xref: /linux/mm/readahead.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/dax.h>
12 #include <linux/gfp.h>
13 #include <linux/export.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 
23 #include "internal.h"
24 
25 /*
26  * Initialise a struct file's readahead state.  Assumes that the caller has
27  * memset *ra to zero.
28  */
29 void
30 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
31 {
32 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
33 	ra->prev_pos = -1;
34 }
35 EXPORT_SYMBOL_GPL(file_ra_state_init);
36 
37 /*
38  * see if a page needs releasing upon read_cache_pages() failure
39  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40  *   before calling, such as the NFS fs marking pages that are cached locally
41  *   on disk, thus we need to give the fs a chance to clean up in the event of
42  *   an error
43  */
44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
45 					     struct page *page)
46 {
47 	if (page_has_private(page)) {
48 		if (!trylock_page(page))
49 			BUG();
50 		page->mapping = mapping;
51 		do_invalidatepage(page, 0, PAGE_SIZE);
52 		page->mapping = NULL;
53 		unlock_page(page);
54 	}
55 	put_page(page);
56 }
57 
58 /*
59  * release a list of pages, invalidating them first if need be
60  */
61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
62 					      struct list_head *pages)
63 {
64 	struct page *victim;
65 
66 	while (!list_empty(pages)) {
67 		victim = lru_to_page(pages);
68 		list_del(&victim->lru);
69 		read_cache_pages_invalidate_page(mapping, victim);
70 	}
71 }
72 
73 /**
74  * read_cache_pages - populate an address space with some pages & start reads against them
75  * @mapping: the address_space
76  * @pages: The address of a list_head which contains the target pages.  These
77  *   pages have their ->index populated and are otherwise uninitialised.
78  * @filler: callback routine for filling a single page.
79  * @data: private data for the callback routine.
80  *
81  * Hides the details of the LRU cache etc from the filesystems.
82  */
83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
84 			int (*filler)(void *, struct page *), void *data)
85 {
86 	struct page *page;
87 	int ret = 0;
88 
89 	while (!list_empty(pages)) {
90 		page = lru_to_page(pages);
91 		list_del(&page->lru);
92 		if (add_to_page_cache_lru(page, mapping, page->index,
93 				readahead_gfp_mask(mapping))) {
94 			read_cache_pages_invalidate_page(mapping, page);
95 			continue;
96 		}
97 		put_page(page);
98 
99 		ret = filler(data, page);
100 		if (unlikely(ret)) {
101 			read_cache_pages_invalidate_pages(mapping, pages);
102 			break;
103 		}
104 		task_io_account_read(PAGE_SIZE);
105 	}
106 	return ret;
107 }
108 
109 EXPORT_SYMBOL(read_cache_pages);
110 
111 static int read_pages(struct address_space *mapping, struct file *filp,
112 		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113 {
114 	struct blk_plug plug;
115 	unsigned page_idx;
116 	int ret;
117 
118 	blk_start_plug(&plug);
119 
120 	if (mapping->a_ops->readpages) {
121 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122 		/* Clean up the remaining pages */
123 		put_pages_list(pages);
124 		goto out;
125 	}
126 
127 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128 		struct page *page = lru_to_page(pages);
129 		list_del(&page->lru);
130 		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
131 			mapping->a_ops->readpage(filp, page);
132 		put_page(page);
133 	}
134 	ret = 0;
135 
136 out:
137 	blk_finish_plug(&plug);
138 
139 	return ret;
140 }
141 
142 /*
143  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144  * the pages first, then submits them all for I/O. This avoids the very bad
145  * behaviour which would occur if page allocations are causing VM writeback.
146  * We really don't want to intermingle reads and writes like that.
147  *
148  * Returns the number of pages requested, or the maximum amount of I/O allowed.
149  */
150 int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
151 			pgoff_t offset, unsigned long nr_to_read,
152 			unsigned long lookahead_size)
153 {
154 	struct inode *inode = mapping->host;
155 	struct page *page;
156 	unsigned long end_index;	/* The last page we want to read */
157 	LIST_HEAD(page_pool);
158 	int page_idx;
159 	int ret = 0;
160 	loff_t isize = i_size_read(inode);
161 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
162 
163 	if (isize == 0)
164 		goto out;
165 
166 	end_index = ((isize - 1) >> PAGE_SHIFT);
167 
168 	/*
169 	 * Preallocate as many pages as we will need.
170 	 */
171 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172 		pgoff_t page_offset = offset + page_idx;
173 
174 		if (page_offset > end_index)
175 			break;
176 
177 		rcu_read_lock();
178 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179 		rcu_read_unlock();
180 		if (page && !radix_tree_exceptional_entry(page))
181 			continue;
182 
183 		page = __page_cache_alloc(gfp_mask);
184 		if (!page)
185 			break;
186 		page->index = page_offset;
187 		list_add(&page->lru, &page_pool);
188 		if (page_idx == nr_to_read - lookahead_size)
189 			SetPageReadahead(page);
190 		ret++;
191 	}
192 
193 	/*
194 	 * Now start the IO.  We ignore I/O errors - if the page is not
195 	 * uptodate then the caller will launch readpage again, and
196 	 * will then handle the error.
197 	 */
198 	if (ret)
199 		read_pages(mapping, filp, &page_pool, ret, gfp_mask);
200 	BUG_ON(!list_empty(&page_pool));
201 out:
202 	return ret;
203 }
204 
205 /*
206  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207  * memory at once.
208  */
209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210 			       pgoff_t offset, unsigned long nr_to_read)
211 {
212 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
213 	struct file_ra_state *ra = &filp->f_ra;
214 	unsigned long max_pages;
215 
216 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217 		return -EINVAL;
218 
219 	/*
220 	 * If the request exceeds the readahead window, allow the read to
221 	 * be up to the optimal hardware IO size
222 	 */
223 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
224 	nr_to_read = min(nr_to_read, max_pages);
225 	while (nr_to_read) {
226 		int err;
227 
228 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
229 
230 		if (this_chunk > nr_to_read)
231 			this_chunk = nr_to_read;
232 		err = __do_page_cache_readahead(mapping, filp,
233 						offset, this_chunk, 0);
234 		if (err < 0)
235 			return err;
236 
237 		offset += this_chunk;
238 		nr_to_read -= this_chunk;
239 	}
240 	return 0;
241 }
242 
243 /*
244  * Set the initial window size, round to next power of 2 and square
245  * for small size, x 4 for medium, and x 2 for large
246  * for 128k (32 page) max ra
247  * 1-8 page = 32k initial, > 8 page = 128k initial
248  */
249 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
250 {
251 	unsigned long newsize = roundup_pow_of_two(size);
252 
253 	if (newsize <= max / 32)
254 		newsize = newsize * 4;
255 	else if (newsize <= max / 4)
256 		newsize = newsize * 2;
257 	else
258 		newsize = max;
259 
260 	return newsize;
261 }
262 
263 /*
264  *  Get the previous window size, ramp it up, and
265  *  return it as the new window size.
266  */
267 static unsigned long get_next_ra_size(struct file_ra_state *ra,
268 						unsigned long max)
269 {
270 	unsigned long cur = ra->size;
271 	unsigned long newsize;
272 
273 	if (cur < max / 16)
274 		newsize = 4 * cur;
275 	else
276 		newsize = 2 * cur;
277 
278 	return min(newsize, max);
279 }
280 
281 /*
282  * On-demand readahead design.
283  *
284  * The fields in struct file_ra_state represent the most-recently-executed
285  * readahead attempt:
286  *
287  *                        |<----- async_size ---------|
288  *     |------------------- size -------------------->|
289  *     |==================#===========================|
290  *     ^start             ^page marked with PG_readahead
291  *
292  * To overlap application thinking time and disk I/O time, we do
293  * `readahead pipelining': Do not wait until the application consumed all
294  * readahead pages and stalled on the missing page at readahead_index;
295  * Instead, submit an asynchronous readahead I/O as soon as there are
296  * only async_size pages left in the readahead window. Normally async_size
297  * will be equal to size, for maximum pipelining.
298  *
299  * In interleaved sequential reads, concurrent streams on the same fd can
300  * be invalidating each other's readahead state. So we flag the new readahead
301  * page at (start+size-async_size) with PG_readahead, and use it as readahead
302  * indicator. The flag won't be set on already cached pages, to avoid the
303  * readahead-for-nothing fuss, saving pointless page cache lookups.
304  *
305  * prev_pos tracks the last visited byte in the _previous_ read request.
306  * It should be maintained by the caller, and will be used for detecting
307  * small random reads. Note that the readahead algorithm checks loosely
308  * for sequential patterns. Hence interleaved reads might be served as
309  * sequential ones.
310  *
311  * There is a special-case: if the first page which the application tries to
312  * read happens to be the first page of the file, it is assumed that a linear
313  * read is about to happen and the window is immediately set to the initial size
314  * based on I/O request size and the max_readahead.
315  *
316  * The code ramps up the readahead size aggressively at first, but slow down as
317  * it approaches max_readhead.
318  */
319 
320 /*
321  * Count contiguously cached pages from @offset-1 to @offset-@max,
322  * this count is a conservative estimation of
323  * 	- length of the sequential read sequence, or
324  * 	- thrashing threshold in memory tight systems
325  */
326 static pgoff_t count_history_pages(struct address_space *mapping,
327 				   pgoff_t offset, unsigned long max)
328 {
329 	pgoff_t head;
330 
331 	rcu_read_lock();
332 	head = page_cache_prev_hole(mapping, offset - 1, max);
333 	rcu_read_unlock();
334 
335 	return offset - 1 - head;
336 }
337 
338 /*
339  * page cache context based read-ahead
340  */
341 static int try_context_readahead(struct address_space *mapping,
342 				 struct file_ra_state *ra,
343 				 pgoff_t offset,
344 				 unsigned long req_size,
345 				 unsigned long max)
346 {
347 	pgoff_t size;
348 
349 	size = count_history_pages(mapping, offset, max);
350 
351 	/*
352 	 * not enough history pages:
353 	 * it could be a random read
354 	 */
355 	if (size <= req_size)
356 		return 0;
357 
358 	/*
359 	 * starts from beginning of file:
360 	 * it is a strong indication of long-run stream (or whole-file-read)
361 	 */
362 	if (size >= offset)
363 		size *= 2;
364 
365 	ra->start = offset;
366 	ra->size = min(size + req_size, max);
367 	ra->async_size = 1;
368 
369 	return 1;
370 }
371 
372 /*
373  * A minimal readahead algorithm for trivial sequential/random reads.
374  */
375 static unsigned long
376 ondemand_readahead(struct address_space *mapping,
377 		   struct file_ra_state *ra, struct file *filp,
378 		   bool hit_readahead_marker, pgoff_t offset,
379 		   unsigned long req_size)
380 {
381 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
382 	unsigned long max_pages = ra->ra_pages;
383 	pgoff_t prev_offset;
384 
385 	/*
386 	 * If the request exceeds the readahead window, allow the read to
387 	 * be up to the optimal hardware IO size
388 	 */
389 	if (req_size > max_pages && bdi->io_pages > max_pages)
390 		max_pages = min(req_size, bdi->io_pages);
391 
392 	/*
393 	 * start of file
394 	 */
395 	if (!offset)
396 		goto initial_readahead;
397 
398 	/*
399 	 * It's the expected callback offset, assume sequential access.
400 	 * Ramp up sizes, and push forward the readahead window.
401 	 */
402 	if ((offset == (ra->start + ra->size - ra->async_size) ||
403 	     offset == (ra->start + ra->size))) {
404 		ra->start += ra->size;
405 		ra->size = get_next_ra_size(ra, max_pages);
406 		ra->async_size = ra->size;
407 		goto readit;
408 	}
409 
410 	/*
411 	 * Hit a marked page without valid readahead state.
412 	 * E.g. interleaved reads.
413 	 * Query the pagecache for async_size, which normally equals to
414 	 * readahead size. Ramp it up and use it as the new readahead size.
415 	 */
416 	if (hit_readahead_marker) {
417 		pgoff_t start;
418 
419 		rcu_read_lock();
420 		start = page_cache_next_hole(mapping, offset + 1, max_pages);
421 		rcu_read_unlock();
422 
423 		if (!start || start - offset > max_pages)
424 			return 0;
425 
426 		ra->start = start;
427 		ra->size = start - offset;	/* old async_size */
428 		ra->size += req_size;
429 		ra->size = get_next_ra_size(ra, max_pages);
430 		ra->async_size = ra->size;
431 		goto readit;
432 	}
433 
434 	/*
435 	 * oversize read
436 	 */
437 	if (req_size > max_pages)
438 		goto initial_readahead;
439 
440 	/*
441 	 * sequential cache miss
442 	 * trivial case: (offset - prev_offset) == 1
443 	 * unaligned reads: (offset - prev_offset) == 0
444 	 */
445 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
446 	if (offset - prev_offset <= 1UL)
447 		goto initial_readahead;
448 
449 	/*
450 	 * Query the page cache and look for the traces(cached history pages)
451 	 * that a sequential stream would leave behind.
452 	 */
453 	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
454 		goto readit;
455 
456 	/*
457 	 * standalone, small random read
458 	 * Read as is, and do not pollute the readahead state.
459 	 */
460 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
461 
462 initial_readahead:
463 	ra->start = offset;
464 	ra->size = get_init_ra_size(req_size, max_pages);
465 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
466 
467 readit:
468 	/*
469 	 * Will this read hit the readahead marker made by itself?
470 	 * If so, trigger the readahead marker hit now, and merge
471 	 * the resulted next readahead window into the current one.
472 	 */
473 	if (offset == ra->start && ra->size == ra->async_size) {
474 		ra->async_size = get_next_ra_size(ra, max_pages);
475 		ra->size += ra->async_size;
476 	}
477 
478 	return ra_submit(ra, mapping, filp);
479 }
480 
481 /**
482  * page_cache_sync_readahead - generic file readahead
483  * @mapping: address_space which holds the pagecache and I/O vectors
484  * @ra: file_ra_state which holds the readahead state
485  * @filp: passed on to ->readpage() and ->readpages()
486  * @offset: start offset into @mapping, in pagecache page-sized units
487  * @req_size: hint: total size of the read which the caller is performing in
488  *            pagecache pages
489  *
490  * page_cache_sync_readahead() should be called when a cache miss happened:
491  * it will submit the read.  The readahead logic may decide to piggyback more
492  * pages onto the read request if access patterns suggest it will improve
493  * performance.
494  */
495 void page_cache_sync_readahead(struct address_space *mapping,
496 			       struct file_ra_state *ra, struct file *filp,
497 			       pgoff_t offset, unsigned long req_size)
498 {
499 	/* no read-ahead */
500 	if (!ra->ra_pages)
501 		return;
502 
503 	/* be dumb */
504 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
505 		force_page_cache_readahead(mapping, filp, offset, req_size);
506 		return;
507 	}
508 
509 	/* do read-ahead */
510 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
511 }
512 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
513 
514 /**
515  * page_cache_async_readahead - file readahead for marked pages
516  * @mapping: address_space which holds the pagecache and I/O vectors
517  * @ra: file_ra_state which holds the readahead state
518  * @filp: passed on to ->readpage() and ->readpages()
519  * @page: the page at @offset which has the PG_readahead flag set
520  * @offset: start offset into @mapping, in pagecache page-sized units
521  * @req_size: hint: total size of the read which the caller is performing in
522  *            pagecache pages
523  *
524  * page_cache_async_readahead() should be called when a page is used which
525  * has the PG_readahead flag; this is a marker to suggest that the application
526  * has used up enough of the readahead window that we should start pulling in
527  * more pages.
528  */
529 void
530 page_cache_async_readahead(struct address_space *mapping,
531 			   struct file_ra_state *ra, struct file *filp,
532 			   struct page *page, pgoff_t offset,
533 			   unsigned long req_size)
534 {
535 	/* no read-ahead */
536 	if (!ra->ra_pages)
537 		return;
538 
539 	/*
540 	 * Same bit is used for PG_readahead and PG_reclaim.
541 	 */
542 	if (PageWriteback(page))
543 		return;
544 
545 	ClearPageReadahead(page);
546 
547 	/*
548 	 * Defer asynchronous read-ahead on IO congestion.
549 	 */
550 	if (inode_read_congested(mapping->host))
551 		return;
552 
553 	/* do read-ahead */
554 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
555 }
556 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
557 
558 static ssize_t
559 do_readahead(struct address_space *mapping, struct file *filp,
560 	     pgoff_t index, unsigned long nr)
561 {
562 	if (!mapping || !mapping->a_ops)
563 		return -EINVAL;
564 
565 	/*
566 	 * Readahead doesn't make sense for DAX inodes, but we don't want it
567 	 * to report a failure either.  Instead, we just return success and
568 	 * don't do any work.
569 	 */
570 	if (dax_mapping(mapping))
571 		return 0;
572 
573 	return force_page_cache_readahead(mapping, filp, index, nr);
574 }
575 
576 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
577 {
578 	ssize_t ret;
579 	struct fd f;
580 
581 	ret = -EBADF;
582 	f = fdget(fd);
583 	if (f.file) {
584 		if (f.file->f_mode & FMODE_READ) {
585 			struct address_space *mapping = f.file->f_mapping;
586 			pgoff_t start = offset >> PAGE_SHIFT;
587 			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
588 			unsigned long len = end - start + 1;
589 			ret = do_readahead(mapping, f.file, start, len);
590 		}
591 		fdput(f);
592 	}
593 	return ret;
594 }
595