1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/pgtable-generic.c 4 * 5 * Generic pgtable methods declared in linux/pgtable.h 6 * 7 * Copyright (C) 2010 Linus Torvalds 8 */ 9 10 #include <linux/pagemap.h> 11 #include <linux/hugetlb.h> 12 #include <linux/pgtable.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mm_inline.h> 16 #include <linux/iommu.h> 17 #include <linux/pgalloc.h> 18 19 #include <asm/tlb.h> 20 21 /* 22 * If a p?d_bad entry is found while walking page tables, report 23 * the error, before resetting entry to p?d_none. Usually (but 24 * very seldom) called out from the p?d_none_or_clear_bad macros. 25 */ 26 27 void pgd_clear_bad(pgd_t *pgd) 28 { 29 pgd_ERROR(*pgd); 30 pgd_clear(pgd); 31 } 32 33 #ifndef __PAGETABLE_P4D_FOLDED 34 void p4d_clear_bad(p4d_t *p4d) 35 { 36 p4d_ERROR(*p4d); 37 p4d_clear(p4d); 38 } 39 #endif 40 41 #ifndef __PAGETABLE_PUD_FOLDED 42 void pud_clear_bad(pud_t *pud) 43 { 44 pud_ERROR(*pud); 45 pud_clear(pud); 46 } 47 #endif 48 49 /* 50 * Note that the pmd variant below can't be stub'ed out just as for p4d/pud 51 * above. pmd folding is special and typically pmd_* macros refer to upper 52 * level even when folded 53 */ 54 void pmd_clear_bad(pmd_t *pmd) 55 { 56 pmd_ERROR(*pmd); 57 pmd_clear(pmd); 58 } 59 60 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 61 /* 62 * Only sets the access flags (dirty, accessed), as well as write 63 * permission. Furthermore, we know it always gets set to a "more 64 * permissive" setting, which allows most architectures to optimize 65 * this. We return whether the PTE actually changed, which in turn 66 * instructs the caller to do things like update__mmu_cache. This 67 * used to be done in the caller, but sparc needs minor faults to 68 * force that call on sun4c so we changed this macro slightly 69 */ 70 int ptep_set_access_flags(struct vm_area_struct *vma, 71 unsigned long address, pte_t *ptep, 72 pte_t entry, int dirty) 73 { 74 int changed = !pte_same(ptep_get(ptep), entry); 75 if (changed) { 76 set_pte_at(vma->vm_mm, address, ptep, entry); 77 flush_tlb_fix_spurious_fault(vma, address, ptep); 78 } 79 return changed; 80 } 81 #endif 82 83 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 84 int ptep_clear_flush_young(struct vm_area_struct *vma, 85 unsigned long address, pte_t *ptep) 86 { 87 int young; 88 young = ptep_test_and_clear_young(vma, address, ptep); 89 if (young) 90 flush_tlb_page(vma, address); 91 return young; 92 } 93 #endif 94 95 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 96 pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, 97 pte_t *ptep) 98 { 99 struct mm_struct *mm = (vma)->vm_mm; 100 pte_t pte; 101 pte = ptep_get_and_clear(mm, address, ptep); 102 if (pte_accessible(mm, pte)) 103 flush_tlb_page(vma, address); 104 return pte; 105 } 106 #endif 107 108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 109 110 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 111 int pmdp_set_access_flags(struct vm_area_struct *vma, 112 unsigned long address, pmd_t *pmdp, 113 pmd_t entry, int dirty) 114 { 115 int changed = !pmd_same(*pmdp, entry); 116 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 117 if (changed) { 118 set_pmd_at(vma->vm_mm, address, pmdp, entry); 119 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 120 } 121 return changed; 122 } 123 #endif 124 125 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 126 int pmdp_clear_flush_young(struct vm_area_struct *vma, 127 unsigned long address, pmd_t *pmdp) 128 { 129 int young; 130 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 131 young = pmdp_test_and_clear_young(vma, address, pmdp); 132 if (young) 133 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 134 return young; 135 } 136 #endif 137 138 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 139 pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, 140 pmd_t *pmdp) 141 { 142 pmd_t pmd; 143 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 144 VM_BUG_ON(pmd_present(*pmdp) && !pmd_trans_huge(*pmdp)); 145 pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 146 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 147 return pmd; 148 } 149 150 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 151 pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, 152 pud_t *pudp) 153 { 154 pud_t pud; 155 156 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 157 VM_BUG_ON(!pud_trans_huge(*pudp)); 158 pud = pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 159 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 160 return pud; 161 } 162 #endif 163 #endif 164 165 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 166 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 167 pgtable_t pgtable) 168 { 169 assert_spin_locked(pmd_lockptr(mm, pmdp)); 170 171 /* FIFO */ 172 if (!pmd_huge_pte(mm, pmdp)) 173 INIT_LIST_HEAD(&pgtable->lru); 174 else 175 list_add(&pgtable->lru, &pmd_huge_pte(mm, pmdp)->lru); 176 pmd_huge_pte(mm, pmdp) = pgtable; 177 } 178 #endif 179 180 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 181 /* no "address" argument so destroys page coloring of some arch */ 182 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 183 { 184 pgtable_t pgtable; 185 186 assert_spin_locked(pmd_lockptr(mm, pmdp)); 187 188 /* FIFO */ 189 pgtable = pmd_huge_pte(mm, pmdp); 190 pmd_huge_pte(mm, pmdp) = list_first_entry_or_null(&pgtable->lru, 191 struct page, lru); 192 if (pmd_huge_pte(mm, pmdp)) 193 list_del(&pgtable->lru); 194 return pgtable; 195 } 196 #endif 197 198 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 199 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 200 pmd_t *pmdp) 201 { 202 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 203 pmd_t old = pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp)); 204 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 205 return old; 206 } 207 #endif 208 209 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 210 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address, 211 pmd_t *pmdp) 212 { 213 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 214 return pmdp_invalidate(vma, address, pmdp); 215 } 216 #endif 217 218 #ifndef pmdp_collapse_flush 219 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, 220 pmd_t *pmdp) 221 { 222 /* 223 * pmd and hugepage pte format are same. So we could 224 * use the same function. 225 */ 226 pmd_t pmd; 227 228 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 229 VM_BUG_ON(pmd_trans_huge(*pmdp)); 230 pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 231 232 /* collapse entails shooting down ptes not pmd */ 233 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 234 return pmd; 235 } 236 #endif 237 238 /* arch define pte_free_defer in asm/pgalloc.h for its own implementation */ 239 #ifndef pte_free_defer 240 static void pte_free_now(struct rcu_head *head) 241 { 242 struct page *page; 243 244 page = container_of(head, struct page, rcu_head); 245 pte_free(NULL /* mm not passed and not used */, (pgtable_t)page); 246 } 247 248 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) 249 { 250 struct page *page; 251 252 page = pgtable; 253 call_rcu(&page->rcu_head, pte_free_now); 254 } 255 #endif /* pte_free_defer */ 256 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 257 258 #if defined(CONFIG_GUP_GET_PXX_LOW_HIGH) && \ 259 (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RCU)) 260 /* 261 * See the comment above ptep_get_lockless() in include/linux/pgtable.h: 262 * the barriers in pmdp_get_lockless() cannot guarantee that the value in 263 * pmd_high actually belongs with the value in pmd_low; but holding interrupts 264 * off blocks the TLB flush between present updates, which guarantees that a 265 * successful __pte_offset_map() points to a page from matched halves. 266 */ 267 static unsigned long pmdp_get_lockless_start(void) 268 { 269 unsigned long irqflags; 270 271 local_irq_save(irqflags); 272 return irqflags; 273 } 274 static void pmdp_get_lockless_end(unsigned long irqflags) 275 { 276 local_irq_restore(irqflags); 277 } 278 #else 279 static unsigned long pmdp_get_lockless_start(void) { return 0; } 280 static void pmdp_get_lockless_end(unsigned long irqflags) { } 281 #endif 282 283 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp) 284 { 285 unsigned long irqflags; 286 pmd_t pmdval; 287 288 rcu_read_lock(); 289 irqflags = pmdp_get_lockless_start(); 290 pmdval = pmdp_get_lockless(pmd); 291 pmdp_get_lockless_end(irqflags); 292 293 if (pmdvalp) 294 *pmdvalp = pmdval; 295 if (unlikely(pmd_none(pmdval) || !pmd_present(pmdval))) 296 goto nomap; 297 if (unlikely(pmd_trans_huge(pmdval))) 298 goto nomap; 299 if (unlikely(pmd_bad(pmdval))) { 300 pmd_clear_bad(pmd); 301 goto nomap; 302 } 303 return __pte_map(&pmdval, addr); 304 nomap: 305 rcu_read_unlock(); 306 return NULL; 307 } 308 309 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 310 unsigned long addr, spinlock_t **ptlp) 311 { 312 pmd_t pmdval; 313 pte_t *pte; 314 315 pte = __pte_offset_map(pmd, addr, &pmdval); 316 if (likely(pte)) 317 *ptlp = pte_lockptr(mm, &pmdval); 318 return pte; 319 } 320 321 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 322 unsigned long addr, pmd_t *pmdvalp, 323 spinlock_t **ptlp) 324 { 325 pte_t *pte; 326 327 VM_WARN_ON_ONCE(!pmdvalp); 328 pte = __pte_offset_map(pmd, addr, pmdvalp); 329 if (likely(pte)) 330 *ptlp = pte_lockptr(mm, pmdvalp); 331 return pte; 332 } 333 334 /* 335 * pte_offset_map_lock(mm, pmd, addr, ptlp), and its internal implementation 336 * __pte_offset_map_lock() below, is usually called with the pmd pointer for 337 * addr, reached by walking down the mm's pgd, p4d, pud for addr: either while 338 * holding mmap_lock or vma lock for read or for write; or in truncate or rmap 339 * context, while holding file's i_mmap_lock or anon_vma lock for read (or for 340 * write). In a few cases, it may be used with pmd pointing to a pmd_t already 341 * copied to or constructed on the stack. 342 * 343 * When successful, it returns the pte pointer for addr, with its page table 344 * kmapped if necessary (when CONFIG_HIGHPTE), and locked against concurrent 345 * modification by software, with a pointer to that spinlock in ptlp (in some 346 * configs mm->page_table_lock, in SPLIT_PTLOCK configs a spinlock in table's 347 * struct page). pte_unmap_unlock(pte, ptl) to unlock and unmap afterwards. 348 * 349 * But it is unsuccessful, returning NULL with *ptlp unchanged, if there is no 350 * page table at *pmd: if, for example, the page table has just been removed, 351 * or replaced by the huge pmd of a THP. (When successful, *pmd is rechecked 352 * after acquiring the ptlock, and retried internally if it changed: so that a 353 * page table can be safely removed or replaced by THP while holding its lock.) 354 * 355 * pte_offset_map(pmd, addr), and its internal helper __pte_offset_map() above, 356 * just returns the pte pointer for addr, its page table kmapped if necessary; 357 * or NULL if there is no page table at *pmd. It does not attempt to lock the 358 * page table, so cannot normally be used when the page table is to be updated, 359 * or when entries read must be stable. But it does take rcu_read_lock(): so 360 * that even when page table is racily removed, it remains a valid though empty 361 * and disconnected table. Until pte_unmap(pte) unmaps and rcu_read_unlock()s 362 * afterwards. 363 * 364 * pte_offset_map_ro_nolock(mm, pmd, addr, ptlp), above, is like pte_offset_map(); 365 * but when successful, it also outputs a pointer to the spinlock in ptlp - as 366 * pte_offset_map_lock() does, but in this case without locking it. This helps 367 * the caller to avoid a later pte_lockptr(mm, *pmd), which might by that time 368 * act on a changed *pmd: pte_offset_map_ro_nolock() provides the correct spinlock 369 * pointer for the page table that it returns. Even after grabbing the spinlock, 370 * we might be looking either at a page table that is still mapped or one that 371 * was unmapped and is about to get freed. But for R/O access this is sufficient. 372 * So it is only applicable for read-only cases where any modification operations 373 * to the page table are not allowed even if the corresponding spinlock is held 374 * afterwards. 375 * 376 * pte_offset_map_rw_nolock(mm, pmd, addr, pmdvalp, ptlp), above, is like 377 * pte_offset_map_ro_nolock(); but when successful, it also outputs the pdmval. 378 * It is applicable for may-write cases where any modification operations to the 379 * page table may happen after the corresponding spinlock is held afterwards. 380 * But the users should make sure the page table is stable like checking pte_same() 381 * or checking pmd_same() by using the output pmdval before performing the write 382 * operations. 383 * 384 * Note: "RO" / "RW" expresses the intended semantics, not that the *kmap* will 385 * be read-only/read-write protected. 386 * 387 * Note that free_pgtables(), used after unmapping detached vmas, or when 388 * exiting the whole mm, does not take page table lock before freeing a page 389 * table, and may not use RCU at all: "outsiders" like khugepaged should avoid 390 * pte_offset_map() and co once the vma is detached from mm or mm_users is zero. 391 */ 392 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 393 unsigned long addr, spinlock_t **ptlp) 394 { 395 spinlock_t *ptl; 396 pmd_t pmdval; 397 pte_t *pte; 398 again: 399 pte = __pte_offset_map(pmd, addr, &pmdval); 400 if (unlikely(!pte)) 401 return pte; 402 ptl = pte_lockptr(mm, &pmdval); 403 spin_lock(ptl); 404 if (likely(pmd_same(pmdval, pmdp_get_lockless(pmd)))) { 405 *ptlp = ptl; 406 return pte; 407 } 408 pte_unmap_unlock(pte, ptl); 409 goto again; 410 } 411 412 #ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE 413 static void kernel_pgtable_work_func(struct work_struct *work); 414 415 static struct { 416 struct list_head list; 417 /* protect above ptdesc lists */ 418 spinlock_t lock; 419 struct work_struct work; 420 } kernel_pgtable_work = { 421 .list = LIST_HEAD_INIT(kernel_pgtable_work.list), 422 .lock = __SPIN_LOCK_UNLOCKED(kernel_pgtable_work.lock), 423 .work = __WORK_INITIALIZER(kernel_pgtable_work.work, kernel_pgtable_work_func), 424 }; 425 426 static void kernel_pgtable_work_func(struct work_struct *work) 427 { 428 struct ptdesc *pt, *next; 429 LIST_HEAD(page_list); 430 431 spin_lock(&kernel_pgtable_work.lock); 432 list_splice_tail_init(&kernel_pgtable_work.list, &page_list); 433 spin_unlock(&kernel_pgtable_work.lock); 434 435 iommu_sva_invalidate_kva_range(PAGE_OFFSET, TLB_FLUSH_ALL); 436 list_for_each_entry_safe(pt, next, &page_list, pt_list) 437 __pagetable_free(pt); 438 } 439 440 void pagetable_free_kernel(struct ptdesc *pt) 441 { 442 spin_lock(&kernel_pgtable_work.lock); 443 list_add(&pt->pt_list, &kernel_pgtable_work.list); 444 spin_unlock(&kernel_pgtable_work.lock); 445 446 schedule_work(&kernel_pgtable_work.work); 447 } 448 #endif 449