xref: /linux/mm/percpu.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 
71 #include <asm/cacheflush.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/io.h>
75 
76 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
78 
79 #ifdef CONFIG_SMP
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr)					\
83 	(void __percpu *)((unsigned long)(addr) -			\
84 			  (unsigned long)pcpu_base_addr	+		\
85 			  (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr)						\
89 	(void __force *)((unsigned long)(ptr) +				\
90 			 (unsigned long)pcpu_base_addr -		\
91 			 (unsigned long)__per_cpu_start)
92 #endif
93 #else	/* CONFIG_SMP */
94 /* on UP, it's always identity mapped */
95 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
96 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
97 #endif	/* CONFIG_SMP */
98 
99 struct pcpu_chunk {
100 	struct list_head	list;		/* linked to pcpu_slot lists */
101 	int			free_size;	/* free bytes in the chunk */
102 	int			contig_hint;	/* max contiguous size hint */
103 	void			*base_addr;	/* base address of this chunk */
104 	int			map_used;	/* # of map entries used */
105 	int			map_alloc;	/* # of map entries allocated */
106 	int			*map;		/* allocation map */
107 	void			*data;		/* chunk data */
108 	bool			immutable;	/* no [de]population allowed */
109 	unsigned long		populated[];	/* populated bitmap */
110 };
111 
112 static int pcpu_unit_pages __read_mostly;
113 static int pcpu_unit_size __read_mostly;
114 static int pcpu_nr_units __read_mostly;
115 static int pcpu_atom_size __read_mostly;
116 static int pcpu_nr_slots __read_mostly;
117 static size_t pcpu_chunk_struct_size __read_mostly;
118 
119 /* cpus with the lowest and highest unit addresses */
120 static unsigned int pcpu_low_unit_cpu __read_mostly;
121 static unsigned int pcpu_high_unit_cpu __read_mostly;
122 
123 /* the address of the first chunk which starts with the kernel static area */
124 void *pcpu_base_addr __read_mostly;
125 EXPORT_SYMBOL_GPL(pcpu_base_addr);
126 
127 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
128 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
129 
130 /* group information, used for vm allocation */
131 static int pcpu_nr_groups __read_mostly;
132 static const unsigned long *pcpu_group_offsets __read_mostly;
133 static const size_t *pcpu_group_sizes __read_mostly;
134 
135 /*
136  * The first chunk which always exists.  Note that unlike other
137  * chunks, this one can be allocated and mapped in several different
138  * ways and thus often doesn't live in the vmalloc area.
139  */
140 static struct pcpu_chunk *pcpu_first_chunk;
141 
142 /*
143  * Optional reserved chunk.  This chunk reserves part of the first
144  * chunk and serves it for reserved allocations.  The amount of
145  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
146  * area doesn't exist, the following variables contain NULL and 0
147  * respectively.
148  */
149 static struct pcpu_chunk *pcpu_reserved_chunk;
150 static int pcpu_reserved_chunk_limit;
151 
152 /*
153  * Synchronization rules.
154  *
155  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
156  * protects allocation/reclaim paths, chunks, populated bitmap and
157  * vmalloc mapping.  The latter is a spinlock and protects the index
158  * data structures - chunk slots, chunks and area maps in chunks.
159  *
160  * During allocation, pcpu_alloc_mutex is kept locked all the time and
161  * pcpu_lock is grabbed and released as necessary.  All actual memory
162  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
163  * general, percpu memory can't be allocated with irq off but
164  * irqsave/restore are still used in alloc path so that it can be used
165  * from early init path - sched_init() specifically.
166  *
167  * Free path accesses and alters only the index data structures, so it
168  * can be safely called from atomic context.  When memory needs to be
169  * returned to the system, free path schedules reclaim_work which
170  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
171  * reclaimed, release both locks and frees the chunks.  Note that it's
172  * necessary to grab both locks to remove a chunk from circulation as
173  * allocation path might be referencing the chunk with only
174  * pcpu_alloc_mutex locked.
175  */
176 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
177 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
178 
179 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
180 
181 /* reclaim work to release fully free chunks, scheduled from free path */
182 static void pcpu_reclaim(struct work_struct *work);
183 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
184 
185 static bool pcpu_addr_in_first_chunk(void *addr)
186 {
187 	void *first_start = pcpu_first_chunk->base_addr;
188 
189 	return addr >= first_start && addr < first_start + pcpu_unit_size;
190 }
191 
192 static bool pcpu_addr_in_reserved_chunk(void *addr)
193 {
194 	void *first_start = pcpu_first_chunk->base_addr;
195 
196 	return addr >= first_start &&
197 		addr < first_start + pcpu_reserved_chunk_limit;
198 }
199 
200 static int __pcpu_size_to_slot(int size)
201 {
202 	int highbit = fls(size);	/* size is in bytes */
203 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
204 }
205 
206 static int pcpu_size_to_slot(int size)
207 {
208 	if (size == pcpu_unit_size)
209 		return pcpu_nr_slots - 1;
210 	return __pcpu_size_to_slot(size);
211 }
212 
213 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
214 {
215 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
216 		return 0;
217 
218 	return pcpu_size_to_slot(chunk->free_size);
219 }
220 
221 /* set the pointer to a chunk in a page struct */
222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
223 {
224 	page->index = (unsigned long)pcpu;
225 }
226 
227 /* obtain pointer to a chunk from a page struct */
228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
229 {
230 	return (struct pcpu_chunk *)page->index;
231 }
232 
233 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
234 {
235 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
236 }
237 
238 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
239 				     unsigned int cpu, int page_idx)
240 {
241 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
242 		(page_idx << PAGE_SHIFT);
243 }
244 
245 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
246 					   int *rs, int *re, int end)
247 {
248 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
249 	*re = find_next_bit(chunk->populated, end, *rs + 1);
250 }
251 
252 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
253 					 int *rs, int *re, int end)
254 {
255 	*rs = find_next_bit(chunk->populated, end, *rs);
256 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
257 }
258 
259 /*
260  * (Un)populated page region iterators.  Iterate over (un)populated
261  * page regions between @start and @end in @chunk.  @rs and @re should
262  * be integer variables and will be set to start and end page index of
263  * the current region.
264  */
265 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
266 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
267 	     (rs) < (re);						    \
268 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
269 
270 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
271 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
272 	     (rs) < (re);						    \
273 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
274 
275 /**
276  * pcpu_mem_zalloc - allocate memory
277  * @size: bytes to allocate
278  *
279  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
280  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
281  * memory is always zeroed.
282  *
283  * CONTEXT:
284  * Does GFP_KERNEL allocation.
285  *
286  * RETURNS:
287  * Pointer to the allocated area on success, NULL on failure.
288  */
289 static void *pcpu_mem_zalloc(size_t size)
290 {
291 	if (WARN_ON_ONCE(!slab_is_available()))
292 		return NULL;
293 
294 	if (size <= PAGE_SIZE)
295 		return kzalloc(size, GFP_KERNEL);
296 	else
297 		return vzalloc(size);
298 }
299 
300 /**
301  * pcpu_mem_free - free memory
302  * @ptr: memory to free
303  * @size: size of the area
304  *
305  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
306  */
307 static void pcpu_mem_free(void *ptr, size_t size)
308 {
309 	if (size <= PAGE_SIZE)
310 		kfree(ptr);
311 	else
312 		vfree(ptr);
313 }
314 
315 /**
316  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
317  * @chunk: chunk of interest
318  * @oslot: the previous slot it was on
319  *
320  * This function is called after an allocation or free changed @chunk.
321  * New slot according to the changed state is determined and @chunk is
322  * moved to the slot.  Note that the reserved chunk is never put on
323  * chunk slots.
324  *
325  * CONTEXT:
326  * pcpu_lock.
327  */
328 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
329 {
330 	int nslot = pcpu_chunk_slot(chunk);
331 
332 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
333 		if (oslot < nslot)
334 			list_move(&chunk->list, &pcpu_slot[nslot]);
335 		else
336 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
337 	}
338 }
339 
340 /**
341  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
342  * @chunk: chunk of interest
343  *
344  * Determine whether area map of @chunk needs to be extended to
345  * accommodate a new allocation.
346  *
347  * CONTEXT:
348  * pcpu_lock.
349  *
350  * RETURNS:
351  * New target map allocation length if extension is necessary, 0
352  * otherwise.
353  */
354 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
355 {
356 	int new_alloc;
357 
358 	if (chunk->map_alloc >= chunk->map_used + 2)
359 		return 0;
360 
361 	new_alloc = PCPU_DFL_MAP_ALLOC;
362 	while (new_alloc < chunk->map_used + 2)
363 		new_alloc *= 2;
364 
365 	return new_alloc;
366 }
367 
368 /**
369  * pcpu_extend_area_map - extend area map of a chunk
370  * @chunk: chunk of interest
371  * @new_alloc: new target allocation length of the area map
372  *
373  * Extend area map of @chunk to have @new_alloc entries.
374  *
375  * CONTEXT:
376  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
377  *
378  * RETURNS:
379  * 0 on success, -errno on failure.
380  */
381 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
382 {
383 	int *old = NULL, *new = NULL;
384 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
385 	unsigned long flags;
386 
387 	new = pcpu_mem_zalloc(new_size);
388 	if (!new)
389 		return -ENOMEM;
390 
391 	/* acquire pcpu_lock and switch to new area map */
392 	spin_lock_irqsave(&pcpu_lock, flags);
393 
394 	if (new_alloc <= chunk->map_alloc)
395 		goto out_unlock;
396 
397 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
398 	old = chunk->map;
399 
400 	memcpy(new, old, old_size);
401 
402 	chunk->map_alloc = new_alloc;
403 	chunk->map = new;
404 	new = NULL;
405 
406 out_unlock:
407 	spin_unlock_irqrestore(&pcpu_lock, flags);
408 
409 	/*
410 	 * pcpu_mem_free() might end up calling vfree() which uses
411 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
412 	 */
413 	pcpu_mem_free(old, old_size);
414 	pcpu_mem_free(new, new_size);
415 
416 	return 0;
417 }
418 
419 /**
420  * pcpu_split_block - split a map block
421  * @chunk: chunk of interest
422  * @i: index of map block to split
423  * @head: head size in bytes (can be 0)
424  * @tail: tail size in bytes (can be 0)
425  *
426  * Split the @i'th map block into two or three blocks.  If @head is
427  * non-zero, @head bytes block is inserted before block @i moving it
428  * to @i+1 and reducing its size by @head bytes.
429  *
430  * If @tail is non-zero, the target block, which can be @i or @i+1
431  * depending on @head, is reduced by @tail bytes and @tail byte block
432  * is inserted after the target block.
433  *
434  * @chunk->map must have enough free slots to accommodate the split.
435  *
436  * CONTEXT:
437  * pcpu_lock.
438  */
439 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
440 			     int head, int tail)
441 {
442 	int nr_extra = !!head + !!tail;
443 
444 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
445 
446 	/* insert new subblocks */
447 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
448 		sizeof(chunk->map[0]) * (chunk->map_used - i));
449 	chunk->map_used += nr_extra;
450 
451 	if (head) {
452 		chunk->map[i + 1] = chunk->map[i] - head;
453 		chunk->map[i++] = head;
454 	}
455 	if (tail) {
456 		chunk->map[i++] -= tail;
457 		chunk->map[i] = tail;
458 	}
459 }
460 
461 /**
462  * pcpu_alloc_area - allocate area from a pcpu_chunk
463  * @chunk: chunk of interest
464  * @size: wanted size in bytes
465  * @align: wanted align
466  *
467  * Try to allocate @size bytes area aligned at @align from @chunk.
468  * Note that this function only allocates the offset.  It doesn't
469  * populate or map the area.
470  *
471  * @chunk->map must have at least two free slots.
472  *
473  * CONTEXT:
474  * pcpu_lock.
475  *
476  * RETURNS:
477  * Allocated offset in @chunk on success, -1 if no matching area is
478  * found.
479  */
480 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
481 {
482 	int oslot = pcpu_chunk_slot(chunk);
483 	int max_contig = 0;
484 	int i, off;
485 
486 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
487 		bool is_last = i + 1 == chunk->map_used;
488 		int head, tail;
489 
490 		/* extra for alignment requirement */
491 		head = ALIGN(off, align) - off;
492 		BUG_ON(i == 0 && head != 0);
493 
494 		if (chunk->map[i] < 0)
495 			continue;
496 		if (chunk->map[i] < head + size) {
497 			max_contig = max(chunk->map[i], max_contig);
498 			continue;
499 		}
500 
501 		/*
502 		 * If head is small or the previous block is free,
503 		 * merge'em.  Note that 'small' is defined as smaller
504 		 * than sizeof(int), which is very small but isn't too
505 		 * uncommon for percpu allocations.
506 		 */
507 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
508 			if (chunk->map[i - 1] > 0)
509 				chunk->map[i - 1] += head;
510 			else {
511 				chunk->map[i - 1] -= head;
512 				chunk->free_size -= head;
513 			}
514 			chunk->map[i] -= head;
515 			off += head;
516 			head = 0;
517 		}
518 
519 		/* if tail is small, just keep it around */
520 		tail = chunk->map[i] - head - size;
521 		if (tail < sizeof(int))
522 			tail = 0;
523 
524 		/* split if warranted */
525 		if (head || tail) {
526 			pcpu_split_block(chunk, i, head, tail);
527 			if (head) {
528 				i++;
529 				off += head;
530 				max_contig = max(chunk->map[i - 1], max_contig);
531 			}
532 			if (tail)
533 				max_contig = max(chunk->map[i + 1], max_contig);
534 		}
535 
536 		/* update hint and mark allocated */
537 		if (is_last)
538 			chunk->contig_hint = max_contig; /* fully scanned */
539 		else
540 			chunk->contig_hint = max(chunk->contig_hint,
541 						 max_contig);
542 
543 		chunk->free_size -= chunk->map[i];
544 		chunk->map[i] = -chunk->map[i];
545 
546 		pcpu_chunk_relocate(chunk, oslot);
547 		return off;
548 	}
549 
550 	chunk->contig_hint = max_contig;	/* fully scanned */
551 	pcpu_chunk_relocate(chunk, oslot);
552 
553 	/* tell the upper layer that this chunk has no matching area */
554 	return -1;
555 }
556 
557 /**
558  * pcpu_free_area - free area to a pcpu_chunk
559  * @chunk: chunk of interest
560  * @freeme: offset of area to free
561  *
562  * Free area starting from @freeme to @chunk.  Note that this function
563  * only modifies the allocation map.  It doesn't depopulate or unmap
564  * the area.
565  *
566  * CONTEXT:
567  * pcpu_lock.
568  */
569 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
570 {
571 	int oslot = pcpu_chunk_slot(chunk);
572 	int i, off;
573 
574 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
575 		if (off == freeme)
576 			break;
577 	BUG_ON(off != freeme);
578 	BUG_ON(chunk->map[i] > 0);
579 
580 	chunk->map[i] = -chunk->map[i];
581 	chunk->free_size += chunk->map[i];
582 
583 	/* merge with previous? */
584 	if (i > 0 && chunk->map[i - 1] >= 0) {
585 		chunk->map[i - 1] += chunk->map[i];
586 		chunk->map_used--;
587 		memmove(&chunk->map[i], &chunk->map[i + 1],
588 			(chunk->map_used - i) * sizeof(chunk->map[0]));
589 		i--;
590 	}
591 	/* merge with next? */
592 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
593 		chunk->map[i] += chunk->map[i + 1];
594 		chunk->map_used--;
595 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
596 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
597 	}
598 
599 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
600 	pcpu_chunk_relocate(chunk, oslot);
601 }
602 
603 static struct pcpu_chunk *pcpu_alloc_chunk(void)
604 {
605 	struct pcpu_chunk *chunk;
606 
607 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
608 	if (!chunk)
609 		return NULL;
610 
611 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
612 						sizeof(chunk->map[0]));
613 	if (!chunk->map) {
614 		kfree(chunk);
615 		return NULL;
616 	}
617 
618 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
619 	chunk->map[chunk->map_used++] = pcpu_unit_size;
620 
621 	INIT_LIST_HEAD(&chunk->list);
622 	chunk->free_size = pcpu_unit_size;
623 	chunk->contig_hint = pcpu_unit_size;
624 
625 	return chunk;
626 }
627 
628 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
629 {
630 	if (!chunk)
631 		return;
632 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
633 	kfree(chunk);
634 }
635 
636 /*
637  * Chunk management implementation.
638  *
639  * To allow different implementations, chunk alloc/free and
640  * [de]population are implemented in a separate file which is pulled
641  * into this file and compiled together.  The following functions
642  * should be implemented.
643  *
644  * pcpu_populate_chunk		- populate the specified range of a chunk
645  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
646  * pcpu_create_chunk		- create a new chunk
647  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
648  * pcpu_addr_to_page		- translate address to physical address
649  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
650  */
651 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
652 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
653 static struct pcpu_chunk *pcpu_create_chunk(void);
654 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
655 static struct page *pcpu_addr_to_page(void *addr);
656 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
657 
658 #ifdef CONFIG_NEED_PER_CPU_KM
659 #include "percpu-km.c"
660 #else
661 #include "percpu-vm.c"
662 #endif
663 
664 /**
665  * pcpu_chunk_addr_search - determine chunk containing specified address
666  * @addr: address for which the chunk needs to be determined.
667  *
668  * RETURNS:
669  * The address of the found chunk.
670  */
671 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
672 {
673 	/* is it in the first chunk? */
674 	if (pcpu_addr_in_first_chunk(addr)) {
675 		/* is it in the reserved area? */
676 		if (pcpu_addr_in_reserved_chunk(addr))
677 			return pcpu_reserved_chunk;
678 		return pcpu_first_chunk;
679 	}
680 
681 	/*
682 	 * The address is relative to unit0 which might be unused and
683 	 * thus unmapped.  Offset the address to the unit space of the
684 	 * current processor before looking it up in the vmalloc
685 	 * space.  Note that any possible cpu id can be used here, so
686 	 * there's no need to worry about preemption or cpu hotplug.
687 	 */
688 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
689 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
690 }
691 
692 /**
693  * pcpu_alloc - the percpu allocator
694  * @size: size of area to allocate in bytes
695  * @align: alignment of area (max PAGE_SIZE)
696  * @reserved: allocate from the reserved chunk if available
697  *
698  * Allocate percpu area of @size bytes aligned at @align.
699  *
700  * CONTEXT:
701  * Does GFP_KERNEL allocation.
702  *
703  * RETURNS:
704  * Percpu pointer to the allocated area on success, NULL on failure.
705  */
706 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
707 {
708 	static int warn_limit = 10;
709 	struct pcpu_chunk *chunk;
710 	const char *err;
711 	int slot, off, new_alloc;
712 	unsigned long flags;
713 
714 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
715 		WARN(true, "illegal size (%zu) or align (%zu) for "
716 		     "percpu allocation\n", size, align);
717 		return NULL;
718 	}
719 
720 	mutex_lock(&pcpu_alloc_mutex);
721 	spin_lock_irqsave(&pcpu_lock, flags);
722 
723 	/* serve reserved allocations from the reserved chunk if available */
724 	if (reserved && pcpu_reserved_chunk) {
725 		chunk = pcpu_reserved_chunk;
726 
727 		if (size > chunk->contig_hint) {
728 			err = "alloc from reserved chunk failed";
729 			goto fail_unlock;
730 		}
731 
732 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
733 			spin_unlock_irqrestore(&pcpu_lock, flags);
734 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
735 				err = "failed to extend area map of reserved chunk";
736 				goto fail_unlock_mutex;
737 			}
738 			spin_lock_irqsave(&pcpu_lock, flags);
739 		}
740 
741 		off = pcpu_alloc_area(chunk, size, align);
742 		if (off >= 0)
743 			goto area_found;
744 
745 		err = "alloc from reserved chunk failed";
746 		goto fail_unlock;
747 	}
748 
749 restart:
750 	/* search through normal chunks */
751 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
752 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
753 			if (size > chunk->contig_hint)
754 				continue;
755 
756 			new_alloc = pcpu_need_to_extend(chunk);
757 			if (new_alloc) {
758 				spin_unlock_irqrestore(&pcpu_lock, flags);
759 				if (pcpu_extend_area_map(chunk,
760 							 new_alloc) < 0) {
761 					err = "failed to extend area map";
762 					goto fail_unlock_mutex;
763 				}
764 				spin_lock_irqsave(&pcpu_lock, flags);
765 				/*
766 				 * pcpu_lock has been dropped, need to
767 				 * restart cpu_slot list walking.
768 				 */
769 				goto restart;
770 			}
771 
772 			off = pcpu_alloc_area(chunk, size, align);
773 			if (off >= 0)
774 				goto area_found;
775 		}
776 	}
777 
778 	/* hmmm... no space left, create a new chunk */
779 	spin_unlock_irqrestore(&pcpu_lock, flags);
780 
781 	chunk = pcpu_create_chunk();
782 	if (!chunk) {
783 		err = "failed to allocate new chunk";
784 		goto fail_unlock_mutex;
785 	}
786 
787 	spin_lock_irqsave(&pcpu_lock, flags);
788 	pcpu_chunk_relocate(chunk, -1);
789 	goto restart;
790 
791 area_found:
792 	spin_unlock_irqrestore(&pcpu_lock, flags);
793 
794 	/* populate, map and clear the area */
795 	if (pcpu_populate_chunk(chunk, off, size)) {
796 		spin_lock_irqsave(&pcpu_lock, flags);
797 		pcpu_free_area(chunk, off);
798 		err = "failed to populate";
799 		goto fail_unlock;
800 	}
801 
802 	mutex_unlock(&pcpu_alloc_mutex);
803 
804 	/* return address relative to base address */
805 	return __addr_to_pcpu_ptr(chunk->base_addr + off);
806 
807 fail_unlock:
808 	spin_unlock_irqrestore(&pcpu_lock, flags);
809 fail_unlock_mutex:
810 	mutex_unlock(&pcpu_alloc_mutex);
811 	if (warn_limit) {
812 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
813 			   "%s\n", size, align, err);
814 		dump_stack();
815 		if (!--warn_limit)
816 			pr_info("PERCPU: limit reached, disable warning\n");
817 	}
818 	return NULL;
819 }
820 
821 /**
822  * __alloc_percpu - allocate dynamic percpu area
823  * @size: size of area to allocate in bytes
824  * @align: alignment of area (max PAGE_SIZE)
825  *
826  * Allocate zero-filled percpu area of @size bytes aligned at @align.
827  * Might sleep.  Might trigger writeouts.
828  *
829  * CONTEXT:
830  * Does GFP_KERNEL allocation.
831  *
832  * RETURNS:
833  * Percpu pointer to the allocated area on success, NULL on failure.
834  */
835 void __percpu *__alloc_percpu(size_t size, size_t align)
836 {
837 	return pcpu_alloc(size, align, false);
838 }
839 EXPORT_SYMBOL_GPL(__alloc_percpu);
840 
841 /**
842  * __alloc_reserved_percpu - allocate reserved percpu area
843  * @size: size of area to allocate in bytes
844  * @align: alignment of area (max PAGE_SIZE)
845  *
846  * Allocate zero-filled percpu area of @size bytes aligned at @align
847  * from reserved percpu area if arch has set it up; otherwise,
848  * allocation is served from the same dynamic area.  Might sleep.
849  * Might trigger writeouts.
850  *
851  * CONTEXT:
852  * Does GFP_KERNEL allocation.
853  *
854  * RETURNS:
855  * Percpu pointer to the allocated area on success, NULL on failure.
856  */
857 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
858 {
859 	return pcpu_alloc(size, align, true);
860 }
861 
862 /**
863  * pcpu_reclaim - reclaim fully free chunks, workqueue function
864  * @work: unused
865  *
866  * Reclaim all fully free chunks except for the first one.
867  *
868  * CONTEXT:
869  * workqueue context.
870  */
871 static void pcpu_reclaim(struct work_struct *work)
872 {
873 	LIST_HEAD(todo);
874 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
875 	struct pcpu_chunk *chunk, *next;
876 
877 	mutex_lock(&pcpu_alloc_mutex);
878 	spin_lock_irq(&pcpu_lock);
879 
880 	list_for_each_entry_safe(chunk, next, head, list) {
881 		WARN_ON(chunk->immutable);
882 
883 		/* spare the first one */
884 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
885 			continue;
886 
887 		list_move(&chunk->list, &todo);
888 	}
889 
890 	spin_unlock_irq(&pcpu_lock);
891 
892 	list_for_each_entry_safe(chunk, next, &todo, list) {
893 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
894 		pcpu_destroy_chunk(chunk);
895 	}
896 
897 	mutex_unlock(&pcpu_alloc_mutex);
898 }
899 
900 /**
901  * free_percpu - free percpu area
902  * @ptr: pointer to area to free
903  *
904  * Free percpu area @ptr.
905  *
906  * CONTEXT:
907  * Can be called from atomic context.
908  */
909 void free_percpu(void __percpu *ptr)
910 {
911 	void *addr;
912 	struct pcpu_chunk *chunk;
913 	unsigned long flags;
914 	int off;
915 
916 	if (!ptr)
917 		return;
918 
919 	addr = __pcpu_ptr_to_addr(ptr);
920 
921 	spin_lock_irqsave(&pcpu_lock, flags);
922 
923 	chunk = pcpu_chunk_addr_search(addr);
924 	off = addr - chunk->base_addr;
925 
926 	pcpu_free_area(chunk, off);
927 
928 	/* if there are more than one fully free chunks, wake up grim reaper */
929 	if (chunk->free_size == pcpu_unit_size) {
930 		struct pcpu_chunk *pos;
931 
932 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
933 			if (pos != chunk) {
934 				schedule_work(&pcpu_reclaim_work);
935 				break;
936 			}
937 	}
938 
939 	spin_unlock_irqrestore(&pcpu_lock, flags);
940 }
941 EXPORT_SYMBOL_GPL(free_percpu);
942 
943 /**
944  * is_kernel_percpu_address - test whether address is from static percpu area
945  * @addr: address to test
946  *
947  * Test whether @addr belongs to in-kernel static percpu area.  Module
948  * static percpu areas are not considered.  For those, use
949  * is_module_percpu_address().
950  *
951  * RETURNS:
952  * %true if @addr is from in-kernel static percpu area, %false otherwise.
953  */
954 bool is_kernel_percpu_address(unsigned long addr)
955 {
956 #ifdef CONFIG_SMP
957 	const size_t static_size = __per_cpu_end - __per_cpu_start;
958 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
959 	unsigned int cpu;
960 
961 	for_each_possible_cpu(cpu) {
962 		void *start = per_cpu_ptr(base, cpu);
963 
964 		if ((void *)addr >= start && (void *)addr < start + static_size)
965 			return true;
966         }
967 #endif
968 	/* on UP, can't distinguish from other static vars, always false */
969 	return false;
970 }
971 
972 /**
973  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
974  * @addr: the address to be converted to physical address
975  *
976  * Given @addr which is dereferenceable address obtained via one of
977  * percpu access macros, this function translates it into its physical
978  * address.  The caller is responsible for ensuring @addr stays valid
979  * until this function finishes.
980  *
981  * percpu allocator has special setup for the first chunk, which currently
982  * supports either embedding in linear address space or vmalloc mapping,
983  * and, from the second one, the backing allocator (currently either vm or
984  * km) provides translation.
985  *
986  * The addr can be tranlated simply without checking if it falls into the
987  * first chunk. But the current code reflects better how percpu allocator
988  * actually works, and the verification can discover both bugs in percpu
989  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
990  * code.
991  *
992  * RETURNS:
993  * The physical address for @addr.
994  */
995 phys_addr_t per_cpu_ptr_to_phys(void *addr)
996 {
997 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
998 	bool in_first_chunk = false;
999 	unsigned long first_low, first_high;
1000 	unsigned int cpu;
1001 
1002 	/*
1003 	 * The following test on unit_low/high isn't strictly
1004 	 * necessary but will speed up lookups of addresses which
1005 	 * aren't in the first chunk.
1006 	 */
1007 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1008 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1009 				     pcpu_unit_pages);
1010 	if ((unsigned long)addr >= first_low &&
1011 	    (unsigned long)addr < first_high) {
1012 		for_each_possible_cpu(cpu) {
1013 			void *start = per_cpu_ptr(base, cpu);
1014 
1015 			if (addr >= start && addr < start + pcpu_unit_size) {
1016 				in_first_chunk = true;
1017 				break;
1018 			}
1019 		}
1020 	}
1021 
1022 	if (in_first_chunk) {
1023 		if (!is_vmalloc_addr(addr))
1024 			return __pa(addr);
1025 		else
1026 			return page_to_phys(vmalloc_to_page(addr)) +
1027 			       offset_in_page(addr);
1028 	} else
1029 		return page_to_phys(pcpu_addr_to_page(addr)) +
1030 		       offset_in_page(addr);
1031 }
1032 
1033 /**
1034  * pcpu_alloc_alloc_info - allocate percpu allocation info
1035  * @nr_groups: the number of groups
1036  * @nr_units: the number of units
1037  *
1038  * Allocate ai which is large enough for @nr_groups groups containing
1039  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1040  * cpu_map array which is long enough for @nr_units and filled with
1041  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1042  * pointer of other groups.
1043  *
1044  * RETURNS:
1045  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1046  * failure.
1047  */
1048 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1049 						      int nr_units)
1050 {
1051 	struct pcpu_alloc_info *ai;
1052 	size_t base_size, ai_size;
1053 	void *ptr;
1054 	int unit;
1055 
1056 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1057 			  __alignof__(ai->groups[0].cpu_map[0]));
1058 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1059 
1060 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1061 	if (!ptr)
1062 		return NULL;
1063 	ai = ptr;
1064 	ptr += base_size;
1065 
1066 	ai->groups[0].cpu_map = ptr;
1067 
1068 	for (unit = 0; unit < nr_units; unit++)
1069 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1070 
1071 	ai->nr_groups = nr_groups;
1072 	ai->__ai_size = PFN_ALIGN(ai_size);
1073 
1074 	return ai;
1075 }
1076 
1077 /**
1078  * pcpu_free_alloc_info - free percpu allocation info
1079  * @ai: pcpu_alloc_info to free
1080  *
1081  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1082  */
1083 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1084 {
1085 	free_bootmem(__pa(ai), ai->__ai_size);
1086 }
1087 
1088 /**
1089  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1090  * @lvl: loglevel
1091  * @ai: allocation info to dump
1092  *
1093  * Print out information about @ai using loglevel @lvl.
1094  */
1095 static void pcpu_dump_alloc_info(const char *lvl,
1096 				 const struct pcpu_alloc_info *ai)
1097 {
1098 	int group_width = 1, cpu_width = 1, width;
1099 	char empty_str[] = "--------";
1100 	int alloc = 0, alloc_end = 0;
1101 	int group, v;
1102 	int upa, apl;	/* units per alloc, allocs per line */
1103 
1104 	v = ai->nr_groups;
1105 	while (v /= 10)
1106 		group_width++;
1107 
1108 	v = num_possible_cpus();
1109 	while (v /= 10)
1110 		cpu_width++;
1111 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1112 
1113 	upa = ai->alloc_size / ai->unit_size;
1114 	width = upa * (cpu_width + 1) + group_width + 3;
1115 	apl = rounddown_pow_of_two(max(60 / width, 1));
1116 
1117 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1118 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1119 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1120 
1121 	for (group = 0; group < ai->nr_groups; group++) {
1122 		const struct pcpu_group_info *gi = &ai->groups[group];
1123 		int unit = 0, unit_end = 0;
1124 
1125 		BUG_ON(gi->nr_units % upa);
1126 		for (alloc_end += gi->nr_units / upa;
1127 		     alloc < alloc_end; alloc++) {
1128 			if (!(alloc % apl)) {
1129 				printk("\n");
1130 				printk("%spcpu-alloc: ", lvl);
1131 			}
1132 			printk("[%0*d] ", group_width, group);
1133 
1134 			for (unit_end += upa; unit < unit_end; unit++)
1135 				if (gi->cpu_map[unit] != NR_CPUS)
1136 					printk("%0*d ", cpu_width,
1137 					       gi->cpu_map[unit]);
1138 				else
1139 					printk("%s ", empty_str);
1140 		}
1141 	}
1142 	printk("\n");
1143 }
1144 
1145 /**
1146  * pcpu_setup_first_chunk - initialize the first percpu chunk
1147  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1148  * @base_addr: mapped address
1149  *
1150  * Initialize the first percpu chunk which contains the kernel static
1151  * perpcu area.  This function is to be called from arch percpu area
1152  * setup path.
1153  *
1154  * @ai contains all information necessary to initialize the first
1155  * chunk and prime the dynamic percpu allocator.
1156  *
1157  * @ai->static_size is the size of static percpu area.
1158  *
1159  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1160  * reserve after the static area in the first chunk.  This reserves
1161  * the first chunk such that it's available only through reserved
1162  * percpu allocation.  This is primarily used to serve module percpu
1163  * static areas on architectures where the addressing model has
1164  * limited offset range for symbol relocations to guarantee module
1165  * percpu symbols fall inside the relocatable range.
1166  *
1167  * @ai->dyn_size determines the number of bytes available for dynamic
1168  * allocation in the first chunk.  The area between @ai->static_size +
1169  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1170  *
1171  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1172  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1173  * @ai->dyn_size.
1174  *
1175  * @ai->atom_size is the allocation atom size and used as alignment
1176  * for vm areas.
1177  *
1178  * @ai->alloc_size is the allocation size and always multiple of
1179  * @ai->atom_size.  This is larger than @ai->atom_size if
1180  * @ai->unit_size is larger than @ai->atom_size.
1181  *
1182  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1183  * percpu areas.  Units which should be colocated are put into the
1184  * same group.  Dynamic VM areas will be allocated according to these
1185  * groupings.  If @ai->nr_groups is zero, a single group containing
1186  * all units is assumed.
1187  *
1188  * The caller should have mapped the first chunk at @base_addr and
1189  * copied static data to each unit.
1190  *
1191  * If the first chunk ends up with both reserved and dynamic areas, it
1192  * is served by two chunks - one to serve the core static and reserved
1193  * areas and the other for the dynamic area.  They share the same vm
1194  * and page map but uses different area allocation map to stay away
1195  * from each other.  The latter chunk is circulated in the chunk slots
1196  * and available for dynamic allocation like any other chunks.
1197  *
1198  * RETURNS:
1199  * 0 on success, -errno on failure.
1200  */
1201 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1202 				  void *base_addr)
1203 {
1204 	static char cpus_buf[4096] __initdata;
1205 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1206 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1207 	size_t dyn_size = ai->dyn_size;
1208 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1209 	struct pcpu_chunk *schunk, *dchunk = NULL;
1210 	unsigned long *group_offsets;
1211 	size_t *group_sizes;
1212 	unsigned long *unit_off;
1213 	unsigned int cpu;
1214 	int *unit_map;
1215 	int group, unit, i;
1216 
1217 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1218 
1219 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1220 	if (unlikely(cond)) {						\
1221 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1222 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1223 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1224 		BUG();							\
1225 	}								\
1226 } while (0)
1227 
1228 	/* sanity checks */
1229 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1230 #ifdef CONFIG_SMP
1231 	PCPU_SETUP_BUG_ON(!ai->static_size);
1232 	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1233 #endif
1234 	PCPU_SETUP_BUG_ON(!base_addr);
1235 	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1236 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1237 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1238 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1239 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1240 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1241 
1242 	/* process group information and build config tables accordingly */
1243 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1244 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1245 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1246 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1247 
1248 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1249 		unit_map[cpu] = UINT_MAX;
1250 
1251 	pcpu_low_unit_cpu = NR_CPUS;
1252 	pcpu_high_unit_cpu = NR_CPUS;
1253 
1254 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1255 		const struct pcpu_group_info *gi = &ai->groups[group];
1256 
1257 		group_offsets[group] = gi->base_offset;
1258 		group_sizes[group] = gi->nr_units * ai->unit_size;
1259 
1260 		for (i = 0; i < gi->nr_units; i++) {
1261 			cpu = gi->cpu_map[i];
1262 			if (cpu == NR_CPUS)
1263 				continue;
1264 
1265 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1266 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1267 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1268 
1269 			unit_map[cpu] = unit + i;
1270 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1271 
1272 			/* determine low/high unit_cpu */
1273 			if (pcpu_low_unit_cpu == NR_CPUS ||
1274 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1275 				pcpu_low_unit_cpu = cpu;
1276 			if (pcpu_high_unit_cpu == NR_CPUS ||
1277 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1278 				pcpu_high_unit_cpu = cpu;
1279 		}
1280 	}
1281 	pcpu_nr_units = unit;
1282 
1283 	for_each_possible_cpu(cpu)
1284 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1285 
1286 	/* we're done parsing the input, undefine BUG macro and dump config */
1287 #undef PCPU_SETUP_BUG_ON
1288 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1289 
1290 	pcpu_nr_groups = ai->nr_groups;
1291 	pcpu_group_offsets = group_offsets;
1292 	pcpu_group_sizes = group_sizes;
1293 	pcpu_unit_map = unit_map;
1294 	pcpu_unit_offsets = unit_off;
1295 
1296 	/* determine basic parameters */
1297 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1298 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1299 	pcpu_atom_size = ai->atom_size;
1300 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1301 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1302 
1303 	/*
1304 	 * Allocate chunk slots.  The additional last slot is for
1305 	 * empty chunks.
1306 	 */
1307 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1308 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1309 	for (i = 0; i < pcpu_nr_slots; i++)
1310 		INIT_LIST_HEAD(&pcpu_slot[i]);
1311 
1312 	/*
1313 	 * Initialize static chunk.  If reserved_size is zero, the
1314 	 * static chunk covers static area + dynamic allocation area
1315 	 * in the first chunk.  If reserved_size is not zero, it
1316 	 * covers static area + reserved area (mostly used for module
1317 	 * static percpu allocation).
1318 	 */
1319 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1320 	INIT_LIST_HEAD(&schunk->list);
1321 	schunk->base_addr = base_addr;
1322 	schunk->map = smap;
1323 	schunk->map_alloc = ARRAY_SIZE(smap);
1324 	schunk->immutable = true;
1325 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1326 
1327 	if (ai->reserved_size) {
1328 		schunk->free_size = ai->reserved_size;
1329 		pcpu_reserved_chunk = schunk;
1330 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1331 	} else {
1332 		schunk->free_size = dyn_size;
1333 		dyn_size = 0;			/* dynamic area covered */
1334 	}
1335 	schunk->contig_hint = schunk->free_size;
1336 
1337 	schunk->map[schunk->map_used++] = -ai->static_size;
1338 	if (schunk->free_size)
1339 		schunk->map[schunk->map_used++] = schunk->free_size;
1340 
1341 	/* init dynamic chunk if necessary */
1342 	if (dyn_size) {
1343 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1344 		INIT_LIST_HEAD(&dchunk->list);
1345 		dchunk->base_addr = base_addr;
1346 		dchunk->map = dmap;
1347 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1348 		dchunk->immutable = true;
1349 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1350 
1351 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1352 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1353 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1354 	}
1355 
1356 	/* link the first chunk in */
1357 	pcpu_first_chunk = dchunk ?: schunk;
1358 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1359 
1360 	/* we're done */
1361 	pcpu_base_addr = base_addr;
1362 	return 0;
1363 }
1364 
1365 #ifdef CONFIG_SMP
1366 
1367 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1368 	[PCPU_FC_AUTO]	= "auto",
1369 	[PCPU_FC_EMBED]	= "embed",
1370 	[PCPU_FC_PAGE]	= "page",
1371 };
1372 
1373 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1374 
1375 static int __init percpu_alloc_setup(char *str)
1376 {
1377 	if (0)
1378 		/* nada */;
1379 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1380 	else if (!strcmp(str, "embed"))
1381 		pcpu_chosen_fc = PCPU_FC_EMBED;
1382 #endif
1383 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1384 	else if (!strcmp(str, "page"))
1385 		pcpu_chosen_fc = PCPU_FC_PAGE;
1386 #endif
1387 	else
1388 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1389 
1390 	return 0;
1391 }
1392 early_param("percpu_alloc", percpu_alloc_setup);
1393 
1394 /*
1395  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1396  * Build it if needed by the arch config or the generic setup is going
1397  * to be used.
1398  */
1399 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1400 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1401 #define BUILD_EMBED_FIRST_CHUNK
1402 #endif
1403 
1404 /* build pcpu_page_first_chunk() iff needed by the arch config */
1405 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1406 #define BUILD_PAGE_FIRST_CHUNK
1407 #endif
1408 
1409 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1410 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1411 /**
1412  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1413  * @reserved_size: the size of reserved percpu area in bytes
1414  * @dyn_size: minimum free size for dynamic allocation in bytes
1415  * @atom_size: allocation atom size
1416  * @cpu_distance_fn: callback to determine distance between cpus, optional
1417  *
1418  * This function determines grouping of units, their mappings to cpus
1419  * and other parameters considering needed percpu size, allocation
1420  * atom size and distances between CPUs.
1421  *
1422  * Groups are always mutliples of atom size and CPUs which are of
1423  * LOCAL_DISTANCE both ways are grouped together and share space for
1424  * units in the same group.  The returned configuration is guaranteed
1425  * to have CPUs on different nodes on different groups and >=75% usage
1426  * of allocated virtual address space.
1427  *
1428  * RETURNS:
1429  * On success, pointer to the new allocation_info is returned.  On
1430  * failure, ERR_PTR value is returned.
1431  */
1432 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1433 				size_t reserved_size, size_t dyn_size,
1434 				size_t atom_size,
1435 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1436 {
1437 	static int group_map[NR_CPUS] __initdata;
1438 	static int group_cnt[NR_CPUS] __initdata;
1439 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1440 	int nr_groups = 1, nr_units = 0;
1441 	size_t size_sum, min_unit_size, alloc_size;
1442 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1443 	int last_allocs, group, unit;
1444 	unsigned int cpu, tcpu;
1445 	struct pcpu_alloc_info *ai;
1446 	unsigned int *cpu_map;
1447 
1448 	/* this function may be called multiple times */
1449 	memset(group_map, 0, sizeof(group_map));
1450 	memset(group_cnt, 0, sizeof(group_cnt));
1451 
1452 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1453 	size_sum = PFN_ALIGN(static_size + reserved_size +
1454 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1455 	dyn_size = size_sum - static_size - reserved_size;
1456 
1457 	/*
1458 	 * Determine min_unit_size, alloc_size and max_upa such that
1459 	 * alloc_size is multiple of atom_size and is the smallest
1460 	 * which can accommodate 4k aligned segments which are equal to
1461 	 * or larger than min_unit_size.
1462 	 */
1463 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1464 
1465 	alloc_size = roundup(min_unit_size, atom_size);
1466 	upa = alloc_size / min_unit_size;
1467 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1468 		upa--;
1469 	max_upa = upa;
1470 
1471 	/* group cpus according to their proximity */
1472 	for_each_possible_cpu(cpu) {
1473 		group = 0;
1474 	next_group:
1475 		for_each_possible_cpu(tcpu) {
1476 			if (cpu == tcpu)
1477 				break;
1478 			if (group_map[tcpu] == group && cpu_distance_fn &&
1479 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1480 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1481 				group++;
1482 				nr_groups = max(nr_groups, group + 1);
1483 				goto next_group;
1484 			}
1485 		}
1486 		group_map[cpu] = group;
1487 		group_cnt[group]++;
1488 	}
1489 
1490 	/*
1491 	 * Expand unit size until address space usage goes over 75%
1492 	 * and then as much as possible without using more address
1493 	 * space.
1494 	 */
1495 	last_allocs = INT_MAX;
1496 	for (upa = max_upa; upa; upa--) {
1497 		int allocs = 0, wasted = 0;
1498 
1499 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1500 			continue;
1501 
1502 		for (group = 0; group < nr_groups; group++) {
1503 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1504 			allocs += this_allocs;
1505 			wasted += this_allocs * upa - group_cnt[group];
1506 		}
1507 
1508 		/*
1509 		 * Don't accept if wastage is over 1/3.  The
1510 		 * greater-than comparison ensures upa==1 always
1511 		 * passes the following check.
1512 		 */
1513 		if (wasted > num_possible_cpus() / 3)
1514 			continue;
1515 
1516 		/* and then don't consume more memory */
1517 		if (allocs > last_allocs)
1518 			break;
1519 		last_allocs = allocs;
1520 		best_upa = upa;
1521 	}
1522 	upa = best_upa;
1523 
1524 	/* allocate and fill alloc_info */
1525 	for (group = 0; group < nr_groups; group++)
1526 		nr_units += roundup(group_cnt[group], upa);
1527 
1528 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1529 	if (!ai)
1530 		return ERR_PTR(-ENOMEM);
1531 	cpu_map = ai->groups[0].cpu_map;
1532 
1533 	for (group = 0; group < nr_groups; group++) {
1534 		ai->groups[group].cpu_map = cpu_map;
1535 		cpu_map += roundup(group_cnt[group], upa);
1536 	}
1537 
1538 	ai->static_size = static_size;
1539 	ai->reserved_size = reserved_size;
1540 	ai->dyn_size = dyn_size;
1541 	ai->unit_size = alloc_size / upa;
1542 	ai->atom_size = atom_size;
1543 	ai->alloc_size = alloc_size;
1544 
1545 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1546 		struct pcpu_group_info *gi = &ai->groups[group];
1547 
1548 		/*
1549 		 * Initialize base_offset as if all groups are located
1550 		 * back-to-back.  The caller should update this to
1551 		 * reflect actual allocation.
1552 		 */
1553 		gi->base_offset = unit * ai->unit_size;
1554 
1555 		for_each_possible_cpu(cpu)
1556 			if (group_map[cpu] == group)
1557 				gi->cpu_map[gi->nr_units++] = cpu;
1558 		gi->nr_units = roundup(gi->nr_units, upa);
1559 		unit += gi->nr_units;
1560 	}
1561 	BUG_ON(unit != nr_units);
1562 
1563 	return ai;
1564 }
1565 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1566 
1567 #if defined(BUILD_EMBED_FIRST_CHUNK)
1568 /**
1569  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1570  * @reserved_size: the size of reserved percpu area in bytes
1571  * @dyn_size: minimum free size for dynamic allocation in bytes
1572  * @atom_size: allocation atom size
1573  * @cpu_distance_fn: callback to determine distance between cpus, optional
1574  * @alloc_fn: function to allocate percpu page
1575  * @free_fn: function to free percpu page
1576  *
1577  * This is a helper to ease setting up embedded first percpu chunk and
1578  * can be called where pcpu_setup_first_chunk() is expected.
1579  *
1580  * If this function is used to setup the first chunk, it is allocated
1581  * by calling @alloc_fn and used as-is without being mapped into
1582  * vmalloc area.  Allocations are always whole multiples of @atom_size
1583  * aligned to @atom_size.
1584  *
1585  * This enables the first chunk to piggy back on the linear physical
1586  * mapping which often uses larger page size.  Please note that this
1587  * can result in very sparse cpu->unit mapping on NUMA machines thus
1588  * requiring large vmalloc address space.  Don't use this allocator if
1589  * vmalloc space is not orders of magnitude larger than distances
1590  * between node memory addresses (ie. 32bit NUMA machines).
1591  *
1592  * @dyn_size specifies the minimum dynamic area size.
1593  *
1594  * If the needed size is smaller than the minimum or specified unit
1595  * size, the leftover is returned using @free_fn.
1596  *
1597  * RETURNS:
1598  * 0 on success, -errno on failure.
1599  */
1600 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1601 				  size_t atom_size,
1602 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1603 				  pcpu_fc_alloc_fn_t alloc_fn,
1604 				  pcpu_fc_free_fn_t free_fn)
1605 {
1606 	void *base = (void *)ULONG_MAX;
1607 	void **areas = NULL;
1608 	struct pcpu_alloc_info *ai;
1609 	size_t size_sum, areas_size, max_distance;
1610 	int group, i, rc;
1611 
1612 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1613 				   cpu_distance_fn);
1614 	if (IS_ERR(ai))
1615 		return PTR_ERR(ai);
1616 
1617 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1618 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1619 
1620 	areas = alloc_bootmem_nopanic(areas_size);
1621 	if (!areas) {
1622 		rc = -ENOMEM;
1623 		goto out_free;
1624 	}
1625 
1626 	/* allocate, copy and determine base address */
1627 	for (group = 0; group < ai->nr_groups; group++) {
1628 		struct pcpu_group_info *gi = &ai->groups[group];
1629 		unsigned int cpu = NR_CPUS;
1630 		void *ptr;
1631 
1632 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1633 			cpu = gi->cpu_map[i];
1634 		BUG_ON(cpu == NR_CPUS);
1635 
1636 		/* allocate space for the whole group */
1637 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1638 		if (!ptr) {
1639 			rc = -ENOMEM;
1640 			goto out_free_areas;
1641 		}
1642 		areas[group] = ptr;
1643 
1644 		base = min(ptr, base);
1645 
1646 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1647 			if (gi->cpu_map[i] == NR_CPUS) {
1648 				/* unused unit, free whole */
1649 				free_fn(ptr, ai->unit_size);
1650 				continue;
1651 			}
1652 			/* copy and return the unused part */
1653 			memcpy(ptr, __per_cpu_load, ai->static_size);
1654 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1655 		}
1656 	}
1657 
1658 	/* base address is now known, determine group base offsets */
1659 	max_distance = 0;
1660 	for (group = 0; group < ai->nr_groups; group++) {
1661 		ai->groups[group].base_offset = areas[group] - base;
1662 		max_distance = max_t(size_t, max_distance,
1663 				     ai->groups[group].base_offset);
1664 	}
1665 	max_distance += ai->unit_size;
1666 
1667 	/* warn if maximum distance is further than 75% of vmalloc space */
1668 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1669 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1670 			   "space 0x%lx\n", max_distance,
1671 			   (unsigned long)(VMALLOC_END - VMALLOC_START));
1672 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1673 		/* and fail if we have fallback */
1674 		rc = -EINVAL;
1675 		goto out_free;
1676 #endif
1677 	}
1678 
1679 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1680 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1681 		ai->dyn_size, ai->unit_size);
1682 
1683 	rc = pcpu_setup_first_chunk(ai, base);
1684 	goto out_free;
1685 
1686 out_free_areas:
1687 	for (group = 0; group < ai->nr_groups; group++)
1688 		free_fn(areas[group],
1689 			ai->groups[group].nr_units * ai->unit_size);
1690 out_free:
1691 	pcpu_free_alloc_info(ai);
1692 	if (areas)
1693 		free_bootmem(__pa(areas), areas_size);
1694 	return rc;
1695 }
1696 #endif /* BUILD_EMBED_FIRST_CHUNK */
1697 
1698 #ifdef BUILD_PAGE_FIRST_CHUNK
1699 /**
1700  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1701  * @reserved_size: the size of reserved percpu area in bytes
1702  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1703  * @free_fn: function to free percpu page, always called with PAGE_SIZE
1704  * @populate_pte_fn: function to populate pte
1705  *
1706  * This is a helper to ease setting up page-remapped first percpu
1707  * chunk and can be called where pcpu_setup_first_chunk() is expected.
1708  *
1709  * This is the basic allocator.  Static percpu area is allocated
1710  * page-by-page into vmalloc area.
1711  *
1712  * RETURNS:
1713  * 0 on success, -errno on failure.
1714  */
1715 int __init pcpu_page_first_chunk(size_t reserved_size,
1716 				 pcpu_fc_alloc_fn_t alloc_fn,
1717 				 pcpu_fc_free_fn_t free_fn,
1718 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1719 {
1720 	static struct vm_struct vm;
1721 	struct pcpu_alloc_info *ai;
1722 	char psize_str[16];
1723 	int unit_pages;
1724 	size_t pages_size;
1725 	struct page **pages;
1726 	int unit, i, j, rc;
1727 
1728 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1729 
1730 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1731 	if (IS_ERR(ai))
1732 		return PTR_ERR(ai);
1733 	BUG_ON(ai->nr_groups != 1);
1734 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1735 
1736 	unit_pages = ai->unit_size >> PAGE_SHIFT;
1737 
1738 	/* unaligned allocations can't be freed, round up to page size */
1739 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1740 			       sizeof(pages[0]));
1741 	pages = alloc_bootmem(pages_size);
1742 
1743 	/* allocate pages */
1744 	j = 0;
1745 	for (unit = 0; unit < num_possible_cpus(); unit++)
1746 		for (i = 0; i < unit_pages; i++) {
1747 			unsigned int cpu = ai->groups[0].cpu_map[unit];
1748 			void *ptr;
1749 
1750 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1751 			if (!ptr) {
1752 				pr_warning("PERCPU: failed to allocate %s page "
1753 					   "for cpu%u\n", psize_str, cpu);
1754 				goto enomem;
1755 			}
1756 			pages[j++] = virt_to_page(ptr);
1757 		}
1758 
1759 	/* allocate vm area, map the pages and copy static data */
1760 	vm.flags = VM_ALLOC;
1761 	vm.size = num_possible_cpus() * ai->unit_size;
1762 	vm_area_register_early(&vm, PAGE_SIZE);
1763 
1764 	for (unit = 0; unit < num_possible_cpus(); unit++) {
1765 		unsigned long unit_addr =
1766 			(unsigned long)vm.addr + unit * ai->unit_size;
1767 
1768 		for (i = 0; i < unit_pages; i++)
1769 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1770 
1771 		/* pte already populated, the following shouldn't fail */
1772 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1773 				      unit_pages);
1774 		if (rc < 0)
1775 			panic("failed to map percpu area, err=%d\n", rc);
1776 
1777 		/*
1778 		 * FIXME: Archs with virtual cache should flush local
1779 		 * cache for the linear mapping here - something
1780 		 * equivalent to flush_cache_vmap() on the local cpu.
1781 		 * flush_cache_vmap() can't be used as most supporting
1782 		 * data structures are not set up yet.
1783 		 */
1784 
1785 		/* copy static data */
1786 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1787 	}
1788 
1789 	/* we're ready, commit */
1790 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1791 		unit_pages, psize_str, vm.addr, ai->static_size,
1792 		ai->reserved_size, ai->dyn_size);
1793 
1794 	rc = pcpu_setup_first_chunk(ai, vm.addr);
1795 	goto out_free_ar;
1796 
1797 enomem:
1798 	while (--j >= 0)
1799 		free_fn(page_address(pages[j]), PAGE_SIZE);
1800 	rc = -ENOMEM;
1801 out_free_ar:
1802 	free_bootmem(__pa(pages), pages_size);
1803 	pcpu_free_alloc_info(ai);
1804 	return rc;
1805 }
1806 #endif /* BUILD_PAGE_FIRST_CHUNK */
1807 
1808 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1809 /*
1810  * Generic SMP percpu area setup.
1811  *
1812  * The embedding helper is used because its behavior closely resembles
1813  * the original non-dynamic generic percpu area setup.  This is
1814  * important because many archs have addressing restrictions and might
1815  * fail if the percpu area is located far away from the previous
1816  * location.  As an added bonus, in non-NUMA cases, embedding is
1817  * generally a good idea TLB-wise because percpu area can piggy back
1818  * on the physical linear memory mapping which uses large page
1819  * mappings on applicable archs.
1820  */
1821 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1822 EXPORT_SYMBOL(__per_cpu_offset);
1823 
1824 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1825 				       size_t align)
1826 {
1827 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1828 }
1829 
1830 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1831 {
1832 	free_bootmem(__pa(ptr), size);
1833 }
1834 
1835 void __init setup_per_cpu_areas(void)
1836 {
1837 	unsigned long delta;
1838 	unsigned int cpu;
1839 	int rc;
1840 
1841 	/*
1842 	 * Always reserve area for module percpu variables.  That's
1843 	 * what the legacy allocator did.
1844 	 */
1845 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1846 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1847 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1848 	if (rc < 0)
1849 		panic("Failed to initialize percpu areas.");
1850 
1851 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1852 	for_each_possible_cpu(cpu)
1853 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1854 }
1855 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1856 
1857 #else	/* CONFIG_SMP */
1858 
1859 /*
1860  * UP percpu area setup.
1861  *
1862  * UP always uses km-based percpu allocator with identity mapping.
1863  * Static percpu variables are indistinguishable from the usual static
1864  * variables and don't require any special preparation.
1865  */
1866 void __init setup_per_cpu_areas(void)
1867 {
1868 	const size_t unit_size =
1869 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1870 					 PERCPU_DYNAMIC_RESERVE));
1871 	struct pcpu_alloc_info *ai;
1872 	void *fc;
1873 
1874 	ai = pcpu_alloc_alloc_info(1, 1);
1875 	fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1876 	if (!ai || !fc)
1877 		panic("Failed to allocate memory for percpu areas.");
1878 
1879 	ai->dyn_size = unit_size;
1880 	ai->unit_size = unit_size;
1881 	ai->atom_size = unit_size;
1882 	ai->alloc_size = unit_size;
1883 	ai->groups[0].nr_units = 1;
1884 	ai->groups[0].cpu_map[0] = 0;
1885 
1886 	if (pcpu_setup_first_chunk(ai, fc) < 0)
1887 		panic("Failed to initialize percpu areas.");
1888 }
1889 
1890 #endif	/* CONFIG_SMP */
1891 
1892 /*
1893  * First and reserved chunks are initialized with temporary allocation
1894  * map in initdata so that they can be used before slab is online.
1895  * This function is called after slab is brought up and replaces those
1896  * with properly allocated maps.
1897  */
1898 void __init percpu_init_late(void)
1899 {
1900 	struct pcpu_chunk *target_chunks[] =
1901 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1902 	struct pcpu_chunk *chunk;
1903 	unsigned long flags;
1904 	int i;
1905 
1906 	for (i = 0; (chunk = target_chunks[i]); i++) {
1907 		int *map;
1908 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1909 
1910 		BUILD_BUG_ON(size > PAGE_SIZE);
1911 
1912 		map = pcpu_mem_zalloc(size);
1913 		BUG_ON(!map);
1914 
1915 		spin_lock_irqsave(&pcpu_lock, flags);
1916 		memcpy(map, chunk->map, size);
1917 		chunk->map = map;
1918 		spin_unlock_irqrestore(&pcpu_lock, flags);
1919 	}
1920 }
1921