1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/dax.h> 12 #include <linux/gfp.h> 13 #include <linux/export.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 #include <linux/syscalls.h> 20 #include <linux/file.h> 21 #include <linux/mm_inline.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/fadvise.h> 24 25 #include "internal.h" 26 27 /* 28 * Initialise a struct file's readahead state. Assumes that the caller has 29 * memset *ra to zero. 30 */ 31 void 32 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 33 { 34 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 35 ra->prev_pos = -1; 36 } 37 EXPORT_SYMBOL_GPL(file_ra_state_init); 38 39 /* 40 * see if a page needs releasing upon read_cache_pages() failure 41 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 42 * before calling, such as the NFS fs marking pages that are cached locally 43 * on disk, thus we need to give the fs a chance to clean up in the event of 44 * an error 45 */ 46 static void read_cache_pages_invalidate_page(struct address_space *mapping, 47 struct page *page) 48 { 49 if (page_has_private(page)) { 50 if (!trylock_page(page)) 51 BUG(); 52 page->mapping = mapping; 53 do_invalidatepage(page, 0, PAGE_SIZE); 54 page->mapping = NULL; 55 unlock_page(page); 56 } 57 put_page(page); 58 } 59 60 /* 61 * release a list of pages, invalidating them first if need be 62 */ 63 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 64 struct list_head *pages) 65 { 66 struct page *victim; 67 68 while (!list_empty(pages)) { 69 victim = lru_to_page(pages); 70 list_del(&victim->lru); 71 read_cache_pages_invalidate_page(mapping, victim); 72 } 73 } 74 75 /** 76 * read_cache_pages - populate an address space with some pages & start reads against them 77 * @mapping: the address_space 78 * @pages: The address of a list_head which contains the target pages. These 79 * pages have their ->index populated and are otherwise uninitialised. 80 * @filler: callback routine for filling a single page. 81 * @data: private data for the callback routine. 82 * 83 * Hides the details of the LRU cache etc from the filesystems. 84 * 85 * Returns: %0 on success, error return by @filler otherwise 86 */ 87 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 88 int (*filler)(void *, struct page *), void *data) 89 { 90 struct page *page; 91 int ret = 0; 92 93 while (!list_empty(pages)) { 94 page = lru_to_page(pages); 95 list_del(&page->lru); 96 if (add_to_page_cache_lru(page, mapping, page->index, 97 readahead_gfp_mask(mapping))) { 98 read_cache_pages_invalidate_page(mapping, page); 99 continue; 100 } 101 put_page(page); 102 103 ret = filler(data, page); 104 if (unlikely(ret)) { 105 read_cache_pages_invalidate_pages(mapping, pages); 106 break; 107 } 108 task_io_account_read(PAGE_SIZE); 109 } 110 return ret; 111 } 112 113 EXPORT_SYMBOL(read_cache_pages); 114 115 static int read_pages(struct address_space *mapping, struct file *filp, 116 struct list_head *pages, unsigned int nr_pages, gfp_t gfp) 117 { 118 struct blk_plug plug; 119 unsigned page_idx; 120 int ret; 121 122 blk_start_plug(&plug); 123 124 if (mapping->a_ops->readpages) { 125 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 126 /* Clean up the remaining pages */ 127 put_pages_list(pages); 128 goto out; 129 } 130 131 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 132 struct page *page = lru_to_page(pages); 133 list_del(&page->lru); 134 if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) 135 mapping->a_ops->readpage(filp, page); 136 put_page(page); 137 } 138 ret = 0; 139 140 out: 141 blk_finish_plug(&plug); 142 143 return ret; 144 } 145 146 /* 147 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates 148 * the pages first, then submits them for I/O. This avoids the very bad 149 * behaviour which would occur if page allocations are causing VM writeback. 150 * We really don't want to intermingle reads and writes like that. 151 * 152 * Returns the number of pages requested, or the maximum amount of I/O allowed. 153 */ 154 unsigned int __do_page_cache_readahead(struct address_space *mapping, 155 struct file *filp, pgoff_t offset, unsigned long nr_to_read, 156 unsigned long lookahead_size) 157 { 158 struct inode *inode = mapping->host; 159 struct page *page; 160 unsigned long end_index; /* The last page we want to read */ 161 LIST_HEAD(page_pool); 162 int page_idx; 163 unsigned int nr_pages = 0; 164 loff_t isize = i_size_read(inode); 165 gfp_t gfp_mask = readahead_gfp_mask(mapping); 166 167 if (isize == 0) 168 goto out; 169 170 end_index = ((isize - 1) >> PAGE_SHIFT); 171 172 /* 173 * Preallocate as many pages as we will need. 174 */ 175 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 176 pgoff_t page_offset = offset + page_idx; 177 178 if (page_offset > end_index) 179 break; 180 181 page = xa_load(&mapping->i_pages, page_offset); 182 if (page && !xa_is_value(page)) { 183 /* 184 * Page already present? Kick off the current batch of 185 * contiguous pages before continuing with the next 186 * batch. 187 */ 188 if (nr_pages) 189 read_pages(mapping, filp, &page_pool, nr_pages, 190 gfp_mask); 191 nr_pages = 0; 192 continue; 193 } 194 195 page = __page_cache_alloc(gfp_mask); 196 if (!page) 197 break; 198 page->index = page_offset; 199 list_add(&page->lru, &page_pool); 200 if (page_idx == nr_to_read - lookahead_size) 201 SetPageReadahead(page); 202 nr_pages++; 203 } 204 205 /* 206 * Now start the IO. We ignore I/O errors - if the page is not 207 * uptodate then the caller will launch readpage again, and 208 * will then handle the error. 209 */ 210 if (nr_pages) 211 read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask); 212 BUG_ON(!list_empty(&page_pool)); 213 out: 214 return nr_pages; 215 } 216 217 /* 218 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 219 * memory at once. 220 */ 221 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 222 pgoff_t offset, unsigned long nr_to_read) 223 { 224 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 225 struct file_ra_state *ra = &filp->f_ra; 226 unsigned long max_pages; 227 228 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 229 return -EINVAL; 230 231 /* 232 * If the request exceeds the readahead window, allow the read to 233 * be up to the optimal hardware IO size 234 */ 235 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 236 nr_to_read = min(nr_to_read, max_pages); 237 while (nr_to_read) { 238 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 239 240 if (this_chunk > nr_to_read) 241 this_chunk = nr_to_read; 242 __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0); 243 244 offset += this_chunk; 245 nr_to_read -= this_chunk; 246 } 247 return 0; 248 } 249 250 /* 251 * Set the initial window size, round to next power of 2 and square 252 * for small size, x 4 for medium, and x 2 for large 253 * for 128k (32 page) max ra 254 * 1-8 page = 32k initial, > 8 page = 128k initial 255 */ 256 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 257 { 258 unsigned long newsize = roundup_pow_of_two(size); 259 260 if (newsize <= max / 32) 261 newsize = newsize * 4; 262 else if (newsize <= max / 4) 263 newsize = newsize * 2; 264 else 265 newsize = max; 266 267 return newsize; 268 } 269 270 /* 271 * Get the previous window size, ramp it up, and 272 * return it as the new window size. 273 */ 274 static unsigned long get_next_ra_size(struct file_ra_state *ra, 275 unsigned long max) 276 { 277 unsigned long cur = ra->size; 278 279 if (cur < max / 16) 280 return 4 * cur; 281 if (cur <= max / 2) 282 return 2 * cur; 283 return max; 284 } 285 286 /* 287 * On-demand readahead design. 288 * 289 * The fields in struct file_ra_state represent the most-recently-executed 290 * readahead attempt: 291 * 292 * |<----- async_size ---------| 293 * |------------------- size -------------------->| 294 * |==================#===========================| 295 * ^start ^page marked with PG_readahead 296 * 297 * To overlap application thinking time and disk I/O time, we do 298 * `readahead pipelining': Do not wait until the application consumed all 299 * readahead pages and stalled on the missing page at readahead_index; 300 * Instead, submit an asynchronous readahead I/O as soon as there are 301 * only async_size pages left in the readahead window. Normally async_size 302 * will be equal to size, for maximum pipelining. 303 * 304 * In interleaved sequential reads, concurrent streams on the same fd can 305 * be invalidating each other's readahead state. So we flag the new readahead 306 * page at (start+size-async_size) with PG_readahead, and use it as readahead 307 * indicator. The flag won't be set on already cached pages, to avoid the 308 * readahead-for-nothing fuss, saving pointless page cache lookups. 309 * 310 * prev_pos tracks the last visited byte in the _previous_ read request. 311 * It should be maintained by the caller, and will be used for detecting 312 * small random reads. Note that the readahead algorithm checks loosely 313 * for sequential patterns. Hence interleaved reads might be served as 314 * sequential ones. 315 * 316 * There is a special-case: if the first page which the application tries to 317 * read happens to be the first page of the file, it is assumed that a linear 318 * read is about to happen and the window is immediately set to the initial size 319 * based on I/O request size and the max_readahead. 320 * 321 * The code ramps up the readahead size aggressively at first, but slow down as 322 * it approaches max_readhead. 323 */ 324 325 /* 326 * Count contiguously cached pages from @offset-1 to @offset-@max, 327 * this count is a conservative estimation of 328 * - length of the sequential read sequence, or 329 * - thrashing threshold in memory tight systems 330 */ 331 static pgoff_t count_history_pages(struct address_space *mapping, 332 pgoff_t offset, unsigned long max) 333 { 334 pgoff_t head; 335 336 rcu_read_lock(); 337 head = page_cache_prev_miss(mapping, offset - 1, max); 338 rcu_read_unlock(); 339 340 return offset - 1 - head; 341 } 342 343 /* 344 * page cache context based read-ahead 345 */ 346 static int try_context_readahead(struct address_space *mapping, 347 struct file_ra_state *ra, 348 pgoff_t offset, 349 unsigned long req_size, 350 unsigned long max) 351 { 352 pgoff_t size; 353 354 size = count_history_pages(mapping, offset, max); 355 356 /* 357 * not enough history pages: 358 * it could be a random read 359 */ 360 if (size <= req_size) 361 return 0; 362 363 /* 364 * starts from beginning of file: 365 * it is a strong indication of long-run stream (or whole-file-read) 366 */ 367 if (size >= offset) 368 size *= 2; 369 370 ra->start = offset; 371 ra->size = min(size + req_size, max); 372 ra->async_size = 1; 373 374 return 1; 375 } 376 377 /* 378 * A minimal readahead algorithm for trivial sequential/random reads. 379 */ 380 static unsigned long 381 ondemand_readahead(struct address_space *mapping, 382 struct file_ra_state *ra, struct file *filp, 383 bool hit_readahead_marker, pgoff_t offset, 384 unsigned long req_size) 385 { 386 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 387 unsigned long max_pages = ra->ra_pages; 388 unsigned long add_pages; 389 pgoff_t prev_offset; 390 391 /* 392 * If the request exceeds the readahead window, allow the read to 393 * be up to the optimal hardware IO size 394 */ 395 if (req_size > max_pages && bdi->io_pages > max_pages) 396 max_pages = min(req_size, bdi->io_pages); 397 398 /* 399 * start of file 400 */ 401 if (!offset) 402 goto initial_readahead; 403 404 /* 405 * It's the expected callback offset, assume sequential access. 406 * Ramp up sizes, and push forward the readahead window. 407 */ 408 if ((offset == (ra->start + ra->size - ra->async_size) || 409 offset == (ra->start + ra->size))) { 410 ra->start += ra->size; 411 ra->size = get_next_ra_size(ra, max_pages); 412 ra->async_size = ra->size; 413 goto readit; 414 } 415 416 /* 417 * Hit a marked page without valid readahead state. 418 * E.g. interleaved reads. 419 * Query the pagecache for async_size, which normally equals to 420 * readahead size. Ramp it up and use it as the new readahead size. 421 */ 422 if (hit_readahead_marker) { 423 pgoff_t start; 424 425 rcu_read_lock(); 426 start = page_cache_next_miss(mapping, offset + 1, max_pages); 427 rcu_read_unlock(); 428 429 if (!start || start - offset > max_pages) 430 return 0; 431 432 ra->start = start; 433 ra->size = start - offset; /* old async_size */ 434 ra->size += req_size; 435 ra->size = get_next_ra_size(ra, max_pages); 436 ra->async_size = ra->size; 437 goto readit; 438 } 439 440 /* 441 * oversize read 442 */ 443 if (req_size > max_pages) 444 goto initial_readahead; 445 446 /* 447 * sequential cache miss 448 * trivial case: (offset - prev_offset) == 1 449 * unaligned reads: (offset - prev_offset) == 0 450 */ 451 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 452 if (offset - prev_offset <= 1UL) 453 goto initial_readahead; 454 455 /* 456 * Query the page cache and look for the traces(cached history pages) 457 * that a sequential stream would leave behind. 458 */ 459 if (try_context_readahead(mapping, ra, offset, req_size, max_pages)) 460 goto readit; 461 462 /* 463 * standalone, small random read 464 * Read as is, and do not pollute the readahead state. 465 */ 466 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 467 468 initial_readahead: 469 ra->start = offset; 470 ra->size = get_init_ra_size(req_size, max_pages); 471 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 472 473 readit: 474 /* 475 * Will this read hit the readahead marker made by itself? 476 * If so, trigger the readahead marker hit now, and merge 477 * the resulted next readahead window into the current one. 478 * Take care of maximum IO pages as above. 479 */ 480 if (offset == ra->start && ra->size == ra->async_size) { 481 add_pages = get_next_ra_size(ra, max_pages); 482 if (ra->size + add_pages <= max_pages) { 483 ra->async_size = add_pages; 484 ra->size += add_pages; 485 } else { 486 ra->size = max_pages; 487 ra->async_size = max_pages >> 1; 488 } 489 } 490 491 return ra_submit(ra, mapping, filp); 492 } 493 494 /** 495 * page_cache_sync_readahead - generic file readahead 496 * @mapping: address_space which holds the pagecache and I/O vectors 497 * @ra: file_ra_state which holds the readahead state 498 * @filp: passed on to ->readpage() and ->readpages() 499 * @offset: start offset into @mapping, in pagecache page-sized units 500 * @req_size: hint: total size of the read which the caller is performing in 501 * pagecache pages 502 * 503 * page_cache_sync_readahead() should be called when a cache miss happened: 504 * it will submit the read. The readahead logic may decide to piggyback more 505 * pages onto the read request if access patterns suggest it will improve 506 * performance. 507 */ 508 void page_cache_sync_readahead(struct address_space *mapping, 509 struct file_ra_state *ra, struct file *filp, 510 pgoff_t offset, unsigned long req_size) 511 { 512 /* no read-ahead */ 513 if (!ra->ra_pages) 514 return; 515 516 if (blk_cgroup_congested()) 517 return; 518 519 /* be dumb */ 520 if (filp && (filp->f_mode & FMODE_RANDOM)) { 521 force_page_cache_readahead(mapping, filp, offset, req_size); 522 return; 523 } 524 525 /* do read-ahead */ 526 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 527 } 528 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 529 530 /** 531 * page_cache_async_readahead - file readahead for marked pages 532 * @mapping: address_space which holds the pagecache and I/O vectors 533 * @ra: file_ra_state which holds the readahead state 534 * @filp: passed on to ->readpage() and ->readpages() 535 * @page: the page at @offset which has the PG_readahead flag set 536 * @offset: start offset into @mapping, in pagecache page-sized units 537 * @req_size: hint: total size of the read which the caller is performing in 538 * pagecache pages 539 * 540 * page_cache_async_readahead() should be called when a page is used which 541 * has the PG_readahead flag; this is a marker to suggest that the application 542 * has used up enough of the readahead window that we should start pulling in 543 * more pages. 544 */ 545 void 546 page_cache_async_readahead(struct address_space *mapping, 547 struct file_ra_state *ra, struct file *filp, 548 struct page *page, pgoff_t offset, 549 unsigned long req_size) 550 { 551 /* no read-ahead */ 552 if (!ra->ra_pages) 553 return; 554 555 /* 556 * Same bit is used for PG_readahead and PG_reclaim. 557 */ 558 if (PageWriteback(page)) 559 return; 560 561 ClearPageReadahead(page); 562 563 /* 564 * Defer asynchronous read-ahead on IO congestion. 565 */ 566 if (inode_read_congested(mapping->host)) 567 return; 568 569 if (blk_cgroup_congested()) 570 return; 571 572 /* do read-ahead */ 573 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 574 } 575 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 576 577 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 578 { 579 ssize_t ret; 580 struct fd f; 581 582 ret = -EBADF; 583 f = fdget(fd); 584 if (!f.file || !(f.file->f_mode & FMODE_READ)) 585 goto out; 586 587 /* 588 * The readahead() syscall is intended to run only on files 589 * that can execute readahead. If readahead is not possible 590 * on this file, then we must return -EINVAL. 591 */ 592 ret = -EINVAL; 593 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 594 !S_ISREG(file_inode(f.file)->i_mode)) 595 goto out; 596 597 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 598 out: 599 fdput(f); 600 return ret; 601 } 602 603 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 604 { 605 return ksys_readahead(fd, offset, count); 606 } 607