1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT 41 * flag should be passed. All memcg-aware allocations are sharing one set 42 * of chunks and all unaccounted allocations and allocations performed 43 * by processes belonging to the root memory cgroup are using the second set. 44 * 45 * The allocator tries to allocate from the fullest chunk first. Each chunk 46 * is managed by a bitmap with metadata blocks. The allocation map is updated 47 * on every allocation and free to reflect the current state while the boundary 48 * map is only updated on allocation. Each metadata block contains 49 * information to help mitigate the need to iterate over large portions 50 * of the bitmap. The reverse mapping from page to chunk is stored in 51 * the page's index. Lastly, units are lazily backed and grow in unison. 52 * 53 * There is a unique conversion that goes on here between bytes and bits. 54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 55 * tracks the number of pages it is responsible for in nr_pages. Helper 56 * functions are used to convert from between the bytes, bits, and blocks. 57 * All hints are managed in bits unless explicitly stated. 58 * 59 * To use this allocator, arch code should do the following: 60 * 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 62 * regular address to percpu pointer and back if they need to be 63 * different from the default 64 * 65 * - use pcpu_setup_first_chunk() during percpu area initialization to 66 * setup the first chunk containing the kernel static percpu area 67 */ 68 69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 70 71 #include <linux/bitmap.h> 72 #include <linux/cpumask.h> 73 #include <linux/memblock.h> 74 #include <linux/err.h> 75 #include <linux/lcm.h> 76 #include <linux/list.h> 77 #include <linux/log2.h> 78 #include <linux/mm.h> 79 #include <linux/module.h> 80 #include <linux/mutex.h> 81 #include <linux/percpu.h> 82 #include <linux/pfn.h> 83 #include <linux/slab.h> 84 #include <linux/spinlock.h> 85 #include <linux/vmalloc.h> 86 #include <linux/workqueue.h> 87 #include <linux/kmemleak.h> 88 #include <linux/sched.h> 89 #include <linux/sched/mm.h> 90 #include <linux/memcontrol.h> 91 92 #include <asm/cacheflush.h> 93 #include <asm/sections.h> 94 #include <asm/tlbflush.h> 95 #include <asm/io.h> 96 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/percpu.h> 99 100 #include "percpu-internal.h" 101 102 /* 103 * The slots are sorted by the size of the biggest continuous free area. 104 * 1-31 bytes share the same slot. 105 */ 106 #define PCPU_SLOT_BASE_SHIFT 5 107 /* chunks in slots below this are subject to being sidelined on failed alloc */ 108 #define PCPU_SLOT_FAIL_THRESHOLD 3 109 110 #define PCPU_EMPTY_POP_PAGES_LOW 2 111 #define PCPU_EMPTY_POP_PAGES_HIGH 4 112 113 #ifdef CONFIG_SMP 114 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 115 #ifndef __addr_to_pcpu_ptr 116 #define __addr_to_pcpu_ptr(addr) \ 117 (void __percpu *)((unsigned long)(addr) - \ 118 (unsigned long)pcpu_base_addr + \ 119 (unsigned long)__per_cpu_start) 120 #endif 121 #ifndef __pcpu_ptr_to_addr 122 #define __pcpu_ptr_to_addr(ptr) \ 123 (void __force *)((unsigned long)(ptr) + \ 124 (unsigned long)pcpu_base_addr - \ 125 (unsigned long)__per_cpu_start) 126 #endif 127 #else /* CONFIG_SMP */ 128 /* on UP, it's always identity mapped */ 129 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 130 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 131 #endif /* CONFIG_SMP */ 132 133 static int pcpu_unit_pages __ro_after_init; 134 static int pcpu_unit_size __ro_after_init; 135 static int pcpu_nr_units __ro_after_init; 136 static int pcpu_atom_size __ro_after_init; 137 int pcpu_nr_slots __ro_after_init; 138 static int pcpu_free_slot __ro_after_init; 139 int pcpu_sidelined_slot __ro_after_init; 140 int pcpu_to_depopulate_slot __ro_after_init; 141 static size_t pcpu_chunk_struct_size __ro_after_init; 142 143 /* cpus with the lowest and highest unit addresses */ 144 static unsigned int pcpu_low_unit_cpu __ro_after_init; 145 static unsigned int pcpu_high_unit_cpu __ro_after_init; 146 147 /* the address of the first chunk which starts with the kernel static area */ 148 void *pcpu_base_addr __ro_after_init; 149 EXPORT_SYMBOL_GPL(pcpu_base_addr); 150 151 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 152 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 153 154 /* group information, used for vm allocation */ 155 static int pcpu_nr_groups __ro_after_init; 156 static const unsigned long *pcpu_group_offsets __ro_after_init; 157 static const size_t *pcpu_group_sizes __ro_after_init; 158 159 /* 160 * The first chunk which always exists. Note that unlike other 161 * chunks, this one can be allocated and mapped in several different 162 * ways and thus often doesn't live in the vmalloc area. 163 */ 164 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 165 166 /* 167 * Optional reserved chunk. This chunk reserves part of the first 168 * chunk and serves it for reserved allocations. When the reserved 169 * region doesn't exist, the following variable is NULL. 170 */ 171 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 172 173 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 174 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 175 176 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ 177 178 /* chunks which need their map areas extended, protected by pcpu_lock */ 179 static LIST_HEAD(pcpu_map_extend_chunks); 180 181 /* 182 * The number of empty populated pages, protected by pcpu_lock. 183 * The reserved chunk doesn't contribute to the count. 184 */ 185 int pcpu_nr_empty_pop_pages; 186 187 /* 188 * The number of populated pages in use by the allocator, protected by 189 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 190 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 191 * and increments/decrements this count by 1). 192 */ 193 static unsigned long pcpu_nr_populated; 194 195 /* 196 * Balance work is used to populate or destroy chunks asynchronously. We 197 * try to keep the number of populated free pages between 198 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 199 * empty chunk. 200 */ 201 static void pcpu_balance_workfn(struct work_struct *work); 202 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 203 static bool pcpu_async_enabled __read_mostly; 204 static bool pcpu_atomic_alloc_failed; 205 206 static void pcpu_schedule_balance_work(void) 207 { 208 if (pcpu_async_enabled) 209 schedule_work(&pcpu_balance_work); 210 } 211 212 /** 213 * pcpu_addr_in_chunk - check if the address is served from this chunk 214 * @chunk: chunk of interest 215 * @addr: percpu address 216 * 217 * RETURNS: 218 * True if the address is served from this chunk. 219 */ 220 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 221 { 222 void *start_addr, *end_addr; 223 224 if (!chunk) 225 return false; 226 227 start_addr = chunk->base_addr + chunk->start_offset; 228 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 229 chunk->end_offset; 230 231 return addr >= start_addr && addr < end_addr; 232 } 233 234 static int __pcpu_size_to_slot(int size) 235 { 236 int highbit = fls(size); /* size is in bytes */ 237 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 238 } 239 240 static int pcpu_size_to_slot(int size) 241 { 242 if (size == pcpu_unit_size) 243 return pcpu_free_slot; 244 return __pcpu_size_to_slot(size); 245 } 246 247 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 248 { 249 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 250 251 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 252 chunk_md->contig_hint == 0) 253 return 0; 254 255 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 256 } 257 258 /* set the pointer to a chunk in a page struct */ 259 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 260 { 261 page->index = (unsigned long)pcpu; 262 } 263 264 /* obtain pointer to a chunk from a page struct */ 265 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 266 { 267 return (struct pcpu_chunk *)page->index; 268 } 269 270 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 271 { 272 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 273 } 274 275 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 276 { 277 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 278 } 279 280 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 281 unsigned int cpu, int page_idx) 282 { 283 return (unsigned long)chunk->base_addr + 284 pcpu_unit_page_offset(cpu, page_idx); 285 } 286 287 /* 288 * The following are helper functions to help access bitmaps and convert 289 * between bitmap offsets to address offsets. 290 */ 291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 292 { 293 return chunk->alloc_map + 294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 295 } 296 297 static unsigned long pcpu_off_to_block_index(int off) 298 { 299 return off / PCPU_BITMAP_BLOCK_BITS; 300 } 301 302 static unsigned long pcpu_off_to_block_off(int off) 303 { 304 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 305 } 306 307 static unsigned long pcpu_block_off_to_off(int index, int off) 308 { 309 return index * PCPU_BITMAP_BLOCK_BITS + off; 310 } 311 312 /** 313 * pcpu_check_block_hint - check against the contig hint 314 * @block: block of interest 315 * @bits: size of allocation 316 * @align: alignment of area (max PAGE_SIZE) 317 * 318 * Check to see if the allocation can fit in the block's contig hint. 319 * Note, a chunk uses the same hints as a block so this can also check against 320 * the chunk's contig hint. 321 */ 322 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, 323 size_t align) 324 { 325 int bit_off = ALIGN(block->contig_hint_start, align) - 326 block->contig_hint_start; 327 328 return bit_off + bits <= block->contig_hint; 329 } 330 331 /* 332 * pcpu_next_hint - determine which hint to use 333 * @block: block of interest 334 * @alloc_bits: size of allocation 335 * 336 * This determines if we should scan based on the scan_hint or first_free. 337 * In general, we want to scan from first_free to fulfill allocations by 338 * first fit. However, if we know a scan_hint at position scan_hint_start 339 * cannot fulfill an allocation, we can begin scanning from there knowing 340 * the contig_hint will be our fallback. 341 */ 342 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 343 { 344 /* 345 * The three conditions below determine if we can skip past the 346 * scan_hint. First, does the scan hint exist. Second, is the 347 * contig_hint after the scan_hint (possibly not true iff 348 * contig_hint == scan_hint). Third, is the allocation request 349 * larger than the scan_hint. 350 */ 351 if (block->scan_hint && 352 block->contig_hint_start > block->scan_hint_start && 353 alloc_bits > block->scan_hint) 354 return block->scan_hint_start + block->scan_hint; 355 356 return block->first_free; 357 } 358 359 /** 360 * pcpu_next_md_free_region - finds the next hint free area 361 * @chunk: chunk of interest 362 * @bit_off: chunk offset 363 * @bits: size of free area 364 * 365 * Helper function for pcpu_for_each_md_free_region. It checks 366 * block->contig_hint and performs aggregation across blocks to find the 367 * next hint. It modifies bit_off and bits in-place to be consumed in the 368 * loop. 369 */ 370 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 371 int *bits) 372 { 373 int i = pcpu_off_to_block_index(*bit_off); 374 int block_off = pcpu_off_to_block_off(*bit_off); 375 struct pcpu_block_md *block; 376 377 *bits = 0; 378 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 379 block++, i++) { 380 /* handles contig area across blocks */ 381 if (*bits) { 382 *bits += block->left_free; 383 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 384 continue; 385 return; 386 } 387 388 /* 389 * This checks three things. First is there a contig_hint to 390 * check. Second, have we checked this hint before by 391 * comparing the block_off. Third, is this the same as the 392 * right contig hint. In the last case, it spills over into 393 * the next block and should be handled by the contig area 394 * across blocks code. 395 */ 396 *bits = block->contig_hint; 397 if (*bits && block->contig_hint_start >= block_off && 398 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 399 *bit_off = pcpu_block_off_to_off(i, 400 block->contig_hint_start); 401 return; 402 } 403 /* reset to satisfy the second predicate above */ 404 block_off = 0; 405 406 *bits = block->right_free; 407 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 408 } 409 } 410 411 /** 412 * pcpu_next_fit_region - finds fit areas for a given allocation request 413 * @chunk: chunk of interest 414 * @alloc_bits: size of allocation 415 * @align: alignment of area (max PAGE_SIZE) 416 * @bit_off: chunk offset 417 * @bits: size of free area 418 * 419 * Finds the next free region that is viable for use with a given size and 420 * alignment. This only returns if there is a valid area to be used for this 421 * allocation. block->first_free is returned if the allocation request fits 422 * within the block to see if the request can be fulfilled prior to the contig 423 * hint. 424 */ 425 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 426 int align, int *bit_off, int *bits) 427 { 428 int i = pcpu_off_to_block_index(*bit_off); 429 int block_off = pcpu_off_to_block_off(*bit_off); 430 struct pcpu_block_md *block; 431 432 *bits = 0; 433 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 434 block++, i++) { 435 /* handles contig area across blocks */ 436 if (*bits) { 437 *bits += block->left_free; 438 if (*bits >= alloc_bits) 439 return; 440 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 441 continue; 442 } 443 444 /* check block->contig_hint */ 445 *bits = ALIGN(block->contig_hint_start, align) - 446 block->contig_hint_start; 447 /* 448 * This uses the block offset to determine if this has been 449 * checked in the prior iteration. 450 */ 451 if (block->contig_hint && 452 block->contig_hint_start >= block_off && 453 block->contig_hint >= *bits + alloc_bits) { 454 int start = pcpu_next_hint(block, alloc_bits); 455 456 *bits += alloc_bits + block->contig_hint_start - 457 start; 458 *bit_off = pcpu_block_off_to_off(i, start); 459 return; 460 } 461 /* reset to satisfy the second predicate above */ 462 block_off = 0; 463 464 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 465 align); 466 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 467 *bit_off = pcpu_block_off_to_off(i, *bit_off); 468 if (*bits >= alloc_bits) 469 return; 470 } 471 472 /* no valid offsets were found - fail condition */ 473 *bit_off = pcpu_chunk_map_bits(chunk); 474 } 475 476 /* 477 * Metadata free area iterators. These perform aggregation of free areas 478 * based on the metadata blocks and return the offset @bit_off and size in 479 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 480 * a fit is found for the allocation request. 481 */ 482 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 483 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 484 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 485 (bit_off) += (bits) + 1, \ 486 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 487 488 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 489 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 490 &(bits)); \ 491 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 492 (bit_off) += (bits), \ 493 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 494 &(bits))) 495 496 /** 497 * pcpu_mem_zalloc - allocate memory 498 * @size: bytes to allocate 499 * @gfp: allocation flags 500 * 501 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 502 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 503 * This is to facilitate passing through whitelisted flags. The 504 * returned memory is always zeroed. 505 * 506 * RETURNS: 507 * Pointer to the allocated area on success, NULL on failure. 508 */ 509 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 510 { 511 if (WARN_ON_ONCE(!slab_is_available())) 512 return NULL; 513 514 if (size <= PAGE_SIZE) 515 return kzalloc(size, gfp); 516 else 517 return __vmalloc(size, gfp | __GFP_ZERO); 518 } 519 520 /** 521 * pcpu_mem_free - free memory 522 * @ptr: memory to free 523 * 524 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 525 */ 526 static void pcpu_mem_free(void *ptr) 527 { 528 kvfree(ptr); 529 } 530 531 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 532 bool move_front) 533 { 534 if (chunk != pcpu_reserved_chunk) { 535 if (move_front) 536 list_move(&chunk->list, &pcpu_chunk_lists[slot]); 537 else 538 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); 539 } 540 } 541 542 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 543 { 544 __pcpu_chunk_move(chunk, slot, true); 545 } 546 547 /** 548 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 549 * @chunk: chunk of interest 550 * @oslot: the previous slot it was on 551 * 552 * This function is called after an allocation or free changed @chunk. 553 * New slot according to the changed state is determined and @chunk is 554 * moved to the slot. Note that the reserved chunk is never put on 555 * chunk slots. 556 * 557 * CONTEXT: 558 * pcpu_lock. 559 */ 560 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 561 { 562 int nslot = pcpu_chunk_slot(chunk); 563 564 /* leave isolated chunks in-place */ 565 if (chunk->isolated) 566 return; 567 568 if (oslot != nslot) 569 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 570 } 571 572 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk) 573 { 574 lockdep_assert_held(&pcpu_lock); 575 576 if (!chunk->isolated) { 577 chunk->isolated = true; 578 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; 579 } 580 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); 581 } 582 583 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) 584 { 585 lockdep_assert_held(&pcpu_lock); 586 587 if (chunk->isolated) { 588 chunk->isolated = false; 589 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; 590 pcpu_chunk_relocate(chunk, -1); 591 } 592 } 593 594 /* 595 * pcpu_update_empty_pages - update empty page counters 596 * @chunk: chunk of interest 597 * @nr: nr of empty pages 598 * 599 * This is used to keep track of the empty pages now based on the premise 600 * a md_block covers a page. The hint update functions recognize if a block 601 * is made full or broken to calculate deltas for keeping track of free pages. 602 */ 603 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 604 { 605 chunk->nr_empty_pop_pages += nr; 606 if (chunk != pcpu_reserved_chunk && !chunk->isolated) 607 pcpu_nr_empty_pop_pages += nr; 608 } 609 610 /* 611 * pcpu_region_overlap - determines if two regions overlap 612 * @a: start of first region, inclusive 613 * @b: end of first region, exclusive 614 * @x: start of second region, inclusive 615 * @y: end of second region, exclusive 616 * 617 * This is used to determine if the hint region [a, b) overlaps with the 618 * allocated region [x, y). 619 */ 620 static inline bool pcpu_region_overlap(int a, int b, int x, int y) 621 { 622 return (a < y) && (x < b); 623 } 624 625 /** 626 * pcpu_block_update - updates a block given a free area 627 * @block: block of interest 628 * @start: start offset in block 629 * @end: end offset in block 630 * 631 * Updates a block given a known free area. The region [start, end) is 632 * expected to be the entirety of the free area within a block. Chooses 633 * the best starting offset if the contig hints are equal. 634 */ 635 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 636 { 637 int contig = end - start; 638 639 block->first_free = min(block->first_free, start); 640 if (start == 0) 641 block->left_free = contig; 642 643 if (end == block->nr_bits) 644 block->right_free = contig; 645 646 if (contig > block->contig_hint) { 647 /* promote the old contig_hint to be the new scan_hint */ 648 if (start > block->contig_hint_start) { 649 if (block->contig_hint > block->scan_hint) { 650 block->scan_hint_start = 651 block->contig_hint_start; 652 block->scan_hint = block->contig_hint; 653 } else if (start < block->scan_hint_start) { 654 /* 655 * The old contig_hint == scan_hint. But, the 656 * new contig is larger so hold the invariant 657 * scan_hint_start < contig_hint_start. 658 */ 659 block->scan_hint = 0; 660 } 661 } else { 662 block->scan_hint = 0; 663 } 664 block->contig_hint_start = start; 665 block->contig_hint = contig; 666 } else if (contig == block->contig_hint) { 667 if (block->contig_hint_start && 668 (!start || 669 __ffs(start) > __ffs(block->contig_hint_start))) { 670 /* start has a better alignment so use it */ 671 block->contig_hint_start = start; 672 if (start < block->scan_hint_start && 673 block->contig_hint > block->scan_hint) 674 block->scan_hint = 0; 675 } else if (start > block->scan_hint_start || 676 block->contig_hint > block->scan_hint) { 677 /* 678 * Knowing contig == contig_hint, update the scan_hint 679 * if it is farther than or larger than the current 680 * scan_hint. 681 */ 682 block->scan_hint_start = start; 683 block->scan_hint = contig; 684 } 685 } else { 686 /* 687 * The region is smaller than the contig_hint. So only update 688 * the scan_hint if it is larger than or equal and farther than 689 * the current scan_hint. 690 */ 691 if ((start < block->contig_hint_start && 692 (contig > block->scan_hint || 693 (contig == block->scan_hint && 694 start > block->scan_hint_start)))) { 695 block->scan_hint_start = start; 696 block->scan_hint = contig; 697 } 698 } 699 } 700 701 /* 702 * pcpu_block_update_scan - update a block given a free area from a scan 703 * @chunk: chunk of interest 704 * @bit_off: chunk offset 705 * @bits: size of free area 706 * 707 * Finding the final allocation spot first goes through pcpu_find_block_fit() 708 * to find a block that can hold the allocation and then pcpu_alloc_area() 709 * where a scan is used. When allocations require specific alignments, 710 * we can inadvertently create holes which will not be seen in the alloc 711 * or free paths. 712 * 713 * This takes a given free area hole and updates a block as it may change the 714 * scan_hint. We need to scan backwards to ensure we don't miss free bits 715 * from alignment. 716 */ 717 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 718 int bits) 719 { 720 int s_off = pcpu_off_to_block_off(bit_off); 721 int e_off = s_off + bits; 722 int s_index, l_bit; 723 struct pcpu_block_md *block; 724 725 if (e_off > PCPU_BITMAP_BLOCK_BITS) 726 return; 727 728 s_index = pcpu_off_to_block_index(bit_off); 729 block = chunk->md_blocks + s_index; 730 731 /* scan backwards in case of alignment skipping free bits */ 732 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 733 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 734 735 pcpu_block_update(block, s_off, e_off); 736 } 737 738 /** 739 * pcpu_chunk_refresh_hint - updates metadata about a chunk 740 * @chunk: chunk of interest 741 * @full_scan: if we should scan from the beginning 742 * 743 * Iterates over the metadata blocks to find the largest contig area. 744 * A full scan can be avoided on the allocation path as this is triggered 745 * if we broke the contig_hint. In doing so, the scan_hint will be before 746 * the contig_hint or after if the scan_hint == contig_hint. This cannot 747 * be prevented on freeing as we want to find the largest area possibly 748 * spanning blocks. 749 */ 750 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 751 { 752 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 753 int bit_off, bits; 754 755 /* promote scan_hint to contig_hint */ 756 if (!full_scan && chunk_md->scan_hint) { 757 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 758 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 759 chunk_md->contig_hint = chunk_md->scan_hint; 760 chunk_md->scan_hint = 0; 761 } else { 762 bit_off = chunk_md->first_free; 763 chunk_md->contig_hint = 0; 764 } 765 766 bits = 0; 767 pcpu_for_each_md_free_region(chunk, bit_off, bits) 768 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 769 } 770 771 /** 772 * pcpu_block_refresh_hint 773 * @chunk: chunk of interest 774 * @index: index of the metadata block 775 * 776 * Scans over the block beginning at first_free and updates the block 777 * metadata accordingly. 778 */ 779 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 780 { 781 struct pcpu_block_md *block = chunk->md_blocks + index; 782 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 783 unsigned int rs, re, start; /* region start, region end */ 784 785 /* promote scan_hint to contig_hint */ 786 if (block->scan_hint) { 787 start = block->scan_hint_start + block->scan_hint; 788 block->contig_hint_start = block->scan_hint_start; 789 block->contig_hint = block->scan_hint; 790 block->scan_hint = 0; 791 } else { 792 start = block->first_free; 793 block->contig_hint = 0; 794 } 795 796 block->right_free = 0; 797 798 /* iterate over free areas and update the contig hints */ 799 bitmap_for_each_clear_region(alloc_map, rs, re, start, 800 PCPU_BITMAP_BLOCK_BITS) 801 pcpu_block_update(block, rs, re); 802 } 803 804 /** 805 * pcpu_block_update_hint_alloc - update hint on allocation path 806 * @chunk: chunk of interest 807 * @bit_off: chunk offset 808 * @bits: size of request 809 * 810 * Updates metadata for the allocation path. The metadata only has to be 811 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 812 * scans are required if the block's contig hint is broken. 813 */ 814 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 815 int bits) 816 { 817 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 818 int nr_empty_pages = 0; 819 struct pcpu_block_md *s_block, *e_block, *block; 820 int s_index, e_index; /* block indexes of the freed allocation */ 821 int s_off, e_off; /* block offsets of the freed allocation */ 822 823 /* 824 * Calculate per block offsets. 825 * The calculation uses an inclusive range, but the resulting offsets 826 * are [start, end). e_index always points to the last block in the 827 * range. 828 */ 829 s_index = pcpu_off_to_block_index(bit_off); 830 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 831 s_off = pcpu_off_to_block_off(bit_off); 832 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 833 834 s_block = chunk->md_blocks + s_index; 835 e_block = chunk->md_blocks + e_index; 836 837 /* 838 * Update s_block. 839 * block->first_free must be updated if the allocation takes its place. 840 * If the allocation breaks the contig_hint, a scan is required to 841 * restore this hint. 842 */ 843 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 844 nr_empty_pages++; 845 846 if (s_off == s_block->first_free) 847 s_block->first_free = find_next_zero_bit( 848 pcpu_index_alloc_map(chunk, s_index), 849 PCPU_BITMAP_BLOCK_BITS, 850 s_off + bits); 851 852 if (pcpu_region_overlap(s_block->scan_hint_start, 853 s_block->scan_hint_start + s_block->scan_hint, 854 s_off, 855 s_off + bits)) 856 s_block->scan_hint = 0; 857 858 if (pcpu_region_overlap(s_block->contig_hint_start, 859 s_block->contig_hint_start + 860 s_block->contig_hint, 861 s_off, 862 s_off + bits)) { 863 /* block contig hint is broken - scan to fix it */ 864 if (!s_off) 865 s_block->left_free = 0; 866 pcpu_block_refresh_hint(chunk, s_index); 867 } else { 868 /* update left and right contig manually */ 869 s_block->left_free = min(s_block->left_free, s_off); 870 if (s_index == e_index) 871 s_block->right_free = min_t(int, s_block->right_free, 872 PCPU_BITMAP_BLOCK_BITS - e_off); 873 else 874 s_block->right_free = 0; 875 } 876 877 /* 878 * Update e_block. 879 */ 880 if (s_index != e_index) { 881 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 882 nr_empty_pages++; 883 884 /* 885 * When the allocation is across blocks, the end is along 886 * the left part of the e_block. 887 */ 888 e_block->first_free = find_next_zero_bit( 889 pcpu_index_alloc_map(chunk, e_index), 890 PCPU_BITMAP_BLOCK_BITS, e_off); 891 892 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 893 /* reset the block */ 894 e_block++; 895 } else { 896 if (e_off > e_block->scan_hint_start) 897 e_block->scan_hint = 0; 898 899 e_block->left_free = 0; 900 if (e_off > e_block->contig_hint_start) { 901 /* contig hint is broken - scan to fix it */ 902 pcpu_block_refresh_hint(chunk, e_index); 903 } else { 904 e_block->right_free = 905 min_t(int, e_block->right_free, 906 PCPU_BITMAP_BLOCK_BITS - e_off); 907 } 908 } 909 910 /* update in-between md_blocks */ 911 nr_empty_pages += (e_index - s_index - 1); 912 for (block = s_block + 1; block < e_block; block++) { 913 block->scan_hint = 0; 914 block->contig_hint = 0; 915 block->left_free = 0; 916 block->right_free = 0; 917 } 918 } 919 920 if (nr_empty_pages) 921 pcpu_update_empty_pages(chunk, -nr_empty_pages); 922 923 if (pcpu_region_overlap(chunk_md->scan_hint_start, 924 chunk_md->scan_hint_start + 925 chunk_md->scan_hint, 926 bit_off, 927 bit_off + bits)) 928 chunk_md->scan_hint = 0; 929 930 /* 931 * The only time a full chunk scan is required is if the chunk 932 * contig hint is broken. Otherwise, it means a smaller space 933 * was used and therefore the chunk contig hint is still correct. 934 */ 935 if (pcpu_region_overlap(chunk_md->contig_hint_start, 936 chunk_md->contig_hint_start + 937 chunk_md->contig_hint, 938 bit_off, 939 bit_off + bits)) 940 pcpu_chunk_refresh_hint(chunk, false); 941 } 942 943 /** 944 * pcpu_block_update_hint_free - updates the block hints on the free path 945 * @chunk: chunk of interest 946 * @bit_off: chunk offset 947 * @bits: size of request 948 * 949 * Updates metadata for the allocation path. This avoids a blind block 950 * refresh by making use of the block contig hints. If this fails, it scans 951 * forward and backward to determine the extent of the free area. This is 952 * capped at the boundary of blocks. 953 * 954 * A chunk update is triggered if a page becomes free, a block becomes free, 955 * or the free spans across blocks. This tradeoff is to minimize iterating 956 * over the block metadata to update chunk_md->contig_hint. 957 * chunk_md->contig_hint may be off by up to a page, but it will never be more 958 * than the available space. If the contig hint is contained in one block, it 959 * will be accurate. 960 */ 961 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 962 int bits) 963 { 964 int nr_empty_pages = 0; 965 struct pcpu_block_md *s_block, *e_block, *block; 966 int s_index, e_index; /* block indexes of the freed allocation */ 967 int s_off, e_off; /* block offsets of the freed allocation */ 968 int start, end; /* start and end of the whole free area */ 969 970 /* 971 * Calculate per block offsets. 972 * The calculation uses an inclusive range, but the resulting offsets 973 * are [start, end). e_index always points to the last block in the 974 * range. 975 */ 976 s_index = pcpu_off_to_block_index(bit_off); 977 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 978 s_off = pcpu_off_to_block_off(bit_off); 979 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 980 981 s_block = chunk->md_blocks + s_index; 982 e_block = chunk->md_blocks + e_index; 983 984 /* 985 * Check if the freed area aligns with the block->contig_hint. 986 * If it does, then the scan to find the beginning/end of the 987 * larger free area can be avoided. 988 * 989 * start and end refer to beginning and end of the free area 990 * within each their respective blocks. This is not necessarily 991 * the entire free area as it may span blocks past the beginning 992 * or end of the block. 993 */ 994 start = s_off; 995 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 996 start = s_block->contig_hint_start; 997 } else { 998 /* 999 * Scan backwards to find the extent of the free area. 1000 * find_last_bit returns the starting bit, so if the start bit 1001 * is returned, that means there was no last bit and the 1002 * remainder of the chunk is free. 1003 */ 1004 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 1005 start); 1006 start = (start == l_bit) ? 0 : l_bit + 1; 1007 } 1008 1009 end = e_off; 1010 if (e_off == e_block->contig_hint_start) 1011 end = e_block->contig_hint_start + e_block->contig_hint; 1012 else 1013 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 1014 PCPU_BITMAP_BLOCK_BITS, end); 1015 1016 /* update s_block */ 1017 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 1018 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 1019 nr_empty_pages++; 1020 pcpu_block_update(s_block, start, e_off); 1021 1022 /* freeing in the same block */ 1023 if (s_index != e_index) { 1024 /* update e_block */ 1025 if (end == PCPU_BITMAP_BLOCK_BITS) 1026 nr_empty_pages++; 1027 pcpu_block_update(e_block, 0, end); 1028 1029 /* reset md_blocks in the middle */ 1030 nr_empty_pages += (e_index - s_index - 1); 1031 for (block = s_block + 1; block < e_block; block++) { 1032 block->first_free = 0; 1033 block->scan_hint = 0; 1034 block->contig_hint_start = 0; 1035 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1036 block->left_free = PCPU_BITMAP_BLOCK_BITS; 1037 block->right_free = PCPU_BITMAP_BLOCK_BITS; 1038 } 1039 } 1040 1041 if (nr_empty_pages) 1042 pcpu_update_empty_pages(chunk, nr_empty_pages); 1043 1044 /* 1045 * Refresh chunk metadata when the free makes a block free or spans 1046 * across blocks. The contig_hint may be off by up to a page, but if 1047 * the contig_hint is contained in a block, it will be accurate with 1048 * the else condition below. 1049 */ 1050 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 1051 pcpu_chunk_refresh_hint(chunk, true); 1052 else 1053 pcpu_block_update(&chunk->chunk_md, 1054 pcpu_block_off_to_off(s_index, start), 1055 end); 1056 } 1057 1058 /** 1059 * pcpu_is_populated - determines if the region is populated 1060 * @chunk: chunk of interest 1061 * @bit_off: chunk offset 1062 * @bits: size of area 1063 * @next_off: return value for the next offset to start searching 1064 * 1065 * For atomic allocations, check if the backing pages are populated. 1066 * 1067 * RETURNS: 1068 * Bool if the backing pages are populated. 1069 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1070 */ 1071 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1072 int *next_off) 1073 { 1074 unsigned int page_start, page_end, rs, re; 1075 1076 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1077 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1078 1079 rs = page_start; 1080 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end); 1081 if (rs >= page_end) 1082 return true; 1083 1084 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1085 return false; 1086 } 1087 1088 /** 1089 * pcpu_find_block_fit - finds the block index to start searching 1090 * @chunk: chunk of interest 1091 * @alloc_bits: size of request in allocation units 1092 * @align: alignment of area (max PAGE_SIZE bytes) 1093 * @pop_only: use populated regions only 1094 * 1095 * Given a chunk and an allocation spec, find the offset to begin searching 1096 * for a free region. This iterates over the bitmap metadata blocks to 1097 * find an offset that will be guaranteed to fit the requirements. It is 1098 * not quite first fit as if the allocation does not fit in the contig hint 1099 * of a block or chunk, it is skipped. This errs on the side of caution 1100 * to prevent excess iteration. Poor alignment can cause the allocator to 1101 * skip over blocks and chunks that have valid free areas. 1102 * 1103 * RETURNS: 1104 * The offset in the bitmap to begin searching. 1105 * -1 if no offset is found. 1106 */ 1107 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1108 size_t align, bool pop_only) 1109 { 1110 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1111 int bit_off, bits, next_off; 1112 1113 /* 1114 * This is an optimization to prevent scanning by assuming if the 1115 * allocation cannot fit in the global hint, there is memory pressure 1116 * and creating a new chunk would happen soon. 1117 */ 1118 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) 1119 return -1; 1120 1121 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1122 bits = 0; 1123 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1124 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1125 &next_off)) 1126 break; 1127 1128 bit_off = next_off; 1129 bits = 0; 1130 } 1131 1132 if (bit_off == pcpu_chunk_map_bits(chunk)) 1133 return -1; 1134 1135 return bit_off; 1136 } 1137 1138 /* 1139 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1140 * @map: the address to base the search on 1141 * @size: the bitmap size in bits 1142 * @start: the bitnumber to start searching at 1143 * @nr: the number of zeroed bits we're looking for 1144 * @align_mask: alignment mask for zero area 1145 * @largest_off: offset of the largest area skipped 1146 * @largest_bits: size of the largest area skipped 1147 * 1148 * The @align_mask should be one less than a power of 2. 1149 * 1150 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1151 * the largest area that was skipped. This is imperfect, but in general is 1152 * good enough. The largest remembered region is the largest failed region 1153 * seen. This does not include anything we possibly skipped due to alignment. 1154 * pcpu_block_update_scan() does scan backwards to try and recover what was 1155 * lost to alignment. While this can cause scanning to miss earlier possible 1156 * free areas, smaller allocations will eventually fill those holes. 1157 */ 1158 static unsigned long pcpu_find_zero_area(unsigned long *map, 1159 unsigned long size, 1160 unsigned long start, 1161 unsigned long nr, 1162 unsigned long align_mask, 1163 unsigned long *largest_off, 1164 unsigned long *largest_bits) 1165 { 1166 unsigned long index, end, i, area_off, area_bits; 1167 again: 1168 index = find_next_zero_bit(map, size, start); 1169 1170 /* Align allocation */ 1171 index = __ALIGN_MASK(index, align_mask); 1172 area_off = index; 1173 1174 end = index + nr; 1175 if (end > size) 1176 return end; 1177 i = find_next_bit(map, end, index); 1178 if (i < end) { 1179 area_bits = i - area_off; 1180 /* remember largest unused area with best alignment */ 1181 if (area_bits > *largest_bits || 1182 (area_bits == *largest_bits && *largest_off && 1183 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1184 *largest_off = area_off; 1185 *largest_bits = area_bits; 1186 } 1187 1188 start = i + 1; 1189 goto again; 1190 } 1191 return index; 1192 } 1193 1194 /** 1195 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1196 * @chunk: chunk of interest 1197 * @alloc_bits: size of request in allocation units 1198 * @align: alignment of area (max PAGE_SIZE) 1199 * @start: bit_off to start searching 1200 * 1201 * This function takes in a @start offset to begin searching to fit an 1202 * allocation of @alloc_bits with alignment @align. It needs to scan 1203 * the allocation map because if it fits within the block's contig hint, 1204 * @start will be block->first_free. This is an attempt to fill the 1205 * allocation prior to breaking the contig hint. The allocation and 1206 * boundary maps are updated accordingly if it confirms a valid 1207 * free area. 1208 * 1209 * RETURNS: 1210 * Allocated addr offset in @chunk on success. 1211 * -1 if no matching area is found. 1212 */ 1213 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1214 size_t align, int start) 1215 { 1216 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1217 size_t align_mask = (align) ? (align - 1) : 0; 1218 unsigned long area_off = 0, area_bits = 0; 1219 int bit_off, end, oslot; 1220 1221 lockdep_assert_held(&pcpu_lock); 1222 1223 oslot = pcpu_chunk_slot(chunk); 1224 1225 /* 1226 * Search to find a fit. 1227 */ 1228 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1229 pcpu_chunk_map_bits(chunk)); 1230 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1231 align_mask, &area_off, &area_bits); 1232 if (bit_off >= end) 1233 return -1; 1234 1235 if (area_bits) 1236 pcpu_block_update_scan(chunk, area_off, area_bits); 1237 1238 /* update alloc map */ 1239 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1240 1241 /* update boundary map */ 1242 set_bit(bit_off, chunk->bound_map); 1243 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1244 set_bit(bit_off + alloc_bits, chunk->bound_map); 1245 1246 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1247 1248 /* update first free bit */ 1249 if (bit_off == chunk_md->first_free) 1250 chunk_md->first_free = find_next_zero_bit( 1251 chunk->alloc_map, 1252 pcpu_chunk_map_bits(chunk), 1253 bit_off + alloc_bits); 1254 1255 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1256 1257 pcpu_chunk_relocate(chunk, oslot); 1258 1259 return bit_off * PCPU_MIN_ALLOC_SIZE; 1260 } 1261 1262 /** 1263 * pcpu_free_area - frees the corresponding offset 1264 * @chunk: chunk of interest 1265 * @off: addr offset into chunk 1266 * 1267 * This function determines the size of an allocation to free using 1268 * the boundary bitmap and clears the allocation map. 1269 * 1270 * RETURNS: 1271 * Number of freed bytes. 1272 */ 1273 static int pcpu_free_area(struct pcpu_chunk *chunk, int off) 1274 { 1275 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1276 int bit_off, bits, end, oslot, freed; 1277 1278 lockdep_assert_held(&pcpu_lock); 1279 pcpu_stats_area_dealloc(chunk); 1280 1281 oslot = pcpu_chunk_slot(chunk); 1282 1283 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1284 1285 /* find end index */ 1286 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1287 bit_off + 1); 1288 bits = end - bit_off; 1289 bitmap_clear(chunk->alloc_map, bit_off, bits); 1290 1291 freed = bits * PCPU_MIN_ALLOC_SIZE; 1292 1293 /* update metadata */ 1294 chunk->free_bytes += freed; 1295 1296 /* update first free bit */ 1297 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1298 1299 pcpu_block_update_hint_free(chunk, bit_off, bits); 1300 1301 pcpu_chunk_relocate(chunk, oslot); 1302 1303 return freed; 1304 } 1305 1306 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1307 { 1308 block->scan_hint = 0; 1309 block->contig_hint = nr_bits; 1310 block->left_free = nr_bits; 1311 block->right_free = nr_bits; 1312 block->first_free = 0; 1313 block->nr_bits = nr_bits; 1314 } 1315 1316 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1317 { 1318 struct pcpu_block_md *md_block; 1319 1320 /* init the chunk's block */ 1321 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1322 1323 for (md_block = chunk->md_blocks; 1324 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1325 md_block++) 1326 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1327 } 1328 1329 /** 1330 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1331 * @tmp_addr: the start of the region served 1332 * @map_size: size of the region served 1333 * 1334 * This is responsible for creating the chunks that serve the first chunk. The 1335 * base_addr is page aligned down of @tmp_addr while the region end is page 1336 * aligned up. Offsets are kept track of to determine the region served. All 1337 * this is done to appease the bitmap allocator in avoiding partial blocks. 1338 * 1339 * RETURNS: 1340 * Chunk serving the region at @tmp_addr of @map_size. 1341 */ 1342 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1343 int map_size) 1344 { 1345 struct pcpu_chunk *chunk; 1346 unsigned long aligned_addr, lcm_align; 1347 int start_offset, offset_bits, region_size, region_bits; 1348 size_t alloc_size; 1349 1350 /* region calculations */ 1351 aligned_addr = tmp_addr & PAGE_MASK; 1352 1353 start_offset = tmp_addr - aligned_addr; 1354 1355 /* 1356 * Align the end of the region with the LCM of PAGE_SIZE and 1357 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1358 * the other. 1359 */ 1360 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1361 region_size = ALIGN(start_offset + map_size, lcm_align); 1362 1363 /* allocate chunk */ 1364 alloc_size = struct_size(chunk, populated, 1365 BITS_TO_LONGS(region_size >> PAGE_SHIFT)); 1366 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1367 if (!chunk) 1368 panic("%s: Failed to allocate %zu bytes\n", __func__, 1369 alloc_size); 1370 1371 INIT_LIST_HEAD(&chunk->list); 1372 1373 chunk->base_addr = (void *)aligned_addr; 1374 chunk->start_offset = start_offset; 1375 chunk->end_offset = region_size - chunk->start_offset - map_size; 1376 1377 chunk->nr_pages = region_size >> PAGE_SHIFT; 1378 region_bits = pcpu_chunk_map_bits(chunk); 1379 1380 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1381 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1382 if (!chunk->alloc_map) 1383 panic("%s: Failed to allocate %zu bytes\n", __func__, 1384 alloc_size); 1385 1386 alloc_size = 1387 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1388 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1389 if (!chunk->bound_map) 1390 panic("%s: Failed to allocate %zu bytes\n", __func__, 1391 alloc_size); 1392 1393 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1394 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1395 if (!chunk->md_blocks) 1396 panic("%s: Failed to allocate %zu bytes\n", __func__, 1397 alloc_size); 1398 1399 #ifdef CONFIG_MEMCG_KMEM 1400 /* first chunk is free to use */ 1401 chunk->obj_cgroups = NULL; 1402 #endif 1403 pcpu_init_md_blocks(chunk); 1404 1405 /* manage populated page bitmap */ 1406 chunk->immutable = true; 1407 bitmap_fill(chunk->populated, chunk->nr_pages); 1408 chunk->nr_populated = chunk->nr_pages; 1409 chunk->nr_empty_pop_pages = chunk->nr_pages; 1410 1411 chunk->free_bytes = map_size; 1412 1413 if (chunk->start_offset) { 1414 /* hide the beginning of the bitmap */ 1415 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1416 bitmap_set(chunk->alloc_map, 0, offset_bits); 1417 set_bit(0, chunk->bound_map); 1418 set_bit(offset_bits, chunk->bound_map); 1419 1420 chunk->chunk_md.first_free = offset_bits; 1421 1422 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1423 } 1424 1425 if (chunk->end_offset) { 1426 /* hide the end of the bitmap */ 1427 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1428 bitmap_set(chunk->alloc_map, 1429 pcpu_chunk_map_bits(chunk) - offset_bits, 1430 offset_bits); 1431 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1432 chunk->bound_map); 1433 set_bit(region_bits, chunk->bound_map); 1434 1435 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1436 - offset_bits, offset_bits); 1437 } 1438 1439 return chunk; 1440 } 1441 1442 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1443 { 1444 struct pcpu_chunk *chunk; 1445 int region_bits; 1446 1447 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1448 if (!chunk) 1449 return NULL; 1450 1451 INIT_LIST_HEAD(&chunk->list); 1452 chunk->nr_pages = pcpu_unit_pages; 1453 region_bits = pcpu_chunk_map_bits(chunk); 1454 1455 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1456 sizeof(chunk->alloc_map[0]), gfp); 1457 if (!chunk->alloc_map) 1458 goto alloc_map_fail; 1459 1460 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1461 sizeof(chunk->bound_map[0]), gfp); 1462 if (!chunk->bound_map) 1463 goto bound_map_fail; 1464 1465 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1466 sizeof(chunk->md_blocks[0]), gfp); 1467 if (!chunk->md_blocks) 1468 goto md_blocks_fail; 1469 1470 #ifdef CONFIG_MEMCG_KMEM 1471 if (!mem_cgroup_kmem_disabled()) { 1472 chunk->obj_cgroups = 1473 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * 1474 sizeof(struct obj_cgroup *), gfp); 1475 if (!chunk->obj_cgroups) 1476 goto objcg_fail; 1477 } 1478 #endif 1479 1480 pcpu_init_md_blocks(chunk); 1481 1482 /* init metadata */ 1483 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1484 1485 return chunk; 1486 1487 #ifdef CONFIG_MEMCG_KMEM 1488 objcg_fail: 1489 pcpu_mem_free(chunk->md_blocks); 1490 #endif 1491 md_blocks_fail: 1492 pcpu_mem_free(chunk->bound_map); 1493 bound_map_fail: 1494 pcpu_mem_free(chunk->alloc_map); 1495 alloc_map_fail: 1496 pcpu_mem_free(chunk); 1497 1498 return NULL; 1499 } 1500 1501 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1502 { 1503 if (!chunk) 1504 return; 1505 #ifdef CONFIG_MEMCG_KMEM 1506 pcpu_mem_free(chunk->obj_cgroups); 1507 #endif 1508 pcpu_mem_free(chunk->md_blocks); 1509 pcpu_mem_free(chunk->bound_map); 1510 pcpu_mem_free(chunk->alloc_map); 1511 pcpu_mem_free(chunk); 1512 } 1513 1514 /** 1515 * pcpu_chunk_populated - post-population bookkeeping 1516 * @chunk: pcpu_chunk which got populated 1517 * @page_start: the start page 1518 * @page_end: the end page 1519 * 1520 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1521 * the bookkeeping information accordingly. Must be called after each 1522 * successful population. 1523 * 1524 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1525 * is to serve an allocation in that area. 1526 */ 1527 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1528 int page_end) 1529 { 1530 int nr = page_end - page_start; 1531 1532 lockdep_assert_held(&pcpu_lock); 1533 1534 bitmap_set(chunk->populated, page_start, nr); 1535 chunk->nr_populated += nr; 1536 pcpu_nr_populated += nr; 1537 1538 pcpu_update_empty_pages(chunk, nr); 1539 } 1540 1541 /** 1542 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1543 * @chunk: pcpu_chunk which got depopulated 1544 * @page_start: the start page 1545 * @page_end: the end page 1546 * 1547 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1548 * Update the bookkeeping information accordingly. Must be called after 1549 * each successful depopulation. 1550 */ 1551 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1552 int page_start, int page_end) 1553 { 1554 int nr = page_end - page_start; 1555 1556 lockdep_assert_held(&pcpu_lock); 1557 1558 bitmap_clear(chunk->populated, page_start, nr); 1559 chunk->nr_populated -= nr; 1560 pcpu_nr_populated -= nr; 1561 1562 pcpu_update_empty_pages(chunk, -nr); 1563 } 1564 1565 /* 1566 * Chunk management implementation. 1567 * 1568 * To allow different implementations, chunk alloc/free and 1569 * [de]population are implemented in a separate file which is pulled 1570 * into this file and compiled together. The following functions 1571 * should be implemented. 1572 * 1573 * pcpu_populate_chunk - populate the specified range of a chunk 1574 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1575 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk 1576 * pcpu_create_chunk - create a new chunk 1577 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1578 * pcpu_addr_to_page - translate address to physical address 1579 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1580 */ 1581 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1582 int page_start, int page_end, gfp_t gfp); 1583 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1584 int page_start, int page_end); 1585 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, 1586 int page_start, int page_end); 1587 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1588 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1589 static struct page *pcpu_addr_to_page(void *addr); 1590 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1591 1592 #ifdef CONFIG_NEED_PER_CPU_KM 1593 #include "percpu-km.c" 1594 #else 1595 #include "percpu-vm.c" 1596 #endif 1597 1598 /** 1599 * pcpu_chunk_addr_search - determine chunk containing specified address 1600 * @addr: address for which the chunk needs to be determined. 1601 * 1602 * This is an internal function that handles all but static allocations. 1603 * Static percpu address values should never be passed into the allocator. 1604 * 1605 * RETURNS: 1606 * The address of the found chunk. 1607 */ 1608 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1609 { 1610 /* is it in the dynamic region (first chunk)? */ 1611 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1612 return pcpu_first_chunk; 1613 1614 /* is it in the reserved region? */ 1615 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1616 return pcpu_reserved_chunk; 1617 1618 /* 1619 * The address is relative to unit0 which might be unused and 1620 * thus unmapped. Offset the address to the unit space of the 1621 * current processor before looking it up in the vmalloc 1622 * space. Note that any possible cpu id can be used here, so 1623 * there's no need to worry about preemption or cpu hotplug. 1624 */ 1625 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1626 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1627 } 1628 1629 #ifdef CONFIG_MEMCG_KMEM 1630 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, 1631 struct obj_cgroup **objcgp) 1632 { 1633 struct obj_cgroup *objcg; 1634 1635 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT)) 1636 return true; 1637 1638 objcg = get_obj_cgroup_from_current(); 1639 if (!objcg) 1640 return true; 1641 1642 if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) { 1643 obj_cgroup_put(objcg); 1644 return false; 1645 } 1646 1647 *objcgp = objcg; 1648 return true; 1649 } 1650 1651 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1652 struct pcpu_chunk *chunk, int off, 1653 size_t size) 1654 { 1655 if (!objcg) 1656 return; 1657 1658 if (likely(chunk && chunk->obj_cgroups)) { 1659 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; 1660 1661 rcu_read_lock(); 1662 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1663 size * num_possible_cpus()); 1664 rcu_read_unlock(); 1665 } else { 1666 obj_cgroup_uncharge(objcg, size * num_possible_cpus()); 1667 obj_cgroup_put(objcg); 1668 } 1669 } 1670 1671 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1672 { 1673 struct obj_cgroup *objcg; 1674 1675 if (unlikely(!chunk->obj_cgroups)) 1676 return; 1677 1678 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; 1679 if (!objcg) 1680 return; 1681 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; 1682 1683 obj_cgroup_uncharge(objcg, size * num_possible_cpus()); 1684 1685 rcu_read_lock(); 1686 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1687 -(size * num_possible_cpus())); 1688 rcu_read_unlock(); 1689 1690 obj_cgroup_put(objcg); 1691 } 1692 1693 #else /* CONFIG_MEMCG_KMEM */ 1694 static bool 1695 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) 1696 { 1697 return true; 1698 } 1699 1700 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1701 struct pcpu_chunk *chunk, int off, 1702 size_t size) 1703 { 1704 } 1705 1706 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1707 { 1708 } 1709 #endif /* CONFIG_MEMCG_KMEM */ 1710 1711 /** 1712 * pcpu_alloc - the percpu allocator 1713 * @size: size of area to allocate in bytes 1714 * @align: alignment of area (max PAGE_SIZE) 1715 * @reserved: allocate from the reserved chunk if available 1716 * @gfp: allocation flags 1717 * 1718 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1719 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1720 * then no warning will be triggered on invalid or failed allocation 1721 * requests. 1722 * 1723 * RETURNS: 1724 * Percpu pointer to the allocated area on success, NULL on failure. 1725 */ 1726 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1727 gfp_t gfp) 1728 { 1729 gfp_t pcpu_gfp; 1730 bool is_atomic; 1731 bool do_warn; 1732 struct obj_cgroup *objcg = NULL; 1733 static int warn_limit = 10; 1734 struct pcpu_chunk *chunk, *next; 1735 const char *err; 1736 int slot, off, cpu, ret; 1737 unsigned long flags; 1738 void __percpu *ptr; 1739 size_t bits, bit_align; 1740 1741 gfp = current_gfp_context(gfp); 1742 /* whitelisted flags that can be passed to the backing allocators */ 1743 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1744 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1745 do_warn = !(gfp & __GFP_NOWARN); 1746 1747 /* 1748 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1749 * therefore alignment must be a minimum of that many bytes. 1750 * An allocation may have internal fragmentation from rounding up 1751 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1752 */ 1753 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1754 align = PCPU_MIN_ALLOC_SIZE; 1755 1756 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1757 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1758 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1759 1760 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1761 !is_power_of_2(align))) { 1762 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1763 size, align); 1764 return NULL; 1765 } 1766 1767 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) 1768 return NULL; 1769 1770 if (!is_atomic) { 1771 /* 1772 * pcpu_balance_workfn() allocates memory under this mutex, 1773 * and it may wait for memory reclaim. Allow current task 1774 * to become OOM victim, in case of memory pressure. 1775 */ 1776 if (gfp & __GFP_NOFAIL) { 1777 mutex_lock(&pcpu_alloc_mutex); 1778 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { 1779 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1780 return NULL; 1781 } 1782 } 1783 1784 spin_lock_irqsave(&pcpu_lock, flags); 1785 1786 /* serve reserved allocations from the reserved chunk if available */ 1787 if (reserved && pcpu_reserved_chunk) { 1788 chunk = pcpu_reserved_chunk; 1789 1790 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1791 if (off < 0) { 1792 err = "alloc from reserved chunk failed"; 1793 goto fail_unlock; 1794 } 1795 1796 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1797 if (off >= 0) 1798 goto area_found; 1799 1800 err = "alloc from reserved chunk failed"; 1801 goto fail_unlock; 1802 } 1803 1804 restart: 1805 /* search through normal chunks */ 1806 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { 1807 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], 1808 list) { 1809 off = pcpu_find_block_fit(chunk, bits, bit_align, 1810 is_atomic); 1811 if (off < 0) { 1812 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1813 pcpu_chunk_move(chunk, 0); 1814 continue; 1815 } 1816 1817 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1818 if (off >= 0) { 1819 pcpu_reintegrate_chunk(chunk); 1820 goto area_found; 1821 } 1822 } 1823 } 1824 1825 spin_unlock_irqrestore(&pcpu_lock, flags); 1826 1827 /* 1828 * No space left. Create a new chunk. We don't want multiple 1829 * tasks to create chunks simultaneously. Serialize and create iff 1830 * there's still no empty chunk after grabbing the mutex. 1831 */ 1832 if (is_atomic) { 1833 err = "atomic alloc failed, no space left"; 1834 goto fail; 1835 } 1836 1837 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { 1838 chunk = pcpu_create_chunk(pcpu_gfp); 1839 if (!chunk) { 1840 err = "failed to allocate new chunk"; 1841 goto fail; 1842 } 1843 1844 spin_lock_irqsave(&pcpu_lock, flags); 1845 pcpu_chunk_relocate(chunk, -1); 1846 } else { 1847 spin_lock_irqsave(&pcpu_lock, flags); 1848 } 1849 1850 goto restart; 1851 1852 area_found: 1853 pcpu_stats_area_alloc(chunk, size); 1854 spin_unlock_irqrestore(&pcpu_lock, flags); 1855 1856 /* populate if not all pages are already there */ 1857 if (!is_atomic) { 1858 unsigned int page_start, page_end, rs, re; 1859 1860 page_start = PFN_DOWN(off); 1861 page_end = PFN_UP(off + size); 1862 1863 bitmap_for_each_clear_region(chunk->populated, rs, re, 1864 page_start, page_end) { 1865 WARN_ON(chunk->immutable); 1866 1867 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1868 1869 spin_lock_irqsave(&pcpu_lock, flags); 1870 if (ret) { 1871 pcpu_free_area(chunk, off); 1872 err = "failed to populate"; 1873 goto fail_unlock; 1874 } 1875 pcpu_chunk_populated(chunk, rs, re); 1876 spin_unlock_irqrestore(&pcpu_lock, flags); 1877 } 1878 1879 mutex_unlock(&pcpu_alloc_mutex); 1880 } 1881 1882 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1883 pcpu_schedule_balance_work(); 1884 1885 /* clear the areas and return address relative to base address */ 1886 for_each_possible_cpu(cpu) 1887 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1888 1889 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1890 kmemleak_alloc_percpu(ptr, size, gfp); 1891 1892 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1893 chunk->base_addr, off, ptr); 1894 1895 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); 1896 1897 return ptr; 1898 1899 fail_unlock: 1900 spin_unlock_irqrestore(&pcpu_lock, flags); 1901 fail: 1902 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1903 1904 if (!is_atomic && do_warn && warn_limit) { 1905 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1906 size, align, is_atomic, err); 1907 dump_stack(); 1908 if (!--warn_limit) 1909 pr_info("limit reached, disable warning\n"); 1910 } 1911 if (is_atomic) { 1912 /* see the flag handling in pcpu_balance_workfn() */ 1913 pcpu_atomic_alloc_failed = true; 1914 pcpu_schedule_balance_work(); 1915 } else { 1916 mutex_unlock(&pcpu_alloc_mutex); 1917 } 1918 1919 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1920 1921 return NULL; 1922 } 1923 1924 /** 1925 * __alloc_percpu_gfp - allocate dynamic percpu area 1926 * @size: size of area to allocate in bytes 1927 * @align: alignment of area (max PAGE_SIZE) 1928 * @gfp: allocation flags 1929 * 1930 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1931 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1932 * be called from any context but is a lot more likely to fail. If @gfp 1933 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1934 * allocation requests. 1935 * 1936 * RETURNS: 1937 * Percpu pointer to the allocated area on success, NULL on failure. 1938 */ 1939 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1940 { 1941 return pcpu_alloc(size, align, false, gfp); 1942 } 1943 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1944 1945 /** 1946 * __alloc_percpu - allocate dynamic percpu area 1947 * @size: size of area to allocate in bytes 1948 * @align: alignment of area (max PAGE_SIZE) 1949 * 1950 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1951 */ 1952 void __percpu *__alloc_percpu(size_t size, size_t align) 1953 { 1954 return pcpu_alloc(size, align, false, GFP_KERNEL); 1955 } 1956 EXPORT_SYMBOL_GPL(__alloc_percpu); 1957 1958 /** 1959 * __alloc_reserved_percpu - allocate reserved percpu area 1960 * @size: size of area to allocate in bytes 1961 * @align: alignment of area (max PAGE_SIZE) 1962 * 1963 * Allocate zero-filled percpu area of @size bytes aligned at @align 1964 * from reserved percpu area if arch has set it up; otherwise, 1965 * allocation is served from the same dynamic area. Might sleep. 1966 * Might trigger writeouts. 1967 * 1968 * CONTEXT: 1969 * Does GFP_KERNEL allocation. 1970 * 1971 * RETURNS: 1972 * Percpu pointer to the allocated area on success, NULL on failure. 1973 */ 1974 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1975 { 1976 return pcpu_alloc(size, align, true, GFP_KERNEL); 1977 } 1978 1979 /** 1980 * pcpu_balance_free - manage the amount of free chunks 1981 * @empty_only: free chunks only if there are no populated pages 1982 * 1983 * If empty_only is %false, reclaim all fully free chunks regardless of the 1984 * number of populated pages. Otherwise, only reclaim chunks that have no 1985 * populated pages. 1986 * 1987 * CONTEXT: 1988 * pcpu_lock (can be dropped temporarily) 1989 */ 1990 static void pcpu_balance_free(bool empty_only) 1991 { 1992 LIST_HEAD(to_free); 1993 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; 1994 struct pcpu_chunk *chunk, *next; 1995 1996 lockdep_assert_held(&pcpu_lock); 1997 1998 /* 1999 * There's no reason to keep around multiple unused chunks and VM 2000 * areas can be scarce. Destroy all free chunks except for one. 2001 */ 2002 list_for_each_entry_safe(chunk, next, free_head, list) { 2003 WARN_ON(chunk->immutable); 2004 2005 /* spare the first one */ 2006 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 2007 continue; 2008 2009 if (!empty_only || chunk->nr_empty_pop_pages == 0) 2010 list_move(&chunk->list, &to_free); 2011 } 2012 2013 if (list_empty(&to_free)) 2014 return; 2015 2016 spin_unlock_irq(&pcpu_lock); 2017 list_for_each_entry_safe(chunk, next, &to_free, list) { 2018 unsigned int rs, re; 2019 2020 bitmap_for_each_set_region(chunk->populated, rs, re, 0, 2021 chunk->nr_pages) { 2022 pcpu_depopulate_chunk(chunk, rs, re); 2023 spin_lock_irq(&pcpu_lock); 2024 pcpu_chunk_depopulated(chunk, rs, re); 2025 spin_unlock_irq(&pcpu_lock); 2026 } 2027 pcpu_destroy_chunk(chunk); 2028 cond_resched(); 2029 } 2030 spin_lock_irq(&pcpu_lock); 2031 } 2032 2033 /** 2034 * pcpu_balance_populated - manage the amount of populated pages 2035 * 2036 * Maintain a certain amount of populated pages to satisfy atomic allocations. 2037 * It is possible that this is called when physical memory is scarce causing 2038 * OOM killer to be triggered. We should avoid doing so until an actual 2039 * allocation causes the failure as it is possible that requests can be 2040 * serviced from already backed regions. 2041 * 2042 * CONTEXT: 2043 * pcpu_lock (can be dropped temporarily) 2044 */ 2045 static void pcpu_balance_populated(void) 2046 { 2047 /* gfp flags passed to underlying allocators */ 2048 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 2049 struct pcpu_chunk *chunk; 2050 int slot, nr_to_pop, ret; 2051 2052 lockdep_assert_held(&pcpu_lock); 2053 2054 /* 2055 * Ensure there are certain number of free populated pages for 2056 * atomic allocs. Fill up from the most packed so that atomic 2057 * allocs don't increase fragmentation. If atomic allocation 2058 * failed previously, always populate the maximum amount. This 2059 * should prevent atomic allocs larger than PAGE_SIZE from keeping 2060 * failing indefinitely; however, large atomic allocs are not 2061 * something we support properly and can be highly unreliable and 2062 * inefficient. 2063 */ 2064 retry_pop: 2065 if (pcpu_atomic_alloc_failed) { 2066 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 2067 /* best effort anyway, don't worry about synchronization */ 2068 pcpu_atomic_alloc_failed = false; 2069 } else { 2070 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 2071 pcpu_nr_empty_pop_pages, 2072 0, PCPU_EMPTY_POP_PAGES_HIGH); 2073 } 2074 2075 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { 2076 unsigned int nr_unpop = 0, rs, re; 2077 2078 if (!nr_to_pop) 2079 break; 2080 2081 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { 2082 nr_unpop = chunk->nr_pages - chunk->nr_populated; 2083 if (nr_unpop) 2084 break; 2085 } 2086 2087 if (!nr_unpop) 2088 continue; 2089 2090 /* @chunk can't go away while pcpu_alloc_mutex is held */ 2091 bitmap_for_each_clear_region(chunk->populated, rs, re, 0, 2092 chunk->nr_pages) { 2093 int nr = min_t(int, re - rs, nr_to_pop); 2094 2095 spin_unlock_irq(&pcpu_lock); 2096 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 2097 cond_resched(); 2098 spin_lock_irq(&pcpu_lock); 2099 if (!ret) { 2100 nr_to_pop -= nr; 2101 pcpu_chunk_populated(chunk, rs, rs + nr); 2102 } else { 2103 nr_to_pop = 0; 2104 } 2105 2106 if (!nr_to_pop) 2107 break; 2108 } 2109 } 2110 2111 if (nr_to_pop) { 2112 /* ran out of chunks to populate, create a new one and retry */ 2113 spin_unlock_irq(&pcpu_lock); 2114 chunk = pcpu_create_chunk(gfp); 2115 cond_resched(); 2116 spin_lock_irq(&pcpu_lock); 2117 if (chunk) { 2118 pcpu_chunk_relocate(chunk, -1); 2119 goto retry_pop; 2120 } 2121 } 2122 } 2123 2124 /** 2125 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages 2126 * 2127 * Scan over chunks in the depopulate list and try to release unused populated 2128 * pages back to the system. Depopulated chunks are sidelined to prevent 2129 * repopulating these pages unless required. Fully free chunks are reintegrated 2130 * and freed accordingly (1 is kept around). If we drop below the empty 2131 * populated pages threshold, reintegrate the chunk if it has empty free pages. 2132 * Each chunk is scanned in the reverse order to keep populated pages close to 2133 * the beginning of the chunk. 2134 * 2135 * CONTEXT: 2136 * pcpu_lock (can be dropped temporarily) 2137 * 2138 */ 2139 static void pcpu_reclaim_populated(void) 2140 { 2141 struct pcpu_chunk *chunk; 2142 struct pcpu_block_md *block; 2143 int freed_page_start, freed_page_end; 2144 int i, end; 2145 bool reintegrate; 2146 2147 lockdep_assert_held(&pcpu_lock); 2148 2149 /* 2150 * Once a chunk is isolated to the to_depopulate list, the chunk is no 2151 * longer discoverable to allocations whom may populate pages. The only 2152 * other accessor is the free path which only returns area back to the 2153 * allocator not touching the populated bitmap. 2154 */ 2155 while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) { 2156 chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot], 2157 struct pcpu_chunk, list); 2158 WARN_ON(chunk->immutable); 2159 2160 /* 2161 * Scan chunk's pages in the reverse order to keep populated 2162 * pages close to the beginning of the chunk. 2163 */ 2164 freed_page_start = chunk->nr_pages; 2165 freed_page_end = 0; 2166 reintegrate = false; 2167 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { 2168 /* no more work to do */ 2169 if (chunk->nr_empty_pop_pages == 0) 2170 break; 2171 2172 /* reintegrate chunk to prevent atomic alloc failures */ 2173 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { 2174 reintegrate = true; 2175 goto end_chunk; 2176 } 2177 2178 /* 2179 * If the page is empty and populated, start or 2180 * extend the (i, end) range. If i == 0, decrease 2181 * i and perform the depopulation to cover the last 2182 * (first) page in the chunk. 2183 */ 2184 block = chunk->md_blocks + i; 2185 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && 2186 test_bit(i, chunk->populated)) { 2187 if (end == -1) 2188 end = i; 2189 if (i > 0) 2190 continue; 2191 i--; 2192 } 2193 2194 /* depopulate if there is an active range */ 2195 if (end == -1) 2196 continue; 2197 2198 spin_unlock_irq(&pcpu_lock); 2199 pcpu_depopulate_chunk(chunk, i + 1, end + 1); 2200 cond_resched(); 2201 spin_lock_irq(&pcpu_lock); 2202 2203 pcpu_chunk_depopulated(chunk, i + 1, end + 1); 2204 freed_page_start = min(freed_page_start, i + 1); 2205 freed_page_end = max(freed_page_end, end + 1); 2206 2207 /* reset the range and continue */ 2208 end = -1; 2209 } 2210 2211 end_chunk: 2212 /* batch tlb flush per chunk to amortize cost */ 2213 if (freed_page_start < freed_page_end) { 2214 spin_unlock_irq(&pcpu_lock); 2215 pcpu_post_unmap_tlb_flush(chunk, 2216 freed_page_start, 2217 freed_page_end); 2218 cond_resched(); 2219 spin_lock_irq(&pcpu_lock); 2220 } 2221 2222 if (reintegrate || chunk->free_bytes == pcpu_unit_size) 2223 pcpu_reintegrate_chunk(chunk); 2224 else 2225 list_move_tail(&chunk->list, 2226 &pcpu_chunk_lists[pcpu_sidelined_slot]); 2227 } 2228 } 2229 2230 /** 2231 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 2232 * @work: unused 2233 * 2234 * For each chunk type, manage the number of fully free chunks and the number of 2235 * populated pages. An important thing to consider is when pages are freed and 2236 * how they contribute to the global counts. 2237 */ 2238 static void pcpu_balance_workfn(struct work_struct *work) 2239 { 2240 /* 2241 * pcpu_balance_free() is called twice because the first time we may 2242 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us 2243 * to grow other chunks. This then gives pcpu_reclaim_populated() time 2244 * to move fully free chunks to the active list to be freed if 2245 * appropriate. 2246 */ 2247 mutex_lock(&pcpu_alloc_mutex); 2248 spin_lock_irq(&pcpu_lock); 2249 2250 pcpu_balance_free(false); 2251 pcpu_reclaim_populated(); 2252 pcpu_balance_populated(); 2253 pcpu_balance_free(true); 2254 2255 spin_unlock_irq(&pcpu_lock); 2256 mutex_unlock(&pcpu_alloc_mutex); 2257 } 2258 2259 /** 2260 * free_percpu - free percpu area 2261 * @ptr: pointer to area to free 2262 * 2263 * Free percpu area @ptr. 2264 * 2265 * CONTEXT: 2266 * Can be called from atomic context. 2267 */ 2268 void free_percpu(void __percpu *ptr) 2269 { 2270 void *addr; 2271 struct pcpu_chunk *chunk; 2272 unsigned long flags; 2273 int size, off; 2274 bool need_balance = false; 2275 2276 if (!ptr) 2277 return; 2278 2279 kmemleak_free_percpu(ptr); 2280 2281 addr = __pcpu_ptr_to_addr(ptr); 2282 2283 spin_lock_irqsave(&pcpu_lock, flags); 2284 2285 chunk = pcpu_chunk_addr_search(addr); 2286 off = addr - chunk->base_addr; 2287 2288 size = pcpu_free_area(chunk, off); 2289 2290 pcpu_memcg_free_hook(chunk, off, size); 2291 2292 /* 2293 * If there are more than one fully free chunks, wake up grim reaper. 2294 * If the chunk is isolated, it may be in the process of being 2295 * reclaimed. Let reclaim manage cleaning up of that chunk. 2296 */ 2297 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { 2298 struct pcpu_chunk *pos; 2299 2300 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) 2301 if (pos != chunk) { 2302 need_balance = true; 2303 break; 2304 } 2305 } else if (pcpu_should_reclaim_chunk(chunk)) { 2306 pcpu_isolate_chunk(chunk); 2307 need_balance = true; 2308 } 2309 2310 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 2311 2312 spin_unlock_irqrestore(&pcpu_lock, flags); 2313 2314 if (need_balance) 2315 pcpu_schedule_balance_work(); 2316 } 2317 EXPORT_SYMBOL_GPL(free_percpu); 2318 2319 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 2320 { 2321 #ifdef CONFIG_SMP 2322 const size_t static_size = __per_cpu_end - __per_cpu_start; 2323 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2324 unsigned int cpu; 2325 2326 for_each_possible_cpu(cpu) { 2327 void *start = per_cpu_ptr(base, cpu); 2328 void *va = (void *)addr; 2329 2330 if (va >= start && va < start + static_size) { 2331 if (can_addr) { 2332 *can_addr = (unsigned long) (va - start); 2333 *can_addr += (unsigned long) 2334 per_cpu_ptr(base, get_boot_cpu_id()); 2335 } 2336 return true; 2337 } 2338 } 2339 #endif 2340 /* on UP, can't distinguish from other static vars, always false */ 2341 return false; 2342 } 2343 2344 /** 2345 * is_kernel_percpu_address - test whether address is from static percpu area 2346 * @addr: address to test 2347 * 2348 * Test whether @addr belongs to in-kernel static percpu area. Module 2349 * static percpu areas are not considered. For those, use 2350 * is_module_percpu_address(). 2351 * 2352 * RETURNS: 2353 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2354 */ 2355 bool is_kernel_percpu_address(unsigned long addr) 2356 { 2357 return __is_kernel_percpu_address(addr, NULL); 2358 } 2359 2360 /** 2361 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2362 * @addr: the address to be converted to physical address 2363 * 2364 * Given @addr which is dereferenceable address obtained via one of 2365 * percpu access macros, this function translates it into its physical 2366 * address. The caller is responsible for ensuring @addr stays valid 2367 * until this function finishes. 2368 * 2369 * percpu allocator has special setup for the first chunk, which currently 2370 * supports either embedding in linear address space or vmalloc mapping, 2371 * and, from the second one, the backing allocator (currently either vm or 2372 * km) provides translation. 2373 * 2374 * The addr can be translated simply without checking if it falls into the 2375 * first chunk. But the current code reflects better how percpu allocator 2376 * actually works, and the verification can discover both bugs in percpu 2377 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2378 * code. 2379 * 2380 * RETURNS: 2381 * The physical address for @addr. 2382 */ 2383 phys_addr_t per_cpu_ptr_to_phys(void *addr) 2384 { 2385 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2386 bool in_first_chunk = false; 2387 unsigned long first_low, first_high; 2388 unsigned int cpu; 2389 2390 /* 2391 * The following test on unit_low/high isn't strictly 2392 * necessary but will speed up lookups of addresses which 2393 * aren't in the first chunk. 2394 * 2395 * The address check is against full chunk sizes. pcpu_base_addr 2396 * points to the beginning of the first chunk including the 2397 * static region. Assumes good intent as the first chunk may 2398 * not be full (ie. < pcpu_unit_pages in size). 2399 */ 2400 first_low = (unsigned long)pcpu_base_addr + 2401 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2402 first_high = (unsigned long)pcpu_base_addr + 2403 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2404 if ((unsigned long)addr >= first_low && 2405 (unsigned long)addr < first_high) { 2406 for_each_possible_cpu(cpu) { 2407 void *start = per_cpu_ptr(base, cpu); 2408 2409 if (addr >= start && addr < start + pcpu_unit_size) { 2410 in_first_chunk = true; 2411 break; 2412 } 2413 } 2414 } 2415 2416 if (in_first_chunk) { 2417 if (!is_vmalloc_addr(addr)) 2418 return __pa(addr); 2419 else 2420 return page_to_phys(vmalloc_to_page(addr)) + 2421 offset_in_page(addr); 2422 } else 2423 return page_to_phys(pcpu_addr_to_page(addr)) + 2424 offset_in_page(addr); 2425 } 2426 2427 /** 2428 * pcpu_alloc_alloc_info - allocate percpu allocation info 2429 * @nr_groups: the number of groups 2430 * @nr_units: the number of units 2431 * 2432 * Allocate ai which is large enough for @nr_groups groups containing 2433 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2434 * cpu_map array which is long enough for @nr_units and filled with 2435 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2436 * pointer of other groups. 2437 * 2438 * RETURNS: 2439 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2440 * failure. 2441 */ 2442 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2443 int nr_units) 2444 { 2445 struct pcpu_alloc_info *ai; 2446 size_t base_size, ai_size; 2447 void *ptr; 2448 int unit; 2449 2450 base_size = ALIGN(struct_size(ai, groups, nr_groups), 2451 __alignof__(ai->groups[0].cpu_map[0])); 2452 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2453 2454 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2455 if (!ptr) 2456 return NULL; 2457 ai = ptr; 2458 ptr += base_size; 2459 2460 ai->groups[0].cpu_map = ptr; 2461 2462 for (unit = 0; unit < nr_units; unit++) 2463 ai->groups[0].cpu_map[unit] = NR_CPUS; 2464 2465 ai->nr_groups = nr_groups; 2466 ai->__ai_size = PFN_ALIGN(ai_size); 2467 2468 return ai; 2469 } 2470 2471 /** 2472 * pcpu_free_alloc_info - free percpu allocation info 2473 * @ai: pcpu_alloc_info to free 2474 * 2475 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2476 */ 2477 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2478 { 2479 memblock_free_early(__pa(ai), ai->__ai_size); 2480 } 2481 2482 /** 2483 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2484 * @lvl: loglevel 2485 * @ai: allocation info to dump 2486 * 2487 * Print out information about @ai using loglevel @lvl. 2488 */ 2489 static void pcpu_dump_alloc_info(const char *lvl, 2490 const struct pcpu_alloc_info *ai) 2491 { 2492 int group_width = 1, cpu_width = 1, width; 2493 char empty_str[] = "--------"; 2494 int alloc = 0, alloc_end = 0; 2495 int group, v; 2496 int upa, apl; /* units per alloc, allocs per line */ 2497 2498 v = ai->nr_groups; 2499 while (v /= 10) 2500 group_width++; 2501 2502 v = num_possible_cpus(); 2503 while (v /= 10) 2504 cpu_width++; 2505 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2506 2507 upa = ai->alloc_size / ai->unit_size; 2508 width = upa * (cpu_width + 1) + group_width + 3; 2509 apl = rounddown_pow_of_two(max(60 / width, 1)); 2510 2511 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2512 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2513 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2514 2515 for (group = 0; group < ai->nr_groups; group++) { 2516 const struct pcpu_group_info *gi = &ai->groups[group]; 2517 int unit = 0, unit_end = 0; 2518 2519 BUG_ON(gi->nr_units % upa); 2520 for (alloc_end += gi->nr_units / upa; 2521 alloc < alloc_end; alloc++) { 2522 if (!(alloc % apl)) { 2523 pr_cont("\n"); 2524 printk("%spcpu-alloc: ", lvl); 2525 } 2526 pr_cont("[%0*d] ", group_width, group); 2527 2528 for (unit_end += upa; unit < unit_end; unit++) 2529 if (gi->cpu_map[unit] != NR_CPUS) 2530 pr_cont("%0*d ", 2531 cpu_width, gi->cpu_map[unit]); 2532 else 2533 pr_cont("%s ", empty_str); 2534 } 2535 } 2536 pr_cont("\n"); 2537 } 2538 2539 /** 2540 * pcpu_setup_first_chunk - initialize the first percpu chunk 2541 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2542 * @base_addr: mapped address 2543 * 2544 * Initialize the first percpu chunk which contains the kernel static 2545 * percpu area. This function is to be called from arch percpu area 2546 * setup path. 2547 * 2548 * @ai contains all information necessary to initialize the first 2549 * chunk and prime the dynamic percpu allocator. 2550 * 2551 * @ai->static_size is the size of static percpu area. 2552 * 2553 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2554 * reserve after the static area in the first chunk. This reserves 2555 * the first chunk such that it's available only through reserved 2556 * percpu allocation. This is primarily used to serve module percpu 2557 * static areas on architectures where the addressing model has 2558 * limited offset range for symbol relocations to guarantee module 2559 * percpu symbols fall inside the relocatable range. 2560 * 2561 * @ai->dyn_size determines the number of bytes available for dynamic 2562 * allocation in the first chunk. The area between @ai->static_size + 2563 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2564 * 2565 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2566 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2567 * @ai->dyn_size. 2568 * 2569 * @ai->atom_size is the allocation atom size and used as alignment 2570 * for vm areas. 2571 * 2572 * @ai->alloc_size is the allocation size and always multiple of 2573 * @ai->atom_size. This is larger than @ai->atom_size if 2574 * @ai->unit_size is larger than @ai->atom_size. 2575 * 2576 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2577 * percpu areas. Units which should be colocated are put into the 2578 * same group. Dynamic VM areas will be allocated according to these 2579 * groupings. If @ai->nr_groups is zero, a single group containing 2580 * all units is assumed. 2581 * 2582 * The caller should have mapped the first chunk at @base_addr and 2583 * copied static data to each unit. 2584 * 2585 * The first chunk will always contain a static and a dynamic region. 2586 * However, the static region is not managed by any chunk. If the first 2587 * chunk also contains a reserved region, it is served by two chunks - 2588 * one for the reserved region and one for the dynamic region. They 2589 * share the same vm, but use offset regions in the area allocation map. 2590 * The chunk serving the dynamic region is circulated in the chunk slots 2591 * and available for dynamic allocation like any other chunk. 2592 */ 2593 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2594 void *base_addr) 2595 { 2596 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2597 size_t static_size, dyn_size; 2598 struct pcpu_chunk *chunk; 2599 unsigned long *group_offsets; 2600 size_t *group_sizes; 2601 unsigned long *unit_off; 2602 unsigned int cpu; 2603 int *unit_map; 2604 int group, unit, i; 2605 int map_size; 2606 unsigned long tmp_addr; 2607 size_t alloc_size; 2608 2609 #define PCPU_SETUP_BUG_ON(cond) do { \ 2610 if (unlikely(cond)) { \ 2611 pr_emerg("failed to initialize, %s\n", #cond); \ 2612 pr_emerg("cpu_possible_mask=%*pb\n", \ 2613 cpumask_pr_args(cpu_possible_mask)); \ 2614 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2615 BUG(); \ 2616 } \ 2617 } while (0) 2618 2619 /* sanity checks */ 2620 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2621 #ifdef CONFIG_SMP 2622 PCPU_SETUP_BUG_ON(!ai->static_size); 2623 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2624 #endif 2625 PCPU_SETUP_BUG_ON(!base_addr); 2626 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2627 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2628 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2629 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2630 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2631 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2632 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2633 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2634 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2635 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2636 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2637 2638 /* process group information and build config tables accordingly */ 2639 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2640 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2641 if (!group_offsets) 2642 panic("%s: Failed to allocate %zu bytes\n", __func__, 2643 alloc_size); 2644 2645 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2646 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2647 if (!group_sizes) 2648 panic("%s: Failed to allocate %zu bytes\n", __func__, 2649 alloc_size); 2650 2651 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2652 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2653 if (!unit_map) 2654 panic("%s: Failed to allocate %zu bytes\n", __func__, 2655 alloc_size); 2656 2657 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2658 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2659 if (!unit_off) 2660 panic("%s: Failed to allocate %zu bytes\n", __func__, 2661 alloc_size); 2662 2663 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2664 unit_map[cpu] = UINT_MAX; 2665 2666 pcpu_low_unit_cpu = NR_CPUS; 2667 pcpu_high_unit_cpu = NR_CPUS; 2668 2669 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2670 const struct pcpu_group_info *gi = &ai->groups[group]; 2671 2672 group_offsets[group] = gi->base_offset; 2673 group_sizes[group] = gi->nr_units * ai->unit_size; 2674 2675 for (i = 0; i < gi->nr_units; i++) { 2676 cpu = gi->cpu_map[i]; 2677 if (cpu == NR_CPUS) 2678 continue; 2679 2680 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2681 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2682 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2683 2684 unit_map[cpu] = unit + i; 2685 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2686 2687 /* determine low/high unit_cpu */ 2688 if (pcpu_low_unit_cpu == NR_CPUS || 2689 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2690 pcpu_low_unit_cpu = cpu; 2691 if (pcpu_high_unit_cpu == NR_CPUS || 2692 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2693 pcpu_high_unit_cpu = cpu; 2694 } 2695 } 2696 pcpu_nr_units = unit; 2697 2698 for_each_possible_cpu(cpu) 2699 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2700 2701 /* we're done parsing the input, undefine BUG macro and dump config */ 2702 #undef PCPU_SETUP_BUG_ON 2703 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2704 2705 pcpu_nr_groups = ai->nr_groups; 2706 pcpu_group_offsets = group_offsets; 2707 pcpu_group_sizes = group_sizes; 2708 pcpu_unit_map = unit_map; 2709 pcpu_unit_offsets = unit_off; 2710 2711 /* determine basic parameters */ 2712 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2713 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2714 pcpu_atom_size = ai->atom_size; 2715 pcpu_chunk_struct_size = struct_size(chunk, populated, 2716 BITS_TO_LONGS(pcpu_unit_pages)); 2717 2718 pcpu_stats_save_ai(ai); 2719 2720 /* 2721 * Allocate chunk slots. The slots after the active slots are: 2722 * sidelined_slot - isolated, depopulated chunks 2723 * free_slot - fully free chunks 2724 * to_depopulate_slot - isolated, chunks to depopulate 2725 */ 2726 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; 2727 pcpu_free_slot = pcpu_sidelined_slot + 1; 2728 pcpu_to_depopulate_slot = pcpu_free_slot + 1; 2729 pcpu_nr_slots = pcpu_to_depopulate_slot + 1; 2730 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * 2731 sizeof(pcpu_chunk_lists[0]), 2732 SMP_CACHE_BYTES); 2733 if (!pcpu_chunk_lists) 2734 panic("%s: Failed to allocate %zu bytes\n", __func__, 2735 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0])); 2736 2737 for (i = 0; i < pcpu_nr_slots; i++) 2738 INIT_LIST_HEAD(&pcpu_chunk_lists[i]); 2739 2740 /* 2741 * The end of the static region needs to be aligned with the 2742 * minimum allocation size as this offsets the reserved and 2743 * dynamic region. The first chunk ends page aligned by 2744 * expanding the dynamic region, therefore the dynamic region 2745 * can be shrunk to compensate while still staying above the 2746 * configured sizes. 2747 */ 2748 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2749 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2750 2751 /* 2752 * Initialize first chunk. 2753 * If the reserved_size is non-zero, this initializes the reserved 2754 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2755 * and the dynamic region is initialized here. The first chunk, 2756 * pcpu_first_chunk, will always point to the chunk that serves 2757 * the dynamic region. 2758 */ 2759 tmp_addr = (unsigned long)base_addr + static_size; 2760 map_size = ai->reserved_size ?: dyn_size; 2761 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2762 2763 /* init dynamic chunk if necessary */ 2764 if (ai->reserved_size) { 2765 pcpu_reserved_chunk = chunk; 2766 2767 tmp_addr = (unsigned long)base_addr + static_size + 2768 ai->reserved_size; 2769 map_size = dyn_size; 2770 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2771 } 2772 2773 /* link the first chunk in */ 2774 pcpu_first_chunk = chunk; 2775 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2776 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2777 2778 /* include all regions of the first chunk */ 2779 pcpu_nr_populated += PFN_DOWN(size_sum); 2780 2781 pcpu_stats_chunk_alloc(); 2782 trace_percpu_create_chunk(base_addr); 2783 2784 /* we're done */ 2785 pcpu_base_addr = base_addr; 2786 } 2787 2788 #ifdef CONFIG_SMP 2789 2790 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2791 [PCPU_FC_AUTO] = "auto", 2792 [PCPU_FC_EMBED] = "embed", 2793 [PCPU_FC_PAGE] = "page", 2794 }; 2795 2796 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2797 2798 static int __init percpu_alloc_setup(char *str) 2799 { 2800 if (!str) 2801 return -EINVAL; 2802 2803 if (0) 2804 /* nada */; 2805 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2806 else if (!strcmp(str, "embed")) 2807 pcpu_chosen_fc = PCPU_FC_EMBED; 2808 #endif 2809 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2810 else if (!strcmp(str, "page")) 2811 pcpu_chosen_fc = PCPU_FC_PAGE; 2812 #endif 2813 else 2814 pr_warn("unknown allocator %s specified\n", str); 2815 2816 return 0; 2817 } 2818 early_param("percpu_alloc", percpu_alloc_setup); 2819 2820 /* 2821 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2822 * Build it if needed by the arch config or the generic setup is going 2823 * to be used. 2824 */ 2825 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2826 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2827 #define BUILD_EMBED_FIRST_CHUNK 2828 #endif 2829 2830 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2831 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2832 #define BUILD_PAGE_FIRST_CHUNK 2833 #endif 2834 2835 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2836 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2837 /** 2838 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2839 * @reserved_size: the size of reserved percpu area in bytes 2840 * @dyn_size: minimum free size for dynamic allocation in bytes 2841 * @atom_size: allocation atom size 2842 * @cpu_distance_fn: callback to determine distance between cpus, optional 2843 * 2844 * This function determines grouping of units, their mappings to cpus 2845 * and other parameters considering needed percpu size, allocation 2846 * atom size and distances between CPUs. 2847 * 2848 * Groups are always multiples of atom size and CPUs which are of 2849 * LOCAL_DISTANCE both ways are grouped together and share space for 2850 * units in the same group. The returned configuration is guaranteed 2851 * to have CPUs on different nodes on different groups and >=75% usage 2852 * of allocated virtual address space. 2853 * 2854 * RETURNS: 2855 * On success, pointer to the new allocation_info is returned. On 2856 * failure, ERR_PTR value is returned. 2857 */ 2858 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( 2859 size_t reserved_size, size_t dyn_size, 2860 size_t atom_size, 2861 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2862 { 2863 static int group_map[NR_CPUS] __initdata; 2864 static int group_cnt[NR_CPUS] __initdata; 2865 static struct cpumask mask __initdata; 2866 const size_t static_size = __per_cpu_end - __per_cpu_start; 2867 int nr_groups = 1, nr_units = 0; 2868 size_t size_sum, min_unit_size, alloc_size; 2869 int upa, max_upa, best_upa; /* units_per_alloc */ 2870 int last_allocs, group, unit; 2871 unsigned int cpu, tcpu; 2872 struct pcpu_alloc_info *ai; 2873 unsigned int *cpu_map; 2874 2875 /* this function may be called multiple times */ 2876 memset(group_map, 0, sizeof(group_map)); 2877 memset(group_cnt, 0, sizeof(group_cnt)); 2878 cpumask_clear(&mask); 2879 2880 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2881 size_sum = PFN_ALIGN(static_size + reserved_size + 2882 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2883 dyn_size = size_sum - static_size - reserved_size; 2884 2885 /* 2886 * Determine min_unit_size, alloc_size and max_upa such that 2887 * alloc_size is multiple of atom_size and is the smallest 2888 * which can accommodate 4k aligned segments which are equal to 2889 * or larger than min_unit_size. 2890 */ 2891 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2892 2893 /* determine the maximum # of units that can fit in an allocation */ 2894 alloc_size = roundup(min_unit_size, atom_size); 2895 upa = alloc_size / min_unit_size; 2896 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2897 upa--; 2898 max_upa = upa; 2899 2900 cpumask_copy(&mask, cpu_possible_mask); 2901 2902 /* group cpus according to their proximity */ 2903 for (group = 0; !cpumask_empty(&mask); group++) { 2904 /* pop the group's first cpu */ 2905 cpu = cpumask_first(&mask); 2906 group_map[cpu] = group; 2907 group_cnt[group]++; 2908 cpumask_clear_cpu(cpu, &mask); 2909 2910 for_each_cpu(tcpu, &mask) { 2911 if (!cpu_distance_fn || 2912 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && 2913 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { 2914 group_map[tcpu] = group; 2915 group_cnt[group]++; 2916 cpumask_clear_cpu(tcpu, &mask); 2917 } 2918 } 2919 } 2920 nr_groups = group; 2921 2922 /* 2923 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2924 * Expand the unit_size until we use >= 75% of the units allocated. 2925 * Related to atom_size, which could be much larger than the unit_size. 2926 */ 2927 last_allocs = INT_MAX; 2928 best_upa = 0; 2929 for (upa = max_upa; upa; upa--) { 2930 int allocs = 0, wasted = 0; 2931 2932 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2933 continue; 2934 2935 for (group = 0; group < nr_groups; group++) { 2936 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2937 allocs += this_allocs; 2938 wasted += this_allocs * upa - group_cnt[group]; 2939 } 2940 2941 /* 2942 * Don't accept if wastage is over 1/3. The 2943 * greater-than comparison ensures upa==1 always 2944 * passes the following check. 2945 */ 2946 if (wasted > num_possible_cpus() / 3) 2947 continue; 2948 2949 /* and then don't consume more memory */ 2950 if (allocs > last_allocs) 2951 break; 2952 last_allocs = allocs; 2953 best_upa = upa; 2954 } 2955 BUG_ON(!best_upa); 2956 upa = best_upa; 2957 2958 /* allocate and fill alloc_info */ 2959 for (group = 0; group < nr_groups; group++) 2960 nr_units += roundup(group_cnt[group], upa); 2961 2962 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2963 if (!ai) 2964 return ERR_PTR(-ENOMEM); 2965 cpu_map = ai->groups[0].cpu_map; 2966 2967 for (group = 0; group < nr_groups; group++) { 2968 ai->groups[group].cpu_map = cpu_map; 2969 cpu_map += roundup(group_cnt[group], upa); 2970 } 2971 2972 ai->static_size = static_size; 2973 ai->reserved_size = reserved_size; 2974 ai->dyn_size = dyn_size; 2975 ai->unit_size = alloc_size / upa; 2976 ai->atom_size = atom_size; 2977 ai->alloc_size = alloc_size; 2978 2979 for (group = 0, unit = 0; group < nr_groups; group++) { 2980 struct pcpu_group_info *gi = &ai->groups[group]; 2981 2982 /* 2983 * Initialize base_offset as if all groups are located 2984 * back-to-back. The caller should update this to 2985 * reflect actual allocation. 2986 */ 2987 gi->base_offset = unit * ai->unit_size; 2988 2989 for_each_possible_cpu(cpu) 2990 if (group_map[cpu] == group) 2991 gi->cpu_map[gi->nr_units++] = cpu; 2992 gi->nr_units = roundup(gi->nr_units, upa); 2993 unit += gi->nr_units; 2994 } 2995 BUG_ON(unit != nr_units); 2996 2997 return ai; 2998 } 2999 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 3000 3001 #if defined(BUILD_EMBED_FIRST_CHUNK) 3002 /** 3003 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 3004 * @reserved_size: the size of reserved percpu area in bytes 3005 * @dyn_size: minimum free size for dynamic allocation in bytes 3006 * @atom_size: allocation atom size 3007 * @cpu_distance_fn: callback to determine distance between cpus, optional 3008 * @alloc_fn: function to allocate percpu page 3009 * @free_fn: function to free percpu page 3010 * 3011 * This is a helper to ease setting up embedded first percpu chunk and 3012 * can be called where pcpu_setup_first_chunk() is expected. 3013 * 3014 * If this function is used to setup the first chunk, it is allocated 3015 * by calling @alloc_fn and used as-is without being mapped into 3016 * vmalloc area. Allocations are always whole multiples of @atom_size 3017 * aligned to @atom_size. 3018 * 3019 * This enables the first chunk to piggy back on the linear physical 3020 * mapping which often uses larger page size. Please note that this 3021 * can result in very sparse cpu->unit mapping on NUMA machines thus 3022 * requiring large vmalloc address space. Don't use this allocator if 3023 * vmalloc space is not orders of magnitude larger than distances 3024 * between node memory addresses (ie. 32bit NUMA machines). 3025 * 3026 * @dyn_size specifies the minimum dynamic area size. 3027 * 3028 * If the needed size is smaller than the minimum or specified unit 3029 * size, the leftover is returned using @free_fn. 3030 * 3031 * RETURNS: 3032 * 0 on success, -errno on failure. 3033 */ 3034 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 3035 size_t atom_size, 3036 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 3037 pcpu_fc_alloc_fn_t alloc_fn, 3038 pcpu_fc_free_fn_t free_fn) 3039 { 3040 void *base = (void *)ULONG_MAX; 3041 void **areas = NULL; 3042 struct pcpu_alloc_info *ai; 3043 size_t size_sum, areas_size; 3044 unsigned long max_distance; 3045 int group, i, highest_group, rc = 0; 3046 3047 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 3048 cpu_distance_fn); 3049 if (IS_ERR(ai)) 3050 return PTR_ERR(ai); 3051 3052 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 3053 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 3054 3055 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 3056 if (!areas) { 3057 rc = -ENOMEM; 3058 goto out_free; 3059 } 3060 3061 /* allocate, copy and determine base address & max_distance */ 3062 highest_group = 0; 3063 for (group = 0; group < ai->nr_groups; group++) { 3064 struct pcpu_group_info *gi = &ai->groups[group]; 3065 unsigned int cpu = NR_CPUS; 3066 void *ptr; 3067 3068 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 3069 cpu = gi->cpu_map[i]; 3070 BUG_ON(cpu == NR_CPUS); 3071 3072 /* allocate space for the whole group */ 3073 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 3074 if (!ptr) { 3075 rc = -ENOMEM; 3076 goto out_free_areas; 3077 } 3078 /* kmemleak tracks the percpu allocations separately */ 3079 kmemleak_free(ptr); 3080 areas[group] = ptr; 3081 3082 base = min(ptr, base); 3083 if (ptr > areas[highest_group]) 3084 highest_group = group; 3085 } 3086 max_distance = areas[highest_group] - base; 3087 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 3088 3089 /* warn if maximum distance is further than 75% of vmalloc space */ 3090 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 3091 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 3092 max_distance, VMALLOC_TOTAL); 3093 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 3094 /* and fail if we have fallback */ 3095 rc = -EINVAL; 3096 goto out_free_areas; 3097 #endif 3098 } 3099 3100 /* 3101 * Copy data and free unused parts. This should happen after all 3102 * allocations are complete; otherwise, we may end up with 3103 * overlapping groups. 3104 */ 3105 for (group = 0; group < ai->nr_groups; group++) { 3106 struct pcpu_group_info *gi = &ai->groups[group]; 3107 void *ptr = areas[group]; 3108 3109 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 3110 if (gi->cpu_map[i] == NR_CPUS) { 3111 /* unused unit, free whole */ 3112 free_fn(ptr, ai->unit_size); 3113 continue; 3114 } 3115 /* copy and return the unused part */ 3116 memcpy(ptr, __per_cpu_load, ai->static_size); 3117 free_fn(ptr + size_sum, ai->unit_size - size_sum); 3118 } 3119 } 3120 3121 /* base address is now known, determine group base offsets */ 3122 for (group = 0; group < ai->nr_groups; group++) { 3123 ai->groups[group].base_offset = areas[group] - base; 3124 } 3125 3126 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 3127 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 3128 ai->dyn_size, ai->unit_size); 3129 3130 pcpu_setup_first_chunk(ai, base); 3131 goto out_free; 3132 3133 out_free_areas: 3134 for (group = 0; group < ai->nr_groups; group++) 3135 if (areas[group]) 3136 free_fn(areas[group], 3137 ai->groups[group].nr_units * ai->unit_size); 3138 out_free: 3139 pcpu_free_alloc_info(ai); 3140 if (areas) 3141 memblock_free_early(__pa(areas), areas_size); 3142 return rc; 3143 } 3144 #endif /* BUILD_EMBED_FIRST_CHUNK */ 3145 3146 #ifdef BUILD_PAGE_FIRST_CHUNK 3147 /** 3148 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 3149 * @reserved_size: the size of reserved percpu area in bytes 3150 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 3151 * @free_fn: function to free percpu page, always called with PAGE_SIZE 3152 * @populate_pte_fn: function to populate pte 3153 * 3154 * This is a helper to ease setting up page-remapped first percpu 3155 * chunk and can be called where pcpu_setup_first_chunk() is expected. 3156 * 3157 * This is the basic allocator. Static percpu area is allocated 3158 * page-by-page into vmalloc area. 3159 * 3160 * RETURNS: 3161 * 0 on success, -errno on failure. 3162 */ 3163 int __init pcpu_page_first_chunk(size_t reserved_size, 3164 pcpu_fc_alloc_fn_t alloc_fn, 3165 pcpu_fc_free_fn_t free_fn, 3166 pcpu_fc_populate_pte_fn_t populate_pte_fn) 3167 { 3168 static struct vm_struct vm; 3169 struct pcpu_alloc_info *ai; 3170 char psize_str[16]; 3171 int unit_pages; 3172 size_t pages_size; 3173 struct page **pages; 3174 int unit, i, j, rc = 0; 3175 int upa; 3176 int nr_g0_units; 3177 3178 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 3179 3180 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 3181 if (IS_ERR(ai)) 3182 return PTR_ERR(ai); 3183 BUG_ON(ai->nr_groups != 1); 3184 upa = ai->alloc_size/ai->unit_size; 3185 nr_g0_units = roundup(num_possible_cpus(), upa); 3186 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 3187 pcpu_free_alloc_info(ai); 3188 return -EINVAL; 3189 } 3190 3191 unit_pages = ai->unit_size >> PAGE_SHIFT; 3192 3193 /* unaligned allocations can't be freed, round up to page size */ 3194 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 3195 sizeof(pages[0])); 3196 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 3197 if (!pages) 3198 panic("%s: Failed to allocate %zu bytes\n", __func__, 3199 pages_size); 3200 3201 /* allocate pages */ 3202 j = 0; 3203 for (unit = 0; unit < num_possible_cpus(); unit++) { 3204 unsigned int cpu = ai->groups[0].cpu_map[unit]; 3205 for (i = 0; i < unit_pages; i++) { 3206 void *ptr; 3207 3208 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 3209 if (!ptr) { 3210 pr_warn("failed to allocate %s page for cpu%u\n", 3211 psize_str, cpu); 3212 goto enomem; 3213 } 3214 /* kmemleak tracks the percpu allocations separately */ 3215 kmemleak_free(ptr); 3216 pages[j++] = virt_to_page(ptr); 3217 } 3218 } 3219 3220 /* allocate vm area, map the pages and copy static data */ 3221 vm.flags = VM_ALLOC; 3222 vm.size = num_possible_cpus() * ai->unit_size; 3223 vm_area_register_early(&vm, PAGE_SIZE); 3224 3225 for (unit = 0; unit < num_possible_cpus(); unit++) { 3226 unsigned long unit_addr = 3227 (unsigned long)vm.addr + unit * ai->unit_size; 3228 3229 for (i = 0; i < unit_pages; i++) 3230 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 3231 3232 /* pte already populated, the following shouldn't fail */ 3233 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 3234 unit_pages); 3235 if (rc < 0) 3236 panic("failed to map percpu area, err=%d\n", rc); 3237 3238 /* 3239 * FIXME: Archs with virtual cache should flush local 3240 * cache for the linear mapping here - something 3241 * equivalent to flush_cache_vmap() on the local cpu. 3242 * flush_cache_vmap() can't be used as most supporting 3243 * data structures are not set up yet. 3244 */ 3245 3246 /* copy static data */ 3247 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 3248 } 3249 3250 /* we're ready, commit */ 3251 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 3252 unit_pages, psize_str, ai->static_size, 3253 ai->reserved_size, ai->dyn_size); 3254 3255 pcpu_setup_first_chunk(ai, vm.addr); 3256 goto out_free_ar; 3257 3258 enomem: 3259 while (--j >= 0) 3260 free_fn(page_address(pages[j]), PAGE_SIZE); 3261 rc = -ENOMEM; 3262 out_free_ar: 3263 memblock_free_early(__pa(pages), pages_size); 3264 pcpu_free_alloc_info(ai); 3265 return rc; 3266 } 3267 #endif /* BUILD_PAGE_FIRST_CHUNK */ 3268 3269 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 3270 /* 3271 * Generic SMP percpu area setup. 3272 * 3273 * The embedding helper is used because its behavior closely resembles 3274 * the original non-dynamic generic percpu area setup. This is 3275 * important because many archs have addressing restrictions and might 3276 * fail if the percpu area is located far away from the previous 3277 * location. As an added bonus, in non-NUMA cases, embedding is 3278 * generally a good idea TLB-wise because percpu area can piggy back 3279 * on the physical linear memory mapping which uses large page 3280 * mappings on applicable archs. 3281 */ 3282 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 3283 EXPORT_SYMBOL(__per_cpu_offset); 3284 3285 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 3286 size_t align) 3287 { 3288 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); 3289 } 3290 3291 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 3292 { 3293 memblock_free_early(__pa(ptr), size); 3294 } 3295 3296 void __init setup_per_cpu_areas(void) 3297 { 3298 unsigned long delta; 3299 unsigned int cpu; 3300 int rc; 3301 3302 /* 3303 * Always reserve area for module percpu variables. That's 3304 * what the legacy allocator did. 3305 */ 3306 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 3307 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 3308 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 3309 if (rc < 0) 3310 panic("Failed to initialize percpu areas."); 3311 3312 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 3313 for_each_possible_cpu(cpu) 3314 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 3315 } 3316 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 3317 3318 #else /* CONFIG_SMP */ 3319 3320 /* 3321 * UP percpu area setup. 3322 * 3323 * UP always uses km-based percpu allocator with identity mapping. 3324 * Static percpu variables are indistinguishable from the usual static 3325 * variables and don't require any special preparation. 3326 */ 3327 void __init setup_per_cpu_areas(void) 3328 { 3329 const size_t unit_size = 3330 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 3331 PERCPU_DYNAMIC_RESERVE)); 3332 struct pcpu_alloc_info *ai; 3333 void *fc; 3334 3335 ai = pcpu_alloc_alloc_info(1, 1); 3336 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 3337 if (!ai || !fc) 3338 panic("Failed to allocate memory for percpu areas."); 3339 /* kmemleak tracks the percpu allocations separately */ 3340 kmemleak_free(fc); 3341 3342 ai->dyn_size = unit_size; 3343 ai->unit_size = unit_size; 3344 ai->atom_size = unit_size; 3345 ai->alloc_size = unit_size; 3346 ai->groups[0].nr_units = 1; 3347 ai->groups[0].cpu_map[0] = 0; 3348 3349 pcpu_setup_first_chunk(ai, fc); 3350 pcpu_free_alloc_info(ai); 3351 } 3352 3353 #endif /* CONFIG_SMP */ 3354 3355 /* 3356 * pcpu_nr_pages - calculate total number of populated backing pages 3357 * 3358 * This reflects the number of pages populated to back chunks. Metadata is 3359 * excluded in the number exposed in meminfo as the number of backing pages 3360 * scales with the number of cpus and can quickly outweigh the memory used for 3361 * metadata. It also keeps this calculation nice and simple. 3362 * 3363 * RETURNS: 3364 * Total number of populated backing pages in use by the allocator. 3365 */ 3366 unsigned long pcpu_nr_pages(void) 3367 { 3368 return pcpu_nr_populated * pcpu_nr_units; 3369 } 3370 3371 /* 3372 * Percpu allocator is initialized early during boot when neither slab or 3373 * workqueue is available. Plug async management until everything is up 3374 * and running. 3375 */ 3376 static int __init percpu_enable_async(void) 3377 { 3378 pcpu_async_enabled = true; 3379 return 0; 3380 } 3381 subsys_initcall(percpu_enable_async); 3382