1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 20 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 21 { 22 } 23 EXPORT_SYMBOL(default_unplug_io_fn); 24 25 /* 26 * Convienent macros for min/max read-ahead pages. 27 * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up. 28 * The latter is necessary for systems with large page size(i.e. 64k). 29 */ 30 #define MAX_RA_PAGES (VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE) 31 #define MIN_RA_PAGES DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE) 32 33 struct backing_dev_info default_backing_dev_info = { 34 .ra_pages = MAX_RA_PAGES, 35 .state = 0, 36 .capabilities = BDI_CAP_MAP_COPY, 37 .unplug_io_fn = default_unplug_io_fn, 38 }; 39 EXPORT_SYMBOL_GPL(default_backing_dev_info); 40 41 /* 42 * Initialise a struct file's readahead state. Assumes that the caller has 43 * memset *ra to zero. 44 */ 45 void 46 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 47 { 48 ra->ra_pages = mapping->backing_dev_info->ra_pages; 49 ra->prev_index = -1; 50 } 51 EXPORT_SYMBOL_GPL(file_ra_state_init); 52 53 #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 54 55 /** 56 * read_cache_pages - populate an address space with some pages & start reads against them 57 * @mapping: the address_space 58 * @pages: The address of a list_head which contains the target pages. These 59 * pages have their ->index populated and are otherwise uninitialised. 60 * @filler: callback routine for filling a single page. 61 * @data: private data for the callback routine. 62 * 63 * Hides the details of the LRU cache etc from the filesystems. 64 */ 65 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 66 int (*filler)(void *, struct page *), void *data) 67 { 68 struct page *page; 69 struct pagevec lru_pvec; 70 int ret = 0; 71 72 pagevec_init(&lru_pvec, 0); 73 74 while (!list_empty(pages)) { 75 page = list_to_page(pages); 76 list_del(&page->lru); 77 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) { 78 page_cache_release(page); 79 continue; 80 } 81 ret = filler(data, page); 82 if (!pagevec_add(&lru_pvec, page)) 83 __pagevec_lru_add(&lru_pvec); 84 if (ret) { 85 put_pages_list(pages); 86 break; 87 } 88 task_io_account_read(PAGE_CACHE_SIZE); 89 } 90 pagevec_lru_add(&lru_pvec); 91 return ret; 92 } 93 94 EXPORT_SYMBOL(read_cache_pages); 95 96 static int read_pages(struct address_space *mapping, struct file *filp, 97 struct list_head *pages, unsigned nr_pages) 98 { 99 unsigned page_idx; 100 struct pagevec lru_pvec; 101 int ret; 102 103 if (mapping->a_ops->readpages) { 104 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 105 /* Clean up the remaining pages */ 106 put_pages_list(pages); 107 goto out; 108 } 109 110 pagevec_init(&lru_pvec, 0); 111 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 112 struct page *page = list_to_page(pages); 113 list_del(&page->lru); 114 if (!add_to_page_cache(page, mapping, 115 page->index, GFP_KERNEL)) { 116 mapping->a_ops->readpage(filp, page); 117 if (!pagevec_add(&lru_pvec, page)) 118 __pagevec_lru_add(&lru_pvec); 119 } else 120 page_cache_release(page); 121 } 122 pagevec_lru_add(&lru_pvec); 123 ret = 0; 124 out: 125 return ret; 126 } 127 128 /* 129 * do_page_cache_readahead actually reads a chunk of disk. It allocates all 130 * the pages first, then submits them all for I/O. This avoids the very bad 131 * behaviour which would occur if page allocations are causing VM writeback. 132 * We really don't want to intermingle reads and writes like that. 133 * 134 * Returns the number of pages requested, or the maximum amount of I/O allowed. 135 * 136 * do_page_cache_readahead() returns -1 if it encountered request queue 137 * congestion. 138 */ 139 static int 140 __do_page_cache_readahead(struct address_space *mapping, struct file *filp, 141 pgoff_t offset, unsigned long nr_to_read, 142 unsigned long lookahead_size) 143 { 144 struct inode *inode = mapping->host; 145 struct page *page; 146 unsigned long end_index; /* The last page we want to read */ 147 LIST_HEAD(page_pool); 148 int page_idx; 149 int ret = 0; 150 loff_t isize = i_size_read(inode); 151 152 if (isize == 0) 153 goto out; 154 155 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 156 157 /* 158 * Preallocate as many pages as we will need. 159 */ 160 read_lock_irq(&mapping->tree_lock); 161 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 162 pgoff_t page_offset = offset + page_idx; 163 164 if (page_offset > end_index) 165 break; 166 167 page = radix_tree_lookup(&mapping->page_tree, page_offset); 168 if (page) 169 continue; 170 171 read_unlock_irq(&mapping->tree_lock); 172 page = page_cache_alloc_cold(mapping); 173 read_lock_irq(&mapping->tree_lock); 174 if (!page) 175 break; 176 page->index = page_offset; 177 list_add(&page->lru, &page_pool); 178 if (page_idx == nr_to_read - lookahead_size) 179 SetPageReadahead(page); 180 ret++; 181 } 182 read_unlock_irq(&mapping->tree_lock); 183 184 /* 185 * Now start the IO. We ignore I/O errors - if the page is not 186 * uptodate then the caller will launch readpage again, and 187 * will then handle the error. 188 */ 189 if (ret) 190 read_pages(mapping, filp, &page_pool, ret); 191 BUG_ON(!list_empty(&page_pool)); 192 out: 193 return ret; 194 } 195 196 /* 197 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 198 * memory at once. 199 */ 200 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 201 pgoff_t offset, unsigned long nr_to_read) 202 { 203 int ret = 0; 204 205 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 206 return -EINVAL; 207 208 while (nr_to_read) { 209 int err; 210 211 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; 212 213 if (this_chunk > nr_to_read) 214 this_chunk = nr_to_read; 215 err = __do_page_cache_readahead(mapping, filp, 216 offset, this_chunk, 0); 217 if (err < 0) { 218 ret = err; 219 break; 220 } 221 ret += err; 222 offset += this_chunk; 223 nr_to_read -= this_chunk; 224 } 225 return ret; 226 } 227 228 /* 229 * This version skips the IO if the queue is read-congested, and will tell the 230 * block layer to abandon the readahead if request allocation would block. 231 * 232 * force_page_cache_readahead() will ignore queue congestion and will block on 233 * request queues. 234 */ 235 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 236 pgoff_t offset, unsigned long nr_to_read) 237 { 238 if (bdi_read_congested(mapping->backing_dev_info)) 239 return -1; 240 241 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0); 242 } 243 244 /* 245 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 246 * sensible upper limit. 247 */ 248 unsigned long max_sane_readahead(unsigned long nr) 249 { 250 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE) 251 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); 252 } 253 254 /* 255 * Submit IO for the read-ahead request in file_ra_state. 256 */ 257 static unsigned long ra_submit(struct file_ra_state *ra, 258 struct address_space *mapping, struct file *filp) 259 { 260 int actual; 261 262 actual = __do_page_cache_readahead(mapping, filp, 263 ra->start, ra->size, ra->async_size); 264 265 return actual; 266 } 267 268 /* 269 * Set the initial window size, round to next power of 2 and square 270 * for small size, x 4 for medium, and x 2 for large 271 * for 128k (32 page) max ra 272 * 1-8 page = 32k initial, > 8 page = 128k initial 273 */ 274 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 275 { 276 unsigned long newsize = roundup_pow_of_two(size); 277 278 if (newsize <= max / 32) 279 newsize = newsize * 4; 280 else if (newsize <= max / 4) 281 newsize = newsize * 2; 282 else 283 newsize = max; 284 285 return newsize; 286 } 287 288 /* 289 * Get the previous window size, ramp it up, and 290 * return it as the new window size. 291 */ 292 static unsigned long get_next_ra_size(struct file_ra_state *ra, 293 unsigned long max) 294 { 295 unsigned long cur = ra->size; 296 unsigned long newsize; 297 298 if (cur < max / 16) 299 newsize = 4 * cur; 300 else 301 newsize = 2 * cur; 302 303 return min(newsize, max); 304 } 305 306 /* 307 * On-demand readahead design. 308 * 309 * The fields in struct file_ra_state represent the most-recently-executed 310 * readahead attempt: 311 * 312 * |<----- async_size ---------| 313 * |------------------- size -------------------->| 314 * |==================#===========================| 315 * ^start ^page marked with PG_readahead 316 * 317 * To overlap application thinking time and disk I/O time, we do 318 * `readahead pipelining': Do not wait until the application consumed all 319 * readahead pages and stalled on the missing page at readahead_index; 320 * Instead, submit an asynchronous readahead I/O as soon as there are 321 * only async_size pages left in the readahead window. Normally async_size 322 * will be equal to size, for maximum pipelining. 323 * 324 * In interleaved sequential reads, concurrent streams on the same fd can 325 * be invalidating each other's readahead state. So we flag the new readahead 326 * page at (start+size-async_size) with PG_readahead, and use it as readahead 327 * indicator. The flag won't be set on already cached pages, to avoid the 328 * readahead-for-nothing fuss, saving pointless page cache lookups. 329 * 330 * prev_index tracks the last visited page in the _previous_ read request. 331 * It should be maintained by the caller, and will be used for detecting 332 * small random reads. Note that the readahead algorithm checks loosely 333 * for sequential patterns. Hence interleaved reads might be served as 334 * sequential ones. 335 * 336 * There is a special-case: if the first page which the application tries to 337 * read happens to be the first page of the file, it is assumed that a linear 338 * read is about to happen and the window is immediately set to the initial size 339 * based on I/O request size and the max_readahead. 340 * 341 * The code ramps up the readahead size aggressively at first, but slow down as 342 * it approaches max_readhead. 343 */ 344 345 /* 346 * A minimal readahead algorithm for trivial sequential/random reads. 347 */ 348 static unsigned long 349 ondemand_readahead(struct address_space *mapping, 350 struct file_ra_state *ra, struct file *filp, 351 bool hit_readahead_marker, pgoff_t offset, 352 unsigned long req_size) 353 { 354 unsigned long max; /* max readahead pages */ 355 int sequential; 356 357 max = ra->ra_pages; 358 sequential = (offset - ra->prev_index <= 1UL) || (req_size > max); 359 360 /* 361 * It's the expected callback offset, assume sequential access. 362 * Ramp up sizes, and push forward the readahead window. 363 */ 364 if (offset && (offset == (ra->start + ra->size - ra->async_size) || 365 offset == (ra->start + ra->size))) { 366 ra->start += ra->size; 367 ra->size = get_next_ra_size(ra, max); 368 ra->async_size = ra->size; 369 goto readit; 370 } 371 372 /* 373 * Standalone, small read. 374 * Read as is, and do not pollute the readahead state. 375 */ 376 if (!hit_readahead_marker && !sequential) { 377 return __do_page_cache_readahead(mapping, filp, 378 offset, req_size, 0); 379 } 380 381 /* 382 * It may be one of 383 * - first read on start of file 384 * - sequential cache miss 385 * - oversize random read 386 * Start readahead for it. 387 */ 388 ra->start = offset; 389 ra->size = get_init_ra_size(req_size, max); 390 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 391 392 /* 393 * Hit on a marked page without valid readahead state. 394 * E.g. interleaved reads. 395 * Not knowing its readahead pos/size, bet on the minimal possible one. 396 */ 397 if (hit_readahead_marker) { 398 ra->start++; 399 ra->size = get_next_ra_size(ra, max); 400 } 401 402 readit: 403 return ra_submit(ra, mapping, filp); 404 } 405 406 /** 407 * page_cache_sync_readahead - generic file readahead 408 * @mapping: address_space which holds the pagecache and I/O vectors 409 * @ra: file_ra_state which holds the readahead state 410 * @filp: passed on to ->readpage() and ->readpages() 411 * @offset: start offset into @mapping, in pagecache page-sized units 412 * @req_size: hint: total size of the read which the caller is performing in 413 * pagecache pages 414 * 415 * page_cache_sync_readahead() should be called when a cache miss happened: 416 * it will submit the read. The readahead logic may decide to piggyback more 417 * pages onto the read request if access patterns suggest it will improve 418 * performance. 419 */ 420 void page_cache_sync_readahead(struct address_space *mapping, 421 struct file_ra_state *ra, struct file *filp, 422 pgoff_t offset, unsigned long req_size) 423 { 424 /* no read-ahead */ 425 if (!ra->ra_pages) 426 return; 427 428 /* do read-ahead */ 429 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 430 } 431 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 432 433 /** 434 * page_cache_async_readahead - file readahead for marked pages 435 * @mapping: address_space which holds the pagecache and I/O vectors 436 * @ra: file_ra_state which holds the readahead state 437 * @filp: passed on to ->readpage() and ->readpages() 438 * @page: the page at @offset which has the PG_readahead flag set 439 * @offset: start offset into @mapping, in pagecache page-sized units 440 * @req_size: hint: total size of the read which the caller is performing in 441 * pagecache pages 442 * 443 * page_cache_async_ondemand() should be called when a page is used which 444 * has the PG_readahead flag: this is a marker to suggest that the application 445 * has used up enough of the readahead window that we should start pulling in 446 * more pages. */ 447 void 448 page_cache_async_readahead(struct address_space *mapping, 449 struct file_ra_state *ra, struct file *filp, 450 struct page *page, pgoff_t offset, 451 unsigned long req_size) 452 { 453 /* no read-ahead */ 454 if (!ra->ra_pages) 455 return; 456 457 /* 458 * Same bit is used for PG_readahead and PG_reclaim. 459 */ 460 if (PageWriteback(page)) 461 return; 462 463 ClearPageReadahead(page); 464 465 /* 466 * Defer asynchronous read-ahead on IO congestion. 467 */ 468 if (bdi_read_congested(mapping->backing_dev_info)) 469 return; 470 471 /* do read-ahead */ 472 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 473 } 474 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 475