1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 132 #define CREATE_TRACE_POINTS 133 #include <trace/events/readahead.h> 134 135 #include "internal.h" 136 137 /* 138 * Initialise a struct file's readahead state. Assumes that the caller has 139 * memset *ra to zero. 140 */ 141 void 142 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 143 { 144 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 145 ra->prev_pos = -1; 146 } 147 EXPORT_SYMBOL_GPL(file_ra_state_init); 148 149 static void read_pages(struct readahead_control *rac) 150 { 151 const struct address_space_operations *aops = rac->mapping->a_ops; 152 struct folio *folio; 153 struct blk_plug plug; 154 155 if (!readahead_count(rac)) 156 return; 157 158 if (unlikely(rac->_workingset)) 159 psi_memstall_enter(&rac->_pflags); 160 blk_start_plug(&plug); 161 162 if (aops->readahead) { 163 aops->readahead(rac); 164 /* Clean up the remaining folios. */ 165 while ((folio = readahead_folio(rac)) != NULL) { 166 folio_get(folio); 167 filemap_remove_folio(folio); 168 folio_unlock(folio); 169 folio_put(folio); 170 } 171 } else { 172 while ((folio = readahead_folio(rac)) != NULL) 173 aops->read_folio(rac->file, folio); 174 } 175 176 blk_finish_plug(&plug); 177 if (unlikely(rac->_workingset)) 178 psi_memstall_leave(&rac->_pflags); 179 rac->_workingset = false; 180 181 BUG_ON(readahead_count(rac)); 182 } 183 184 static struct folio *ractl_alloc_folio(struct readahead_control *ractl, 185 gfp_t gfp_mask, unsigned int order) 186 { 187 struct folio *folio; 188 189 folio = filemap_alloc_folio(gfp_mask, order); 190 if (folio && ractl->dropbehind) 191 __folio_set_dropbehind(folio); 192 193 return folio; 194 } 195 196 /** 197 * page_cache_ra_unbounded - Start unchecked readahead. 198 * @ractl: Readahead control. 199 * @nr_to_read: The number of pages to read. 200 * @lookahead_size: Where to start the next readahead. 201 * 202 * This function is for filesystems to call when they want to start 203 * readahead beyond a file's stated i_size. This is almost certainly 204 * not the function you want to call. Use page_cache_async_readahead() 205 * or page_cache_sync_readahead() instead. 206 * 207 * Context: File is referenced by caller. Mutexes may be held by caller. 208 * May sleep, but will not reenter filesystem to reclaim memory. 209 */ 210 void page_cache_ra_unbounded(struct readahead_control *ractl, 211 unsigned long nr_to_read, unsigned long lookahead_size) 212 { 213 struct address_space *mapping = ractl->mapping; 214 unsigned long index = readahead_index(ractl); 215 gfp_t gfp_mask = readahead_gfp_mask(mapping); 216 unsigned long mark = ULONG_MAX, i = 0; 217 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping); 218 219 /* 220 * Partway through the readahead operation, we will have added 221 * locked pages to the page cache, but will not yet have submitted 222 * them for I/O. Adding another page may need to allocate memory, 223 * which can trigger memory reclaim. Telling the VM we're in 224 * the middle of a filesystem operation will cause it to not 225 * touch file-backed pages, preventing a deadlock. Most (all?) 226 * filesystems already specify __GFP_NOFS in their mapping's 227 * gfp_mask, but let's be explicit here. 228 */ 229 unsigned int nofs = memalloc_nofs_save(); 230 231 trace_page_cache_ra_unbounded(mapping->host, index, nr_to_read, 232 lookahead_size); 233 filemap_invalidate_lock_shared(mapping); 234 index = mapping_align_index(mapping, index); 235 236 /* 237 * As iterator `i` is aligned to min_nrpages, round_up the 238 * difference between nr_to_read and lookahead_size to mark the 239 * index that only has lookahead or "async_region" to set the 240 * readahead flag. 241 */ 242 if (lookahead_size <= nr_to_read) { 243 unsigned long ra_folio_index; 244 245 ra_folio_index = round_up(readahead_index(ractl) + 246 nr_to_read - lookahead_size, 247 min_nrpages); 248 mark = ra_folio_index - index; 249 } 250 nr_to_read += readahead_index(ractl) - index; 251 ractl->_index = index; 252 253 /* 254 * Preallocate as many pages as we will need. 255 */ 256 while (i < nr_to_read) { 257 struct folio *folio = xa_load(&mapping->i_pages, index + i); 258 int ret; 259 260 if (folio && !xa_is_value(folio)) { 261 /* 262 * Page already present? Kick off the current batch 263 * of contiguous pages before continuing with the 264 * next batch. This page may be the one we would 265 * have intended to mark as Readahead, but we don't 266 * have a stable reference to this page, and it's 267 * not worth getting one just for that. 268 */ 269 read_pages(ractl); 270 ractl->_index += min_nrpages; 271 i = ractl->_index + ractl->_nr_pages - index; 272 continue; 273 } 274 275 folio = ractl_alloc_folio(ractl, gfp_mask, 276 mapping_min_folio_order(mapping)); 277 if (!folio) 278 break; 279 280 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); 281 if (ret < 0) { 282 folio_put(folio); 283 if (ret == -ENOMEM) 284 break; 285 read_pages(ractl); 286 ractl->_index += min_nrpages; 287 i = ractl->_index + ractl->_nr_pages - index; 288 continue; 289 } 290 if (i == mark) 291 folio_set_readahead(folio); 292 ractl->_workingset |= folio_test_workingset(folio); 293 ractl->_nr_pages += min_nrpages; 294 i += min_nrpages; 295 } 296 297 /* 298 * Now start the IO. We ignore I/O errors - if the folio is not 299 * uptodate then the caller will launch read_folio again, and 300 * will then handle the error. 301 */ 302 read_pages(ractl); 303 filemap_invalidate_unlock_shared(mapping); 304 memalloc_nofs_restore(nofs); 305 } 306 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 307 308 /* 309 * do_page_cache_ra() actually reads a chunk of disk. It allocates 310 * the pages first, then submits them for I/O. This avoids the very bad 311 * behaviour which would occur if page allocations are causing VM writeback. 312 * We really don't want to intermingle reads and writes like that. 313 */ 314 static void do_page_cache_ra(struct readahead_control *ractl, 315 unsigned long nr_to_read, unsigned long lookahead_size) 316 { 317 struct inode *inode = ractl->mapping->host; 318 unsigned long index = readahead_index(ractl); 319 loff_t isize = i_size_read(inode); 320 pgoff_t end_index; /* The last page we want to read */ 321 322 if (isize == 0) 323 return; 324 325 end_index = (isize - 1) >> PAGE_SHIFT; 326 if (index > end_index) 327 return; 328 /* Don't read past the page containing the last byte of the file */ 329 if (nr_to_read > end_index - index) 330 nr_to_read = end_index - index + 1; 331 332 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 333 } 334 335 /* 336 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 337 * memory at once. 338 */ 339 void force_page_cache_ra(struct readahead_control *ractl, 340 unsigned long nr_to_read) 341 { 342 struct address_space *mapping = ractl->mapping; 343 struct file_ra_state *ra = ractl->ra; 344 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 345 unsigned long max_pages; 346 347 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 348 return; 349 350 /* 351 * If the request exceeds the readahead window, allow the read to 352 * be up to the optimal hardware IO size 353 */ 354 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 355 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 356 while (nr_to_read) { 357 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 358 359 if (this_chunk > nr_to_read) 360 this_chunk = nr_to_read; 361 do_page_cache_ra(ractl, this_chunk, 0); 362 363 nr_to_read -= this_chunk; 364 } 365 } 366 367 /* 368 * Set the initial window size, round to next power of 2 and square 369 * for small size, x 4 for medium, and x 2 for large 370 * for 128k (32 page) max ra 371 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 372 */ 373 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 374 { 375 unsigned long newsize = roundup_pow_of_two(size); 376 377 if (newsize <= max / 32) 378 newsize = newsize * 4; 379 else if (newsize <= max / 4) 380 newsize = newsize * 2; 381 else 382 newsize = max; 383 384 return newsize; 385 } 386 387 /* 388 * Get the previous window size, ramp it up, and 389 * return it as the new window size. 390 */ 391 static unsigned long get_next_ra_size(struct file_ra_state *ra, 392 unsigned long max) 393 { 394 unsigned long cur = ra->size; 395 396 if (cur < max / 16) 397 return 4 * cur; 398 if (cur <= max / 2) 399 return 2 * cur; 400 return max; 401 } 402 403 /* 404 * On-demand readahead design. 405 * 406 * The fields in struct file_ra_state represent the most-recently-executed 407 * readahead attempt: 408 * 409 * |<----- async_size ---------| 410 * |------------------- size -------------------->| 411 * |==================#===========================| 412 * ^start ^page marked with PG_readahead 413 * 414 * To overlap application thinking time and disk I/O time, we do 415 * `readahead pipelining': Do not wait until the application consumed all 416 * readahead pages and stalled on the missing page at readahead_index; 417 * Instead, submit an asynchronous readahead I/O as soon as there are 418 * only async_size pages left in the readahead window. Normally async_size 419 * will be equal to size, for maximum pipelining. 420 * 421 * In interleaved sequential reads, concurrent streams on the same fd can 422 * be invalidating each other's readahead state. So we flag the new readahead 423 * page at (start+size-async_size) with PG_readahead, and use it as readahead 424 * indicator. The flag won't be set on already cached pages, to avoid the 425 * readahead-for-nothing fuss, saving pointless page cache lookups. 426 * 427 * prev_pos tracks the last visited byte in the _previous_ read request. 428 * It should be maintained by the caller, and will be used for detecting 429 * small random reads. Note that the readahead algorithm checks loosely 430 * for sequential patterns. Hence interleaved reads might be served as 431 * sequential ones. 432 * 433 * There is a special-case: if the first page which the application tries to 434 * read happens to be the first page of the file, it is assumed that a linear 435 * read is about to happen and the window is immediately set to the initial size 436 * based on I/O request size and the max_readahead. 437 * 438 * The code ramps up the readahead size aggressively at first, but slow down as 439 * it approaches max_readhead. 440 */ 441 442 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 443 pgoff_t mark, unsigned int order, gfp_t gfp) 444 { 445 int err; 446 struct folio *folio = ractl_alloc_folio(ractl, gfp, order); 447 448 if (!folio) 449 return -ENOMEM; 450 mark = round_down(mark, 1UL << order); 451 if (index == mark) 452 folio_set_readahead(folio); 453 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 454 if (err) { 455 folio_put(folio); 456 return err; 457 } 458 459 ractl->_nr_pages += 1UL << order; 460 ractl->_workingset |= folio_test_workingset(folio); 461 return 0; 462 } 463 464 void page_cache_ra_order(struct readahead_control *ractl, 465 struct file_ra_state *ra) 466 { 467 struct address_space *mapping = ractl->mapping; 468 pgoff_t start = readahead_index(ractl); 469 pgoff_t index = start; 470 unsigned int min_order = mapping_min_folio_order(mapping); 471 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 472 pgoff_t mark = index + ra->size - ra->async_size; 473 unsigned int nofs; 474 int err = 0; 475 gfp_t gfp = readahead_gfp_mask(mapping); 476 unsigned int new_order = ra->order; 477 478 trace_page_cache_ra_order(mapping->host, start, ra); 479 if (!mapping_large_folio_support(mapping)) { 480 ra->order = 0; 481 goto fallback; 482 } 483 484 limit = min(limit, index + ra->size - 1); 485 486 new_order = min(mapping_max_folio_order(mapping), new_order); 487 new_order = min_t(unsigned int, new_order, ilog2(ra->size)); 488 new_order = max(new_order, min_order); 489 490 ra->order = new_order; 491 492 /* See comment in page_cache_ra_unbounded() */ 493 nofs = memalloc_nofs_save(); 494 filemap_invalidate_lock_shared(mapping); 495 /* 496 * If the new_order is greater than min_order and index is 497 * already aligned to new_order, then this will be noop as index 498 * aligned to new_order should also be aligned to min_order. 499 */ 500 ractl->_index = mapping_align_index(mapping, index); 501 index = readahead_index(ractl); 502 503 while (index <= limit) { 504 unsigned int order = new_order; 505 506 /* Align with smaller pages if needed */ 507 if (index & ((1UL << order) - 1)) 508 order = __ffs(index); 509 /* Don't allocate pages past EOF */ 510 while (order > min_order && index + (1UL << order) - 1 > limit) 511 order--; 512 err = ra_alloc_folio(ractl, index, mark, order, gfp); 513 if (err) 514 break; 515 index += 1UL << order; 516 } 517 518 read_pages(ractl); 519 filemap_invalidate_unlock_shared(mapping); 520 memalloc_nofs_restore(nofs); 521 522 /* 523 * If there were already pages in the page cache, then we may have 524 * left some gaps. Let the regular readahead code take care of this 525 * situation below. 526 */ 527 if (!err) 528 return; 529 fallback: 530 /* 531 * ->readahead() may have updated readahead window size so we have to 532 * check there's still something to read. 533 */ 534 if (ra->size > index - start) 535 do_page_cache_ra(ractl, ra->size - (index - start), 536 ra->async_size); 537 } 538 539 static unsigned long ractl_max_pages(struct readahead_control *ractl, 540 unsigned long req_size) 541 { 542 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 543 unsigned long max_pages = ractl->ra->ra_pages; 544 545 /* 546 * If the request exceeds the readahead window, allow the read to 547 * be up to the optimal hardware IO size 548 */ 549 if (req_size > max_pages && bdi->io_pages > max_pages) 550 max_pages = min(req_size, bdi->io_pages); 551 return max_pages; 552 } 553 554 void page_cache_sync_ra(struct readahead_control *ractl, 555 unsigned long req_count) 556 { 557 pgoff_t index = readahead_index(ractl); 558 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 559 struct file_ra_state *ra = ractl->ra; 560 unsigned long max_pages, contig_count; 561 pgoff_t prev_index, miss; 562 563 trace_page_cache_sync_ra(ractl->mapping->host, index, ra, req_count); 564 /* 565 * Even if readahead is disabled, issue this request as readahead 566 * as we'll need it to satisfy the requested range. The forced 567 * readahead will do the right thing and limit the read to just the 568 * requested range, which we'll set to 1 page for this case. 569 */ 570 if (!ra->ra_pages || blk_cgroup_congested()) { 571 if (!ractl->file) 572 return; 573 req_count = 1; 574 do_forced_ra = true; 575 } 576 577 /* be dumb */ 578 if (do_forced_ra) { 579 force_page_cache_ra(ractl, req_count); 580 return; 581 } 582 583 max_pages = ractl_max_pages(ractl, req_count); 584 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 585 /* 586 * A start of file, oversized read, or sequential cache miss: 587 * trivial case: (index - prev_index) == 1 588 * unaligned reads: (index - prev_index) == 0 589 */ 590 if (!index || req_count > max_pages || index - prev_index <= 1UL) { 591 ra->start = index; 592 ra->size = get_init_ra_size(req_count, max_pages); 593 ra->async_size = ra->size > req_count ? ra->size - req_count : 594 ra->size >> 1; 595 goto readit; 596 } 597 598 /* 599 * Query the page cache and look for the traces(cached history pages) 600 * that a sequential stream would leave behind. 601 */ 602 rcu_read_lock(); 603 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); 604 rcu_read_unlock(); 605 contig_count = index - miss - 1; 606 /* 607 * Standalone, small random read. Read as is, and do not pollute the 608 * readahead state. 609 */ 610 if (contig_count <= req_count) { 611 do_page_cache_ra(ractl, req_count, 0); 612 return; 613 } 614 /* 615 * File cached from the beginning: 616 * it is a strong indication of long-run stream (or whole-file-read) 617 */ 618 if (miss == ULONG_MAX) 619 contig_count *= 2; 620 ra->start = index; 621 ra->size = min(contig_count + req_count, max_pages); 622 ra->async_size = 1; 623 readit: 624 ra->order = 0; 625 ractl->_index = ra->start; 626 page_cache_ra_order(ractl, ra); 627 } 628 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 629 630 void page_cache_async_ra(struct readahead_control *ractl, 631 struct folio *folio, unsigned long req_count) 632 { 633 unsigned long max_pages; 634 struct file_ra_state *ra = ractl->ra; 635 pgoff_t index = readahead_index(ractl); 636 pgoff_t expected, start, end, aligned_end, align; 637 638 /* no readahead */ 639 if (!ra->ra_pages) 640 return; 641 642 /* 643 * Same bit is used for PG_readahead and PG_reclaim. 644 */ 645 if (folio_test_writeback(folio)) 646 return; 647 648 trace_page_cache_async_ra(ractl->mapping->host, index, ra, req_count); 649 folio_clear_readahead(folio); 650 651 if (blk_cgroup_congested()) 652 return; 653 654 max_pages = ractl_max_pages(ractl, req_count); 655 /* 656 * It's the expected callback index, assume sequential access. 657 * Ramp up sizes, and push forward the readahead window. 658 */ 659 expected = round_down(ra->start + ra->size - ra->async_size, 660 folio_nr_pages(folio)); 661 if (index == expected) { 662 ra->start += ra->size; 663 /* 664 * In the case of MADV_HUGEPAGE, the actual size might exceed 665 * the readahead window. 666 */ 667 ra->size = max(ra->size, get_next_ra_size(ra, max_pages)); 668 goto readit; 669 } 670 671 /* 672 * Hit a marked folio without valid readahead state. 673 * E.g. interleaved reads. 674 * Query the pagecache for async_size, which normally equals to 675 * readahead size. Ramp it up and use it as the new readahead size. 676 */ 677 rcu_read_lock(); 678 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); 679 rcu_read_unlock(); 680 681 if (!start || start - index > max_pages) 682 return; 683 684 ra->start = start; 685 ra->size = start - index; /* old async_size */ 686 ra->size += req_count; 687 ra->size = get_next_ra_size(ra, max_pages); 688 readit: 689 ra->order += 2; 690 align = 1UL << min(ra->order, ffs(max_pages) - 1); 691 end = ra->start + ra->size; 692 aligned_end = round_down(end, align); 693 if (aligned_end > ra->start) 694 ra->size -= end - aligned_end; 695 ra->async_size = ra->size; 696 ractl->_index = ra->start; 697 page_cache_ra_order(ractl, ra); 698 } 699 EXPORT_SYMBOL_GPL(page_cache_async_ra); 700 701 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 702 { 703 struct file *file; 704 const struct inode *inode; 705 706 CLASS(fd, f)(fd); 707 if (fd_empty(f)) 708 return -EBADF; 709 710 file = fd_file(f); 711 if (!(file->f_mode & FMODE_READ)) 712 return -EBADF; 713 714 /* 715 * The readahead() syscall is intended to run only on files 716 * that can execute readahead. If readahead is not possible 717 * on this file, then we must return -EINVAL. 718 */ 719 if (!file->f_mapping) 720 return -EINVAL; 721 if (!file->f_mapping->a_ops) 722 return -EINVAL; 723 724 inode = file_inode(file); 725 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 726 return -EINVAL; 727 if (IS_ANON_FILE(inode)) 728 return -EINVAL; 729 730 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED); 731 } 732 733 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 734 { 735 return ksys_readahead(fd, offset, count); 736 } 737 738 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 739 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 740 { 741 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 742 } 743 #endif 744 745 /** 746 * readahead_expand - Expand a readahead request 747 * @ractl: The request to be expanded 748 * @new_start: The revised start 749 * @new_len: The revised size of the request 750 * 751 * Attempt to expand a readahead request outwards from the current size to the 752 * specified size by inserting locked pages before and after the current window 753 * to increase the size to the new window. This may involve the insertion of 754 * THPs, in which case the window may get expanded even beyond what was 755 * requested. 756 * 757 * The algorithm will stop if it encounters a conflicting page already in the 758 * pagecache and leave a smaller expansion than requested. 759 * 760 * The caller must check for this by examining the revised @ractl object for a 761 * different expansion than was requested. 762 */ 763 void readahead_expand(struct readahead_control *ractl, 764 loff_t new_start, size_t new_len) 765 { 766 struct address_space *mapping = ractl->mapping; 767 struct file_ra_state *ra = ractl->ra; 768 pgoff_t new_index, new_nr_pages; 769 gfp_t gfp_mask = readahead_gfp_mask(mapping); 770 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping); 771 unsigned int min_order = mapping_min_folio_order(mapping); 772 773 new_index = new_start / PAGE_SIZE; 774 /* 775 * Readahead code should have aligned the ractl->_index to 776 * min_nrpages before calling readahead aops. 777 */ 778 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages)); 779 780 /* Expand the leading edge downwards */ 781 while (ractl->_index > new_index) { 782 unsigned long index = ractl->_index - 1; 783 struct folio *folio = xa_load(&mapping->i_pages, index); 784 785 if (folio && !xa_is_value(folio)) 786 return; /* Folio apparently present */ 787 788 folio = ractl_alloc_folio(ractl, gfp_mask, min_order); 789 if (!folio) 790 return; 791 792 index = mapping_align_index(mapping, index); 793 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 794 folio_put(folio); 795 return; 796 } 797 if (unlikely(folio_test_workingset(folio)) && 798 !ractl->_workingset) { 799 ractl->_workingset = true; 800 psi_memstall_enter(&ractl->_pflags); 801 } 802 ractl->_nr_pages += min_nrpages; 803 ractl->_index = folio->index; 804 } 805 806 new_len += new_start - readahead_pos(ractl); 807 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 808 809 /* Expand the trailing edge upwards */ 810 while (ractl->_nr_pages < new_nr_pages) { 811 unsigned long index = ractl->_index + ractl->_nr_pages; 812 struct folio *folio = xa_load(&mapping->i_pages, index); 813 814 if (folio && !xa_is_value(folio)) 815 return; /* Folio apparently present */ 816 817 folio = ractl_alloc_folio(ractl, gfp_mask, min_order); 818 if (!folio) 819 return; 820 821 index = mapping_align_index(mapping, index); 822 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 823 folio_put(folio); 824 return; 825 } 826 if (unlikely(folio_test_workingset(folio)) && 827 !ractl->_workingset) { 828 ractl->_workingset = true; 829 psi_memstall_enter(&ractl->_pflags); 830 } 831 ractl->_nr_pages += min_nrpages; 832 if (ra) { 833 ra->size += min_nrpages; 834 ra->async_size += min_nrpages; 835 } 836 } 837 } 838 EXPORT_SYMBOL(readahead_expand); 839