1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * Copyright (C) 2017 Facebook Inc. 8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com> 9 * 10 * This file is released under the GPLv2 license. 11 * 12 * The percpu allocator handles both static and dynamic areas. Percpu 13 * areas are allocated in chunks which are divided into units. There is 14 * a 1-to-1 mapping for units to possible cpus. These units are grouped 15 * based on NUMA properties of the machine. 16 * 17 * c0 c1 c2 18 * ------------------- ------------------- ------------ 19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 20 * ------------------- ...... ------------------- .... ------------ 21 * 22 * Allocation is done by offsets into a unit's address space. Ie., an 23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 25 * and even sparse. Access is handled by configuring percpu base 26 * registers according to the cpu to unit mappings and offsetting the 27 * base address using pcpu_unit_size. 28 * 29 * There is special consideration for the first chunk which must handle 30 * the static percpu variables in the kernel image as allocation services 31 * are not online yet. In short, the first chunk is structured like so: 32 * 33 * <Static | [Reserved] | Dynamic> 34 * 35 * The static data is copied from the original section managed by the 36 * linker. The reserved section, if non-zero, primarily manages static 37 * percpu variables from kernel modules. Finally, the dynamic section 38 * takes care of normal allocations. 39 * 40 * The allocator organizes chunks into lists according to free size and 41 * tries to allocate from the fullest chunk first. Each chunk is managed 42 * by a bitmap with metadata blocks. The allocation map is updated on 43 * every allocation and free to reflect the current state while the boundary 44 * map is only updated on allocation. Each metadata block contains 45 * information to help mitigate the need to iterate over large portions 46 * of the bitmap. The reverse mapping from page to chunk is stored in 47 * the page's index. Lastly, units are lazily backed and grow in unison. 48 * 49 * There is a unique conversion that goes on here between bytes and bits. 50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 51 * tracks the number of pages it is responsible for in nr_pages. Helper 52 * functions are used to convert from between the bytes, bits, and blocks. 53 * All hints are managed in bits unless explicitly stated. 54 * 55 * To use this allocator, arch code should do the following: 56 * 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 58 * regular address to percpu pointer and back if they need to be 59 * different from the default 60 * 61 * - use pcpu_setup_first_chunk() during percpu area initialization to 62 * setup the first chunk containing the kernel static percpu area 63 */ 64 65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 66 67 #include <linux/bitmap.h> 68 #include <linux/bootmem.h> 69 #include <linux/err.h> 70 #include <linux/lcm.h> 71 #include <linux/list.h> 72 #include <linux/log2.h> 73 #include <linux/mm.h> 74 #include <linux/module.h> 75 #include <linux/mutex.h> 76 #include <linux/percpu.h> 77 #include <linux/pfn.h> 78 #include <linux/slab.h> 79 #include <linux/spinlock.h> 80 #include <linux/vmalloc.h> 81 #include <linux/workqueue.h> 82 #include <linux/kmemleak.h> 83 #include <linux/sched.h> 84 85 #include <asm/cacheflush.h> 86 #include <asm/sections.h> 87 #include <asm/tlbflush.h> 88 #include <asm/io.h> 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/percpu.h> 92 93 #include "percpu-internal.h" 94 95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 96 #define PCPU_SLOT_BASE_SHIFT 5 97 98 #define PCPU_EMPTY_POP_PAGES_LOW 2 99 #define PCPU_EMPTY_POP_PAGES_HIGH 4 100 101 #ifdef CONFIG_SMP 102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 103 #ifndef __addr_to_pcpu_ptr 104 #define __addr_to_pcpu_ptr(addr) \ 105 (void __percpu *)((unsigned long)(addr) - \ 106 (unsigned long)pcpu_base_addr + \ 107 (unsigned long)__per_cpu_start) 108 #endif 109 #ifndef __pcpu_ptr_to_addr 110 #define __pcpu_ptr_to_addr(ptr) \ 111 (void __force *)((unsigned long)(ptr) + \ 112 (unsigned long)pcpu_base_addr - \ 113 (unsigned long)__per_cpu_start) 114 #endif 115 #else /* CONFIG_SMP */ 116 /* on UP, it's always identity mapped */ 117 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 118 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 119 #endif /* CONFIG_SMP */ 120 121 static int pcpu_unit_pages __ro_after_init; 122 static int pcpu_unit_size __ro_after_init; 123 static int pcpu_nr_units __ro_after_init; 124 static int pcpu_atom_size __ro_after_init; 125 int pcpu_nr_slots __ro_after_init; 126 static size_t pcpu_chunk_struct_size __ro_after_init; 127 128 /* cpus with the lowest and highest unit addresses */ 129 static unsigned int pcpu_low_unit_cpu __ro_after_init; 130 static unsigned int pcpu_high_unit_cpu __ro_after_init; 131 132 /* the address of the first chunk which starts with the kernel static area */ 133 void *pcpu_base_addr __ro_after_init; 134 EXPORT_SYMBOL_GPL(pcpu_base_addr); 135 136 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 137 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 138 139 /* group information, used for vm allocation */ 140 static int pcpu_nr_groups __ro_after_init; 141 static const unsigned long *pcpu_group_offsets __ro_after_init; 142 static const size_t *pcpu_group_sizes __ro_after_init; 143 144 /* 145 * The first chunk which always exists. Note that unlike other 146 * chunks, this one can be allocated and mapped in several different 147 * ways and thus often doesn't live in the vmalloc area. 148 */ 149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 150 151 /* 152 * Optional reserved chunk. This chunk reserves part of the first 153 * chunk and serves it for reserved allocations. When the reserved 154 * region doesn't exist, the following variable is NULL. 155 */ 156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 157 158 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 159 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 160 161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 162 163 /* chunks which need their map areas extended, protected by pcpu_lock */ 164 static LIST_HEAD(pcpu_map_extend_chunks); 165 166 /* 167 * The number of empty populated pages, protected by pcpu_lock. The 168 * reserved chunk doesn't contribute to the count. 169 */ 170 int pcpu_nr_empty_pop_pages; 171 172 /* 173 * Balance work is used to populate or destroy chunks asynchronously. We 174 * try to keep the number of populated free pages between 175 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 176 * empty chunk. 177 */ 178 static void pcpu_balance_workfn(struct work_struct *work); 179 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 180 static bool pcpu_async_enabled __read_mostly; 181 static bool pcpu_atomic_alloc_failed; 182 183 static void pcpu_schedule_balance_work(void) 184 { 185 if (pcpu_async_enabled) 186 schedule_work(&pcpu_balance_work); 187 } 188 189 /** 190 * pcpu_addr_in_chunk - check if the address is served from this chunk 191 * @chunk: chunk of interest 192 * @addr: percpu address 193 * 194 * RETURNS: 195 * True if the address is served from this chunk. 196 */ 197 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 198 { 199 void *start_addr, *end_addr; 200 201 if (!chunk) 202 return false; 203 204 start_addr = chunk->base_addr + chunk->start_offset; 205 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 206 chunk->end_offset; 207 208 return addr >= start_addr && addr < end_addr; 209 } 210 211 static int __pcpu_size_to_slot(int size) 212 { 213 int highbit = fls(size); /* size is in bytes */ 214 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 215 } 216 217 static int pcpu_size_to_slot(int size) 218 { 219 if (size == pcpu_unit_size) 220 return pcpu_nr_slots - 1; 221 return __pcpu_size_to_slot(size); 222 } 223 224 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 225 { 226 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) 227 return 0; 228 229 return pcpu_size_to_slot(chunk->free_bytes); 230 } 231 232 /* set the pointer to a chunk in a page struct */ 233 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 234 { 235 page->index = (unsigned long)pcpu; 236 } 237 238 /* obtain pointer to a chunk from a page struct */ 239 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 240 { 241 return (struct pcpu_chunk *)page->index; 242 } 243 244 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 245 { 246 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 247 } 248 249 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 250 { 251 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 252 } 253 254 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 255 unsigned int cpu, int page_idx) 256 { 257 return (unsigned long)chunk->base_addr + 258 pcpu_unit_page_offset(cpu, page_idx); 259 } 260 261 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) 262 { 263 *rs = find_next_zero_bit(bitmap, end, *rs); 264 *re = find_next_bit(bitmap, end, *rs + 1); 265 } 266 267 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) 268 { 269 *rs = find_next_bit(bitmap, end, *rs); 270 *re = find_next_zero_bit(bitmap, end, *rs + 1); 271 } 272 273 /* 274 * Bitmap region iterators. Iterates over the bitmap between 275 * [@start, @end) in @chunk. @rs and @re should be integer variables 276 * and will be set to start and end index of the current free region. 277 */ 278 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \ 279 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ 280 (rs) < (re); \ 281 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) 282 283 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \ 284 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \ 285 (rs) < (re); \ 286 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) 287 288 /* 289 * The following are helper functions to help access bitmaps and convert 290 * between bitmap offsets to address offsets. 291 */ 292 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 293 { 294 return chunk->alloc_map + 295 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 296 } 297 298 static unsigned long pcpu_off_to_block_index(int off) 299 { 300 return off / PCPU_BITMAP_BLOCK_BITS; 301 } 302 303 static unsigned long pcpu_off_to_block_off(int off) 304 { 305 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 306 } 307 308 static unsigned long pcpu_block_off_to_off(int index, int off) 309 { 310 return index * PCPU_BITMAP_BLOCK_BITS + off; 311 } 312 313 /** 314 * pcpu_next_md_free_region - finds the next hint free area 315 * @chunk: chunk of interest 316 * @bit_off: chunk offset 317 * @bits: size of free area 318 * 319 * Helper function for pcpu_for_each_md_free_region. It checks 320 * block->contig_hint and performs aggregation across blocks to find the 321 * next hint. It modifies bit_off and bits in-place to be consumed in the 322 * loop. 323 */ 324 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 325 int *bits) 326 { 327 int i = pcpu_off_to_block_index(*bit_off); 328 int block_off = pcpu_off_to_block_off(*bit_off); 329 struct pcpu_block_md *block; 330 331 *bits = 0; 332 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 333 block++, i++) { 334 /* handles contig area across blocks */ 335 if (*bits) { 336 *bits += block->left_free; 337 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 338 continue; 339 return; 340 } 341 342 /* 343 * This checks three things. First is there a contig_hint to 344 * check. Second, have we checked this hint before by 345 * comparing the block_off. Third, is this the same as the 346 * right contig hint. In the last case, it spills over into 347 * the next block and should be handled by the contig area 348 * across blocks code. 349 */ 350 *bits = block->contig_hint; 351 if (*bits && block->contig_hint_start >= block_off && 352 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 353 *bit_off = pcpu_block_off_to_off(i, 354 block->contig_hint_start); 355 return; 356 } 357 /* reset to satisfy the second predicate above */ 358 block_off = 0; 359 360 *bits = block->right_free; 361 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 362 } 363 } 364 365 /** 366 * pcpu_next_fit_region - finds fit areas for a given allocation request 367 * @chunk: chunk of interest 368 * @alloc_bits: size of allocation 369 * @align: alignment of area (max PAGE_SIZE) 370 * @bit_off: chunk offset 371 * @bits: size of free area 372 * 373 * Finds the next free region that is viable for use with a given size and 374 * alignment. This only returns if there is a valid area to be used for this 375 * allocation. block->first_free is returned if the allocation request fits 376 * within the block to see if the request can be fulfilled prior to the contig 377 * hint. 378 */ 379 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 380 int align, int *bit_off, int *bits) 381 { 382 int i = pcpu_off_to_block_index(*bit_off); 383 int block_off = pcpu_off_to_block_off(*bit_off); 384 struct pcpu_block_md *block; 385 386 *bits = 0; 387 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 388 block++, i++) { 389 /* handles contig area across blocks */ 390 if (*bits) { 391 *bits += block->left_free; 392 if (*bits >= alloc_bits) 393 return; 394 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 395 continue; 396 } 397 398 /* check block->contig_hint */ 399 *bits = ALIGN(block->contig_hint_start, align) - 400 block->contig_hint_start; 401 /* 402 * This uses the block offset to determine if this has been 403 * checked in the prior iteration. 404 */ 405 if (block->contig_hint && 406 block->contig_hint_start >= block_off && 407 block->contig_hint >= *bits + alloc_bits) { 408 *bits += alloc_bits + block->contig_hint_start - 409 block->first_free; 410 *bit_off = pcpu_block_off_to_off(i, block->first_free); 411 return; 412 } 413 /* reset to satisfy the second predicate above */ 414 block_off = 0; 415 416 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 417 align); 418 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 419 *bit_off = pcpu_block_off_to_off(i, *bit_off); 420 if (*bits >= alloc_bits) 421 return; 422 } 423 424 /* no valid offsets were found - fail condition */ 425 *bit_off = pcpu_chunk_map_bits(chunk); 426 } 427 428 /* 429 * Metadata free area iterators. These perform aggregation of free areas 430 * based on the metadata blocks and return the offset @bit_off and size in 431 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 432 * a fit is found for the allocation request. 433 */ 434 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 435 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 436 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 437 (bit_off) += (bits) + 1, \ 438 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 439 440 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 441 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 442 &(bits)); \ 443 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 444 (bit_off) += (bits), \ 445 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 446 &(bits))) 447 448 /** 449 * pcpu_mem_zalloc - allocate memory 450 * @size: bytes to allocate 451 * @gfp: allocation flags 452 * 453 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 454 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 455 * This is to facilitate passing through whitelisted flags. The 456 * returned memory is always zeroed. 457 * 458 * RETURNS: 459 * Pointer to the allocated area on success, NULL on failure. 460 */ 461 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 462 { 463 if (WARN_ON_ONCE(!slab_is_available())) 464 return NULL; 465 466 if (size <= PAGE_SIZE) 467 return kzalloc(size, gfp); 468 else 469 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL); 470 } 471 472 /** 473 * pcpu_mem_free - free memory 474 * @ptr: memory to free 475 * 476 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 477 */ 478 static void pcpu_mem_free(void *ptr) 479 { 480 kvfree(ptr); 481 } 482 483 /** 484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 485 * @chunk: chunk of interest 486 * @oslot: the previous slot it was on 487 * 488 * This function is called after an allocation or free changed @chunk. 489 * New slot according to the changed state is determined and @chunk is 490 * moved to the slot. Note that the reserved chunk is never put on 491 * chunk slots. 492 * 493 * CONTEXT: 494 * pcpu_lock. 495 */ 496 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 497 { 498 int nslot = pcpu_chunk_slot(chunk); 499 500 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 501 if (oslot < nslot) 502 list_move(&chunk->list, &pcpu_slot[nslot]); 503 else 504 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 505 } 506 } 507 508 /** 509 * pcpu_cnt_pop_pages- counts populated backing pages in range 510 * @chunk: chunk of interest 511 * @bit_off: start offset 512 * @bits: size of area to check 513 * 514 * Calculates the number of populated pages in the region 515 * [page_start, page_end). This keeps track of how many empty populated 516 * pages are available and decide if async work should be scheduled. 517 * 518 * RETURNS: 519 * The nr of populated pages. 520 */ 521 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, 522 int bits) 523 { 524 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); 525 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 526 527 if (page_start >= page_end) 528 return 0; 529 530 /* 531 * bitmap_weight counts the number of bits set in a bitmap up to 532 * the specified number of bits. This is counting the populated 533 * pages up to page_end and then subtracting the populated pages 534 * up to page_start to count the populated pages in 535 * [page_start, page_end). 536 */ 537 return bitmap_weight(chunk->populated, page_end) - 538 bitmap_weight(chunk->populated, page_start); 539 } 540 541 /** 542 * pcpu_chunk_update - updates the chunk metadata given a free area 543 * @chunk: chunk of interest 544 * @bit_off: chunk offset 545 * @bits: size of free area 546 * 547 * This updates the chunk's contig hint and starting offset given a free area. 548 * Choose the best starting offset if the contig hint is equal. 549 */ 550 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits) 551 { 552 if (bits > chunk->contig_bits) { 553 chunk->contig_bits_start = bit_off; 554 chunk->contig_bits = bits; 555 } else if (bits == chunk->contig_bits && chunk->contig_bits_start && 556 (!bit_off || 557 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) { 558 /* use the start with the best alignment */ 559 chunk->contig_bits_start = bit_off; 560 } 561 } 562 563 /** 564 * pcpu_chunk_refresh_hint - updates metadata about a chunk 565 * @chunk: chunk of interest 566 * 567 * Iterates over the metadata blocks to find the largest contig area. 568 * It also counts the populated pages and uses the delta to update the 569 * global count. 570 * 571 * Updates: 572 * chunk->contig_bits 573 * chunk->contig_bits_start 574 * nr_empty_pop_pages (chunk and global) 575 */ 576 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk) 577 { 578 int bit_off, bits, nr_empty_pop_pages; 579 580 /* clear metadata */ 581 chunk->contig_bits = 0; 582 583 bit_off = chunk->first_bit; 584 bits = nr_empty_pop_pages = 0; 585 pcpu_for_each_md_free_region(chunk, bit_off, bits) { 586 pcpu_chunk_update(chunk, bit_off, bits); 587 588 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits); 589 } 590 591 /* 592 * Keep track of nr_empty_pop_pages. 593 * 594 * The chunk maintains the previous number of free pages it held, 595 * so the delta is used to update the global counter. The reserved 596 * chunk is not part of the free page count as they are populated 597 * at init and are special to serving reserved allocations. 598 */ 599 if (chunk != pcpu_reserved_chunk) 600 pcpu_nr_empty_pop_pages += 601 (nr_empty_pop_pages - chunk->nr_empty_pop_pages); 602 603 chunk->nr_empty_pop_pages = nr_empty_pop_pages; 604 } 605 606 /** 607 * pcpu_block_update - updates a block given a free area 608 * @block: block of interest 609 * @start: start offset in block 610 * @end: end offset in block 611 * 612 * Updates a block given a known free area. The region [start, end) is 613 * expected to be the entirety of the free area within a block. Chooses 614 * the best starting offset if the contig hints are equal. 615 */ 616 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 617 { 618 int contig = end - start; 619 620 block->first_free = min(block->first_free, start); 621 if (start == 0) 622 block->left_free = contig; 623 624 if (end == PCPU_BITMAP_BLOCK_BITS) 625 block->right_free = contig; 626 627 if (contig > block->contig_hint) { 628 block->contig_hint_start = start; 629 block->contig_hint = contig; 630 } else if (block->contig_hint_start && contig == block->contig_hint && 631 (!start || __ffs(start) > __ffs(block->contig_hint_start))) { 632 /* use the start with the best alignment */ 633 block->contig_hint_start = start; 634 } 635 } 636 637 /** 638 * pcpu_block_refresh_hint 639 * @chunk: chunk of interest 640 * @index: index of the metadata block 641 * 642 * Scans over the block beginning at first_free and updates the block 643 * metadata accordingly. 644 */ 645 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 646 { 647 struct pcpu_block_md *block = chunk->md_blocks + index; 648 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 649 int rs, re; /* region start, region end */ 650 651 /* clear hints */ 652 block->contig_hint = 0; 653 block->left_free = block->right_free = 0; 654 655 /* iterate over free areas and update the contig hints */ 656 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, 657 PCPU_BITMAP_BLOCK_BITS) { 658 pcpu_block_update(block, rs, re); 659 } 660 } 661 662 /** 663 * pcpu_block_update_hint_alloc - update hint on allocation path 664 * @chunk: chunk of interest 665 * @bit_off: chunk offset 666 * @bits: size of request 667 * 668 * Updates metadata for the allocation path. The metadata only has to be 669 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 670 * scans are required if the block's contig hint is broken. 671 */ 672 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 673 int bits) 674 { 675 struct pcpu_block_md *s_block, *e_block, *block; 676 int s_index, e_index; /* block indexes of the freed allocation */ 677 int s_off, e_off; /* block offsets of the freed allocation */ 678 679 /* 680 * Calculate per block offsets. 681 * The calculation uses an inclusive range, but the resulting offsets 682 * are [start, end). e_index always points to the last block in the 683 * range. 684 */ 685 s_index = pcpu_off_to_block_index(bit_off); 686 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 687 s_off = pcpu_off_to_block_off(bit_off); 688 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 689 690 s_block = chunk->md_blocks + s_index; 691 e_block = chunk->md_blocks + e_index; 692 693 /* 694 * Update s_block. 695 * block->first_free must be updated if the allocation takes its place. 696 * If the allocation breaks the contig_hint, a scan is required to 697 * restore this hint. 698 */ 699 if (s_off == s_block->first_free) 700 s_block->first_free = find_next_zero_bit( 701 pcpu_index_alloc_map(chunk, s_index), 702 PCPU_BITMAP_BLOCK_BITS, 703 s_off + bits); 704 705 if (s_off >= s_block->contig_hint_start && 706 s_off < s_block->contig_hint_start + s_block->contig_hint) { 707 /* block contig hint is broken - scan to fix it */ 708 pcpu_block_refresh_hint(chunk, s_index); 709 } else { 710 /* update left and right contig manually */ 711 s_block->left_free = min(s_block->left_free, s_off); 712 if (s_index == e_index) 713 s_block->right_free = min_t(int, s_block->right_free, 714 PCPU_BITMAP_BLOCK_BITS - e_off); 715 else 716 s_block->right_free = 0; 717 } 718 719 /* 720 * Update e_block. 721 */ 722 if (s_index != e_index) { 723 /* 724 * When the allocation is across blocks, the end is along 725 * the left part of the e_block. 726 */ 727 e_block->first_free = find_next_zero_bit( 728 pcpu_index_alloc_map(chunk, e_index), 729 PCPU_BITMAP_BLOCK_BITS, e_off); 730 731 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 732 /* reset the block */ 733 e_block++; 734 } else { 735 if (e_off > e_block->contig_hint_start) { 736 /* contig hint is broken - scan to fix it */ 737 pcpu_block_refresh_hint(chunk, e_index); 738 } else { 739 e_block->left_free = 0; 740 e_block->right_free = 741 min_t(int, e_block->right_free, 742 PCPU_BITMAP_BLOCK_BITS - e_off); 743 } 744 } 745 746 /* update in-between md_blocks */ 747 for (block = s_block + 1; block < e_block; block++) { 748 block->contig_hint = 0; 749 block->left_free = 0; 750 block->right_free = 0; 751 } 752 } 753 754 /* 755 * The only time a full chunk scan is required is if the chunk 756 * contig hint is broken. Otherwise, it means a smaller space 757 * was used and therefore the chunk contig hint is still correct. 758 */ 759 if (bit_off >= chunk->contig_bits_start && 760 bit_off < chunk->contig_bits_start + chunk->contig_bits) 761 pcpu_chunk_refresh_hint(chunk); 762 } 763 764 /** 765 * pcpu_block_update_hint_free - updates the block hints on the free path 766 * @chunk: chunk of interest 767 * @bit_off: chunk offset 768 * @bits: size of request 769 * 770 * Updates metadata for the allocation path. This avoids a blind block 771 * refresh by making use of the block contig hints. If this fails, it scans 772 * forward and backward to determine the extent of the free area. This is 773 * capped at the boundary of blocks. 774 * 775 * A chunk update is triggered if a page becomes free, a block becomes free, 776 * or the free spans across blocks. This tradeoff is to minimize iterating 777 * over the block metadata to update chunk->contig_bits. chunk->contig_bits 778 * may be off by up to a page, but it will never be more than the available 779 * space. If the contig hint is contained in one block, it will be accurate. 780 */ 781 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 782 int bits) 783 { 784 struct pcpu_block_md *s_block, *e_block, *block; 785 int s_index, e_index; /* block indexes of the freed allocation */ 786 int s_off, e_off; /* block offsets of the freed allocation */ 787 int start, end; /* start and end of the whole free area */ 788 789 /* 790 * Calculate per block offsets. 791 * The calculation uses an inclusive range, but the resulting offsets 792 * are [start, end). e_index always points to the last block in the 793 * range. 794 */ 795 s_index = pcpu_off_to_block_index(bit_off); 796 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 797 s_off = pcpu_off_to_block_off(bit_off); 798 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 799 800 s_block = chunk->md_blocks + s_index; 801 e_block = chunk->md_blocks + e_index; 802 803 /* 804 * Check if the freed area aligns with the block->contig_hint. 805 * If it does, then the scan to find the beginning/end of the 806 * larger free area can be avoided. 807 * 808 * start and end refer to beginning and end of the free area 809 * within each their respective blocks. This is not necessarily 810 * the entire free area as it may span blocks past the beginning 811 * or end of the block. 812 */ 813 start = s_off; 814 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 815 start = s_block->contig_hint_start; 816 } else { 817 /* 818 * Scan backwards to find the extent of the free area. 819 * find_last_bit returns the starting bit, so if the start bit 820 * is returned, that means there was no last bit and the 821 * remainder of the chunk is free. 822 */ 823 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 824 start); 825 start = (start == l_bit) ? 0 : l_bit + 1; 826 } 827 828 end = e_off; 829 if (e_off == e_block->contig_hint_start) 830 end = e_block->contig_hint_start + e_block->contig_hint; 831 else 832 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 833 PCPU_BITMAP_BLOCK_BITS, end); 834 835 /* update s_block */ 836 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 837 pcpu_block_update(s_block, start, e_off); 838 839 /* freeing in the same block */ 840 if (s_index != e_index) { 841 /* update e_block */ 842 pcpu_block_update(e_block, 0, end); 843 844 /* reset md_blocks in the middle */ 845 for (block = s_block + 1; block < e_block; block++) { 846 block->first_free = 0; 847 block->contig_hint_start = 0; 848 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 849 block->left_free = PCPU_BITMAP_BLOCK_BITS; 850 block->right_free = PCPU_BITMAP_BLOCK_BITS; 851 } 852 } 853 854 /* 855 * Refresh chunk metadata when the free makes a page free, a block 856 * free, or spans across blocks. The contig hint may be off by up to 857 * a page, but if the hint is contained in a block, it will be accurate 858 * with the else condition below. 859 */ 860 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > 861 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || 862 s_index != e_index) 863 pcpu_chunk_refresh_hint(chunk); 864 else 865 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), 866 s_block->contig_hint); 867 } 868 869 /** 870 * pcpu_is_populated - determines if the region is populated 871 * @chunk: chunk of interest 872 * @bit_off: chunk offset 873 * @bits: size of area 874 * @next_off: return value for the next offset to start searching 875 * 876 * For atomic allocations, check if the backing pages are populated. 877 * 878 * RETURNS: 879 * Bool if the backing pages are populated. 880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 881 */ 882 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 883 int *next_off) 884 { 885 int page_start, page_end, rs, re; 886 887 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 888 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 889 890 rs = page_start; 891 pcpu_next_unpop(chunk->populated, &rs, &re, page_end); 892 if (rs >= page_end) 893 return true; 894 895 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 896 return false; 897 } 898 899 /** 900 * pcpu_find_block_fit - finds the block index to start searching 901 * @chunk: chunk of interest 902 * @alloc_bits: size of request in allocation units 903 * @align: alignment of area (max PAGE_SIZE bytes) 904 * @pop_only: use populated regions only 905 * 906 * Given a chunk and an allocation spec, find the offset to begin searching 907 * for a free region. This iterates over the bitmap metadata blocks to 908 * find an offset that will be guaranteed to fit the requirements. It is 909 * not quite first fit as if the allocation does not fit in the contig hint 910 * of a block or chunk, it is skipped. This errs on the side of caution 911 * to prevent excess iteration. Poor alignment can cause the allocator to 912 * skip over blocks and chunks that have valid free areas. 913 * 914 * RETURNS: 915 * The offset in the bitmap to begin searching. 916 * -1 if no offset is found. 917 */ 918 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 919 size_t align, bool pop_only) 920 { 921 int bit_off, bits, next_off; 922 923 /* 924 * Check to see if the allocation can fit in the chunk's contig hint. 925 * This is an optimization to prevent scanning by assuming if it 926 * cannot fit in the global hint, there is memory pressure and creating 927 * a new chunk would happen soon. 928 */ 929 bit_off = ALIGN(chunk->contig_bits_start, align) - 930 chunk->contig_bits_start; 931 if (bit_off + alloc_bits > chunk->contig_bits) 932 return -1; 933 934 bit_off = chunk->first_bit; 935 bits = 0; 936 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 937 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 938 &next_off)) 939 break; 940 941 bit_off = next_off; 942 bits = 0; 943 } 944 945 if (bit_off == pcpu_chunk_map_bits(chunk)) 946 return -1; 947 948 return bit_off; 949 } 950 951 /** 952 * pcpu_alloc_area - allocates an area from a pcpu_chunk 953 * @chunk: chunk of interest 954 * @alloc_bits: size of request in allocation units 955 * @align: alignment of area (max PAGE_SIZE) 956 * @start: bit_off to start searching 957 * 958 * This function takes in a @start offset to begin searching to fit an 959 * allocation of @alloc_bits with alignment @align. It needs to scan 960 * the allocation map because if it fits within the block's contig hint, 961 * @start will be block->first_free. This is an attempt to fill the 962 * allocation prior to breaking the contig hint. The allocation and 963 * boundary maps are updated accordingly if it confirms a valid 964 * free area. 965 * 966 * RETURNS: 967 * Allocated addr offset in @chunk on success. 968 * -1 if no matching area is found. 969 */ 970 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 971 size_t align, int start) 972 { 973 size_t align_mask = (align) ? (align - 1) : 0; 974 int bit_off, end, oslot; 975 976 lockdep_assert_held(&pcpu_lock); 977 978 oslot = pcpu_chunk_slot(chunk); 979 980 /* 981 * Search to find a fit. 982 */ 983 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS; 984 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, 985 alloc_bits, align_mask); 986 if (bit_off >= end) 987 return -1; 988 989 /* update alloc map */ 990 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 991 992 /* update boundary map */ 993 set_bit(bit_off, chunk->bound_map); 994 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 995 set_bit(bit_off + alloc_bits, chunk->bound_map); 996 997 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 998 999 /* update first free bit */ 1000 if (bit_off == chunk->first_bit) 1001 chunk->first_bit = find_next_zero_bit( 1002 chunk->alloc_map, 1003 pcpu_chunk_map_bits(chunk), 1004 bit_off + alloc_bits); 1005 1006 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1007 1008 pcpu_chunk_relocate(chunk, oslot); 1009 1010 return bit_off * PCPU_MIN_ALLOC_SIZE; 1011 } 1012 1013 /** 1014 * pcpu_free_area - frees the corresponding offset 1015 * @chunk: chunk of interest 1016 * @off: addr offset into chunk 1017 * 1018 * This function determines the size of an allocation to free using 1019 * the boundary bitmap and clears the allocation map. 1020 */ 1021 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1022 { 1023 int bit_off, bits, end, oslot; 1024 1025 lockdep_assert_held(&pcpu_lock); 1026 pcpu_stats_area_dealloc(chunk); 1027 1028 oslot = pcpu_chunk_slot(chunk); 1029 1030 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1031 1032 /* find end index */ 1033 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1034 bit_off + 1); 1035 bits = end - bit_off; 1036 bitmap_clear(chunk->alloc_map, bit_off, bits); 1037 1038 /* update metadata */ 1039 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1040 1041 /* update first free bit */ 1042 chunk->first_bit = min(chunk->first_bit, bit_off); 1043 1044 pcpu_block_update_hint_free(chunk, bit_off, bits); 1045 1046 pcpu_chunk_relocate(chunk, oslot); 1047 } 1048 1049 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1050 { 1051 struct pcpu_block_md *md_block; 1052 1053 for (md_block = chunk->md_blocks; 1054 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1055 md_block++) { 1056 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1057 md_block->left_free = PCPU_BITMAP_BLOCK_BITS; 1058 md_block->right_free = PCPU_BITMAP_BLOCK_BITS; 1059 } 1060 } 1061 1062 /** 1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1064 * @tmp_addr: the start of the region served 1065 * @map_size: size of the region served 1066 * 1067 * This is responsible for creating the chunks that serve the first chunk. The 1068 * base_addr is page aligned down of @tmp_addr while the region end is page 1069 * aligned up. Offsets are kept track of to determine the region served. All 1070 * this is done to appease the bitmap allocator in avoiding partial blocks. 1071 * 1072 * RETURNS: 1073 * Chunk serving the region at @tmp_addr of @map_size. 1074 */ 1075 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1076 int map_size) 1077 { 1078 struct pcpu_chunk *chunk; 1079 unsigned long aligned_addr, lcm_align; 1080 int start_offset, offset_bits, region_size, region_bits; 1081 1082 /* region calculations */ 1083 aligned_addr = tmp_addr & PAGE_MASK; 1084 1085 start_offset = tmp_addr - aligned_addr; 1086 1087 /* 1088 * Align the end of the region with the LCM of PAGE_SIZE and 1089 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1090 * the other. 1091 */ 1092 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1093 region_size = ALIGN(start_offset + map_size, lcm_align); 1094 1095 /* allocate chunk */ 1096 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) + 1097 BITS_TO_LONGS(region_size >> PAGE_SHIFT), 1098 0); 1099 1100 INIT_LIST_HEAD(&chunk->list); 1101 1102 chunk->base_addr = (void *)aligned_addr; 1103 chunk->start_offset = start_offset; 1104 chunk->end_offset = region_size - chunk->start_offset - map_size; 1105 1106 chunk->nr_pages = region_size >> PAGE_SHIFT; 1107 region_bits = pcpu_chunk_map_bits(chunk); 1108 1109 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) * 1110 sizeof(chunk->alloc_map[0]), 0); 1111 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) * 1112 sizeof(chunk->bound_map[0]), 0); 1113 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) * 1114 sizeof(chunk->md_blocks[0]), 0); 1115 pcpu_init_md_blocks(chunk); 1116 1117 /* manage populated page bitmap */ 1118 chunk->immutable = true; 1119 bitmap_fill(chunk->populated, chunk->nr_pages); 1120 chunk->nr_populated = chunk->nr_pages; 1121 chunk->nr_empty_pop_pages = 1122 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE, 1123 map_size / PCPU_MIN_ALLOC_SIZE); 1124 1125 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE; 1126 chunk->free_bytes = map_size; 1127 1128 if (chunk->start_offset) { 1129 /* hide the beginning of the bitmap */ 1130 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1131 bitmap_set(chunk->alloc_map, 0, offset_bits); 1132 set_bit(0, chunk->bound_map); 1133 set_bit(offset_bits, chunk->bound_map); 1134 1135 chunk->first_bit = offset_bits; 1136 1137 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1138 } 1139 1140 if (chunk->end_offset) { 1141 /* hide the end of the bitmap */ 1142 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1143 bitmap_set(chunk->alloc_map, 1144 pcpu_chunk_map_bits(chunk) - offset_bits, 1145 offset_bits); 1146 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1147 chunk->bound_map); 1148 set_bit(region_bits, chunk->bound_map); 1149 1150 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1151 - offset_bits, offset_bits); 1152 } 1153 1154 return chunk; 1155 } 1156 1157 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1158 { 1159 struct pcpu_chunk *chunk; 1160 int region_bits; 1161 1162 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1163 if (!chunk) 1164 return NULL; 1165 1166 INIT_LIST_HEAD(&chunk->list); 1167 chunk->nr_pages = pcpu_unit_pages; 1168 region_bits = pcpu_chunk_map_bits(chunk); 1169 1170 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1171 sizeof(chunk->alloc_map[0]), gfp); 1172 if (!chunk->alloc_map) 1173 goto alloc_map_fail; 1174 1175 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1176 sizeof(chunk->bound_map[0]), gfp); 1177 if (!chunk->bound_map) 1178 goto bound_map_fail; 1179 1180 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1181 sizeof(chunk->md_blocks[0]), gfp); 1182 if (!chunk->md_blocks) 1183 goto md_blocks_fail; 1184 1185 pcpu_init_md_blocks(chunk); 1186 1187 /* init metadata */ 1188 chunk->contig_bits = region_bits; 1189 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1190 1191 return chunk; 1192 1193 md_blocks_fail: 1194 pcpu_mem_free(chunk->bound_map); 1195 bound_map_fail: 1196 pcpu_mem_free(chunk->alloc_map); 1197 alloc_map_fail: 1198 pcpu_mem_free(chunk); 1199 1200 return NULL; 1201 } 1202 1203 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1204 { 1205 if (!chunk) 1206 return; 1207 pcpu_mem_free(chunk->bound_map); 1208 pcpu_mem_free(chunk->alloc_map); 1209 pcpu_mem_free(chunk); 1210 } 1211 1212 /** 1213 * pcpu_chunk_populated - post-population bookkeeping 1214 * @chunk: pcpu_chunk which got populated 1215 * @page_start: the start page 1216 * @page_end: the end page 1217 * @for_alloc: if this is to populate for allocation 1218 * 1219 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1220 * the bookkeeping information accordingly. Must be called after each 1221 * successful population. 1222 * 1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1224 * is to serve an allocation in that area. 1225 */ 1226 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1227 int page_end, bool for_alloc) 1228 { 1229 int nr = page_end - page_start; 1230 1231 lockdep_assert_held(&pcpu_lock); 1232 1233 bitmap_set(chunk->populated, page_start, nr); 1234 chunk->nr_populated += nr; 1235 1236 if (!for_alloc) { 1237 chunk->nr_empty_pop_pages += nr; 1238 pcpu_nr_empty_pop_pages += nr; 1239 } 1240 } 1241 1242 /** 1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1244 * @chunk: pcpu_chunk which got depopulated 1245 * @page_start: the start page 1246 * @page_end: the end page 1247 * 1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1249 * Update the bookkeeping information accordingly. Must be called after 1250 * each successful depopulation. 1251 */ 1252 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1253 int page_start, int page_end) 1254 { 1255 int nr = page_end - page_start; 1256 1257 lockdep_assert_held(&pcpu_lock); 1258 1259 bitmap_clear(chunk->populated, page_start, nr); 1260 chunk->nr_populated -= nr; 1261 chunk->nr_empty_pop_pages -= nr; 1262 pcpu_nr_empty_pop_pages -= nr; 1263 } 1264 1265 /* 1266 * Chunk management implementation. 1267 * 1268 * To allow different implementations, chunk alloc/free and 1269 * [de]population are implemented in a separate file which is pulled 1270 * into this file and compiled together. The following functions 1271 * should be implemented. 1272 * 1273 * pcpu_populate_chunk - populate the specified range of a chunk 1274 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1275 * pcpu_create_chunk - create a new chunk 1276 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1277 * pcpu_addr_to_page - translate address to physical address 1278 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1279 */ 1280 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1281 int page_start, int page_end, gfp_t gfp); 1282 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1283 int page_start, int page_end); 1284 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1285 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1286 static struct page *pcpu_addr_to_page(void *addr); 1287 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1288 1289 #ifdef CONFIG_NEED_PER_CPU_KM 1290 #include "percpu-km.c" 1291 #else 1292 #include "percpu-vm.c" 1293 #endif 1294 1295 /** 1296 * pcpu_chunk_addr_search - determine chunk containing specified address 1297 * @addr: address for which the chunk needs to be determined. 1298 * 1299 * This is an internal function that handles all but static allocations. 1300 * Static percpu address values should never be passed into the allocator. 1301 * 1302 * RETURNS: 1303 * The address of the found chunk. 1304 */ 1305 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1306 { 1307 /* is it in the dynamic region (first chunk)? */ 1308 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1309 return pcpu_first_chunk; 1310 1311 /* is it in the reserved region? */ 1312 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1313 return pcpu_reserved_chunk; 1314 1315 /* 1316 * The address is relative to unit0 which might be unused and 1317 * thus unmapped. Offset the address to the unit space of the 1318 * current processor before looking it up in the vmalloc 1319 * space. Note that any possible cpu id can be used here, so 1320 * there's no need to worry about preemption or cpu hotplug. 1321 */ 1322 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1323 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1324 } 1325 1326 /** 1327 * pcpu_alloc - the percpu allocator 1328 * @size: size of area to allocate in bytes 1329 * @align: alignment of area (max PAGE_SIZE) 1330 * @reserved: allocate from the reserved chunk if available 1331 * @gfp: allocation flags 1332 * 1333 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1334 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1335 * then no warning will be triggered on invalid or failed allocation 1336 * requests. 1337 * 1338 * RETURNS: 1339 * Percpu pointer to the allocated area on success, NULL on failure. 1340 */ 1341 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1342 gfp_t gfp) 1343 { 1344 /* whitelisted flags that can be passed to the backing allocators */ 1345 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1346 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1347 bool do_warn = !(gfp & __GFP_NOWARN); 1348 static int warn_limit = 10; 1349 struct pcpu_chunk *chunk; 1350 const char *err; 1351 int slot, off, cpu, ret; 1352 unsigned long flags; 1353 void __percpu *ptr; 1354 size_t bits, bit_align; 1355 1356 /* 1357 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1358 * therefore alignment must be a minimum of that many bytes. 1359 * An allocation may have internal fragmentation from rounding up 1360 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1361 */ 1362 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1363 align = PCPU_MIN_ALLOC_SIZE; 1364 1365 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1366 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1367 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1368 1369 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1370 !is_power_of_2(align))) { 1371 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1372 size, align); 1373 return NULL; 1374 } 1375 1376 if (!is_atomic) { 1377 /* 1378 * pcpu_balance_workfn() allocates memory under this mutex, 1379 * and it may wait for memory reclaim. Allow current task 1380 * to become OOM victim, in case of memory pressure. 1381 */ 1382 if (gfp & __GFP_NOFAIL) 1383 mutex_lock(&pcpu_alloc_mutex); 1384 else if (mutex_lock_killable(&pcpu_alloc_mutex)) 1385 return NULL; 1386 } 1387 1388 spin_lock_irqsave(&pcpu_lock, flags); 1389 1390 /* serve reserved allocations from the reserved chunk if available */ 1391 if (reserved && pcpu_reserved_chunk) { 1392 chunk = pcpu_reserved_chunk; 1393 1394 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1395 if (off < 0) { 1396 err = "alloc from reserved chunk failed"; 1397 goto fail_unlock; 1398 } 1399 1400 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1401 if (off >= 0) 1402 goto area_found; 1403 1404 err = "alloc from reserved chunk failed"; 1405 goto fail_unlock; 1406 } 1407 1408 restart: 1409 /* search through normal chunks */ 1410 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1411 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1412 off = pcpu_find_block_fit(chunk, bits, bit_align, 1413 is_atomic); 1414 if (off < 0) 1415 continue; 1416 1417 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1418 if (off >= 0) 1419 goto area_found; 1420 1421 } 1422 } 1423 1424 spin_unlock_irqrestore(&pcpu_lock, flags); 1425 1426 /* 1427 * No space left. Create a new chunk. We don't want multiple 1428 * tasks to create chunks simultaneously. Serialize and create iff 1429 * there's still no empty chunk after grabbing the mutex. 1430 */ 1431 if (is_atomic) { 1432 err = "atomic alloc failed, no space left"; 1433 goto fail; 1434 } 1435 1436 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1437 chunk = pcpu_create_chunk(pcpu_gfp); 1438 if (!chunk) { 1439 err = "failed to allocate new chunk"; 1440 goto fail; 1441 } 1442 1443 spin_lock_irqsave(&pcpu_lock, flags); 1444 pcpu_chunk_relocate(chunk, -1); 1445 } else { 1446 spin_lock_irqsave(&pcpu_lock, flags); 1447 } 1448 1449 goto restart; 1450 1451 area_found: 1452 pcpu_stats_area_alloc(chunk, size); 1453 spin_unlock_irqrestore(&pcpu_lock, flags); 1454 1455 /* populate if not all pages are already there */ 1456 if (!is_atomic) { 1457 int page_start, page_end, rs, re; 1458 1459 page_start = PFN_DOWN(off); 1460 page_end = PFN_UP(off + size); 1461 1462 pcpu_for_each_unpop_region(chunk->populated, rs, re, 1463 page_start, page_end) { 1464 WARN_ON(chunk->immutable); 1465 1466 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1467 1468 spin_lock_irqsave(&pcpu_lock, flags); 1469 if (ret) { 1470 pcpu_free_area(chunk, off); 1471 err = "failed to populate"; 1472 goto fail_unlock; 1473 } 1474 pcpu_chunk_populated(chunk, rs, re, true); 1475 spin_unlock_irqrestore(&pcpu_lock, flags); 1476 } 1477 1478 mutex_unlock(&pcpu_alloc_mutex); 1479 } 1480 1481 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1482 pcpu_schedule_balance_work(); 1483 1484 /* clear the areas and return address relative to base address */ 1485 for_each_possible_cpu(cpu) 1486 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1487 1488 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1489 kmemleak_alloc_percpu(ptr, size, gfp); 1490 1491 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1492 chunk->base_addr, off, ptr); 1493 1494 return ptr; 1495 1496 fail_unlock: 1497 spin_unlock_irqrestore(&pcpu_lock, flags); 1498 fail: 1499 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1500 1501 if (!is_atomic && do_warn && warn_limit) { 1502 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1503 size, align, is_atomic, err); 1504 dump_stack(); 1505 if (!--warn_limit) 1506 pr_info("limit reached, disable warning\n"); 1507 } 1508 if (is_atomic) { 1509 /* see the flag handling in pcpu_blance_workfn() */ 1510 pcpu_atomic_alloc_failed = true; 1511 pcpu_schedule_balance_work(); 1512 } else { 1513 mutex_unlock(&pcpu_alloc_mutex); 1514 } 1515 return NULL; 1516 } 1517 1518 /** 1519 * __alloc_percpu_gfp - allocate dynamic percpu area 1520 * @size: size of area to allocate in bytes 1521 * @align: alignment of area (max PAGE_SIZE) 1522 * @gfp: allocation flags 1523 * 1524 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1525 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1526 * be called from any context but is a lot more likely to fail. If @gfp 1527 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1528 * allocation requests. 1529 * 1530 * RETURNS: 1531 * Percpu pointer to the allocated area on success, NULL on failure. 1532 */ 1533 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1534 { 1535 return pcpu_alloc(size, align, false, gfp); 1536 } 1537 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1538 1539 /** 1540 * __alloc_percpu - allocate dynamic percpu area 1541 * @size: size of area to allocate in bytes 1542 * @align: alignment of area (max PAGE_SIZE) 1543 * 1544 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1545 */ 1546 void __percpu *__alloc_percpu(size_t size, size_t align) 1547 { 1548 return pcpu_alloc(size, align, false, GFP_KERNEL); 1549 } 1550 EXPORT_SYMBOL_GPL(__alloc_percpu); 1551 1552 /** 1553 * __alloc_reserved_percpu - allocate reserved percpu area 1554 * @size: size of area to allocate in bytes 1555 * @align: alignment of area (max PAGE_SIZE) 1556 * 1557 * Allocate zero-filled percpu area of @size bytes aligned at @align 1558 * from reserved percpu area if arch has set it up; otherwise, 1559 * allocation is served from the same dynamic area. Might sleep. 1560 * Might trigger writeouts. 1561 * 1562 * CONTEXT: 1563 * Does GFP_KERNEL allocation. 1564 * 1565 * RETURNS: 1566 * Percpu pointer to the allocated area on success, NULL on failure. 1567 */ 1568 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1569 { 1570 return pcpu_alloc(size, align, true, GFP_KERNEL); 1571 } 1572 1573 /** 1574 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1575 * @work: unused 1576 * 1577 * Reclaim all fully free chunks except for the first one. This is also 1578 * responsible for maintaining the pool of empty populated pages. However, 1579 * it is possible that this is called when physical memory is scarce causing 1580 * OOM killer to be triggered. We should avoid doing so until an actual 1581 * allocation causes the failure as it is possible that requests can be 1582 * serviced from already backed regions. 1583 */ 1584 static void pcpu_balance_workfn(struct work_struct *work) 1585 { 1586 /* gfp flags passed to underlying allocators */ 1587 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1588 LIST_HEAD(to_free); 1589 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1590 struct pcpu_chunk *chunk, *next; 1591 int slot, nr_to_pop, ret; 1592 1593 /* 1594 * There's no reason to keep around multiple unused chunks and VM 1595 * areas can be scarce. Destroy all free chunks except for one. 1596 */ 1597 mutex_lock(&pcpu_alloc_mutex); 1598 spin_lock_irq(&pcpu_lock); 1599 1600 list_for_each_entry_safe(chunk, next, free_head, list) { 1601 WARN_ON(chunk->immutable); 1602 1603 /* spare the first one */ 1604 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1605 continue; 1606 1607 list_move(&chunk->list, &to_free); 1608 } 1609 1610 spin_unlock_irq(&pcpu_lock); 1611 1612 list_for_each_entry_safe(chunk, next, &to_free, list) { 1613 int rs, re; 1614 1615 pcpu_for_each_pop_region(chunk->populated, rs, re, 0, 1616 chunk->nr_pages) { 1617 pcpu_depopulate_chunk(chunk, rs, re); 1618 spin_lock_irq(&pcpu_lock); 1619 pcpu_chunk_depopulated(chunk, rs, re); 1620 spin_unlock_irq(&pcpu_lock); 1621 } 1622 pcpu_destroy_chunk(chunk); 1623 cond_resched(); 1624 } 1625 1626 /* 1627 * Ensure there are certain number of free populated pages for 1628 * atomic allocs. Fill up from the most packed so that atomic 1629 * allocs don't increase fragmentation. If atomic allocation 1630 * failed previously, always populate the maximum amount. This 1631 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1632 * failing indefinitely; however, large atomic allocs are not 1633 * something we support properly and can be highly unreliable and 1634 * inefficient. 1635 */ 1636 retry_pop: 1637 if (pcpu_atomic_alloc_failed) { 1638 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1639 /* best effort anyway, don't worry about synchronization */ 1640 pcpu_atomic_alloc_failed = false; 1641 } else { 1642 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1643 pcpu_nr_empty_pop_pages, 1644 0, PCPU_EMPTY_POP_PAGES_HIGH); 1645 } 1646 1647 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1648 int nr_unpop = 0, rs, re; 1649 1650 if (!nr_to_pop) 1651 break; 1652 1653 spin_lock_irq(&pcpu_lock); 1654 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1655 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1656 if (nr_unpop) 1657 break; 1658 } 1659 spin_unlock_irq(&pcpu_lock); 1660 1661 if (!nr_unpop) 1662 continue; 1663 1664 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1665 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, 1666 chunk->nr_pages) { 1667 int nr = min(re - rs, nr_to_pop); 1668 1669 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 1670 if (!ret) { 1671 nr_to_pop -= nr; 1672 spin_lock_irq(&pcpu_lock); 1673 pcpu_chunk_populated(chunk, rs, rs + nr, false); 1674 spin_unlock_irq(&pcpu_lock); 1675 } else { 1676 nr_to_pop = 0; 1677 } 1678 1679 if (!nr_to_pop) 1680 break; 1681 } 1682 } 1683 1684 if (nr_to_pop) { 1685 /* ran out of chunks to populate, create a new one and retry */ 1686 chunk = pcpu_create_chunk(gfp); 1687 if (chunk) { 1688 spin_lock_irq(&pcpu_lock); 1689 pcpu_chunk_relocate(chunk, -1); 1690 spin_unlock_irq(&pcpu_lock); 1691 goto retry_pop; 1692 } 1693 } 1694 1695 mutex_unlock(&pcpu_alloc_mutex); 1696 } 1697 1698 /** 1699 * free_percpu - free percpu area 1700 * @ptr: pointer to area to free 1701 * 1702 * Free percpu area @ptr. 1703 * 1704 * CONTEXT: 1705 * Can be called from atomic context. 1706 */ 1707 void free_percpu(void __percpu *ptr) 1708 { 1709 void *addr; 1710 struct pcpu_chunk *chunk; 1711 unsigned long flags; 1712 int off; 1713 1714 if (!ptr) 1715 return; 1716 1717 kmemleak_free_percpu(ptr); 1718 1719 addr = __pcpu_ptr_to_addr(ptr); 1720 1721 spin_lock_irqsave(&pcpu_lock, flags); 1722 1723 chunk = pcpu_chunk_addr_search(addr); 1724 off = addr - chunk->base_addr; 1725 1726 pcpu_free_area(chunk, off); 1727 1728 /* if there are more than one fully free chunks, wake up grim reaper */ 1729 if (chunk->free_bytes == pcpu_unit_size) { 1730 struct pcpu_chunk *pos; 1731 1732 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1733 if (pos != chunk) { 1734 pcpu_schedule_balance_work(); 1735 break; 1736 } 1737 } 1738 1739 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1740 1741 spin_unlock_irqrestore(&pcpu_lock, flags); 1742 } 1743 EXPORT_SYMBOL_GPL(free_percpu); 1744 1745 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1746 { 1747 #ifdef CONFIG_SMP 1748 const size_t static_size = __per_cpu_end - __per_cpu_start; 1749 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1750 unsigned int cpu; 1751 1752 for_each_possible_cpu(cpu) { 1753 void *start = per_cpu_ptr(base, cpu); 1754 void *va = (void *)addr; 1755 1756 if (va >= start && va < start + static_size) { 1757 if (can_addr) { 1758 *can_addr = (unsigned long) (va - start); 1759 *can_addr += (unsigned long) 1760 per_cpu_ptr(base, get_boot_cpu_id()); 1761 } 1762 return true; 1763 } 1764 } 1765 #endif 1766 /* on UP, can't distinguish from other static vars, always false */ 1767 return false; 1768 } 1769 1770 /** 1771 * is_kernel_percpu_address - test whether address is from static percpu area 1772 * @addr: address to test 1773 * 1774 * Test whether @addr belongs to in-kernel static percpu area. Module 1775 * static percpu areas are not considered. For those, use 1776 * is_module_percpu_address(). 1777 * 1778 * RETURNS: 1779 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1780 */ 1781 bool is_kernel_percpu_address(unsigned long addr) 1782 { 1783 return __is_kernel_percpu_address(addr, NULL); 1784 } 1785 1786 /** 1787 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1788 * @addr: the address to be converted to physical address 1789 * 1790 * Given @addr which is dereferenceable address obtained via one of 1791 * percpu access macros, this function translates it into its physical 1792 * address. The caller is responsible for ensuring @addr stays valid 1793 * until this function finishes. 1794 * 1795 * percpu allocator has special setup for the first chunk, which currently 1796 * supports either embedding in linear address space or vmalloc mapping, 1797 * and, from the second one, the backing allocator (currently either vm or 1798 * km) provides translation. 1799 * 1800 * The addr can be translated simply without checking if it falls into the 1801 * first chunk. But the current code reflects better how percpu allocator 1802 * actually works, and the verification can discover both bugs in percpu 1803 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1804 * code. 1805 * 1806 * RETURNS: 1807 * The physical address for @addr. 1808 */ 1809 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1810 { 1811 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1812 bool in_first_chunk = false; 1813 unsigned long first_low, first_high; 1814 unsigned int cpu; 1815 1816 /* 1817 * The following test on unit_low/high isn't strictly 1818 * necessary but will speed up lookups of addresses which 1819 * aren't in the first chunk. 1820 * 1821 * The address check is against full chunk sizes. pcpu_base_addr 1822 * points to the beginning of the first chunk including the 1823 * static region. Assumes good intent as the first chunk may 1824 * not be full (ie. < pcpu_unit_pages in size). 1825 */ 1826 first_low = (unsigned long)pcpu_base_addr + 1827 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 1828 first_high = (unsigned long)pcpu_base_addr + 1829 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 1830 if ((unsigned long)addr >= first_low && 1831 (unsigned long)addr < first_high) { 1832 for_each_possible_cpu(cpu) { 1833 void *start = per_cpu_ptr(base, cpu); 1834 1835 if (addr >= start && addr < start + pcpu_unit_size) { 1836 in_first_chunk = true; 1837 break; 1838 } 1839 } 1840 } 1841 1842 if (in_first_chunk) { 1843 if (!is_vmalloc_addr(addr)) 1844 return __pa(addr); 1845 else 1846 return page_to_phys(vmalloc_to_page(addr)) + 1847 offset_in_page(addr); 1848 } else 1849 return page_to_phys(pcpu_addr_to_page(addr)) + 1850 offset_in_page(addr); 1851 } 1852 1853 /** 1854 * pcpu_alloc_alloc_info - allocate percpu allocation info 1855 * @nr_groups: the number of groups 1856 * @nr_units: the number of units 1857 * 1858 * Allocate ai which is large enough for @nr_groups groups containing 1859 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1860 * cpu_map array which is long enough for @nr_units and filled with 1861 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1862 * pointer of other groups. 1863 * 1864 * RETURNS: 1865 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1866 * failure. 1867 */ 1868 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1869 int nr_units) 1870 { 1871 struct pcpu_alloc_info *ai; 1872 size_t base_size, ai_size; 1873 void *ptr; 1874 int unit; 1875 1876 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1877 __alignof__(ai->groups[0].cpu_map[0])); 1878 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1879 1880 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE); 1881 if (!ptr) 1882 return NULL; 1883 ai = ptr; 1884 ptr += base_size; 1885 1886 ai->groups[0].cpu_map = ptr; 1887 1888 for (unit = 0; unit < nr_units; unit++) 1889 ai->groups[0].cpu_map[unit] = NR_CPUS; 1890 1891 ai->nr_groups = nr_groups; 1892 ai->__ai_size = PFN_ALIGN(ai_size); 1893 1894 return ai; 1895 } 1896 1897 /** 1898 * pcpu_free_alloc_info - free percpu allocation info 1899 * @ai: pcpu_alloc_info to free 1900 * 1901 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1902 */ 1903 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1904 { 1905 memblock_free_early(__pa(ai), ai->__ai_size); 1906 } 1907 1908 /** 1909 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1910 * @lvl: loglevel 1911 * @ai: allocation info to dump 1912 * 1913 * Print out information about @ai using loglevel @lvl. 1914 */ 1915 static void pcpu_dump_alloc_info(const char *lvl, 1916 const struct pcpu_alloc_info *ai) 1917 { 1918 int group_width = 1, cpu_width = 1, width; 1919 char empty_str[] = "--------"; 1920 int alloc = 0, alloc_end = 0; 1921 int group, v; 1922 int upa, apl; /* units per alloc, allocs per line */ 1923 1924 v = ai->nr_groups; 1925 while (v /= 10) 1926 group_width++; 1927 1928 v = num_possible_cpus(); 1929 while (v /= 10) 1930 cpu_width++; 1931 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1932 1933 upa = ai->alloc_size / ai->unit_size; 1934 width = upa * (cpu_width + 1) + group_width + 3; 1935 apl = rounddown_pow_of_two(max(60 / width, 1)); 1936 1937 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1938 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1939 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1940 1941 for (group = 0; group < ai->nr_groups; group++) { 1942 const struct pcpu_group_info *gi = &ai->groups[group]; 1943 int unit = 0, unit_end = 0; 1944 1945 BUG_ON(gi->nr_units % upa); 1946 for (alloc_end += gi->nr_units / upa; 1947 alloc < alloc_end; alloc++) { 1948 if (!(alloc % apl)) { 1949 pr_cont("\n"); 1950 printk("%spcpu-alloc: ", lvl); 1951 } 1952 pr_cont("[%0*d] ", group_width, group); 1953 1954 for (unit_end += upa; unit < unit_end; unit++) 1955 if (gi->cpu_map[unit] != NR_CPUS) 1956 pr_cont("%0*d ", 1957 cpu_width, gi->cpu_map[unit]); 1958 else 1959 pr_cont("%s ", empty_str); 1960 } 1961 } 1962 pr_cont("\n"); 1963 } 1964 1965 /** 1966 * pcpu_setup_first_chunk - initialize the first percpu chunk 1967 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1968 * @base_addr: mapped address 1969 * 1970 * Initialize the first percpu chunk which contains the kernel static 1971 * perpcu area. This function is to be called from arch percpu area 1972 * setup path. 1973 * 1974 * @ai contains all information necessary to initialize the first 1975 * chunk and prime the dynamic percpu allocator. 1976 * 1977 * @ai->static_size is the size of static percpu area. 1978 * 1979 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1980 * reserve after the static area in the first chunk. This reserves 1981 * the first chunk such that it's available only through reserved 1982 * percpu allocation. This is primarily used to serve module percpu 1983 * static areas on architectures where the addressing model has 1984 * limited offset range for symbol relocations to guarantee module 1985 * percpu symbols fall inside the relocatable range. 1986 * 1987 * @ai->dyn_size determines the number of bytes available for dynamic 1988 * allocation in the first chunk. The area between @ai->static_size + 1989 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1990 * 1991 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1992 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1993 * @ai->dyn_size. 1994 * 1995 * @ai->atom_size is the allocation atom size and used as alignment 1996 * for vm areas. 1997 * 1998 * @ai->alloc_size is the allocation size and always multiple of 1999 * @ai->atom_size. This is larger than @ai->atom_size if 2000 * @ai->unit_size is larger than @ai->atom_size. 2001 * 2002 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2003 * percpu areas. Units which should be colocated are put into the 2004 * same group. Dynamic VM areas will be allocated according to these 2005 * groupings. If @ai->nr_groups is zero, a single group containing 2006 * all units is assumed. 2007 * 2008 * The caller should have mapped the first chunk at @base_addr and 2009 * copied static data to each unit. 2010 * 2011 * The first chunk will always contain a static and a dynamic region. 2012 * However, the static region is not managed by any chunk. If the first 2013 * chunk also contains a reserved region, it is served by two chunks - 2014 * one for the reserved region and one for the dynamic region. They 2015 * share the same vm, but use offset regions in the area allocation map. 2016 * The chunk serving the dynamic region is circulated in the chunk slots 2017 * and available for dynamic allocation like any other chunk. 2018 * 2019 * RETURNS: 2020 * 0 on success, -errno on failure. 2021 */ 2022 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2023 void *base_addr) 2024 { 2025 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2026 size_t static_size, dyn_size; 2027 struct pcpu_chunk *chunk; 2028 unsigned long *group_offsets; 2029 size_t *group_sizes; 2030 unsigned long *unit_off; 2031 unsigned int cpu; 2032 int *unit_map; 2033 int group, unit, i; 2034 int map_size; 2035 unsigned long tmp_addr; 2036 2037 #define PCPU_SETUP_BUG_ON(cond) do { \ 2038 if (unlikely(cond)) { \ 2039 pr_emerg("failed to initialize, %s\n", #cond); \ 2040 pr_emerg("cpu_possible_mask=%*pb\n", \ 2041 cpumask_pr_args(cpu_possible_mask)); \ 2042 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2043 BUG(); \ 2044 } \ 2045 } while (0) 2046 2047 /* sanity checks */ 2048 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2049 #ifdef CONFIG_SMP 2050 PCPU_SETUP_BUG_ON(!ai->static_size); 2051 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2052 #endif 2053 PCPU_SETUP_BUG_ON(!base_addr); 2054 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2055 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2056 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2057 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2058 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2059 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2060 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2061 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2062 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2063 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2064 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2065 2066 /* process group information and build config tables accordingly */ 2067 group_offsets = memblock_virt_alloc(ai->nr_groups * 2068 sizeof(group_offsets[0]), 0); 2069 group_sizes = memblock_virt_alloc(ai->nr_groups * 2070 sizeof(group_sizes[0]), 0); 2071 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 2072 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 2073 2074 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2075 unit_map[cpu] = UINT_MAX; 2076 2077 pcpu_low_unit_cpu = NR_CPUS; 2078 pcpu_high_unit_cpu = NR_CPUS; 2079 2080 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2081 const struct pcpu_group_info *gi = &ai->groups[group]; 2082 2083 group_offsets[group] = gi->base_offset; 2084 group_sizes[group] = gi->nr_units * ai->unit_size; 2085 2086 for (i = 0; i < gi->nr_units; i++) { 2087 cpu = gi->cpu_map[i]; 2088 if (cpu == NR_CPUS) 2089 continue; 2090 2091 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2092 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2093 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2094 2095 unit_map[cpu] = unit + i; 2096 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2097 2098 /* determine low/high unit_cpu */ 2099 if (pcpu_low_unit_cpu == NR_CPUS || 2100 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2101 pcpu_low_unit_cpu = cpu; 2102 if (pcpu_high_unit_cpu == NR_CPUS || 2103 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2104 pcpu_high_unit_cpu = cpu; 2105 } 2106 } 2107 pcpu_nr_units = unit; 2108 2109 for_each_possible_cpu(cpu) 2110 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2111 2112 /* we're done parsing the input, undefine BUG macro and dump config */ 2113 #undef PCPU_SETUP_BUG_ON 2114 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2115 2116 pcpu_nr_groups = ai->nr_groups; 2117 pcpu_group_offsets = group_offsets; 2118 pcpu_group_sizes = group_sizes; 2119 pcpu_unit_map = unit_map; 2120 pcpu_unit_offsets = unit_off; 2121 2122 /* determine basic parameters */ 2123 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2124 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2125 pcpu_atom_size = ai->atom_size; 2126 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2127 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2128 2129 pcpu_stats_save_ai(ai); 2130 2131 /* 2132 * Allocate chunk slots. The additional last slot is for 2133 * empty chunks. 2134 */ 2135 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2136 pcpu_slot = memblock_virt_alloc( 2137 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 2138 for (i = 0; i < pcpu_nr_slots; i++) 2139 INIT_LIST_HEAD(&pcpu_slot[i]); 2140 2141 /* 2142 * The end of the static region needs to be aligned with the 2143 * minimum allocation size as this offsets the reserved and 2144 * dynamic region. The first chunk ends page aligned by 2145 * expanding the dynamic region, therefore the dynamic region 2146 * can be shrunk to compensate while still staying above the 2147 * configured sizes. 2148 */ 2149 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2150 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2151 2152 /* 2153 * Initialize first chunk. 2154 * If the reserved_size is non-zero, this initializes the reserved 2155 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2156 * and the dynamic region is initialized here. The first chunk, 2157 * pcpu_first_chunk, will always point to the chunk that serves 2158 * the dynamic region. 2159 */ 2160 tmp_addr = (unsigned long)base_addr + static_size; 2161 map_size = ai->reserved_size ?: dyn_size; 2162 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2163 2164 /* init dynamic chunk if necessary */ 2165 if (ai->reserved_size) { 2166 pcpu_reserved_chunk = chunk; 2167 2168 tmp_addr = (unsigned long)base_addr + static_size + 2169 ai->reserved_size; 2170 map_size = dyn_size; 2171 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2172 } 2173 2174 /* link the first chunk in */ 2175 pcpu_first_chunk = chunk; 2176 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2177 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2178 2179 pcpu_stats_chunk_alloc(); 2180 trace_percpu_create_chunk(base_addr); 2181 2182 /* we're done */ 2183 pcpu_base_addr = base_addr; 2184 return 0; 2185 } 2186 2187 #ifdef CONFIG_SMP 2188 2189 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2190 [PCPU_FC_AUTO] = "auto", 2191 [PCPU_FC_EMBED] = "embed", 2192 [PCPU_FC_PAGE] = "page", 2193 }; 2194 2195 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2196 2197 static int __init percpu_alloc_setup(char *str) 2198 { 2199 if (!str) 2200 return -EINVAL; 2201 2202 if (0) 2203 /* nada */; 2204 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2205 else if (!strcmp(str, "embed")) 2206 pcpu_chosen_fc = PCPU_FC_EMBED; 2207 #endif 2208 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2209 else if (!strcmp(str, "page")) 2210 pcpu_chosen_fc = PCPU_FC_PAGE; 2211 #endif 2212 else 2213 pr_warn("unknown allocator %s specified\n", str); 2214 2215 return 0; 2216 } 2217 early_param("percpu_alloc", percpu_alloc_setup); 2218 2219 /* 2220 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2221 * Build it if needed by the arch config or the generic setup is going 2222 * to be used. 2223 */ 2224 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2225 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2226 #define BUILD_EMBED_FIRST_CHUNK 2227 #endif 2228 2229 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2230 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2231 #define BUILD_PAGE_FIRST_CHUNK 2232 #endif 2233 2234 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2235 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2236 /** 2237 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2238 * @reserved_size: the size of reserved percpu area in bytes 2239 * @dyn_size: minimum free size for dynamic allocation in bytes 2240 * @atom_size: allocation atom size 2241 * @cpu_distance_fn: callback to determine distance between cpus, optional 2242 * 2243 * This function determines grouping of units, their mappings to cpus 2244 * and other parameters considering needed percpu size, allocation 2245 * atom size and distances between CPUs. 2246 * 2247 * Groups are always multiples of atom size and CPUs which are of 2248 * LOCAL_DISTANCE both ways are grouped together and share space for 2249 * units in the same group. The returned configuration is guaranteed 2250 * to have CPUs on different nodes on different groups and >=75% usage 2251 * of allocated virtual address space. 2252 * 2253 * RETURNS: 2254 * On success, pointer to the new allocation_info is returned. On 2255 * failure, ERR_PTR value is returned. 2256 */ 2257 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2258 size_t reserved_size, size_t dyn_size, 2259 size_t atom_size, 2260 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2261 { 2262 static int group_map[NR_CPUS] __initdata; 2263 static int group_cnt[NR_CPUS] __initdata; 2264 const size_t static_size = __per_cpu_end - __per_cpu_start; 2265 int nr_groups = 1, nr_units = 0; 2266 size_t size_sum, min_unit_size, alloc_size; 2267 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2268 int last_allocs, group, unit; 2269 unsigned int cpu, tcpu; 2270 struct pcpu_alloc_info *ai; 2271 unsigned int *cpu_map; 2272 2273 /* this function may be called multiple times */ 2274 memset(group_map, 0, sizeof(group_map)); 2275 memset(group_cnt, 0, sizeof(group_cnt)); 2276 2277 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2278 size_sum = PFN_ALIGN(static_size + reserved_size + 2279 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2280 dyn_size = size_sum - static_size - reserved_size; 2281 2282 /* 2283 * Determine min_unit_size, alloc_size and max_upa such that 2284 * alloc_size is multiple of atom_size and is the smallest 2285 * which can accommodate 4k aligned segments which are equal to 2286 * or larger than min_unit_size. 2287 */ 2288 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2289 2290 /* determine the maximum # of units that can fit in an allocation */ 2291 alloc_size = roundup(min_unit_size, atom_size); 2292 upa = alloc_size / min_unit_size; 2293 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2294 upa--; 2295 max_upa = upa; 2296 2297 /* group cpus according to their proximity */ 2298 for_each_possible_cpu(cpu) { 2299 group = 0; 2300 next_group: 2301 for_each_possible_cpu(tcpu) { 2302 if (cpu == tcpu) 2303 break; 2304 if (group_map[tcpu] == group && cpu_distance_fn && 2305 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2306 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2307 group++; 2308 nr_groups = max(nr_groups, group + 1); 2309 goto next_group; 2310 } 2311 } 2312 group_map[cpu] = group; 2313 group_cnt[group]++; 2314 } 2315 2316 /* 2317 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2318 * Expand the unit_size until we use >= 75% of the units allocated. 2319 * Related to atom_size, which could be much larger than the unit_size. 2320 */ 2321 last_allocs = INT_MAX; 2322 for (upa = max_upa; upa; upa--) { 2323 int allocs = 0, wasted = 0; 2324 2325 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2326 continue; 2327 2328 for (group = 0; group < nr_groups; group++) { 2329 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2330 allocs += this_allocs; 2331 wasted += this_allocs * upa - group_cnt[group]; 2332 } 2333 2334 /* 2335 * Don't accept if wastage is over 1/3. The 2336 * greater-than comparison ensures upa==1 always 2337 * passes the following check. 2338 */ 2339 if (wasted > num_possible_cpus() / 3) 2340 continue; 2341 2342 /* and then don't consume more memory */ 2343 if (allocs > last_allocs) 2344 break; 2345 last_allocs = allocs; 2346 best_upa = upa; 2347 } 2348 upa = best_upa; 2349 2350 /* allocate and fill alloc_info */ 2351 for (group = 0; group < nr_groups; group++) 2352 nr_units += roundup(group_cnt[group], upa); 2353 2354 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2355 if (!ai) 2356 return ERR_PTR(-ENOMEM); 2357 cpu_map = ai->groups[0].cpu_map; 2358 2359 for (group = 0; group < nr_groups; group++) { 2360 ai->groups[group].cpu_map = cpu_map; 2361 cpu_map += roundup(group_cnt[group], upa); 2362 } 2363 2364 ai->static_size = static_size; 2365 ai->reserved_size = reserved_size; 2366 ai->dyn_size = dyn_size; 2367 ai->unit_size = alloc_size / upa; 2368 ai->atom_size = atom_size; 2369 ai->alloc_size = alloc_size; 2370 2371 for (group = 0, unit = 0; group_cnt[group]; group++) { 2372 struct pcpu_group_info *gi = &ai->groups[group]; 2373 2374 /* 2375 * Initialize base_offset as if all groups are located 2376 * back-to-back. The caller should update this to 2377 * reflect actual allocation. 2378 */ 2379 gi->base_offset = unit * ai->unit_size; 2380 2381 for_each_possible_cpu(cpu) 2382 if (group_map[cpu] == group) 2383 gi->cpu_map[gi->nr_units++] = cpu; 2384 gi->nr_units = roundup(gi->nr_units, upa); 2385 unit += gi->nr_units; 2386 } 2387 BUG_ON(unit != nr_units); 2388 2389 return ai; 2390 } 2391 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2392 2393 #if defined(BUILD_EMBED_FIRST_CHUNK) 2394 /** 2395 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2396 * @reserved_size: the size of reserved percpu area in bytes 2397 * @dyn_size: minimum free size for dynamic allocation in bytes 2398 * @atom_size: allocation atom size 2399 * @cpu_distance_fn: callback to determine distance between cpus, optional 2400 * @alloc_fn: function to allocate percpu page 2401 * @free_fn: function to free percpu page 2402 * 2403 * This is a helper to ease setting up embedded first percpu chunk and 2404 * can be called where pcpu_setup_first_chunk() is expected. 2405 * 2406 * If this function is used to setup the first chunk, it is allocated 2407 * by calling @alloc_fn and used as-is without being mapped into 2408 * vmalloc area. Allocations are always whole multiples of @atom_size 2409 * aligned to @atom_size. 2410 * 2411 * This enables the first chunk to piggy back on the linear physical 2412 * mapping which often uses larger page size. Please note that this 2413 * can result in very sparse cpu->unit mapping on NUMA machines thus 2414 * requiring large vmalloc address space. Don't use this allocator if 2415 * vmalloc space is not orders of magnitude larger than distances 2416 * between node memory addresses (ie. 32bit NUMA machines). 2417 * 2418 * @dyn_size specifies the minimum dynamic area size. 2419 * 2420 * If the needed size is smaller than the minimum or specified unit 2421 * size, the leftover is returned using @free_fn. 2422 * 2423 * RETURNS: 2424 * 0 on success, -errno on failure. 2425 */ 2426 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2427 size_t atom_size, 2428 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2429 pcpu_fc_alloc_fn_t alloc_fn, 2430 pcpu_fc_free_fn_t free_fn) 2431 { 2432 void *base = (void *)ULONG_MAX; 2433 void **areas = NULL; 2434 struct pcpu_alloc_info *ai; 2435 size_t size_sum, areas_size; 2436 unsigned long max_distance; 2437 int group, i, highest_group, rc; 2438 2439 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2440 cpu_distance_fn); 2441 if (IS_ERR(ai)) 2442 return PTR_ERR(ai); 2443 2444 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2445 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2446 2447 areas = memblock_virt_alloc_nopanic(areas_size, 0); 2448 if (!areas) { 2449 rc = -ENOMEM; 2450 goto out_free; 2451 } 2452 2453 /* allocate, copy and determine base address & max_distance */ 2454 highest_group = 0; 2455 for (group = 0; group < ai->nr_groups; group++) { 2456 struct pcpu_group_info *gi = &ai->groups[group]; 2457 unsigned int cpu = NR_CPUS; 2458 void *ptr; 2459 2460 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2461 cpu = gi->cpu_map[i]; 2462 BUG_ON(cpu == NR_CPUS); 2463 2464 /* allocate space for the whole group */ 2465 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2466 if (!ptr) { 2467 rc = -ENOMEM; 2468 goto out_free_areas; 2469 } 2470 /* kmemleak tracks the percpu allocations separately */ 2471 kmemleak_free(ptr); 2472 areas[group] = ptr; 2473 2474 base = min(ptr, base); 2475 if (ptr > areas[highest_group]) 2476 highest_group = group; 2477 } 2478 max_distance = areas[highest_group] - base; 2479 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2480 2481 /* warn if maximum distance is further than 75% of vmalloc space */ 2482 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2483 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2484 max_distance, VMALLOC_TOTAL); 2485 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2486 /* and fail if we have fallback */ 2487 rc = -EINVAL; 2488 goto out_free_areas; 2489 #endif 2490 } 2491 2492 /* 2493 * Copy data and free unused parts. This should happen after all 2494 * allocations are complete; otherwise, we may end up with 2495 * overlapping groups. 2496 */ 2497 for (group = 0; group < ai->nr_groups; group++) { 2498 struct pcpu_group_info *gi = &ai->groups[group]; 2499 void *ptr = areas[group]; 2500 2501 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2502 if (gi->cpu_map[i] == NR_CPUS) { 2503 /* unused unit, free whole */ 2504 free_fn(ptr, ai->unit_size); 2505 continue; 2506 } 2507 /* copy and return the unused part */ 2508 memcpy(ptr, __per_cpu_load, ai->static_size); 2509 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2510 } 2511 } 2512 2513 /* base address is now known, determine group base offsets */ 2514 for (group = 0; group < ai->nr_groups; group++) { 2515 ai->groups[group].base_offset = areas[group] - base; 2516 } 2517 2518 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2519 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2520 ai->dyn_size, ai->unit_size); 2521 2522 rc = pcpu_setup_first_chunk(ai, base); 2523 goto out_free; 2524 2525 out_free_areas: 2526 for (group = 0; group < ai->nr_groups; group++) 2527 if (areas[group]) 2528 free_fn(areas[group], 2529 ai->groups[group].nr_units * ai->unit_size); 2530 out_free: 2531 pcpu_free_alloc_info(ai); 2532 if (areas) 2533 memblock_free_early(__pa(areas), areas_size); 2534 return rc; 2535 } 2536 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2537 2538 #ifdef BUILD_PAGE_FIRST_CHUNK 2539 /** 2540 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2541 * @reserved_size: the size of reserved percpu area in bytes 2542 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2543 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2544 * @populate_pte_fn: function to populate pte 2545 * 2546 * This is a helper to ease setting up page-remapped first percpu 2547 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2548 * 2549 * This is the basic allocator. Static percpu area is allocated 2550 * page-by-page into vmalloc area. 2551 * 2552 * RETURNS: 2553 * 0 on success, -errno on failure. 2554 */ 2555 int __init pcpu_page_first_chunk(size_t reserved_size, 2556 pcpu_fc_alloc_fn_t alloc_fn, 2557 pcpu_fc_free_fn_t free_fn, 2558 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2559 { 2560 static struct vm_struct vm; 2561 struct pcpu_alloc_info *ai; 2562 char psize_str[16]; 2563 int unit_pages; 2564 size_t pages_size; 2565 struct page **pages; 2566 int unit, i, j, rc; 2567 int upa; 2568 int nr_g0_units; 2569 2570 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2571 2572 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2573 if (IS_ERR(ai)) 2574 return PTR_ERR(ai); 2575 BUG_ON(ai->nr_groups != 1); 2576 upa = ai->alloc_size/ai->unit_size; 2577 nr_g0_units = roundup(num_possible_cpus(), upa); 2578 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) { 2579 pcpu_free_alloc_info(ai); 2580 return -EINVAL; 2581 } 2582 2583 unit_pages = ai->unit_size >> PAGE_SHIFT; 2584 2585 /* unaligned allocations can't be freed, round up to page size */ 2586 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2587 sizeof(pages[0])); 2588 pages = memblock_virt_alloc(pages_size, 0); 2589 2590 /* allocate pages */ 2591 j = 0; 2592 for (unit = 0; unit < num_possible_cpus(); unit++) { 2593 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2594 for (i = 0; i < unit_pages; i++) { 2595 void *ptr; 2596 2597 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2598 if (!ptr) { 2599 pr_warn("failed to allocate %s page for cpu%u\n", 2600 psize_str, cpu); 2601 goto enomem; 2602 } 2603 /* kmemleak tracks the percpu allocations separately */ 2604 kmemleak_free(ptr); 2605 pages[j++] = virt_to_page(ptr); 2606 } 2607 } 2608 2609 /* allocate vm area, map the pages and copy static data */ 2610 vm.flags = VM_ALLOC; 2611 vm.size = num_possible_cpus() * ai->unit_size; 2612 vm_area_register_early(&vm, PAGE_SIZE); 2613 2614 for (unit = 0; unit < num_possible_cpus(); unit++) { 2615 unsigned long unit_addr = 2616 (unsigned long)vm.addr + unit * ai->unit_size; 2617 2618 for (i = 0; i < unit_pages; i++) 2619 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2620 2621 /* pte already populated, the following shouldn't fail */ 2622 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2623 unit_pages); 2624 if (rc < 0) 2625 panic("failed to map percpu area, err=%d\n", rc); 2626 2627 /* 2628 * FIXME: Archs with virtual cache should flush local 2629 * cache for the linear mapping here - something 2630 * equivalent to flush_cache_vmap() on the local cpu. 2631 * flush_cache_vmap() can't be used as most supporting 2632 * data structures are not set up yet. 2633 */ 2634 2635 /* copy static data */ 2636 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2637 } 2638 2639 /* we're ready, commit */ 2640 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", 2641 unit_pages, psize_str, vm.addr, ai->static_size, 2642 ai->reserved_size, ai->dyn_size); 2643 2644 rc = pcpu_setup_first_chunk(ai, vm.addr); 2645 goto out_free_ar; 2646 2647 enomem: 2648 while (--j >= 0) 2649 free_fn(page_address(pages[j]), PAGE_SIZE); 2650 rc = -ENOMEM; 2651 out_free_ar: 2652 memblock_free_early(__pa(pages), pages_size); 2653 pcpu_free_alloc_info(ai); 2654 return rc; 2655 } 2656 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2657 2658 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2659 /* 2660 * Generic SMP percpu area setup. 2661 * 2662 * The embedding helper is used because its behavior closely resembles 2663 * the original non-dynamic generic percpu area setup. This is 2664 * important because many archs have addressing restrictions and might 2665 * fail if the percpu area is located far away from the previous 2666 * location. As an added bonus, in non-NUMA cases, embedding is 2667 * generally a good idea TLB-wise because percpu area can piggy back 2668 * on the physical linear memory mapping which uses large page 2669 * mappings on applicable archs. 2670 */ 2671 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2672 EXPORT_SYMBOL(__per_cpu_offset); 2673 2674 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2675 size_t align) 2676 { 2677 return memblock_virt_alloc_from_nopanic( 2678 size, align, __pa(MAX_DMA_ADDRESS)); 2679 } 2680 2681 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2682 { 2683 memblock_free_early(__pa(ptr), size); 2684 } 2685 2686 void __init setup_per_cpu_areas(void) 2687 { 2688 unsigned long delta; 2689 unsigned int cpu; 2690 int rc; 2691 2692 /* 2693 * Always reserve area for module percpu variables. That's 2694 * what the legacy allocator did. 2695 */ 2696 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2697 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2698 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2699 if (rc < 0) 2700 panic("Failed to initialize percpu areas."); 2701 2702 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2703 for_each_possible_cpu(cpu) 2704 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2705 } 2706 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2707 2708 #else /* CONFIG_SMP */ 2709 2710 /* 2711 * UP percpu area setup. 2712 * 2713 * UP always uses km-based percpu allocator with identity mapping. 2714 * Static percpu variables are indistinguishable from the usual static 2715 * variables and don't require any special preparation. 2716 */ 2717 void __init setup_per_cpu_areas(void) 2718 { 2719 const size_t unit_size = 2720 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2721 PERCPU_DYNAMIC_RESERVE)); 2722 struct pcpu_alloc_info *ai; 2723 void *fc; 2724 2725 ai = pcpu_alloc_alloc_info(1, 1); 2726 fc = memblock_virt_alloc_from_nopanic(unit_size, 2727 PAGE_SIZE, 2728 __pa(MAX_DMA_ADDRESS)); 2729 if (!ai || !fc) 2730 panic("Failed to allocate memory for percpu areas."); 2731 /* kmemleak tracks the percpu allocations separately */ 2732 kmemleak_free(fc); 2733 2734 ai->dyn_size = unit_size; 2735 ai->unit_size = unit_size; 2736 ai->atom_size = unit_size; 2737 ai->alloc_size = unit_size; 2738 ai->groups[0].nr_units = 1; 2739 ai->groups[0].cpu_map[0] = 0; 2740 2741 if (pcpu_setup_first_chunk(ai, fc) < 0) 2742 panic("Failed to initialize percpu areas."); 2743 pcpu_free_alloc_info(ai); 2744 } 2745 2746 #endif /* CONFIG_SMP */ 2747 2748 /* 2749 * Percpu allocator is initialized early during boot when neither slab or 2750 * workqueue is available. Plug async management until everything is up 2751 * and running. 2752 */ 2753 static int __init percpu_enable_async(void) 2754 { 2755 pcpu_async_enabled = true; 2756 return 0; 2757 } 2758 subsys_initcall(percpu_enable_async); 2759