 	unsigned long index = readahead_index(ractl);
290 	loff_t isize = i_size_read(inode);
291 	pgoff_t end_index;	/* The last page we want to read */
292 
293 	if (isize == 0)
294 		return;
295 
296 	end_index = (isize - 1) >> PAGE_SHIFT;
297 	if (index > end_index)
298 		return;
299 	/* Don't read past the page containing the last byte of the file */
300 	if (nr_to_read > end_index - index)
301 		nr_to_read = end_index - index + 1;
302 
303 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
304 }
305 
306 /*
307  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
308  * memory at once.
309  */
310 void force_page_cache_ra(struct readahead_control *ractl,
311 		unsigned long nr_to_read)
312 {
313 	struct address_space *mapping = ractl->mapping;
314 	struct file_ra_state *ra = ractl->ra;
315 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
316 	unsigned long max_pages;
317 
318 	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
319 		return;
320 
321 	/*
322 	 * If the request exceeds the readahead window, allow the read to
323 	 * be up to the optimal hardware IO size
324 	 */
325 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
326 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
327 	while (nr_to_read) {
328 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
329 
330 		if (this_chunk > nr_to_read)
331 			this_chunk = nr_to_read;
332 		do_page_cache_ra(ractl, this_chunk, 0);
333 
334 		nr_to_read -= this_chunk;
335 	}
336 }
337 
338 /*
339  * Set the initial window size, round to next power of 2 and square
340  * for small size, x 4 for medium, and x 2 for large
341  * for 128k (32 page) max ra
342  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
343  */
344 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
345 {
346 	unsigned long newsize = roundup_pow_of_two(size);
347 
348 	if (newsize <= max / 32)
349 		newsize = newsize * 4;
350 	else if (newsize <= max / 4)
351 		newsize = newsize * 2;
352 	else
353 		newsize = max;
354 
355 	return newsize;
356 }
357 
358 /*
359  *  Get the previous window size, ramp it up, and
360  *  return it as the new window size.
361  */
362 static unsigned long get_next_ra_size(struct file_ra_state *ra,
363 				      unsigned long max)
364 {
365 	unsigned long cur = ra->size;
366 
367 	if (cur < max / 16)
368 		return 4 * cur;
369 	if (cur <= max / 2)
370 		return 2 * cur;
371 	return max;
372 }
373 
374 /*
375  * On-demand readahead design.
376  *
377  * The fields in struct file_ra_state represent the most-recently-executed
378  * readahead attempt:
379  *
380  *                        |<----- async_size ---------|
381  *     |------------------- size -------------------->|
382  *     |==================#===========================|
383  *     ^start             ^page marked with PG_readahead
384  *
385  * To overlap application thinking time and disk I/O time, we do
386  * `readahead pipelining': Do not wait until the application consumed all
387  * readahead pages and stalled on the missing page at readahead_index;
388  * Instead, submit an asynchronous readahead I/O as soon as there are
389  * only async_size pages left in the readahead window. Normally async_size
390  * will be equal to size, for maximum pipelining.
391  *
392  * In interleaved sequential reads, concurrent streams on the same fd can
393  * be invalidating each other's readahead state. So we flag the new readahead
394  * page at (start+size-async_size) with PG_readahead, and use it as readahead
395  * indicator. The flag won't be set on already cached pages, to avoid the
396  * readahead-for-nothing fuss, saving pointless page cache lookups.
397  *
398  * prev_pos tracks the last visited byte in the _previous_ read request.
399  * It should be maintained by the caller, and will be used for detecting
400  * small random reads. Note that the readahead algorithm checks loosely
401  * for sequential patterns. Hence interleaved reads might be served as
402  * sequential ones.
403  *
404  * There is a special-case: if the first page which the application tries to
405  * read happens to be the first page of the file, it is assumed that a linear
406  * read is about to happen and the window is immediately set to the initial size
407  * based on I/O request size and the max_readahead.
408  *
409  * The code ramps up the readahead size aggressively at first, but slow down as
410  * it approaches max_readhead.
411  */
412 
413 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
414 		pgoff_t mark, unsigned int order, gfp_t gfp)
415 {
416 	int err;
417 	struct folio *folio = filemap_alloc_folio(gfp, order);
418 
419 	if (!folio)
420 		return -ENOMEM;
421 	mark = round_down(mark, 1UL << order);
422 	if (index == mark)
423 		folio_set_readahead(folio);
424 	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
425 	if (err) {
426 		folio_put(folio);
427 		return err;
428 	}
429 
430 	ractl->_nr_pages += 1UL << order;
431 	ractl->_workingset |= folio_test_workingset(folio);
432 	return 0;
433 }
434 
435 void page_cache_ra_order(struct readahead_control *ractl,
436 		struct file_ra_state *ra, unsigned int new_order)
437 {
438 	struct address_space *mapping = ractl->mapping;
439 	pgoff_t start = readahead_index(ractl);
440 	pgoff_t index = start;
441 	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
442 	pgoff_t mark = index + ra->size - ra->async_size;
443 	unsigned int nofs;
444 	int err = 0;
445 	gfp_t gfp = readahead_gfp_mask(mapping);
446 
447 	if (!mapping_large_folio_support(mapping) || ra->size < 4)
448 		goto fallback;
449 
450 	limit = min(limit, index + ra->size - 1);
451 
452 	if (new_order < MAX_PAGECACHE_ORDER)
453 		new_order += 2;
454 
455 	new_order = min_t(unsigned int, MAX_PAGECACHE_ORDER, new_order);
456 	new_order = min_t(unsigned int, new_order, ilog2(ra->size));
457 
458 	/* See comment in page_cache_ra_unbounded() */
459 	nofs = memalloc_nofs_save();
460 	filemap_invalidate_lock_shared(mapping);
461 	while (index <= limit) {
462 		unsigned int order = new_order;
463 
464 		/* Align with smaller pages if needed */
465 		if (index & ((1UL << order) - 1))
466 			order = __ffs(index);
467 		/* Don't allocate pages past EOF */
468 		while (index + (1UL << order) - 1 > limit)
469 			order--;
470 		err = ra_alloc_folio(ractl, index, mark, order, gfp);
471 		if (err)
472 			break;
473 		index += 1UL << order;
474 	}
475 
476 	read_pages(ractl);
477 	filemap_invalidate_unlock_shared(mapping);
478 	memalloc_nofs_restore(nofs);
479 
480 	/*
481 	 * If there were already pages in the page cache, then we may have
482 	 * left some gaps.  Let the regular readahead code take care of this
483 	 * situation.
484 	 */
485 	if (!err)
486 		return;
487 fallback:
488 	do_page_cache_ra(ractl, ra->size - (index - start), ra->async_size);
489 }
490 
491 static unsigned long ractl_max_pages(struct readahead_control *ractl,
492 		unsigned long req_size)
493 {
494 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
495 	unsigned long max_pages = ractl->ra->ra_pages;
496 
497 	/*
498 	 * If the request exceeds the readahead window, allow the read to
499 	 * be up to the optimal hardware IO size
500 	 */
501 	if (req_size > max_pages && bdi->io_pages > max_pages)
502 		max_pages = min(req_size, bdi->io_pages);
503 	return max_pages;
504 }
505 
506 void page_cache_sync_ra(struct readahead_control *ractl,
507 		unsigned long req_count)
508 {
509 	pgoff_t index = readahead_index(ractl);
510 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
511 	struct file_ra_state *ra = ractl->ra;
512 	unsigned long max_pages, contig_count;
513 	pgoff_t prev_index, miss;
514 
515 	/*
516 	 * Even if readahead is disabled, issue this request as readahead
517 	 * as we'll need it to satisfy the requested range. The forced
518 	 * readahead will do the right thing and limit the read to just the
519 	 * requested range, which we'll set to 1 page for this case.
520 	 */
521 	if (!ra->ra_pages || blk_cgroup_congested()) {
522 		if (!ractl->file)
523 			return;
524 		req_count = 1;
525 		do_forced_ra = true;
526 	}
527 
528 	/* be dumb */
529 	if (do_forced_ra) {
530 		force_page_cache_ra(ractl, req_count);
531 		return;
532 	}
533 
534 	max_pages = ractl_max_pages(ractl, req_count);
535 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
536 	/*
537 	 * A start of file, oversized read, or sequential cache miss:
538 	 * trivial case: (index - prev_index) == 1
539 	 * unaligned reads: (index - prev_index) == 0
540 	 */
541 	if (!index || req_count > max_pages || index - prev_index <= 1UL) {
542 		ra->start = index;
543 		ra->size = get_init_ra_size(req_count, max_pages);
544 		ra->async_size = ra->size > req_count ? ra->size - req_count :
545 							ra->size >> 1;
546 		goto readit;
547 	}
548 
549 	/*
550 	 * Query the page cache and look for the traces(cached history pages)
551 	 * that a sequential stream would leave behind.
552 	 */
553 	rcu_read_lock();
554 	miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
555 	rcu_read_unlock();
556 	contig_count = index - miss - 1;
557 	/*
558 	 * Standalone, small random read. Read as is, and do not pollute the
559 	 * readahead state.
560 	 */
561 	if (contig_count <= req_count) {
562 		do_page_cache_ra(ractl, req_count, 0);
563 		return;
564 	}
565 	/*
566 	 * File cached from the beginning:
567 	 * it is a strong indication of long-run stream (or whole-file-read)
568 	 */
569 	if (miss == ULONG_MAX)
570 		contig_count *= 2;
571 	ra->start = index;
572 	ra->size = min(contig_count + req_count, max_pages);
573 	ra->async_size = 1;
574 readit:
575 	ractl->_index = ra->start;
576 	page_cache_ra_order(ractl, ra, 0);
577 }
578 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
579 
580 void page_cache_async_ra(struct readahead_control *ractl,
581 		struct folio *folio, unsigned long req_count)
582 {
583 	unsigned long max_pages;
584 	struct file_ra_state *ra = ractl->ra;
585 	pgoff_t index = readahead_index(ractl);
586 	pgoff_t expected, start;
587 	unsigned int order = folio_order(folio);
588 
589 	/* no readahead */
590 	if (!ra->ra_pages)
591 		return;
592 
593 	/*
594 	 * Same bit is used for PG_readahead and PG_reclaim.
595 	 */
596 	if (folio_test_writeback(folio))
597 		return;
598 
599 	folio_clear_readahead(folio);
600 
601 	if (blk_cgroup_congested())
602 		return;
603 
604 	max_pages = ractl_max_pages(ractl, req_count);
605 	/*
606 	 * It's the expected callback index, assume sequential access.
607 	 * Ramp up sizes, and push forward the readahead window.
608 	 */
609 	expected = round_down(ra->start + ra->size - ra->async_size,
610 			1UL << order);
611 	if (index == expected) {
612 		ra->start += ra->size;
613 		ra->size = get_next_ra_size(ra, max_pages);
614 		ra->async_size = ra->size;
615 		goto readit;
616 	}
617 
618 	/*
619 	 * Hit a marked folio without valid readahead state.
620 	 * E.g. interleaved reads.
621 	 * Query the pagecache for async_size, which normally equals to
622 	 * readahead size. Ramp it up and use it as the new readahead size.
623 	 */
624 	rcu_read_lock();
625 	start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
626 	rcu_read_unlock();
627 
628 	if (!start || start - index > max_pages)
629 		return;
630 
631 	ra->start = start;
632 	ra->size = start - index;	/* old async_size */
633 	ra->size += req_count;
634 	ra->size = get_next_ra_size(ra, max_pages);
635 	ra->async_size = ra->size;
636 readit:
637 	ractl->_index = ra->start;
638 	page_cache_ra_order(ractl, ra, order);
639 }
640 EXPORT_SYMBOL_GPL(page_cache_async_ra);
641 
642 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
643 {
644 	ssize_t ret;
645 	struct fd f;
646 
647 	ret = -EBADF;
648 	f = fdget(fd);
649 	if (!f.file || !(f.file->f_mode & FMODE_READ))
650 		goto out;
651 
652 	/*
653 	 * The readahead() syscall is intended to run only on files
654 	 * that can execute readahead. If readahead is not possible
655 	 * on this file, then we must return -EINVAL.
656 	 */
657 	ret = -EINVAL;
658 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
659 	    (!S_ISREG(file_inode(f.file)->i_mode) &&
660 	    !S_ISBLK(file_inode(f.file)->i_mode)))
661 		goto out;
662 
663 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
664 out:
665 	fdput(f);
666 	return ret;
667 }
668 
669 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
670 {
671 	return ksys_readahead(fd, offset, count);
672 }
673 
674 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
675 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
676 {
677 	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
678 }
679 #endif
680 
681 /**
682  * readahead_expand - Expand a readahead request
683  * @ractl: The request to be expanded
684  * @new_start: The revised start
685  * @new_len: The revised size of the request
686  *
687  * Attempt to expand a readahead request outwards from the current size to the
688  * specified size by inserting locked pages before and after the current window
689  * to increase the size to the new window.  This may involve the insertion of
690  * THPs, in which case the window may get expanded even beyond what was
691  * requested.
692  *
693  * The algorithm will stop if it encounters a conflicting page already in the
694  * pagecache and leave a smaller expansion than requested.
695  *
696  * The caller must check for this by examining the revised @ractl object for a
697  * different expansion than was requested.
698  */
699 void readahead_expand(struct readahead_control *ractl,
700 		      loff_t new_start, size_t new_len)
701 {
702 	struct address_space *mapping = ractl->mapping;
703 	struct file_ra_state *ra = ractl->ra;
704 	pgoff_t new_index, new_nr_pages;
705 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
706 
707 	new_index = new_start / PAGE_SIZE;
708 
709 	/* Expand the leading edge downwards */
710 	while (ractl->_index > new_index) {
711 		unsigned long index = ractl->_index - 1;
712 		struct folio *folio = xa_load(&mapping->i_pages, index);
713 
714 		if (folio && !xa_is_value(folio))
715 			return; /* Folio apparently present */
716 
717 		folio = filemap_alloc_folio(gfp_mask, 0);
718 		if (!folio)
719 			return;
720 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
721 			folio_put(folio);
722 			return;
723 		}
724 		if (unlikely(folio_test_workingset(folio)) &&
725 				!ractl->_workingset) {
726 			ractl->_workingset = true;
727 			psi_memstall_enter(&ractl->_pflags);
728 		}
729 		ractl->_nr_pages++;
730 		ractl->_index = folio->index;
731 	}
732 
733 	new_len += new_start - readahead_pos(ractl);
734 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
735 
736 	/* Expand the trailing edge upwards */
737 	while (ractl->_nr_pages < new_nr_pages) {
738 		unsigned long index = ractl->_index + ractl->_nr_pages;
739 		struct folio *folio = xa_load(&mapping->i_pages, index);
740 
741 		if (folio && !xa_is_value(folio))
742 			return; /* Folio apparently present */
743 
744 		folio = filemap_alloc_folio(gfp_mask, 0);
745 		if (!folio)
746 			return;
747 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
748 			folio_put(folio);
749 			return;
750 		}
751 		if (unlikely(folio_test_workingset(folio)) &&
752 				!ractl->_workingset) {
753 			ractl->_workingset = true;
754 			psi_memstall_enter(&ractl->_pflags);
755 		}
756 		ractl->_nr_pages++;
757 		if (ra) {
758 			ra->size++;
759 			ra->async_size++;
760 		}
761 	}
762 }
763 EXPORT_SYMBOL(readahead_expand);
764