xref: /linux/mm/percpu.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * Copyright (C) 2017		Facebook Inc.
8  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
9  *
10  * This file is released under the GPLv2 license.
11  *
12  * The percpu allocator handles both static and dynamic areas.  Percpu
13  * areas are allocated in chunks which are divided into units.  There is
14  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
15  * based on NUMA properties of the machine.
16  *
17  *  c0                           c1                         c2
18  *  -------------------          -------------------        ------------
19  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
20  *  -------------------  ......  -------------------  ....  ------------
21  *
22  * Allocation is done by offsets into a unit's address space.  Ie., an
23  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
25  * and even sparse.  Access is handled by configuring percpu base
26  * registers according to the cpu to unit mappings and offsetting the
27  * base address using pcpu_unit_size.
28  *
29  * There is special consideration for the first chunk which must handle
30  * the static percpu variables in the kernel image as allocation services
31  * are not online yet.  In short, the first chunk is structured like so:
32  *
33  *                  <Static | [Reserved] | Dynamic>
34  *
35  * The static data is copied from the original section managed by the
36  * linker.  The reserved section, if non-zero, primarily manages static
37  * percpu variables from kernel modules.  Finally, the dynamic section
38  * takes care of normal allocations.
39  *
40  * The allocator organizes chunks into lists according to free size and
41  * tries to allocate from the fullest chunk first.  Each chunk is managed
42  * by a bitmap with metadata blocks.  The allocation map is updated on
43  * every allocation and free to reflect the current state while the boundary
44  * map is only updated on allocation.  Each metadata block contains
45  * information to help mitigate the need to iterate over large portions
46  * of the bitmap.  The reverse mapping from page to chunk is stored in
47  * the page's index.  Lastly, units are lazily backed and grow in unison.
48  *
49  * There is a unique conversion that goes on here between bytes and bits.
50  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
51  * tracks the number of pages it is responsible for in nr_pages.  Helper
52  * functions are used to convert from between the bytes, bits, and blocks.
53  * All hints are managed in bits unless explicitly stated.
54  *
55  * To use this allocator, arch code should do the following:
56  *
57  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58  *   regular address to percpu pointer and back if they need to be
59  *   different from the default
60  *
61  * - use pcpu_setup_first_chunk() during percpu area initialization to
62  *   setup the first chunk containing the kernel static percpu area
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84 
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92 
93 #include "percpu-internal.h"
94 
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT		5
97 
98 #define PCPU_EMPTY_POP_PAGES_LOW	2
99 #define PCPU_EMPTY_POP_PAGES_HIGH	4
100 
101 #ifdef CONFIG_SMP
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr)					\
105 	(void __percpu *)((unsigned long)(addr) -			\
106 			  (unsigned long)pcpu_base_addr	+		\
107 			  (unsigned long)__per_cpu_start)
108 #endif
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr)						\
111 	(void __force *)((unsigned long)(ptr) +				\
112 			 (unsigned long)pcpu_base_addr -		\
113 			 (unsigned long)__per_cpu_start)
114 #endif
115 #else	/* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
119 #endif	/* CONFIG_SMP */
120 
121 static int pcpu_unit_pages __ro_after_init;
122 static int pcpu_unit_size __ro_after_init;
123 static int pcpu_nr_units __ro_after_init;
124 static int pcpu_atom_size __ro_after_init;
125 int pcpu_nr_slots __ro_after_init;
126 static size_t pcpu_chunk_struct_size __ro_after_init;
127 
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init;
131 
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr);
135 
136 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
138 
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init;
141 static const unsigned long *pcpu_group_offsets __ro_after_init;
142 static const size_t *pcpu_group_sizes __ro_after_init;
143 
144 /*
145  * The first chunk which always exists.  Note that unlike other
146  * chunks, this one can be allocated and mapped in several different
147  * ways and thus often doesn't live in the vmalloc area.
148  */
149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150 
151 /*
152  * Optional reserved chunk.  This chunk reserves part of the first
153  * chunk and serves it for reserved allocations.  When the reserved
154  * region doesn't exist, the following variable is NULL.
155  */
156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157 
158 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
160 
161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162 
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks);
165 
166 /*
167  * The number of empty populated pages, protected by pcpu_lock.  The
168  * reserved chunk doesn't contribute to the count.
169  */
170 int pcpu_nr_empty_pop_pages;
171 
172 /*
173  * Balance work is used to populate or destroy chunks asynchronously.  We
174  * try to keep the number of populated free pages between
175  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
176  * empty chunk.
177  */
178 static void pcpu_balance_workfn(struct work_struct *work);
179 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
180 static bool pcpu_async_enabled __read_mostly;
181 static bool pcpu_atomic_alloc_failed;
182 
183 static void pcpu_schedule_balance_work(void)
184 {
185 	if (pcpu_async_enabled)
186 		schedule_work(&pcpu_balance_work);
187 }
188 
189 /**
190  * pcpu_addr_in_chunk - check if the address is served from this chunk
191  * @chunk: chunk of interest
192  * @addr: percpu address
193  *
194  * RETURNS:
195  * True if the address is served from this chunk.
196  */
197 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
198 {
199 	void *start_addr, *end_addr;
200 
201 	if (!chunk)
202 		return false;
203 
204 	start_addr = chunk->base_addr + chunk->start_offset;
205 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
206 		   chunk->end_offset;
207 
208 	return addr >= start_addr && addr < end_addr;
209 }
210 
211 static int __pcpu_size_to_slot(int size)
212 {
213 	int highbit = fls(size);	/* size is in bytes */
214 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
215 }
216 
217 static int pcpu_size_to_slot(int size)
218 {
219 	if (size == pcpu_unit_size)
220 		return pcpu_nr_slots - 1;
221 	return __pcpu_size_to_slot(size);
222 }
223 
224 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
225 {
226 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
227 		return 0;
228 
229 	return pcpu_size_to_slot(chunk->free_bytes);
230 }
231 
232 /* set the pointer to a chunk in a page struct */
233 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
234 {
235 	page->index = (unsigned long)pcpu;
236 }
237 
238 /* obtain pointer to a chunk from a page struct */
239 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
240 {
241 	return (struct pcpu_chunk *)page->index;
242 }
243 
244 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
245 {
246 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
247 }
248 
249 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
250 {
251 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
252 }
253 
254 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
255 				     unsigned int cpu, int page_idx)
256 {
257 	return (unsigned long)chunk->base_addr +
258 	       pcpu_unit_page_offset(cpu, page_idx);
259 }
260 
261 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
262 {
263 	*rs = find_next_zero_bit(bitmap, end, *rs);
264 	*re = find_next_bit(bitmap, end, *rs + 1);
265 }
266 
267 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
268 {
269 	*rs = find_next_bit(bitmap, end, *rs);
270 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
271 }
272 
273 /*
274  * Bitmap region iterators.  Iterates over the bitmap between
275  * [@start, @end) in @chunk.  @rs and @re should be integer variables
276  * and will be set to start and end index of the current free region.
277  */
278 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
279 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
280 	     (rs) < (re);						     \
281 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
282 
283 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
284 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
285 	     (rs) < (re);						     \
286 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
287 
288 /*
289  * The following are helper functions to help access bitmaps and convert
290  * between bitmap offsets to address offsets.
291  */
292 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
293 {
294 	return chunk->alloc_map +
295 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
296 }
297 
298 static unsigned long pcpu_off_to_block_index(int off)
299 {
300 	return off / PCPU_BITMAP_BLOCK_BITS;
301 }
302 
303 static unsigned long pcpu_off_to_block_off(int off)
304 {
305 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
306 }
307 
308 static unsigned long pcpu_block_off_to_off(int index, int off)
309 {
310 	return index * PCPU_BITMAP_BLOCK_BITS + off;
311 }
312 
313 /**
314  * pcpu_next_md_free_region - finds the next hint free area
315  * @chunk: chunk of interest
316  * @bit_off: chunk offset
317  * @bits: size of free area
318  *
319  * Helper function for pcpu_for_each_md_free_region.  It checks
320  * block->contig_hint and performs aggregation across blocks to find the
321  * next hint.  It modifies bit_off and bits in-place to be consumed in the
322  * loop.
323  */
324 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
325 				     int *bits)
326 {
327 	int i = pcpu_off_to_block_index(*bit_off);
328 	int block_off = pcpu_off_to_block_off(*bit_off);
329 	struct pcpu_block_md *block;
330 
331 	*bits = 0;
332 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
333 	     block++, i++) {
334 		/* handles contig area across blocks */
335 		if (*bits) {
336 			*bits += block->left_free;
337 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
338 				continue;
339 			return;
340 		}
341 
342 		/*
343 		 * This checks three things.  First is there a contig_hint to
344 		 * check.  Second, have we checked this hint before by
345 		 * comparing the block_off.  Third, is this the same as the
346 		 * right contig hint.  In the last case, it spills over into
347 		 * the next block and should be handled by the contig area
348 		 * across blocks code.
349 		 */
350 		*bits = block->contig_hint;
351 		if (*bits && block->contig_hint_start >= block_off &&
352 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
353 			*bit_off = pcpu_block_off_to_off(i,
354 					block->contig_hint_start);
355 			return;
356 		}
357 		/* reset to satisfy the second predicate above */
358 		block_off = 0;
359 
360 		*bits = block->right_free;
361 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
362 	}
363 }
364 
365 /**
366  * pcpu_next_fit_region - finds fit areas for a given allocation request
367  * @chunk: chunk of interest
368  * @alloc_bits: size of allocation
369  * @align: alignment of area (max PAGE_SIZE)
370  * @bit_off: chunk offset
371  * @bits: size of free area
372  *
373  * Finds the next free region that is viable for use with a given size and
374  * alignment.  This only returns if there is a valid area to be used for this
375  * allocation.  block->first_free is returned if the allocation request fits
376  * within the block to see if the request can be fulfilled prior to the contig
377  * hint.
378  */
379 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
380 				 int align, int *bit_off, int *bits)
381 {
382 	int i = pcpu_off_to_block_index(*bit_off);
383 	int block_off = pcpu_off_to_block_off(*bit_off);
384 	struct pcpu_block_md *block;
385 
386 	*bits = 0;
387 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
388 	     block++, i++) {
389 		/* handles contig area across blocks */
390 		if (*bits) {
391 			*bits += block->left_free;
392 			if (*bits >= alloc_bits)
393 				return;
394 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
395 				continue;
396 		}
397 
398 		/* check block->contig_hint */
399 		*bits = ALIGN(block->contig_hint_start, align) -
400 			block->contig_hint_start;
401 		/*
402 		 * This uses the block offset to determine if this has been
403 		 * checked in the prior iteration.
404 		 */
405 		if (block->contig_hint &&
406 		    block->contig_hint_start >= block_off &&
407 		    block->contig_hint >= *bits + alloc_bits) {
408 			*bits += alloc_bits + block->contig_hint_start -
409 				 block->first_free;
410 			*bit_off = pcpu_block_off_to_off(i, block->first_free);
411 			return;
412 		}
413 		/* reset to satisfy the second predicate above */
414 		block_off = 0;
415 
416 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
417 				 align);
418 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
419 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
420 		if (*bits >= alloc_bits)
421 			return;
422 	}
423 
424 	/* no valid offsets were found - fail condition */
425 	*bit_off = pcpu_chunk_map_bits(chunk);
426 }
427 
428 /*
429  * Metadata free area iterators.  These perform aggregation of free areas
430  * based on the metadata blocks and return the offset @bit_off and size in
431  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
432  * a fit is found for the allocation request.
433  */
434 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
435 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
436 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
437 	     (bit_off) += (bits) + 1,					\
438 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
439 
440 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
441 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
442 				  &(bits));				      \
443 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
444 	     (bit_off) += (bits),					      \
445 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
446 				  &(bits)))
447 
448 /**
449  * pcpu_mem_zalloc - allocate memory
450  * @size: bytes to allocate
451  * @gfp: allocation flags
452  *
453  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
454  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
455  * This is to facilitate passing through whitelisted flags.  The
456  * returned memory is always zeroed.
457  *
458  * RETURNS:
459  * Pointer to the allocated area on success, NULL on failure.
460  */
461 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
462 {
463 	if (WARN_ON_ONCE(!slab_is_available()))
464 		return NULL;
465 
466 	if (size <= PAGE_SIZE)
467 		return kzalloc(size, gfp);
468 	else
469 		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
470 }
471 
472 /**
473  * pcpu_mem_free - free memory
474  * @ptr: memory to free
475  *
476  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
477  */
478 static void pcpu_mem_free(void *ptr)
479 {
480 	kvfree(ptr);
481 }
482 
483 /**
484  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
485  * @chunk: chunk of interest
486  * @oslot: the previous slot it was on
487  *
488  * This function is called after an allocation or free changed @chunk.
489  * New slot according to the changed state is determined and @chunk is
490  * moved to the slot.  Note that the reserved chunk is never put on
491  * chunk slots.
492  *
493  * CONTEXT:
494  * pcpu_lock.
495  */
496 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
497 {
498 	int nslot = pcpu_chunk_slot(chunk);
499 
500 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
501 		if (oslot < nslot)
502 			list_move(&chunk->list, &pcpu_slot[nslot]);
503 		else
504 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
505 	}
506 }
507 
508 /**
509  * pcpu_cnt_pop_pages- counts populated backing pages in range
510  * @chunk: chunk of interest
511  * @bit_off: start offset
512  * @bits: size of area to check
513  *
514  * Calculates the number of populated pages in the region
515  * [page_start, page_end).  This keeps track of how many empty populated
516  * pages are available and decide if async work should be scheduled.
517  *
518  * RETURNS:
519  * The nr of populated pages.
520  */
521 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
522 				     int bits)
523 {
524 	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
525 	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
526 
527 	if (page_start >= page_end)
528 		return 0;
529 
530 	/*
531 	 * bitmap_weight counts the number of bits set in a bitmap up to
532 	 * the specified number of bits.  This is counting the populated
533 	 * pages up to page_end and then subtracting the populated pages
534 	 * up to page_start to count the populated pages in
535 	 * [page_start, page_end).
536 	 */
537 	return bitmap_weight(chunk->populated, page_end) -
538 	       bitmap_weight(chunk->populated, page_start);
539 }
540 
541 /**
542  * pcpu_chunk_update - updates the chunk metadata given a free area
543  * @chunk: chunk of interest
544  * @bit_off: chunk offset
545  * @bits: size of free area
546  *
547  * This updates the chunk's contig hint and starting offset given a free area.
548  * Choose the best starting offset if the contig hint is equal.
549  */
550 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
551 {
552 	if (bits > chunk->contig_bits) {
553 		chunk->contig_bits_start = bit_off;
554 		chunk->contig_bits = bits;
555 	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
556 		   (!bit_off ||
557 		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
558 		/* use the start with the best alignment */
559 		chunk->contig_bits_start = bit_off;
560 	}
561 }
562 
563 /**
564  * pcpu_chunk_refresh_hint - updates metadata about a chunk
565  * @chunk: chunk of interest
566  *
567  * Iterates over the metadata blocks to find the largest contig area.
568  * It also counts the populated pages and uses the delta to update the
569  * global count.
570  *
571  * Updates:
572  *      chunk->contig_bits
573  *      chunk->contig_bits_start
574  *      nr_empty_pop_pages (chunk and global)
575  */
576 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
577 {
578 	int bit_off, bits, nr_empty_pop_pages;
579 
580 	/* clear metadata */
581 	chunk->contig_bits = 0;
582 
583 	bit_off = chunk->first_bit;
584 	bits = nr_empty_pop_pages = 0;
585 	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
586 		pcpu_chunk_update(chunk, bit_off, bits);
587 
588 		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
589 	}
590 
591 	/*
592 	 * Keep track of nr_empty_pop_pages.
593 	 *
594 	 * The chunk maintains the previous number of free pages it held,
595 	 * so the delta is used to update the global counter.  The reserved
596 	 * chunk is not part of the free page count as they are populated
597 	 * at init and are special to serving reserved allocations.
598 	 */
599 	if (chunk != pcpu_reserved_chunk)
600 		pcpu_nr_empty_pop_pages +=
601 			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
602 
603 	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
604 }
605 
606 /**
607  * pcpu_block_update - updates a block given a free area
608  * @block: block of interest
609  * @start: start offset in block
610  * @end: end offset in block
611  *
612  * Updates a block given a known free area.  The region [start, end) is
613  * expected to be the entirety of the free area within a block.  Chooses
614  * the best starting offset if the contig hints are equal.
615  */
616 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
617 {
618 	int contig = end - start;
619 
620 	block->first_free = min(block->first_free, start);
621 	if (start == 0)
622 		block->left_free = contig;
623 
624 	if (end == PCPU_BITMAP_BLOCK_BITS)
625 		block->right_free = contig;
626 
627 	if (contig > block->contig_hint) {
628 		block->contig_hint_start = start;
629 		block->contig_hint = contig;
630 	} else if (block->contig_hint_start && contig == block->contig_hint &&
631 		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
632 		/* use the start with the best alignment */
633 		block->contig_hint_start = start;
634 	}
635 }
636 
637 /**
638  * pcpu_block_refresh_hint
639  * @chunk: chunk of interest
640  * @index: index of the metadata block
641  *
642  * Scans over the block beginning at first_free and updates the block
643  * metadata accordingly.
644  */
645 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
646 {
647 	struct pcpu_block_md *block = chunk->md_blocks + index;
648 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
649 	int rs, re;	/* region start, region end */
650 
651 	/* clear hints */
652 	block->contig_hint = 0;
653 	block->left_free = block->right_free = 0;
654 
655 	/* iterate over free areas and update the contig hints */
656 	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
657 				   PCPU_BITMAP_BLOCK_BITS) {
658 		pcpu_block_update(block, rs, re);
659 	}
660 }
661 
662 /**
663  * pcpu_block_update_hint_alloc - update hint on allocation path
664  * @chunk: chunk of interest
665  * @bit_off: chunk offset
666  * @bits: size of request
667  *
668  * Updates metadata for the allocation path.  The metadata only has to be
669  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
670  * scans are required if the block's contig hint is broken.
671  */
672 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
673 					 int bits)
674 {
675 	struct pcpu_block_md *s_block, *e_block, *block;
676 	int s_index, e_index;	/* block indexes of the freed allocation */
677 	int s_off, e_off;	/* block offsets of the freed allocation */
678 
679 	/*
680 	 * Calculate per block offsets.
681 	 * The calculation uses an inclusive range, but the resulting offsets
682 	 * are [start, end).  e_index always points to the last block in the
683 	 * range.
684 	 */
685 	s_index = pcpu_off_to_block_index(bit_off);
686 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
687 	s_off = pcpu_off_to_block_off(bit_off);
688 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
689 
690 	s_block = chunk->md_blocks + s_index;
691 	e_block = chunk->md_blocks + e_index;
692 
693 	/*
694 	 * Update s_block.
695 	 * block->first_free must be updated if the allocation takes its place.
696 	 * If the allocation breaks the contig_hint, a scan is required to
697 	 * restore this hint.
698 	 */
699 	if (s_off == s_block->first_free)
700 		s_block->first_free = find_next_zero_bit(
701 					pcpu_index_alloc_map(chunk, s_index),
702 					PCPU_BITMAP_BLOCK_BITS,
703 					s_off + bits);
704 
705 	if (s_off >= s_block->contig_hint_start &&
706 	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
707 		/* block contig hint is broken - scan to fix it */
708 		pcpu_block_refresh_hint(chunk, s_index);
709 	} else {
710 		/* update left and right contig manually */
711 		s_block->left_free = min(s_block->left_free, s_off);
712 		if (s_index == e_index)
713 			s_block->right_free = min_t(int, s_block->right_free,
714 					PCPU_BITMAP_BLOCK_BITS - e_off);
715 		else
716 			s_block->right_free = 0;
717 	}
718 
719 	/*
720 	 * Update e_block.
721 	 */
722 	if (s_index != e_index) {
723 		/*
724 		 * When the allocation is across blocks, the end is along
725 		 * the left part of the e_block.
726 		 */
727 		e_block->first_free = find_next_zero_bit(
728 				pcpu_index_alloc_map(chunk, e_index),
729 				PCPU_BITMAP_BLOCK_BITS, e_off);
730 
731 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
732 			/* reset the block */
733 			e_block++;
734 		} else {
735 			if (e_off > e_block->contig_hint_start) {
736 				/* contig hint is broken - scan to fix it */
737 				pcpu_block_refresh_hint(chunk, e_index);
738 			} else {
739 				e_block->left_free = 0;
740 				e_block->right_free =
741 					min_t(int, e_block->right_free,
742 					      PCPU_BITMAP_BLOCK_BITS - e_off);
743 			}
744 		}
745 
746 		/* update in-between md_blocks */
747 		for (block = s_block + 1; block < e_block; block++) {
748 			block->contig_hint = 0;
749 			block->left_free = 0;
750 			block->right_free = 0;
751 		}
752 	}
753 
754 	/*
755 	 * The only time a full chunk scan is required is if the chunk
756 	 * contig hint is broken.  Otherwise, it means a smaller space
757 	 * was used and therefore the chunk contig hint is still correct.
758 	 */
759 	if (bit_off >= chunk->contig_bits_start  &&
760 	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
761 		pcpu_chunk_refresh_hint(chunk);
762 }
763 
764 /**
765  * pcpu_block_update_hint_free - updates the block hints on the free path
766  * @chunk: chunk of interest
767  * @bit_off: chunk offset
768  * @bits: size of request
769  *
770  * Updates metadata for the allocation path.  This avoids a blind block
771  * refresh by making use of the block contig hints.  If this fails, it scans
772  * forward and backward to determine the extent of the free area.  This is
773  * capped at the boundary of blocks.
774  *
775  * A chunk update is triggered if a page becomes free, a block becomes free,
776  * or the free spans across blocks.  This tradeoff is to minimize iterating
777  * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
778  * may be off by up to a page, but it will never be more than the available
779  * space.  If the contig hint is contained in one block, it will be accurate.
780  */
781 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
782 					int bits)
783 {
784 	struct pcpu_block_md *s_block, *e_block, *block;
785 	int s_index, e_index;	/* block indexes of the freed allocation */
786 	int s_off, e_off;	/* block offsets of the freed allocation */
787 	int start, end;		/* start and end of the whole free area */
788 
789 	/*
790 	 * Calculate per block offsets.
791 	 * The calculation uses an inclusive range, but the resulting offsets
792 	 * are [start, end).  e_index always points to the last block in the
793 	 * range.
794 	 */
795 	s_index = pcpu_off_to_block_index(bit_off);
796 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
797 	s_off = pcpu_off_to_block_off(bit_off);
798 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
799 
800 	s_block = chunk->md_blocks + s_index;
801 	e_block = chunk->md_blocks + e_index;
802 
803 	/*
804 	 * Check if the freed area aligns with the block->contig_hint.
805 	 * If it does, then the scan to find the beginning/end of the
806 	 * larger free area can be avoided.
807 	 *
808 	 * start and end refer to beginning and end of the free area
809 	 * within each their respective blocks.  This is not necessarily
810 	 * the entire free area as it may span blocks past the beginning
811 	 * or end of the block.
812 	 */
813 	start = s_off;
814 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
815 		start = s_block->contig_hint_start;
816 	} else {
817 		/*
818 		 * Scan backwards to find the extent of the free area.
819 		 * find_last_bit returns the starting bit, so if the start bit
820 		 * is returned, that means there was no last bit and the
821 		 * remainder of the chunk is free.
822 		 */
823 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
824 					  start);
825 		start = (start == l_bit) ? 0 : l_bit + 1;
826 	}
827 
828 	end = e_off;
829 	if (e_off == e_block->contig_hint_start)
830 		end = e_block->contig_hint_start + e_block->contig_hint;
831 	else
832 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
833 				    PCPU_BITMAP_BLOCK_BITS, end);
834 
835 	/* update s_block */
836 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
837 	pcpu_block_update(s_block, start, e_off);
838 
839 	/* freeing in the same block */
840 	if (s_index != e_index) {
841 		/* update e_block */
842 		pcpu_block_update(e_block, 0, end);
843 
844 		/* reset md_blocks in the middle */
845 		for (block = s_block + 1; block < e_block; block++) {
846 			block->first_free = 0;
847 			block->contig_hint_start = 0;
848 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
849 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
850 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
851 		}
852 	}
853 
854 	/*
855 	 * Refresh chunk metadata when the free makes a page free, a block
856 	 * free, or spans across blocks.  The contig hint may be off by up to
857 	 * a page, but if the hint is contained in a block, it will be accurate
858 	 * with the else condition below.
859 	 */
860 	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
861 	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
862 	    s_index != e_index)
863 		pcpu_chunk_refresh_hint(chunk);
864 	else
865 		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
866 				  s_block->contig_hint);
867 }
868 
869 /**
870  * pcpu_is_populated - determines if the region is populated
871  * @chunk: chunk of interest
872  * @bit_off: chunk offset
873  * @bits: size of area
874  * @next_off: return value for the next offset to start searching
875  *
876  * For atomic allocations, check if the backing pages are populated.
877  *
878  * RETURNS:
879  * Bool if the backing pages are populated.
880  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
881  */
882 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
883 			      int *next_off)
884 {
885 	int page_start, page_end, rs, re;
886 
887 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
888 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
889 
890 	rs = page_start;
891 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
892 	if (rs >= page_end)
893 		return true;
894 
895 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
896 	return false;
897 }
898 
899 /**
900  * pcpu_find_block_fit - finds the block index to start searching
901  * @chunk: chunk of interest
902  * @alloc_bits: size of request in allocation units
903  * @align: alignment of area (max PAGE_SIZE bytes)
904  * @pop_only: use populated regions only
905  *
906  * Given a chunk and an allocation spec, find the offset to begin searching
907  * for a free region.  This iterates over the bitmap metadata blocks to
908  * find an offset that will be guaranteed to fit the requirements.  It is
909  * not quite first fit as if the allocation does not fit in the contig hint
910  * of a block or chunk, it is skipped.  This errs on the side of caution
911  * to prevent excess iteration.  Poor alignment can cause the allocator to
912  * skip over blocks and chunks that have valid free areas.
913  *
914  * RETURNS:
915  * The offset in the bitmap to begin searching.
916  * -1 if no offset is found.
917  */
918 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
919 			       size_t align, bool pop_only)
920 {
921 	int bit_off, bits, next_off;
922 
923 	/*
924 	 * Check to see if the allocation can fit in the chunk's contig hint.
925 	 * This is an optimization to prevent scanning by assuming if it
926 	 * cannot fit in the global hint, there is memory pressure and creating
927 	 * a new chunk would happen soon.
928 	 */
929 	bit_off = ALIGN(chunk->contig_bits_start, align) -
930 		  chunk->contig_bits_start;
931 	if (bit_off + alloc_bits > chunk->contig_bits)
932 		return -1;
933 
934 	bit_off = chunk->first_bit;
935 	bits = 0;
936 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
937 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
938 						   &next_off))
939 			break;
940 
941 		bit_off = next_off;
942 		bits = 0;
943 	}
944 
945 	if (bit_off == pcpu_chunk_map_bits(chunk))
946 		return -1;
947 
948 	return bit_off;
949 }
950 
951 /**
952  * pcpu_alloc_area - allocates an area from a pcpu_chunk
953  * @chunk: chunk of interest
954  * @alloc_bits: size of request in allocation units
955  * @align: alignment of area (max PAGE_SIZE)
956  * @start: bit_off to start searching
957  *
958  * This function takes in a @start offset to begin searching to fit an
959  * allocation of @alloc_bits with alignment @align.  It needs to scan
960  * the allocation map because if it fits within the block's contig hint,
961  * @start will be block->first_free. This is an attempt to fill the
962  * allocation prior to breaking the contig hint.  The allocation and
963  * boundary maps are updated accordingly if it confirms a valid
964  * free area.
965  *
966  * RETURNS:
967  * Allocated addr offset in @chunk on success.
968  * -1 if no matching area is found.
969  */
970 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
971 			   size_t align, int start)
972 {
973 	size_t align_mask = (align) ? (align - 1) : 0;
974 	int bit_off, end, oslot;
975 
976 	lockdep_assert_held(&pcpu_lock);
977 
978 	oslot = pcpu_chunk_slot(chunk);
979 
980 	/*
981 	 * Search to find a fit.
982 	 */
983 	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
984 	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
985 					     alloc_bits, align_mask);
986 	if (bit_off >= end)
987 		return -1;
988 
989 	/* update alloc map */
990 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
991 
992 	/* update boundary map */
993 	set_bit(bit_off, chunk->bound_map);
994 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
995 	set_bit(bit_off + alloc_bits, chunk->bound_map);
996 
997 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
998 
999 	/* update first free bit */
1000 	if (bit_off == chunk->first_bit)
1001 		chunk->first_bit = find_next_zero_bit(
1002 					chunk->alloc_map,
1003 					pcpu_chunk_map_bits(chunk),
1004 					bit_off + alloc_bits);
1005 
1006 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007 
1008 	pcpu_chunk_relocate(chunk, oslot);
1009 
1010 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1011 }
1012 
1013 /**
1014  * pcpu_free_area - frees the corresponding offset
1015  * @chunk: chunk of interest
1016  * @off: addr offset into chunk
1017  *
1018  * This function determines the size of an allocation to free using
1019  * the boundary bitmap and clears the allocation map.
1020  */
1021 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022 {
1023 	int bit_off, bits, end, oslot;
1024 
1025 	lockdep_assert_held(&pcpu_lock);
1026 	pcpu_stats_area_dealloc(chunk);
1027 
1028 	oslot = pcpu_chunk_slot(chunk);
1029 
1030 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1031 
1032 	/* find end index */
1033 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034 			    bit_off + 1);
1035 	bits = end - bit_off;
1036 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1037 
1038 	/* update metadata */
1039 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040 
1041 	/* update first free bit */
1042 	chunk->first_bit = min(chunk->first_bit, bit_off);
1043 
1044 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1045 
1046 	pcpu_chunk_relocate(chunk, oslot);
1047 }
1048 
1049 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1050 {
1051 	struct pcpu_block_md *md_block;
1052 
1053 	for (md_block = chunk->md_blocks;
1054 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055 	     md_block++) {
1056 		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057 		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058 		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1059 	}
1060 }
1061 
1062 /**
1063  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064  * @tmp_addr: the start of the region served
1065  * @map_size: size of the region served
1066  *
1067  * This is responsible for creating the chunks that serve the first chunk.  The
1068  * base_addr is page aligned down of @tmp_addr while the region end is page
1069  * aligned up.  Offsets are kept track of to determine the region served. All
1070  * this is done to appease the bitmap allocator in avoiding partial blocks.
1071  *
1072  * RETURNS:
1073  * Chunk serving the region at @tmp_addr of @map_size.
1074  */
1075 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076 							 int map_size)
1077 {
1078 	struct pcpu_chunk *chunk;
1079 	unsigned long aligned_addr, lcm_align;
1080 	int start_offset, offset_bits, region_size, region_bits;
1081 
1082 	/* region calculations */
1083 	aligned_addr = tmp_addr & PAGE_MASK;
1084 
1085 	start_offset = tmp_addr - aligned_addr;
1086 
1087 	/*
1088 	 * Align the end of the region with the LCM of PAGE_SIZE and
1089 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1090 	 * the other.
1091 	 */
1092 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093 	region_size = ALIGN(start_offset + map_size, lcm_align);
1094 
1095 	/* allocate chunk */
1096 	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097 				    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1098 				    0);
1099 
1100 	INIT_LIST_HEAD(&chunk->list);
1101 
1102 	chunk->base_addr = (void *)aligned_addr;
1103 	chunk->start_offset = start_offset;
1104 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1105 
1106 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1107 	region_bits = pcpu_chunk_map_bits(chunk);
1108 
1109 	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110 					       sizeof(chunk->alloc_map[0]), 0);
1111 	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112 					       sizeof(chunk->bound_map[0]), 0);
1113 	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114 					       sizeof(chunk->md_blocks[0]), 0);
1115 	pcpu_init_md_blocks(chunk);
1116 
1117 	/* manage populated page bitmap */
1118 	chunk->immutable = true;
1119 	bitmap_fill(chunk->populated, chunk->nr_pages);
1120 	chunk->nr_populated = chunk->nr_pages;
1121 	chunk->nr_empty_pop_pages =
1122 		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123 				   map_size / PCPU_MIN_ALLOC_SIZE);
1124 
1125 	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126 	chunk->free_bytes = map_size;
1127 
1128 	if (chunk->start_offset) {
1129 		/* hide the beginning of the bitmap */
1130 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1132 		set_bit(0, chunk->bound_map);
1133 		set_bit(offset_bits, chunk->bound_map);
1134 
1135 		chunk->first_bit = offset_bits;
1136 
1137 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138 	}
1139 
1140 	if (chunk->end_offset) {
1141 		/* hide the end of the bitmap */
1142 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143 		bitmap_set(chunk->alloc_map,
1144 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1145 			   offset_bits);
1146 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147 			chunk->bound_map);
1148 		set_bit(region_bits, chunk->bound_map);
1149 
1150 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151 					     - offset_bits, offset_bits);
1152 	}
1153 
1154 	return chunk;
1155 }
1156 
1157 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1158 {
1159 	struct pcpu_chunk *chunk;
1160 	int region_bits;
1161 
1162 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1163 	if (!chunk)
1164 		return NULL;
1165 
1166 	INIT_LIST_HEAD(&chunk->list);
1167 	chunk->nr_pages = pcpu_unit_pages;
1168 	region_bits = pcpu_chunk_map_bits(chunk);
1169 
1170 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171 					   sizeof(chunk->alloc_map[0]), gfp);
1172 	if (!chunk->alloc_map)
1173 		goto alloc_map_fail;
1174 
1175 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176 					   sizeof(chunk->bound_map[0]), gfp);
1177 	if (!chunk->bound_map)
1178 		goto bound_map_fail;
1179 
1180 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181 					   sizeof(chunk->md_blocks[0]), gfp);
1182 	if (!chunk->md_blocks)
1183 		goto md_blocks_fail;
1184 
1185 	pcpu_init_md_blocks(chunk);
1186 
1187 	/* init metadata */
1188 	chunk->contig_bits = region_bits;
1189 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190 
1191 	return chunk;
1192 
1193 md_blocks_fail:
1194 	pcpu_mem_free(chunk->bound_map);
1195 bound_map_fail:
1196 	pcpu_mem_free(chunk->alloc_map);
1197 alloc_map_fail:
1198 	pcpu_mem_free(chunk);
1199 
1200 	return NULL;
1201 }
1202 
1203 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1204 {
1205 	if (!chunk)
1206 		return;
1207 	pcpu_mem_free(chunk->bound_map);
1208 	pcpu_mem_free(chunk->alloc_map);
1209 	pcpu_mem_free(chunk);
1210 }
1211 
1212 /**
1213  * pcpu_chunk_populated - post-population bookkeeping
1214  * @chunk: pcpu_chunk which got populated
1215  * @page_start: the start page
1216  * @page_end: the end page
1217  * @for_alloc: if this is to populate for allocation
1218  *
1219  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1220  * the bookkeeping information accordingly.  Must be called after each
1221  * successful population.
1222  *
1223  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224  * is to serve an allocation in that area.
1225  */
1226 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227 				 int page_end, bool for_alloc)
1228 {
1229 	int nr = page_end - page_start;
1230 
1231 	lockdep_assert_held(&pcpu_lock);
1232 
1233 	bitmap_set(chunk->populated, page_start, nr);
1234 	chunk->nr_populated += nr;
1235 
1236 	if (!for_alloc) {
1237 		chunk->nr_empty_pop_pages += nr;
1238 		pcpu_nr_empty_pop_pages += nr;
1239 	}
1240 }
1241 
1242 /**
1243  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244  * @chunk: pcpu_chunk which got depopulated
1245  * @page_start: the start page
1246  * @page_end: the end page
1247  *
1248  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249  * Update the bookkeeping information accordingly.  Must be called after
1250  * each successful depopulation.
1251  */
1252 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253 				   int page_start, int page_end)
1254 {
1255 	int nr = page_end - page_start;
1256 
1257 	lockdep_assert_held(&pcpu_lock);
1258 
1259 	bitmap_clear(chunk->populated, page_start, nr);
1260 	chunk->nr_populated -= nr;
1261 	chunk->nr_empty_pop_pages -= nr;
1262 	pcpu_nr_empty_pop_pages -= nr;
1263 }
1264 
1265 /*
1266  * Chunk management implementation.
1267  *
1268  * To allow different implementations, chunk alloc/free and
1269  * [de]population are implemented in a separate file which is pulled
1270  * into this file and compiled together.  The following functions
1271  * should be implemented.
1272  *
1273  * pcpu_populate_chunk		- populate the specified range of a chunk
1274  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1275  * pcpu_create_chunk		- create a new chunk
1276  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1277  * pcpu_addr_to_page		- translate address to physical address
1278  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1279  */
1280 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1281 			       int page_start, int page_end, gfp_t gfp);
1282 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1283 				  int page_start, int page_end);
1284 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1285 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1286 static struct page *pcpu_addr_to_page(void *addr);
1287 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1288 
1289 #ifdef CONFIG_NEED_PER_CPU_KM
1290 #include "percpu-km.c"
1291 #else
1292 #include "percpu-vm.c"
1293 #endif
1294 
1295 /**
1296  * pcpu_chunk_addr_search - determine chunk containing specified address
1297  * @addr: address for which the chunk needs to be determined.
1298  *
1299  * This is an internal function that handles all but static allocations.
1300  * Static percpu address values should never be passed into the allocator.
1301  *
1302  * RETURNS:
1303  * The address of the found chunk.
1304  */
1305 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1306 {
1307 	/* is it in the dynamic region (first chunk)? */
1308 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1309 		return pcpu_first_chunk;
1310 
1311 	/* is it in the reserved region? */
1312 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1313 		return pcpu_reserved_chunk;
1314 
1315 	/*
1316 	 * The address is relative to unit0 which might be unused and
1317 	 * thus unmapped.  Offset the address to the unit space of the
1318 	 * current processor before looking it up in the vmalloc
1319 	 * space.  Note that any possible cpu id can be used here, so
1320 	 * there's no need to worry about preemption or cpu hotplug.
1321 	 */
1322 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1323 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1324 }
1325 
1326 /**
1327  * pcpu_alloc - the percpu allocator
1328  * @size: size of area to allocate in bytes
1329  * @align: alignment of area (max PAGE_SIZE)
1330  * @reserved: allocate from the reserved chunk if available
1331  * @gfp: allocation flags
1332  *
1333  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1334  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1335  * then no warning will be triggered on invalid or failed allocation
1336  * requests.
1337  *
1338  * RETURNS:
1339  * Percpu pointer to the allocated area on success, NULL on failure.
1340  */
1341 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1342 				 gfp_t gfp)
1343 {
1344 	/* whitelisted flags that can be passed to the backing allocators */
1345 	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1346 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1347 	bool do_warn = !(gfp & __GFP_NOWARN);
1348 	static int warn_limit = 10;
1349 	struct pcpu_chunk *chunk;
1350 	const char *err;
1351 	int slot, off, cpu, ret;
1352 	unsigned long flags;
1353 	void __percpu *ptr;
1354 	size_t bits, bit_align;
1355 
1356 	/*
1357 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1358 	 * therefore alignment must be a minimum of that many bytes.
1359 	 * An allocation may have internal fragmentation from rounding up
1360 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1361 	 */
1362 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1363 		align = PCPU_MIN_ALLOC_SIZE;
1364 
1365 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1366 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1367 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1368 
1369 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1370 		     !is_power_of_2(align))) {
1371 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1372 		     size, align);
1373 		return NULL;
1374 	}
1375 
1376 	if (!is_atomic) {
1377 		/*
1378 		 * pcpu_balance_workfn() allocates memory under this mutex,
1379 		 * and it may wait for memory reclaim. Allow current task
1380 		 * to become OOM victim, in case of memory pressure.
1381 		 */
1382 		if (gfp & __GFP_NOFAIL)
1383 			mutex_lock(&pcpu_alloc_mutex);
1384 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1385 			return NULL;
1386 	}
1387 
1388 	spin_lock_irqsave(&pcpu_lock, flags);
1389 
1390 	/* serve reserved allocations from the reserved chunk if available */
1391 	if (reserved && pcpu_reserved_chunk) {
1392 		chunk = pcpu_reserved_chunk;
1393 
1394 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1395 		if (off < 0) {
1396 			err = "alloc from reserved chunk failed";
1397 			goto fail_unlock;
1398 		}
1399 
1400 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1401 		if (off >= 0)
1402 			goto area_found;
1403 
1404 		err = "alloc from reserved chunk failed";
1405 		goto fail_unlock;
1406 	}
1407 
1408 restart:
1409 	/* search through normal chunks */
1410 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1411 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1412 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1413 						  is_atomic);
1414 			if (off < 0)
1415 				continue;
1416 
1417 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1418 			if (off >= 0)
1419 				goto area_found;
1420 
1421 		}
1422 	}
1423 
1424 	spin_unlock_irqrestore(&pcpu_lock, flags);
1425 
1426 	/*
1427 	 * No space left.  Create a new chunk.  We don't want multiple
1428 	 * tasks to create chunks simultaneously.  Serialize and create iff
1429 	 * there's still no empty chunk after grabbing the mutex.
1430 	 */
1431 	if (is_atomic) {
1432 		err = "atomic alloc failed, no space left";
1433 		goto fail;
1434 	}
1435 
1436 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1437 		chunk = pcpu_create_chunk(pcpu_gfp);
1438 		if (!chunk) {
1439 			err = "failed to allocate new chunk";
1440 			goto fail;
1441 		}
1442 
1443 		spin_lock_irqsave(&pcpu_lock, flags);
1444 		pcpu_chunk_relocate(chunk, -1);
1445 	} else {
1446 		spin_lock_irqsave(&pcpu_lock, flags);
1447 	}
1448 
1449 	goto restart;
1450 
1451 area_found:
1452 	pcpu_stats_area_alloc(chunk, size);
1453 	spin_unlock_irqrestore(&pcpu_lock, flags);
1454 
1455 	/* populate if not all pages are already there */
1456 	if (!is_atomic) {
1457 		int page_start, page_end, rs, re;
1458 
1459 		page_start = PFN_DOWN(off);
1460 		page_end = PFN_UP(off + size);
1461 
1462 		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1463 					   page_start, page_end) {
1464 			WARN_ON(chunk->immutable);
1465 
1466 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1467 
1468 			spin_lock_irqsave(&pcpu_lock, flags);
1469 			if (ret) {
1470 				pcpu_free_area(chunk, off);
1471 				err = "failed to populate";
1472 				goto fail_unlock;
1473 			}
1474 			pcpu_chunk_populated(chunk, rs, re, true);
1475 			spin_unlock_irqrestore(&pcpu_lock, flags);
1476 		}
1477 
1478 		mutex_unlock(&pcpu_alloc_mutex);
1479 	}
1480 
1481 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1482 		pcpu_schedule_balance_work();
1483 
1484 	/* clear the areas and return address relative to base address */
1485 	for_each_possible_cpu(cpu)
1486 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1487 
1488 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1489 	kmemleak_alloc_percpu(ptr, size, gfp);
1490 
1491 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1492 			chunk->base_addr, off, ptr);
1493 
1494 	return ptr;
1495 
1496 fail_unlock:
1497 	spin_unlock_irqrestore(&pcpu_lock, flags);
1498 fail:
1499 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1500 
1501 	if (!is_atomic && do_warn && warn_limit) {
1502 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1503 			size, align, is_atomic, err);
1504 		dump_stack();
1505 		if (!--warn_limit)
1506 			pr_info("limit reached, disable warning\n");
1507 	}
1508 	if (is_atomic) {
1509 		/* see the flag handling in pcpu_blance_workfn() */
1510 		pcpu_atomic_alloc_failed = true;
1511 		pcpu_schedule_balance_work();
1512 	} else {
1513 		mutex_unlock(&pcpu_alloc_mutex);
1514 	}
1515 	return NULL;
1516 }
1517 
1518 /**
1519  * __alloc_percpu_gfp - allocate dynamic percpu area
1520  * @size: size of area to allocate in bytes
1521  * @align: alignment of area (max PAGE_SIZE)
1522  * @gfp: allocation flags
1523  *
1524  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1525  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1526  * be called from any context but is a lot more likely to fail. If @gfp
1527  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1528  * allocation requests.
1529  *
1530  * RETURNS:
1531  * Percpu pointer to the allocated area on success, NULL on failure.
1532  */
1533 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1534 {
1535 	return pcpu_alloc(size, align, false, gfp);
1536 }
1537 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1538 
1539 /**
1540  * __alloc_percpu - allocate dynamic percpu area
1541  * @size: size of area to allocate in bytes
1542  * @align: alignment of area (max PAGE_SIZE)
1543  *
1544  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1545  */
1546 void __percpu *__alloc_percpu(size_t size, size_t align)
1547 {
1548 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1549 }
1550 EXPORT_SYMBOL_GPL(__alloc_percpu);
1551 
1552 /**
1553  * __alloc_reserved_percpu - allocate reserved percpu area
1554  * @size: size of area to allocate in bytes
1555  * @align: alignment of area (max PAGE_SIZE)
1556  *
1557  * Allocate zero-filled percpu area of @size bytes aligned at @align
1558  * from reserved percpu area if arch has set it up; otherwise,
1559  * allocation is served from the same dynamic area.  Might sleep.
1560  * Might trigger writeouts.
1561  *
1562  * CONTEXT:
1563  * Does GFP_KERNEL allocation.
1564  *
1565  * RETURNS:
1566  * Percpu pointer to the allocated area on success, NULL on failure.
1567  */
1568 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1569 {
1570 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1571 }
1572 
1573 /**
1574  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1575  * @work: unused
1576  *
1577  * Reclaim all fully free chunks except for the first one.  This is also
1578  * responsible for maintaining the pool of empty populated pages.  However,
1579  * it is possible that this is called when physical memory is scarce causing
1580  * OOM killer to be triggered.  We should avoid doing so until an actual
1581  * allocation causes the failure as it is possible that requests can be
1582  * serviced from already backed regions.
1583  */
1584 static void pcpu_balance_workfn(struct work_struct *work)
1585 {
1586 	/* gfp flags passed to underlying allocators */
1587 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1588 	LIST_HEAD(to_free);
1589 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1590 	struct pcpu_chunk *chunk, *next;
1591 	int slot, nr_to_pop, ret;
1592 
1593 	/*
1594 	 * There's no reason to keep around multiple unused chunks and VM
1595 	 * areas can be scarce.  Destroy all free chunks except for one.
1596 	 */
1597 	mutex_lock(&pcpu_alloc_mutex);
1598 	spin_lock_irq(&pcpu_lock);
1599 
1600 	list_for_each_entry_safe(chunk, next, free_head, list) {
1601 		WARN_ON(chunk->immutable);
1602 
1603 		/* spare the first one */
1604 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1605 			continue;
1606 
1607 		list_move(&chunk->list, &to_free);
1608 	}
1609 
1610 	spin_unlock_irq(&pcpu_lock);
1611 
1612 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1613 		int rs, re;
1614 
1615 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1616 					 chunk->nr_pages) {
1617 			pcpu_depopulate_chunk(chunk, rs, re);
1618 			spin_lock_irq(&pcpu_lock);
1619 			pcpu_chunk_depopulated(chunk, rs, re);
1620 			spin_unlock_irq(&pcpu_lock);
1621 		}
1622 		pcpu_destroy_chunk(chunk);
1623 		cond_resched();
1624 	}
1625 
1626 	/*
1627 	 * Ensure there are certain number of free populated pages for
1628 	 * atomic allocs.  Fill up from the most packed so that atomic
1629 	 * allocs don't increase fragmentation.  If atomic allocation
1630 	 * failed previously, always populate the maximum amount.  This
1631 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1632 	 * failing indefinitely; however, large atomic allocs are not
1633 	 * something we support properly and can be highly unreliable and
1634 	 * inefficient.
1635 	 */
1636 retry_pop:
1637 	if (pcpu_atomic_alloc_failed) {
1638 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1639 		/* best effort anyway, don't worry about synchronization */
1640 		pcpu_atomic_alloc_failed = false;
1641 	} else {
1642 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1643 				  pcpu_nr_empty_pop_pages,
1644 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1645 	}
1646 
1647 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1648 		int nr_unpop = 0, rs, re;
1649 
1650 		if (!nr_to_pop)
1651 			break;
1652 
1653 		spin_lock_irq(&pcpu_lock);
1654 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1655 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1656 			if (nr_unpop)
1657 				break;
1658 		}
1659 		spin_unlock_irq(&pcpu_lock);
1660 
1661 		if (!nr_unpop)
1662 			continue;
1663 
1664 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1665 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1666 					   chunk->nr_pages) {
1667 			int nr = min(re - rs, nr_to_pop);
1668 
1669 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1670 			if (!ret) {
1671 				nr_to_pop -= nr;
1672 				spin_lock_irq(&pcpu_lock);
1673 				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1674 				spin_unlock_irq(&pcpu_lock);
1675 			} else {
1676 				nr_to_pop = 0;
1677 			}
1678 
1679 			if (!nr_to_pop)
1680 				break;
1681 		}
1682 	}
1683 
1684 	if (nr_to_pop) {
1685 		/* ran out of chunks to populate, create a new one and retry */
1686 		chunk = pcpu_create_chunk(gfp);
1687 		if (chunk) {
1688 			spin_lock_irq(&pcpu_lock);
1689 			pcpu_chunk_relocate(chunk, -1);
1690 			spin_unlock_irq(&pcpu_lock);
1691 			goto retry_pop;
1692 		}
1693 	}
1694 
1695 	mutex_unlock(&pcpu_alloc_mutex);
1696 }
1697 
1698 /**
1699  * free_percpu - free percpu area
1700  * @ptr: pointer to area to free
1701  *
1702  * Free percpu area @ptr.
1703  *
1704  * CONTEXT:
1705  * Can be called from atomic context.
1706  */
1707 void free_percpu(void __percpu *ptr)
1708 {
1709 	void *addr;
1710 	struct pcpu_chunk *chunk;
1711 	unsigned long flags;
1712 	int off;
1713 
1714 	if (!ptr)
1715 		return;
1716 
1717 	kmemleak_free_percpu(ptr);
1718 
1719 	addr = __pcpu_ptr_to_addr(ptr);
1720 
1721 	spin_lock_irqsave(&pcpu_lock, flags);
1722 
1723 	chunk = pcpu_chunk_addr_search(addr);
1724 	off = addr - chunk->base_addr;
1725 
1726 	pcpu_free_area(chunk, off);
1727 
1728 	/* if there are more than one fully free chunks, wake up grim reaper */
1729 	if (chunk->free_bytes == pcpu_unit_size) {
1730 		struct pcpu_chunk *pos;
1731 
1732 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1733 			if (pos != chunk) {
1734 				pcpu_schedule_balance_work();
1735 				break;
1736 			}
1737 	}
1738 
1739 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1740 
1741 	spin_unlock_irqrestore(&pcpu_lock, flags);
1742 }
1743 EXPORT_SYMBOL_GPL(free_percpu);
1744 
1745 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1746 {
1747 #ifdef CONFIG_SMP
1748 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1749 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1750 	unsigned int cpu;
1751 
1752 	for_each_possible_cpu(cpu) {
1753 		void *start = per_cpu_ptr(base, cpu);
1754 		void *va = (void *)addr;
1755 
1756 		if (va >= start && va < start + static_size) {
1757 			if (can_addr) {
1758 				*can_addr = (unsigned long) (va - start);
1759 				*can_addr += (unsigned long)
1760 					per_cpu_ptr(base, get_boot_cpu_id());
1761 			}
1762 			return true;
1763 		}
1764 	}
1765 #endif
1766 	/* on UP, can't distinguish from other static vars, always false */
1767 	return false;
1768 }
1769 
1770 /**
1771  * is_kernel_percpu_address - test whether address is from static percpu area
1772  * @addr: address to test
1773  *
1774  * Test whether @addr belongs to in-kernel static percpu area.  Module
1775  * static percpu areas are not considered.  For those, use
1776  * is_module_percpu_address().
1777  *
1778  * RETURNS:
1779  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1780  */
1781 bool is_kernel_percpu_address(unsigned long addr)
1782 {
1783 	return __is_kernel_percpu_address(addr, NULL);
1784 }
1785 
1786 /**
1787  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1788  * @addr: the address to be converted to physical address
1789  *
1790  * Given @addr which is dereferenceable address obtained via one of
1791  * percpu access macros, this function translates it into its physical
1792  * address.  The caller is responsible for ensuring @addr stays valid
1793  * until this function finishes.
1794  *
1795  * percpu allocator has special setup for the first chunk, which currently
1796  * supports either embedding in linear address space or vmalloc mapping,
1797  * and, from the second one, the backing allocator (currently either vm or
1798  * km) provides translation.
1799  *
1800  * The addr can be translated simply without checking if it falls into the
1801  * first chunk. But the current code reflects better how percpu allocator
1802  * actually works, and the verification can discover both bugs in percpu
1803  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1804  * code.
1805  *
1806  * RETURNS:
1807  * The physical address for @addr.
1808  */
1809 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1810 {
1811 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1812 	bool in_first_chunk = false;
1813 	unsigned long first_low, first_high;
1814 	unsigned int cpu;
1815 
1816 	/*
1817 	 * The following test on unit_low/high isn't strictly
1818 	 * necessary but will speed up lookups of addresses which
1819 	 * aren't in the first chunk.
1820 	 *
1821 	 * The address check is against full chunk sizes.  pcpu_base_addr
1822 	 * points to the beginning of the first chunk including the
1823 	 * static region.  Assumes good intent as the first chunk may
1824 	 * not be full (ie. < pcpu_unit_pages in size).
1825 	 */
1826 	first_low = (unsigned long)pcpu_base_addr +
1827 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1828 	first_high = (unsigned long)pcpu_base_addr +
1829 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1830 	if ((unsigned long)addr >= first_low &&
1831 	    (unsigned long)addr < first_high) {
1832 		for_each_possible_cpu(cpu) {
1833 			void *start = per_cpu_ptr(base, cpu);
1834 
1835 			if (addr >= start && addr < start + pcpu_unit_size) {
1836 				in_first_chunk = true;
1837 				break;
1838 			}
1839 		}
1840 	}
1841 
1842 	if (in_first_chunk) {
1843 		if (!is_vmalloc_addr(addr))
1844 			return __pa(addr);
1845 		else
1846 			return page_to_phys(vmalloc_to_page(addr)) +
1847 			       offset_in_page(addr);
1848 	} else
1849 		return page_to_phys(pcpu_addr_to_page(addr)) +
1850 		       offset_in_page(addr);
1851 }
1852 
1853 /**
1854  * pcpu_alloc_alloc_info - allocate percpu allocation info
1855  * @nr_groups: the number of groups
1856  * @nr_units: the number of units
1857  *
1858  * Allocate ai which is large enough for @nr_groups groups containing
1859  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1860  * cpu_map array which is long enough for @nr_units and filled with
1861  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1862  * pointer of other groups.
1863  *
1864  * RETURNS:
1865  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1866  * failure.
1867  */
1868 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1869 						      int nr_units)
1870 {
1871 	struct pcpu_alloc_info *ai;
1872 	size_t base_size, ai_size;
1873 	void *ptr;
1874 	int unit;
1875 
1876 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1877 			  __alignof__(ai->groups[0].cpu_map[0]));
1878 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1879 
1880 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1881 	if (!ptr)
1882 		return NULL;
1883 	ai = ptr;
1884 	ptr += base_size;
1885 
1886 	ai->groups[0].cpu_map = ptr;
1887 
1888 	for (unit = 0; unit < nr_units; unit++)
1889 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1890 
1891 	ai->nr_groups = nr_groups;
1892 	ai->__ai_size = PFN_ALIGN(ai_size);
1893 
1894 	return ai;
1895 }
1896 
1897 /**
1898  * pcpu_free_alloc_info - free percpu allocation info
1899  * @ai: pcpu_alloc_info to free
1900  *
1901  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1902  */
1903 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1904 {
1905 	memblock_free_early(__pa(ai), ai->__ai_size);
1906 }
1907 
1908 /**
1909  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1910  * @lvl: loglevel
1911  * @ai: allocation info to dump
1912  *
1913  * Print out information about @ai using loglevel @lvl.
1914  */
1915 static void pcpu_dump_alloc_info(const char *lvl,
1916 				 const struct pcpu_alloc_info *ai)
1917 {
1918 	int group_width = 1, cpu_width = 1, width;
1919 	char empty_str[] = "--------";
1920 	int alloc = 0, alloc_end = 0;
1921 	int group, v;
1922 	int upa, apl;	/* units per alloc, allocs per line */
1923 
1924 	v = ai->nr_groups;
1925 	while (v /= 10)
1926 		group_width++;
1927 
1928 	v = num_possible_cpus();
1929 	while (v /= 10)
1930 		cpu_width++;
1931 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1932 
1933 	upa = ai->alloc_size / ai->unit_size;
1934 	width = upa * (cpu_width + 1) + group_width + 3;
1935 	apl = rounddown_pow_of_two(max(60 / width, 1));
1936 
1937 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1938 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1939 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1940 
1941 	for (group = 0; group < ai->nr_groups; group++) {
1942 		const struct pcpu_group_info *gi = &ai->groups[group];
1943 		int unit = 0, unit_end = 0;
1944 
1945 		BUG_ON(gi->nr_units % upa);
1946 		for (alloc_end += gi->nr_units / upa;
1947 		     alloc < alloc_end; alloc++) {
1948 			if (!(alloc % apl)) {
1949 				pr_cont("\n");
1950 				printk("%spcpu-alloc: ", lvl);
1951 			}
1952 			pr_cont("[%0*d] ", group_width, group);
1953 
1954 			for (unit_end += upa; unit < unit_end; unit++)
1955 				if (gi->cpu_map[unit] != NR_CPUS)
1956 					pr_cont("%0*d ",
1957 						cpu_width, gi->cpu_map[unit]);
1958 				else
1959 					pr_cont("%s ", empty_str);
1960 		}
1961 	}
1962 	pr_cont("\n");
1963 }
1964 
1965 /**
1966  * pcpu_setup_first_chunk - initialize the first percpu chunk
1967  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1968  * @base_addr: mapped address
1969  *
1970  * Initialize the first percpu chunk which contains the kernel static
1971  * perpcu area.  This function is to be called from arch percpu area
1972  * setup path.
1973  *
1974  * @ai contains all information necessary to initialize the first
1975  * chunk and prime the dynamic percpu allocator.
1976  *
1977  * @ai->static_size is the size of static percpu area.
1978  *
1979  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1980  * reserve after the static area in the first chunk.  This reserves
1981  * the first chunk such that it's available only through reserved
1982  * percpu allocation.  This is primarily used to serve module percpu
1983  * static areas on architectures where the addressing model has
1984  * limited offset range for symbol relocations to guarantee module
1985  * percpu symbols fall inside the relocatable range.
1986  *
1987  * @ai->dyn_size determines the number of bytes available for dynamic
1988  * allocation in the first chunk.  The area between @ai->static_size +
1989  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1990  *
1991  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1992  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1993  * @ai->dyn_size.
1994  *
1995  * @ai->atom_size is the allocation atom size and used as alignment
1996  * for vm areas.
1997  *
1998  * @ai->alloc_size is the allocation size and always multiple of
1999  * @ai->atom_size.  This is larger than @ai->atom_size if
2000  * @ai->unit_size is larger than @ai->atom_size.
2001  *
2002  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2003  * percpu areas.  Units which should be colocated are put into the
2004  * same group.  Dynamic VM areas will be allocated according to these
2005  * groupings.  If @ai->nr_groups is zero, a single group containing
2006  * all units is assumed.
2007  *
2008  * The caller should have mapped the first chunk at @base_addr and
2009  * copied static data to each unit.
2010  *
2011  * The first chunk will always contain a static and a dynamic region.
2012  * However, the static region is not managed by any chunk.  If the first
2013  * chunk also contains a reserved region, it is served by two chunks -
2014  * one for the reserved region and one for the dynamic region.  They
2015  * share the same vm, but use offset regions in the area allocation map.
2016  * The chunk serving the dynamic region is circulated in the chunk slots
2017  * and available for dynamic allocation like any other chunk.
2018  *
2019  * RETURNS:
2020  * 0 on success, -errno on failure.
2021  */
2022 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2023 				  void *base_addr)
2024 {
2025 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2026 	size_t static_size, dyn_size;
2027 	struct pcpu_chunk *chunk;
2028 	unsigned long *group_offsets;
2029 	size_t *group_sizes;
2030 	unsigned long *unit_off;
2031 	unsigned int cpu;
2032 	int *unit_map;
2033 	int group, unit, i;
2034 	int map_size;
2035 	unsigned long tmp_addr;
2036 
2037 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2038 	if (unlikely(cond)) {						\
2039 		pr_emerg("failed to initialize, %s\n", #cond);		\
2040 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2041 			 cpumask_pr_args(cpu_possible_mask));		\
2042 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2043 		BUG();							\
2044 	}								\
2045 } while (0)
2046 
2047 	/* sanity checks */
2048 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2049 #ifdef CONFIG_SMP
2050 	PCPU_SETUP_BUG_ON(!ai->static_size);
2051 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2052 #endif
2053 	PCPU_SETUP_BUG_ON(!base_addr);
2054 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2055 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2056 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2057 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2058 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2059 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2060 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2061 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2062 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2063 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2064 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2065 
2066 	/* process group information and build config tables accordingly */
2067 	group_offsets = memblock_virt_alloc(ai->nr_groups *
2068 					     sizeof(group_offsets[0]), 0);
2069 	group_sizes = memblock_virt_alloc(ai->nr_groups *
2070 					   sizeof(group_sizes[0]), 0);
2071 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2072 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2073 
2074 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2075 		unit_map[cpu] = UINT_MAX;
2076 
2077 	pcpu_low_unit_cpu = NR_CPUS;
2078 	pcpu_high_unit_cpu = NR_CPUS;
2079 
2080 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2081 		const struct pcpu_group_info *gi = &ai->groups[group];
2082 
2083 		group_offsets[group] = gi->base_offset;
2084 		group_sizes[group] = gi->nr_units * ai->unit_size;
2085 
2086 		for (i = 0; i < gi->nr_units; i++) {
2087 			cpu = gi->cpu_map[i];
2088 			if (cpu == NR_CPUS)
2089 				continue;
2090 
2091 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2092 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2093 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2094 
2095 			unit_map[cpu] = unit + i;
2096 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2097 
2098 			/* determine low/high unit_cpu */
2099 			if (pcpu_low_unit_cpu == NR_CPUS ||
2100 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2101 				pcpu_low_unit_cpu = cpu;
2102 			if (pcpu_high_unit_cpu == NR_CPUS ||
2103 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2104 				pcpu_high_unit_cpu = cpu;
2105 		}
2106 	}
2107 	pcpu_nr_units = unit;
2108 
2109 	for_each_possible_cpu(cpu)
2110 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2111 
2112 	/* we're done parsing the input, undefine BUG macro and dump config */
2113 #undef PCPU_SETUP_BUG_ON
2114 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2115 
2116 	pcpu_nr_groups = ai->nr_groups;
2117 	pcpu_group_offsets = group_offsets;
2118 	pcpu_group_sizes = group_sizes;
2119 	pcpu_unit_map = unit_map;
2120 	pcpu_unit_offsets = unit_off;
2121 
2122 	/* determine basic parameters */
2123 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2124 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2125 	pcpu_atom_size = ai->atom_size;
2126 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2127 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2128 
2129 	pcpu_stats_save_ai(ai);
2130 
2131 	/*
2132 	 * Allocate chunk slots.  The additional last slot is for
2133 	 * empty chunks.
2134 	 */
2135 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2136 	pcpu_slot = memblock_virt_alloc(
2137 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2138 	for (i = 0; i < pcpu_nr_slots; i++)
2139 		INIT_LIST_HEAD(&pcpu_slot[i]);
2140 
2141 	/*
2142 	 * The end of the static region needs to be aligned with the
2143 	 * minimum allocation size as this offsets the reserved and
2144 	 * dynamic region.  The first chunk ends page aligned by
2145 	 * expanding the dynamic region, therefore the dynamic region
2146 	 * can be shrunk to compensate while still staying above the
2147 	 * configured sizes.
2148 	 */
2149 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2150 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2151 
2152 	/*
2153 	 * Initialize first chunk.
2154 	 * If the reserved_size is non-zero, this initializes the reserved
2155 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2156 	 * and the dynamic region is initialized here.  The first chunk,
2157 	 * pcpu_first_chunk, will always point to the chunk that serves
2158 	 * the dynamic region.
2159 	 */
2160 	tmp_addr = (unsigned long)base_addr + static_size;
2161 	map_size = ai->reserved_size ?: dyn_size;
2162 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2163 
2164 	/* init dynamic chunk if necessary */
2165 	if (ai->reserved_size) {
2166 		pcpu_reserved_chunk = chunk;
2167 
2168 		tmp_addr = (unsigned long)base_addr + static_size +
2169 			   ai->reserved_size;
2170 		map_size = dyn_size;
2171 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2172 	}
2173 
2174 	/* link the first chunk in */
2175 	pcpu_first_chunk = chunk;
2176 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2177 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2178 
2179 	pcpu_stats_chunk_alloc();
2180 	trace_percpu_create_chunk(base_addr);
2181 
2182 	/* we're done */
2183 	pcpu_base_addr = base_addr;
2184 	return 0;
2185 }
2186 
2187 #ifdef CONFIG_SMP
2188 
2189 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2190 	[PCPU_FC_AUTO]	= "auto",
2191 	[PCPU_FC_EMBED]	= "embed",
2192 	[PCPU_FC_PAGE]	= "page",
2193 };
2194 
2195 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2196 
2197 static int __init percpu_alloc_setup(char *str)
2198 {
2199 	if (!str)
2200 		return -EINVAL;
2201 
2202 	if (0)
2203 		/* nada */;
2204 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2205 	else if (!strcmp(str, "embed"))
2206 		pcpu_chosen_fc = PCPU_FC_EMBED;
2207 #endif
2208 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2209 	else if (!strcmp(str, "page"))
2210 		pcpu_chosen_fc = PCPU_FC_PAGE;
2211 #endif
2212 	else
2213 		pr_warn("unknown allocator %s specified\n", str);
2214 
2215 	return 0;
2216 }
2217 early_param("percpu_alloc", percpu_alloc_setup);
2218 
2219 /*
2220  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2221  * Build it if needed by the arch config or the generic setup is going
2222  * to be used.
2223  */
2224 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2225 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2226 #define BUILD_EMBED_FIRST_CHUNK
2227 #endif
2228 
2229 /* build pcpu_page_first_chunk() iff needed by the arch config */
2230 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2231 #define BUILD_PAGE_FIRST_CHUNK
2232 #endif
2233 
2234 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2235 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2236 /**
2237  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2238  * @reserved_size: the size of reserved percpu area in bytes
2239  * @dyn_size: minimum free size for dynamic allocation in bytes
2240  * @atom_size: allocation atom size
2241  * @cpu_distance_fn: callback to determine distance between cpus, optional
2242  *
2243  * This function determines grouping of units, their mappings to cpus
2244  * and other parameters considering needed percpu size, allocation
2245  * atom size and distances between CPUs.
2246  *
2247  * Groups are always multiples of atom size and CPUs which are of
2248  * LOCAL_DISTANCE both ways are grouped together and share space for
2249  * units in the same group.  The returned configuration is guaranteed
2250  * to have CPUs on different nodes on different groups and >=75% usage
2251  * of allocated virtual address space.
2252  *
2253  * RETURNS:
2254  * On success, pointer to the new allocation_info is returned.  On
2255  * failure, ERR_PTR value is returned.
2256  */
2257 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2258 				size_t reserved_size, size_t dyn_size,
2259 				size_t atom_size,
2260 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2261 {
2262 	static int group_map[NR_CPUS] __initdata;
2263 	static int group_cnt[NR_CPUS] __initdata;
2264 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2265 	int nr_groups = 1, nr_units = 0;
2266 	size_t size_sum, min_unit_size, alloc_size;
2267 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2268 	int last_allocs, group, unit;
2269 	unsigned int cpu, tcpu;
2270 	struct pcpu_alloc_info *ai;
2271 	unsigned int *cpu_map;
2272 
2273 	/* this function may be called multiple times */
2274 	memset(group_map, 0, sizeof(group_map));
2275 	memset(group_cnt, 0, sizeof(group_cnt));
2276 
2277 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2278 	size_sum = PFN_ALIGN(static_size + reserved_size +
2279 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2280 	dyn_size = size_sum - static_size - reserved_size;
2281 
2282 	/*
2283 	 * Determine min_unit_size, alloc_size and max_upa such that
2284 	 * alloc_size is multiple of atom_size and is the smallest
2285 	 * which can accommodate 4k aligned segments which are equal to
2286 	 * or larger than min_unit_size.
2287 	 */
2288 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2289 
2290 	/* determine the maximum # of units that can fit in an allocation */
2291 	alloc_size = roundup(min_unit_size, atom_size);
2292 	upa = alloc_size / min_unit_size;
2293 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2294 		upa--;
2295 	max_upa = upa;
2296 
2297 	/* group cpus according to their proximity */
2298 	for_each_possible_cpu(cpu) {
2299 		group = 0;
2300 	next_group:
2301 		for_each_possible_cpu(tcpu) {
2302 			if (cpu == tcpu)
2303 				break;
2304 			if (group_map[tcpu] == group && cpu_distance_fn &&
2305 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2306 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2307 				group++;
2308 				nr_groups = max(nr_groups, group + 1);
2309 				goto next_group;
2310 			}
2311 		}
2312 		group_map[cpu] = group;
2313 		group_cnt[group]++;
2314 	}
2315 
2316 	/*
2317 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2318 	 * Expand the unit_size until we use >= 75% of the units allocated.
2319 	 * Related to atom_size, which could be much larger than the unit_size.
2320 	 */
2321 	last_allocs = INT_MAX;
2322 	for (upa = max_upa; upa; upa--) {
2323 		int allocs = 0, wasted = 0;
2324 
2325 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2326 			continue;
2327 
2328 		for (group = 0; group < nr_groups; group++) {
2329 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2330 			allocs += this_allocs;
2331 			wasted += this_allocs * upa - group_cnt[group];
2332 		}
2333 
2334 		/*
2335 		 * Don't accept if wastage is over 1/3.  The
2336 		 * greater-than comparison ensures upa==1 always
2337 		 * passes the following check.
2338 		 */
2339 		if (wasted > num_possible_cpus() / 3)
2340 			continue;
2341 
2342 		/* and then don't consume more memory */
2343 		if (allocs > last_allocs)
2344 			break;
2345 		last_allocs = allocs;
2346 		best_upa = upa;
2347 	}
2348 	upa = best_upa;
2349 
2350 	/* allocate and fill alloc_info */
2351 	for (group = 0; group < nr_groups; group++)
2352 		nr_units += roundup(group_cnt[group], upa);
2353 
2354 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2355 	if (!ai)
2356 		return ERR_PTR(-ENOMEM);
2357 	cpu_map = ai->groups[0].cpu_map;
2358 
2359 	for (group = 0; group < nr_groups; group++) {
2360 		ai->groups[group].cpu_map = cpu_map;
2361 		cpu_map += roundup(group_cnt[group], upa);
2362 	}
2363 
2364 	ai->static_size = static_size;
2365 	ai->reserved_size = reserved_size;
2366 	ai->dyn_size = dyn_size;
2367 	ai->unit_size = alloc_size / upa;
2368 	ai->atom_size = atom_size;
2369 	ai->alloc_size = alloc_size;
2370 
2371 	for (group = 0, unit = 0; group_cnt[group]; group++) {
2372 		struct pcpu_group_info *gi = &ai->groups[group];
2373 
2374 		/*
2375 		 * Initialize base_offset as if all groups are located
2376 		 * back-to-back.  The caller should update this to
2377 		 * reflect actual allocation.
2378 		 */
2379 		gi->base_offset = unit * ai->unit_size;
2380 
2381 		for_each_possible_cpu(cpu)
2382 			if (group_map[cpu] == group)
2383 				gi->cpu_map[gi->nr_units++] = cpu;
2384 		gi->nr_units = roundup(gi->nr_units, upa);
2385 		unit += gi->nr_units;
2386 	}
2387 	BUG_ON(unit != nr_units);
2388 
2389 	return ai;
2390 }
2391 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2392 
2393 #if defined(BUILD_EMBED_FIRST_CHUNK)
2394 /**
2395  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2396  * @reserved_size: the size of reserved percpu area in bytes
2397  * @dyn_size: minimum free size for dynamic allocation in bytes
2398  * @atom_size: allocation atom size
2399  * @cpu_distance_fn: callback to determine distance between cpus, optional
2400  * @alloc_fn: function to allocate percpu page
2401  * @free_fn: function to free percpu page
2402  *
2403  * This is a helper to ease setting up embedded first percpu chunk and
2404  * can be called where pcpu_setup_first_chunk() is expected.
2405  *
2406  * If this function is used to setup the first chunk, it is allocated
2407  * by calling @alloc_fn and used as-is without being mapped into
2408  * vmalloc area.  Allocations are always whole multiples of @atom_size
2409  * aligned to @atom_size.
2410  *
2411  * This enables the first chunk to piggy back on the linear physical
2412  * mapping which often uses larger page size.  Please note that this
2413  * can result in very sparse cpu->unit mapping on NUMA machines thus
2414  * requiring large vmalloc address space.  Don't use this allocator if
2415  * vmalloc space is not orders of magnitude larger than distances
2416  * between node memory addresses (ie. 32bit NUMA machines).
2417  *
2418  * @dyn_size specifies the minimum dynamic area size.
2419  *
2420  * If the needed size is smaller than the minimum or specified unit
2421  * size, the leftover is returned using @free_fn.
2422  *
2423  * RETURNS:
2424  * 0 on success, -errno on failure.
2425  */
2426 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2427 				  size_t atom_size,
2428 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2429 				  pcpu_fc_alloc_fn_t alloc_fn,
2430 				  pcpu_fc_free_fn_t free_fn)
2431 {
2432 	void *base = (void *)ULONG_MAX;
2433 	void **areas = NULL;
2434 	struct pcpu_alloc_info *ai;
2435 	size_t size_sum, areas_size;
2436 	unsigned long max_distance;
2437 	int group, i, highest_group, rc;
2438 
2439 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2440 				   cpu_distance_fn);
2441 	if (IS_ERR(ai))
2442 		return PTR_ERR(ai);
2443 
2444 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2445 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2446 
2447 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2448 	if (!areas) {
2449 		rc = -ENOMEM;
2450 		goto out_free;
2451 	}
2452 
2453 	/* allocate, copy and determine base address & max_distance */
2454 	highest_group = 0;
2455 	for (group = 0; group < ai->nr_groups; group++) {
2456 		struct pcpu_group_info *gi = &ai->groups[group];
2457 		unsigned int cpu = NR_CPUS;
2458 		void *ptr;
2459 
2460 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2461 			cpu = gi->cpu_map[i];
2462 		BUG_ON(cpu == NR_CPUS);
2463 
2464 		/* allocate space for the whole group */
2465 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2466 		if (!ptr) {
2467 			rc = -ENOMEM;
2468 			goto out_free_areas;
2469 		}
2470 		/* kmemleak tracks the percpu allocations separately */
2471 		kmemleak_free(ptr);
2472 		areas[group] = ptr;
2473 
2474 		base = min(ptr, base);
2475 		if (ptr > areas[highest_group])
2476 			highest_group = group;
2477 	}
2478 	max_distance = areas[highest_group] - base;
2479 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2480 
2481 	/* warn if maximum distance is further than 75% of vmalloc space */
2482 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2483 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2484 				max_distance, VMALLOC_TOTAL);
2485 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486 		/* and fail if we have fallback */
2487 		rc = -EINVAL;
2488 		goto out_free_areas;
2489 #endif
2490 	}
2491 
2492 	/*
2493 	 * Copy data and free unused parts.  This should happen after all
2494 	 * allocations are complete; otherwise, we may end up with
2495 	 * overlapping groups.
2496 	 */
2497 	for (group = 0; group < ai->nr_groups; group++) {
2498 		struct pcpu_group_info *gi = &ai->groups[group];
2499 		void *ptr = areas[group];
2500 
2501 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2502 			if (gi->cpu_map[i] == NR_CPUS) {
2503 				/* unused unit, free whole */
2504 				free_fn(ptr, ai->unit_size);
2505 				continue;
2506 			}
2507 			/* copy and return the unused part */
2508 			memcpy(ptr, __per_cpu_load, ai->static_size);
2509 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2510 		}
2511 	}
2512 
2513 	/* base address is now known, determine group base offsets */
2514 	for (group = 0; group < ai->nr_groups; group++) {
2515 		ai->groups[group].base_offset = areas[group] - base;
2516 	}
2517 
2518 	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2519 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2520 		ai->dyn_size, ai->unit_size);
2521 
2522 	rc = pcpu_setup_first_chunk(ai, base);
2523 	goto out_free;
2524 
2525 out_free_areas:
2526 	for (group = 0; group < ai->nr_groups; group++)
2527 		if (areas[group])
2528 			free_fn(areas[group],
2529 				ai->groups[group].nr_units * ai->unit_size);
2530 out_free:
2531 	pcpu_free_alloc_info(ai);
2532 	if (areas)
2533 		memblock_free_early(__pa(areas), areas_size);
2534 	return rc;
2535 }
2536 #endif /* BUILD_EMBED_FIRST_CHUNK */
2537 
2538 #ifdef BUILD_PAGE_FIRST_CHUNK
2539 /**
2540  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2541  * @reserved_size: the size of reserved percpu area in bytes
2542  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2543  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2544  * @populate_pte_fn: function to populate pte
2545  *
2546  * This is a helper to ease setting up page-remapped first percpu
2547  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2548  *
2549  * This is the basic allocator.  Static percpu area is allocated
2550  * page-by-page into vmalloc area.
2551  *
2552  * RETURNS:
2553  * 0 on success, -errno on failure.
2554  */
2555 int __init pcpu_page_first_chunk(size_t reserved_size,
2556 				 pcpu_fc_alloc_fn_t alloc_fn,
2557 				 pcpu_fc_free_fn_t free_fn,
2558 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2559 {
2560 	static struct vm_struct vm;
2561 	struct pcpu_alloc_info *ai;
2562 	char psize_str[16];
2563 	int unit_pages;
2564 	size_t pages_size;
2565 	struct page **pages;
2566 	int unit, i, j, rc;
2567 	int upa;
2568 	int nr_g0_units;
2569 
2570 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2571 
2572 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2573 	if (IS_ERR(ai))
2574 		return PTR_ERR(ai);
2575 	BUG_ON(ai->nr_groups != 1);
2576 	upa = ai->alloc_size/ai->unit_size;
2577 	nr_g0_units = roundup(num_possible_cpus(), upa);
2578 	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2579 		pcpu_free_alloc_info(ai);
2580 		return -EINVAL;
2581 	}
2582 
2583 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2584 
2585 	/* unaligned allocations can't be freed, round up to page size */
2586 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2587 			       sizeof(pages[0]));
2588 	pages = memblock_virt_alloc(pages_size, 0);
2589 
2590 	/* allocate pages */
2591 	j = 0;
2592 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2593 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2594 		for (i = 0; i < unit_pages; i++) {
2595 			void *ptr;
2596 
2597 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2598 			if (!ptr) {
2599 				pr_warn("failed to allocate %s page for cpu%u\n",
2600 						psize_str, cpu);
2601 				goto enomem;
2602 			}
2603 			/* kmemleak tracks the percpu allocations separately */
2604 			kmemleak_free(ptr);
2605 			pages[j++] = virt_to_page(ptr);
2606 		}
2607 	}
2608 
2609 	/* allocate vm area, map the pages and copy static data */
2610 	vm.flags = VM_ALLOC;
2611 	vm.size = num_possible_cpus() * ai->unit_size;
2612 	vm_area_register_early(&vm, PAGE_SIZE);
2613 
2614 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2615 		unsigned long unit_addr =
2616 			(unsigned long)vm.addr + unit * ai->unit_size;
2617 
2618 		for (i = 0; i < unit_pages; i++)
2619 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2620 
2621 		/* pte already populated, the following shouldn't fail */
2622 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2623 				      unit_pages);
2624 		if (rc < 0)
2625 			panic("failed to map percpu area, err=%d\n", rc);
2626 
2627 		/*
2628 		 * FIXME: Archs with virtual cache should flush local
2629 		 * cache for the linear mapping here - something
2630 		 * equivalent to flush_cache_vmap() on the local cpu.
2631 		 * flush_cache_vmap() can't be used as most supporting
2632 		 * data structures are not set up yet.
2633 		 */
2634 
2635 		/* copy static data */
2636 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2637 	}
2638 
2639 	/* we're ready, commit */
2640 	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2641 		unit_pages, psize_str, vm.addr, ai->static_size,
2642 		ai->reserved_size, ai->dyn_size);
2643 
2644 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2645 	goto out_free_ar;
2646 
2647 enomem:
2648 	while (--j >= 0)
2649 		free_fn(page_address(pages[j]), PAGE_SIZE);
2650 	rc = -ENOMEM;
2651 out_free_ar:
2652 	memblock_free_early(__pa(pages), pages_size);
2653 	pcpu_free_alloc_info(ai);
2654 	return rc;
2655 }
2656 #endif /* BUILD_PAGE_FIRST_CHUNK */
2657 
2658 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2659 /*
2660  * Generic SMP percpu area setup.
2661  *
2662  * The embedding helper is used because its behavior closely resembles
2663  * the original non-dynamic generic percpu area setup.  This is
2664  * important because many archs have addressing restrictions and might
2665  * fail if the percpu area is located far away from the previous
2666  * location.  As an added bonus, in non-NUMA cases, embedding is
2667  * generally a good idea TLB-wise because percpu area can piggy back
2668  * on the physical linear memory mapping which uses large page
2669  * mappings on applicable archs.
2670  */
2671 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2672 EXPORT_SYMBOL(__per_cpu_offset);
2673 
2674 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2675 				       size_t align)
2676 {
2677 	return  memblock_virt_alloc_from_nopanic(
2678 			size, align, __pa(MAX_DMA_ADDRESS));
2679 }
2680 
2681 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2682 {
2683 	memblock_free_early(__pa(ptr), size);
2684 }
2685 
2686 void __init setup_per_cpu_areas(void)
2687 {
2688 	unsigned long delta;
2689 	unsigned int cpu;
2690 	int rc;
2691 
2692 	/*
2693 	 * Always reserve area for module percpu variables.  That's
2694 	 * what the legacy allocator did.
2695 	 */
2696 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2697 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2698 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2699 	if (rc < 0)
2700 		panic("Failed to initialize percpu areas.");
2701 
2702 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2703 	for_each_possible_cpu(cpu)
2704 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2705 }
2706 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2707 
2708 #else	/* CONFIG_SMP */
2709 
2710 /*
2711  * UP percpu area setup.
2712  *
2713  * UP always uses km-based percpu allocator with identity mapping.
2714  * Static percpu variables are indistinguishable from the usual static
2715  * variables and don't require any special preparation.
2716  */
2717 void __init setup_per_cpu_areas(void)
2718 {
2719 	const size_t unit_size =
2720 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2721 					 PERCPU_DYNAMIC_RESERVE));
2722 	struct pcpu_alloc_info *ai;
2723 	void *fc;
2724 
2725 	ai = pcpu_alloc_alloc_info(1, 1);
2726 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2727 					      PAGE_SIZE,
2728 					      __pa(MAX_DMA_ADDRESS));
2729 	if (!ai || !fc)
2730 		panic("Failed to allocate memory for percpu areas.");
2731 	/* kmemleak tracks the percpu allocations separately */
2732 	kmemleak_free(fc);
2733 
2734 	ai->dyn_size = unit_size;
2735 	ai->unit_size = unit_size;
2736 	ai->atom_size = unit_size;
2737 	ai->alloc_size = unit_size;
2738 	ai->groups[0].nr_units = 1;
2739 	ai->groups[0].cpu_map[0] = 0;
2740 
2741 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2742 		panic("Failed to initialize percpu areas.");
2743 	pcpu_free_alloc_info(ai);
2744 }
2745 
2746 #endif	/* CONFIG_SMP */
2747 
2748 /*
2749  * Percpu allocator is initialized early during boot when neither slab or
2750  * workqueue is available.  Plug async management until everything is up
2751  * and running.
2752  */
2753 static int __init percpu_enable_async(void)
2754 {
2755 	pcpu_async_enabled = true;
2756 	return 0;
2757 }
2758 subsys_initcall(percpu_enable_async);
2759