xref: /linux/mm/readahead.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/gfp.h>
12 #include <linux/export.h>
13 #include <linux/blkdev.h>
14 #include <linux/backing-dev.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include <linux/pagevec.h>
17 #include <linux/pagemap.h>
18 #include <linux/syscalls.h>
19 #include <linux/file.h>
20 
21 #include "internal.h"
22 
23 /*
24  * Initialise a struct file's readahead state.  Assumes that the caller has
25  * memset *ra to zero.
26  */
27 void
28 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
29 {
30 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
31 	ra->prev_pos = -1;
32 }
33 EXPORT_SYMBOL_GPL(file_ra_state_init);
34 
35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
36 
37 /*
38  * see if a page needs releasing upon read_cache_pages() failure
39  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40  *   before calling, such as the NFS fs marking pages that are cached locally
41  *   on disk, thus we need to give the fs a chance to clean up in the event of
42  *   an error
43  */
44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
45 					     struct page *page)
46 {
47 	if (page_has_private(page)) {
48 		if (!trylock_page(page))
49 			BUG();
50 		page->mapping = mapping;
51 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
52 		page->mapping = NULL;
53 		unlock_page(page);
54 	}
55 	page_cache_release(page);
56 }
57 
58 /*
59  * release a list of pages, invalidating them first if need be
60  */
61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
62 					      struct list_head *pages)
63 {
64 	struct page *victim;
65 
66 	while (!list_empty(pages)) {
67 		victim = list_to_page(pages);
68 		list_del(&victim->lru);
69 		read_cache_pages_invalidate_page(mapping, victim);
70 	}
71 }
72 
73 /**
74  * read_cache_pages - populate an address space with some pages & start reads against them
75  * @mapping: the address_space
76  * @pages: The address of a list_head which contains the target pages.  These
77  *   pages have their ->index populated and are otherwise uninitialised.
78  * @filler: callback routine for filling a single page.
79  * @data: private data for the callback routine.
80  *
81  * Hides the details of the LRU cache etc from the filesystems.
82  */
83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
84 			int (*filler)(void *, struct page *), void *data)
85 {
86 	struct page *page;
87 	int ret = 0;
88 
89 	while (!list_empty(pages)) {
90 		page = list_to_page(pages);
91 		list_del(&page->lru);
92 		if (add_to_page_cache_lru(page, mapping,
93 					page->index, GFP_KERNEL)) {
94 			read_cache_pages_invalidate_page(mapping, page);
95 			continue;
96 		}
97 		page_cache_release(page);
98 
99 		ret = filler(data, page);
100 		if (unlikely(ret)) {
101 			read_cache_pages_invalidate_pages(mapping, pages);
102 			break;
103 		}
104 		task_io_account_read(PAGE_CACHE_SIZE);
105 	}
106 	return ret;
107 }
108 
109 EXPORT_SYMBOL(read_cache_pages);
110 
111 static int read_pages(struct address_space *mapping, struct file *filp,
112 		struct list_head *pages, unsigned nr_pages)
113 {
114 	struct blk_plug plug;
115 	unsigned page_idx;
116 	int ret;
117 
118 	blk_start_plug(&plug);
119 
120 	if (mapping->a_ops->readpages) {
121 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122 		/* Clean up the remaining pages */
123 		put_pages_list(pages);
124 		goto out;
125 	}
126 
127 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128 		struct page *page = list_to_page(pages);
129 		list_del(&page->lru);
130 		if (!add_to_page_cache_lru(page, mapping,
131 					page->index, GFP_KERNEL)) {
132 			mapping->a_ops->readpage(filp, page);
133 		}
134 		page_cache_release(page);
135 	}
136 	ret = 0;
137 
138 out:
139 	blk_finish_plug(&plug);
140 
141 	return ret;
142 }
143 
144 /*
145  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
146  * the pages first, then submits them all for I/O. This avoids the very bad
147  * behaviour which would occur if page allocations are causing VM writeback.
148  * We really don't want to intermingle reads and writes like that.
149  *
150  * Returns the number of pages requested, or the maximum amount of I/O allowed.
151  */
152 int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
153 			pgoff_t offset, unsigned long nr_to_read,
154 			unsigned long lookahead_size)
155 {
156 	struct inode *inode = mapping->host;
157 	struct page *page;
158 	unsigned long end_index;	/* The last page we want to read */
159 	LIST_HEAD(page_pool);
160 	int page_idx;
161 	int ret = 0;
162 	loff_t isize = i_size_read(inode);
163 
164 	if (isize == 0)
165 		goto out;
166 
167 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
168 
169 	/*
170 	 * Preallocate as many pages as we will need.
171 	 */
172 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
173 		pgoff_t page_offset = offset + page_idx;
174 
175 		if (page_offset > end_index)
176 			break;
177 
178 		rcu_read_lock();
179 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
180 		rcu_read_unlock();
181 		if (page && !radix_tree_exceptional_entry(page))
182 			continue;
183 
184 		page = page_cache_alloc_readahead(mapping);
185 		if (!page)
186 			break;
187 		page->index = page_offset;
188 		list_add(&page->lru, &page_pool);
189 		if (page_idx == nr_to_read - lookahead_size)
190 			SetPageReadahead(page);
191 		ret++;
192 	}
193 
194 	/*
195 	 * Now start the IO.  We ignore I/O errors - if the page is not
196 	 * uptodate then the caller will launch readpage again, and
197 	 * will then handle the error.
198 	 */
199 	if (ret)
200 		read_pages(mapping, filp, &page_pool, ret);
201 	BUG_ON(!list_empty(&page_pool));
202 out:
203 	return ret;
204 }
205 
206 /*
207  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
208  * memory at once.
209  */
210 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
211 		pgoff_t offset, unsigned long nr_to_read)
212 {
213 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
214 		return -EINVAL;
215 
216 	nr_to_read = max_sane_readahead(nr_to_read);
217 	while (nr_to_read) {
218 		int err;
219 
220 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
221 
222 		if (this_chunk > nr_to_read)
223 			this_chunk = nr_to_read;
224 		err = __do_page_cache_readahead(mapping, filp,
225 						offset, this_chunk, 0);
226 		if (err < 0)
227 			return err;
228 
229 		offset += this_chunk;
230 		nr_to_read -= this_chunk;
231 	}
232 	return 0;
233 }
234 
235 #define MAX_READAHEAD   ((512*4096)/PAGE_CACHE_SIZE)
236 /*
237  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
238  * sensible upper limit.
239  */
240 unsigned long max_sane_readahead(unsigned long nr)
241 {
242 	return min(nr, MAX_READAHEAD);
243 }
244 
245 /*
246  * Set the initial window size, round to next power of 2 and square
247  * for small size, x 4 for medium, and x 2 for large
248  * for 128k (32 page) max ra
249  * 1-8 page = 32k initial, > 8 page = 128k initial
250  */
251 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
252 {
253 	unsigned long newsize = roundup_pow_of_two(size);
254 
255 	if (newsize <= max / 32)
256 		newsize = newsize * 4;
257 	else if (newsize <= max / 4)
258 		newsize = newsize * 2;
259 	else
260 		newsize = max;
261 
262 	return newsize;
263 }
264 
265 /*
266  *  Get the previous window size, ramp it up, and
267  *  return it as the new window size.
268  */
269 static unsigned long get_next_ra_size(struct file_ra_state *ra,
270 						unsigned long max)
271 {
272 	unsigned long cur = ra->size;
273 	unsigned long newsize;
274 
275 	if (cur < max / 16)
276 		newsize = 4 * cur;
277 	else
278 		newsize = 2 * cur;
279 
280 	return min(newsize, max);
281 }
282 
283 /*
284  * On-demand readahead design.
285  *
286  * The fields in struct file_ra_state represent the most-recently-executed
287  * readahead attempt:
288  *
289  *                        |<----- async_size ---------|
290  *     |------------------- size -------------------->|
291  *     |==================#===========================|
292  *     ^start             ^page marked with PG_readahead
293  *
294  * To overlap application thinking time and disk I/O time, we do
295  * `readahead pipelining': Do not wait until the application consumed all
296  * readahead pages and stalled on the missing page at readahead_index;
297  * Instead, submit an asynchronous readahead I/O as soon as there are
298  * only async_size pages left in the readahead window. Normally async_size
299  * will be equal to size, for maximum pipelining.
300  *
301  * In interleaved sequential reads, concurrent streams on the same fd can
302  * be invalidating each other's readahead state. So we flag the new readahead
303  * page at (start+size-async_size) with PG_readahead, and use it as readahead
304  * indicator. The flag won't be set on already cached pages, to avoid the
305  * readahead-for-nothing fuss, saving pointless page cache lookups.
306  *
307  * prev_pos tracks the last visited byte in the _previous_ read request.
308  * It should be maintained by the caller, and will be used for detecting
309  * small random reads. Note that the readahead algorithm checks loosely
310  * for sequential patterns. Hence interleaved reads might be served as
311  * sequential ones.
312  *
313  * There is a special-case: if the first page which the application tries to
314  * read happens to be the first page of the file, it is assumed that a linear
315  * read is about to happen and the window is immediately set to the initial size
316  * based on I/O request size and the max_readahead.
317  *
318  * The code ramps up the readahead size aggressively at first, but slow down as
319  * it approaches max_readhead.
320  */
321 
322 /*
323  * Count contiguously cached pages from @offset-1 to @offset-@max,
324  * this count is a conservative estimation of
325  * 	- length of the sequential read sequence, or
326  * 	- thrashing threshold in memory tight systems
327  */
328 static pgoff_t count_history_pages(struct address_space *mapping,
329 				   pgoff_t offset, unsigned long max)
330 {
331 	pgoff_t head;
332 
333 	rcu_read_lock();
334 	head = page_cache_prev_hole(mapping, offset - 1, max);
335 	rcu_read_unlock();
336 
337 	return offset - 1 - head;
338 }
339 
340 /*
341  * page cache context based read-ahead
342  */
343 static int try_context_readahead(struct address_space *mapping,
344 				 struct file_ra_state *ra,
345 				 pgoff_t offset,
346 				 unsigned long req_size,
347 				 unsigned long max)
348 {
349 	pgoff_t size;
350 
351 	size = count_history_pages(mapping, offset, max);
352 
353 	/*
354 	 * not enough history pages:
355 	 * it could be a random read
356 	 */
357 	if (size <= req_size)
358 		return 0;
359 
360 	/*
361 	 * starts from beginning of file:
362 	 * it is a strong indication of long-run stream (or whole-file-read)
363 	 */
364 	if (size >= offset)
365 		size *= 2;
366 
367 	ra->start = offset;
368 	ra->size = min(size + req_size, max);
369 	ra->async_size = 1;
370 
371 	return 1;
372 }
373 
374 /*
375  * A minimal readahead algorithm for trivial sequential/random reads.
376  */
377 static unsigned long
378 ondemand_readahead(struct address_space *mapping,
379 		   struct file_ra_state *ra, struct file *filp,
380 		   bool hit_readahead_marker, pgoff_t offset,
381 		   unsigned long req_size)
382 {
383 	unsigned long max = max_sane_readahead(ra->ra_pages);
384 	pgoff_t prev_offset;
385 
386 	/*
387 	 * start of file
388 	 */
389 	if (!offset)
390 		goto initial_readahead;
391 
392 	/*
393 	 * It's the expected callback offset, assume sequential access.
394 	 * Ramp up sizes, and push forward the readahead window.
395 	 */
396 	if ((offset == (ra->start + ra->size - ra->async_size) ||
397 	     offset == (ra->start + ra->size))) {
398 		ra->start += ra->size;
399 		ra->size = get_next_ra_size(ra, max);
400 		ra->async_size = ra->size;
401 		goto readit;
402 	}
403 
404 	/*
405 	 * Hit a marked page without valid readahead state.
406 	 * E.g. interleaved reads.
407 	 * Query the pagecache for async_size, which normally equals to
408 	 * readahead size. Ramp it up and use it as the new readahead size.
409 	 */
410 	if (hit_readahead_marker) {
411 		pgoff_t start;
412 
413 		rcu_read_lock();
414 		start = page_cache_next_hole(mapping, offset + 1, max);
415 		rcu_read_unlock();
416 
417 		if (!start || start - offset > max)
418 			return 0;
419 
420 		ra->start = start;
421 		ra->size = start - offset;	/* old async_size */
422 		ra->size += req_size;
423 		ra->size = get_next_ra_size(ra, max);
424 		ra->async_size = ra->size;
425 		goto readit;
426 	}
427 
428 	/*
429 	 * oversize read
430 	 */
431 	if (req_size > max)
432 		goto initial_readahead;
433 
434 	/*
435 	 * sequential cache miss
436 	 * trivial case: (offset - prev_offset) == 1
437 	 * unaligned reads: (offset - prev_offset) == 0
438 	 */
439 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
440 	if (offset - prev_offset <= 1UL)
441 		goto initial_readahead;
442 
443 	/*
444 	 * Query the page cache and look for the traces(cached history pages)
445 	 * that a sequential stream would leave behind.
446 	 */
447 	if (try_context_readahead(mapping, ra, offset, req_size, max))
448 		goto readit;
449 
450 	/*
451 	 * standalone, small random read
452 	 * Read as is, and do not pollute the readahead state.
453 	 */
454 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
455 
456 initial_readahead:
457 	ra->start = offset;
458 	ra->size = get_init_ra_size(req_size, max);
459 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
460 
461 readit:
462 	/*
463 	 * Will this read hit the readahead marker made by itself?
464 	 * If so, trigger the readahead marker hit now, and merge
465 	 * the resulted next readahead window into the current one.
466 	 */
467 	if (offset == ra->start && ra->size == ra->async_size) {
468 		ra->async_size = get_next_ra_size(ra, max);
469 		ra->size += ra->async_size;
470 	}
471 
472 	return ra_submit(ra, mapping, filp);
473 }
474 
475 /**
476  * page_cache_sync_readahead - generic file readahead
477  * @mapping: address_space which holds the pagecache and I/O vectors
478  * @ra: file_ra_state which holds the readahead state
479  * @filp: passed on to ->readpage() and ->readpages()
480  * @offset: start offset into @mapping, in pagecache page-sized units
481  * @req_size: hint: total size of the read which the caller is performing in
482  *            pagecache pages
483  *
484  * page_cache_sync_readahead() should be called when a cache miss happened:
485  * it will submit the read.  The readahead logic may decide to piggyback more
486  * pages onto the read request if access patterns suggest it will improve
487  * performance.
488  */
489 void page_cache_sync_readahead(struct address_space *mapping,
490 			       struct file_ra_state *ra, struct file *filp,
491 			       pgoff_t offset, unsigned long req_size)
492 {
493 	/* no read-ahead */
494 	if (!ra->ra_pages)
495 		return;
496 
497 	/* be dumb */
498 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
499 		force_page_cache_readahead(mapping, filp, offset, req_size);
500 		return;
501 	}
502 
503 	/* do read-ahead */
504 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
505 }
506 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
507 
508 /**
509  * page_cache_async_readahead - file readahead for marked pages
510  * @mapping: address_space which holds the pagecache and I/O vectors
511  * @ra: file_ra_state which holds the readahead state
512  * @filp: passed on to ->readpage() and ->readpages()
513  * @page: the page at @offset which has the PG_readahead flag set
514  * @offset: start offset into @mapping, in pagecache page-sized units
515  * @req_size: hint: total size of the read which the caller is performing in
516  *            pagecache pages
517  *
518  * page_cache_async_readahead() should be called when a page is used which
519  * has the PG_readahead flag; this is a marker to suggest that the application
520  * has used up enough of the readahead window that we should start pulling in
521  * more pages.
522  */
523 void
524 page_cache_async_readahead(struct address_space *mapping,
525 			   struct file_ra_state *ra, struct file *filp,
526 			   struct page *page, pgoff_t offset,
527 			   unsigned long req_size)
528 {
529 	/* no read-ahead */
530 	if (!ra->ra_pages)
531 		return;
532 
533 	/*
534 	 * Same bit is used for PG_readahead and PG_reclaim.
535 	 */
536 	if (PageWriteback(page))
537 		return;
538 
539 	ClearPageReadahead(page);
540 
541 	/*
542 	 * Defer asynchronous read-ahead on IO congestion.
543 	 */
544 	if (bdi_read_congested(inode_to_bdi(mapping->host)))
545 		return;
546 
547 	/* do read-ahead */
548 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
549 }
550 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
551 
552 static ssize_t
553 do_readahead(struct address_space *mapping, struct file *filp,
554 	     pgoff_t index, unsigned long nr)
555 {
556 	if (!mapping || !mapping->a_ops)
557 		return -EINVAL;
558 
559 	return force_page_cache_readahead(mapping, filp, index, nr);
560 }
561 
562 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
563 {
564 	ssize_t ret;
565 	struct fd f;
566 
567 	ret = -EBADF;
568 	f = fdget(fd);
569 	if (f.file) {
570 		if (f.file->f_mode & FMODE_READ) {
571 			struct address_space *mapping = f.file->f_mapping;
572 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
573 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
574 			unsigned long len = end - start + 1;
575 			ret = do_readahead(mapping, f.file, start, len);
576 		}
577 		fdput(f);
578 	}
579 	return ret;
580 }
581