1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 71 #include <asm/cacheflush.h> 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/io.h> 75 76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 78 79 #ifdef CONFIG_SMP 80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 81 #ifndef __addr_to_pcpu_ptr 82 #define __addr_to_pcpu_ptr(addr) \ 83 (void __percpu *)((unsigned long)(addr) - \ 84 (unsigned long)pcpu_base_addr + \ 85 (unsigned long)__per_cpu_start) 86 #endif 87 #ifndef __pcpu_ptr_to_addr 88 #define __pcpu_ptr_to_addr(ptr) \ 89 (void __force *)((unsigned long)(ptr) + \ 90 (unsigned long)pcpu_base_addr - \ 91 (unsigned long)__per_cpu_start) 92 #endif 93 #else /* CONFIG_SMP */ 94 /* on UP, it's always identity mapped */ 95 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 96 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 97 #endif /* CONFIG_SMP */ 98 99 struct pcpu_chunk { 100 struct list_head list; /* linked to pcpu_slot lists */ 101 int free_size; /* free bytes in the chunk */ 102 int contig_hint; /* max contiguous size hint */ 103 void *base_addr; /* base address of this chunk */ 104 int map_used; /* # of map entries used */ 105 int map_alloc; /* # of map entries allocated */ 106 int *map; /* allocation map */ 107 void *data; /* chunk data */ 108 bool immutable; /* no [de]population allowed */ 109 unsigned long populated[]; /* populated bitmap */ 110 }; 111 112 static int pcpu_unit_pages __read_mostly; 113 static int pcpu_unit_size __read_mostly; 114 static int pcpu_nr_units __read_mostly; 115 static int pcpu_atom_size __read_mostly; 116 static int pcpu_nr_slots __read_mostly; 117 static size_t pcpu_chunk_struct_size __read_mostly; 118 119 /* cpus with the lowest and highest unit addresses */ 120 static unsigned int pcpu_low_unit_cpu __read_mostly; 121 static unsigned int pcpu_high_unit_cpu __read_mostly; 122 123 /* the address of the first chunk which starts with the kernel static area */ 124 void *pcpu_base_addr __read_mostly; 125 EXPORT_SYMBOL_GPL(pcpu_base_addr); 126 127 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 128 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 129 130 /* group information, used for vm allocation */ 131 static int pcpu_nr_groups __read_mostly; 132 static const unsigned long *pcpu_group_offsets __read_mostly; 133 static const size_t *pcpu_group_sizes __read_mostly; 134 135 /* 136 * The first chunk which always exists. Note that unlike other 137 * chunks, this one can be allocated and mapped in several different 138 * ways and thus often doesn't live in the vmalloc area. 139 */ 140 static struct pcpu_chunk *pcpu_first_chunk; 141 142 /* 143 * Optional reserved chunk. This chunk reserves part of the first 144 * chunk and serves it for reserved allocations. The amount of 145 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 146 * area doesn't exist, the following variables contain NULL and 0 147 * respectively. 148 */ 149 static struct pcpu_chunk *pcpu_reserved_chunk; 150 static int pcpu_reserved_chunk_limit; 151 152 /* 153 * Synchronization rules. 154 * 155 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 156 * protects allocation/reclaim paths, chunks, populated bitmap and 157 * vmalloc mapping. The latter is a spinlock and protects the index 158 * data structures - chunk slots, chunks and area maps in chunks. 159 * 160 * During allocation, pcpu_alloc_mutex is kept locked all the time and 161 * pcpu_lock is grabbed and released as necessary. All actual memory 162 * allocations are done using GFP_KERNEL with pcpu_lock released. In 163 * general, percpu memory can't be allocated with irq off but 164 * irqsave/restore are still used in alloc path so that it can be used 165 * from early init path - sched_init() specifically. 166 * 167 * Free path accesses and alters only the index data structures, so it 168 * can be safely called from atomic context. When memory needs to be 169 * returned to the system, free path schedules reclaim_work which 170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 171 * reclaimed, release both locks and frees the chunks. Note that it's 172 * necessary to grab both locks to remove a chunk from circulation as 173 * allocation path might be referencing the chunk with only 174 * pcpu_alloc_mutex locked. 175 */ 176 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 177 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 178 179 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 180 181 /* reclaim work to release fully free chunks, scheduled from free path */ 182 static void pcpu_reclaim(struct work_struct *work); 183 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 184 185 static bool pcpu_addr_in_first_chunk(void *addr) 186 { 187 void *first_start = pcpu_first_chunk->base_addr; 188 189 return addr >= first_start && addr < first_start + pcpu_unit_size; 190 } 191 192 static bool pcpu_addr_in_reserved_chunk(void *addr) 193 { 194 void *first_start = pcpu_first_chunk->base_addr; 195 196 return addr >= first_start && 197 addr < first_start + pcpu_reserved_chunk_limit; 198 } 199 200 static int __pcpu_size_to_slot(int size) 201 { 202 int highbit = fls(size); /* size is in bytes */ 203 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 204 } 205 206 static int pcpu_size_to_slot(int size) 207 { 208 if (size == pcpu_unit_size) 209 return pcpu_nr_slots - 1; 210 return __pcpu_size_to_slot(size); 211 } 212 213 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 214 { 215 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 216 return 0; 217 218 return pcpu_size_to_slot(chunk->free_size); 219 } 220 221 /* set the pointer to a chunk in a page struct */ 222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 223 { 224 page->index = (unsigned long)pcpu; 225 } 226 227 /* obtain pointer to a chunk from a page struct */ 228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 229 { 230 return (struct pcpu_chunk *)page->index; 231 } 232 233 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 234 { 235 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 236 } 237 238 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 239 unsigned int cpu, int page_idx) 240 { 241 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 242 (page_idx << PAGE_SHIFT); 243 } 244 245 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 246 int *rs, int *re, int end) 247 { 248 *rs = find_next_zero_bit(chunk->populated, end, *rs); 249 *re = find_next_bit(chunk->populated, end, *rs + 1); 250 } 251 252 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 253 int *rs, int *re, int end) 254 { 255 *rs = find_next_bit(chunk->populated, end, *rs); 256 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 257 } 258 259 /* 260 * (Un)populated page region iterators. Iterate over (un)populated 261 * page regions between @start and @end in @chunk. @rs and @re should 262 * be integer variables and will be set to start and end page index of 263 * the current region. 264 */ 265 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 266 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 267 (rs) < (re); \ 268 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 269 270 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 271 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 272 (rs) < (re); \ 273 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 274 275 /** 276 * pcpu_mem_zalloc - allocate memory 277 * @size: bytes to allocate 278 * 279 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 280 * kzalloc() is used; otherwise, vzalloc() is used. The returned 281 * memory is always zeroed. 282 * 283 * CONTEXT: 284 * Does GFP_KERNEL allocation. 285 * 286 * RETURNS: 287 * Pointer to the allocated area on success, NULL on failure. 288 */ 289 static void *pcpu_mem_zalloc(size_t size) 290 { 291 if (WARN_ON_ONCE(!slab_is_available())) 292 return NULL; 293 294 if (size <= PAGE_SIZE) 295 return kzalloc(size, GFP_KERNEL); 296 else 297 return vzalloc(size); 298 } 299 300 /** 301 * pcpu_mem_free - free memory 302 * @ptr: memory to free 303 * @size: size of the area 304 * 305 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 306 */ 307 static void pcpu_mem_free(void *ptr, size_t size) 308 { 309 if (size <= PAGE_SIZE) 310 kfree(ptr); 311 else 312 vfree(ptr); 313 } 314 315 /** 316 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 317 * @chunk: chunk of interest 318 * @oslot: the previous slot it was on 319 * 320 * This function is called after an allocation or free changed @chunk. 321 * New slot according to the changed state is determined and @chunk is 322 * moved to the slot. Note that the reserved chunk is never put on 323 * chunk slots. 324 * 325 * CONTEXT: 326 * pcpu_lock. 327 */ 328 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 329 { 330 int nslot = pcpu_chunk_slot(chunk); 331 332 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 333 if (oslot < nslot) 334 list_move(&chunk->list, &pcpu_slot[nslot]); 335 else 336 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 337 } 338 } 339 340 /** 341 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 342 * @chunk: chunk of interest 343 * 344 * Determine whether area map of @chunk needs to be extended to 345 * accommodate a new allocation. 346 * 347 * CONTEXT: 348 * pcpu_lock. 349 * 350 * RETURNS: 351 * New target map allocation length if extension is necessary, 0 352 * otherwise. 353 */ 354 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 355 { 356 int new_alloc; 357 358 if (chunk->map_alloc >= chunk->map_used + 2) 359 return 0; 360 361 new_alloc = PCPU_DFL_MAP_ALLOC; 362 while (new_alloc < chunk->map_used + 2) 363 new_alloc *= 2; 364 365 return new_alloc; 366 } 367 368 /** 369 * pcpu_extend_area_map - extend area map of a chunk 370 * @chunk: chunk of interest 371 * @new_alloc: new target allocation length of the area map 372 * 373 * Extend area map of @chunk to have @new_alloc entries. 374 * 375 * CONTEXT: 376 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 377 * 378 * RETURNS: 379 * 0 on success, -errno on failure. 380 */ 381 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 382 { 383 int *old = NULL, *new = NULL; 384 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 385 unsigned long flags; 386 387 new = pcpu_mem_zalloc(new_size); 388 if (!new) 389 return -ENOMEM; 390 391 /* acquire pcpu_lock and switch to new area map */ 392 spin_lock_irqsave(&pcpu_lock, flags); 393 394 if (new_alloc <= chunk->map_alloc) 395 goto out_unlock; 396 397 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 398 old = chunk->map; 399 400 memcpy(new, old, old_size); 401 402 chunk->map_alloc = new_alloc; 403 chunk->map = new; 404 new = NULL; 405 406 out_unlock: 407 spin_unlock_irqrestore(&pcpu_lock, flags); 408 409 /* 410 * pcpu_mem_free() might end up calling vfree() which uses 411 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 412 */ 413 pcpu_mem_free(old, old_size); 414 pcpu_mem_free(new, new_size); 415 416 return 0; 417 } 418 419 /** 420 * pcpu_split_block - split a map block 421 * @chunk: chunk of interest 422 * @i: index of map block to split 423 * @head: head size in bytes (can be 0) 424 * @tail: tail size in bytes (can be 0) 425 * 426 * Split the @i'th map block into two or three blocks. If @head is 427 * non-zero, @head bytes block is inserted before block @i moving it 428 * to @i+1 and reducing its size by @head bytes. 429 * 430 * If @tail is non-zero, the target block, which can be @i or @i+1 431 * depending on @head, is reduced by @tail bytes and @tail byte block 432 * is inserted after the target block. 433 * 434 * @chunk->map must have enough free slots to accommodate the split. 435 * 436 * CONTEXT: 437 * pcpu_lock. 438 */ 439 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 440 int head, int tail) 441 { 442 int nr_extra = !!head + !!tail; 443 444 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 445 446 /* insert new subblocks */ 447 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 448 sizeof(chunk->map[0]) * (chunk->map_used - i)); 449 chunk->map_used += nr_extra; 450 451 if (head) { 452 chunk->map[i + 1] = chunk->map[i] - head; 453 chunk->map[i++] = head; 454 } 455 if (tail) { 456 chunk->map[i++] -= tail; 457 chunk->map[i] = tail; 458 } 459 } 460 461 /** 462 * pcpu_alloc_area - allocate area from a pcpu_chunk 463 * @chunk: chunk of interest 464 * @size: wanted size in bytes 465 * @align: wanted align 466 * 467 * Try to allocate @size bytes area aligned at @align from @chunk. 468 * Note that this function only allocates the offset. It doesn't 469 * populate or map the area. 470 * 471 * @chunk->map must have at least two free slots. 472 * 473 * CONTEXT: 474 * pcpu_lock. 475 * 476 * RETURNS: 477 * Allocated offset in @chunk on success, -1 if no matching area is 478 * found. 479 */ 480 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 481 { 482 int oslot = pcpu_chunk_slot(chunk); 483 int max_contig = 0; 484 int i, off; 485 486 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 487 bool is_last = i + 1 == chunk->map_used; 488 int head, tail; 489 490 /* extra for alignment requirement */ 491 head = ALIGN(off, align) - off; 492 BUG_ON(i == 0 && head != 0); 493 494 if (chunk->map[i] < 0) 495 continue; 496 if (chunk->map[i] < head + size) { 497 max_contig = max(chunk->map[i], max_contig); 498 continue; 499 } 500 501 /* 502 * If head is small or the previous block is free, 503 * merge'em. Note that 'small' is defined as smaller 504 * than sizeof(int), which is very small but isn't too 505 * uncommon for percpu allocations. 506 */ 507 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 508 if (chunk->map[i - 1] > 0) 509 chunk->map[i - 1] += head; 510 else { 511 chunk->map[i - 1] -= head; 512 chunk->free_size -= head; 513 } 514 chunk->map[i] -= head; 515 off += head; 516 head = 0; 517 } 518 519 /* if tail is small, just keep it around */ 520 tail = chunk->map[i] - head - size; 521 if (tail < sizeof(int)) 522 tail = 0; 523 524 /* split if warranted */ 525 if (head || tail) { 526 pcpu_split_block(chunk, i, head, tail); 527 if (head) { 528 i++; 529 off += head; 530 max_contig = max(chunk->map[i - 1], max_contig); 531 } 532 if (tail) 533 max_contig = max(chunk->map[i + 1], max_contig); 534 } 535 536 /* update hint and mark allocated */ 537 if (is_last) 538 chunk->contig_hint = max_contig; /* fully scanned */ 539 else 540 chunk->contig_hint = max(chunk->contig_hint, 541 max_contig); 542 543 chunk->free_size -= chunk->map[i]; 544 chunk->map[i] = -chunk->map[i]; 545 546 pcpu_chunk_relocate(chunk, oslot); 547 return off; 548 } 549 550 chunk->contig_hint = max_contig; /* fully scanned */ 551 pcpu_chunk_relocate(chunk, oslot); 552 553 /* tell the upper layer that this chunk has no matching area */ 554 return -1; 555 } 556 557 /** 558 * pcpu_free_area - free area to a pcpu_chunk 559 * @chunk: chunk of interest 560 * @freeme: offset of area to free 561 * 562 * Free area starting from @freeme to @chunk. Note that this function 563 * only modifies the allocation map. It doesn't depopulate or unmap 564 * the area. 565 * 566 * CONTEXT: 567 * pcpu_lock. 568 */ 569 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 570 { 571 int oslot = pcpu_chunk_slot(chunk); 572 int i, off; 573 574 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 575 if (off == freeme) 576 break; 577 BUG_ON(off != freeme); 578 BUG_ON(chunk->map[i] > 0); 579 580 chunk->map[i] = -chunk->map[i]; 581 chunk->free_size += chunk->map[i]; 582 583 /* merge with previous? */ 584 if (i > 0 && chunk->map[i - 1] >= 0) { 585 chunk->map[i - 1] += chunk->map[i]; 586 chunk->map_used--; 587 memmove(&chunk->map[i], &chunk->map[i + 1], 588 (chunk->map_used - i) * sizeof(chunk->map[0])); 589 i--; 590 } 591 /* merge with next? */ 592 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 593 chunk->map[i] += chunk->map[i + 1]; 594 chunk->map_used--; 595 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 596 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 597 } 598 599 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 600 pcpu_chunk_relocate(chunk, oslot); 601 } 602 603 static struct pcpu_chunk *pcpu_alloc_chunk(void) 604 { 605 struct pcpu_chunk *chunk; 606 607 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 608 if (!chunk) 609 return NULL; 610 611 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 612 sizeof(chunk->map[0])); 613 if (!chunk->map) { 614 kfree(chunk); 615 return NULL; 616 } 617 618 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 619 chunk->map[chunk->map_used++] = pcpu_unit_size; 620 621 INIT_LIST_HEAD(&chunk->list); 622 chunk->free_size = pcpu_unit_size; 623 chunk->contig_hint = pcpu_unit_size; 624 625 return chunk; 626 } 627 628 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 629 { 630 if (!chunk) 631 return; 632 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 633 kfree(chunk); 634 } 635 636 /* 637 * Chunk management implementation. 638 * 639 * To allow different implementations, chunk alloc/free and 640 * [de]population are implemented in a separate file which is pulled 641 * into this file and compiled together. The following functions 642 * should be implemented. 643 * 644 * pcpu_populate_chunk - populate the specified range of a chunk 645 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 646 * pcpu_create_chunk - create a new chunk 647 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 648 * pcpu_addr_to_page - translate address to physical address 649 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 650 */ 651 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 652 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 653 static struct pcpu_chunk *pcpu_create_chunk(void); 654 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 655 static struct page *pcpu_addr_to_page(void *addr); 656 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 657 658 #ifdef CONFIG_NEED_PER_CPU_KM 659 #include "percpu-km.c" 660 #else 661 #include "percpu-vm.c" 662 #endif 663 664 /** 665 * pcpu_chunk_addr_search - determine chunk containing specified address 666 * @addr: address for which the chunk needs to be determined. 667 * 668 * RETURNS: 669 * The address of the found chunk. 670 */ 671 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 672 { 673 /* is it in the first chunk? */ 674 if (pcpu_addr_in_first_chunk(addr)) { 675 /* is it in the reserved area? */ 676 if (pcpu_addr_in_reserved_chunk(addr)) 677 return pcpu_reserved_chunk; 678 return pcpu_first_chunk; 679 } 680 681 /* 682 * The address is relative to unit0 which might be unused and 683 * thus unmapped. Offset the address to the unit space of the 684 * current processor before looking it up in the vmalloc 685 * space. Note that any possible cpu id can be used here, so 686 * there's no need to worry about preemption or cpu hotplug. 687 */ 688 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 689 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 690 } 691 692 /** 693 * pcpu_alloc - the percpu allocator 694 * @size: size of area to allocate in bytes 695 * @align: alignment of area (max PAGE_SIZE) 696 * @reserved: allocate from the reserved chunk if available 697 * 698 * Allocate percpu area of @size bytes aligned at @align. 699 * 700 * CONTEXT: 701 * Does GFP_KERNEL allocation. 702 * 703 * RETURNS: 704 * Percpu pointer to the allocated area on success, NULL on failure. 705 */ 706 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 707 { 708 static int warn_limit = 10; 709 struct pcpu_chunk *chunk; 710 const char *err; 711 int slot, off, new_alloc; 712 unsigned long flags; 713 714 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 715 WARN(true, "illegal size (%zu) or align (%zu) for " 716 "percpu allocation\n", size, align); 717 return NULL; 718 } 719 720 mutex_lock(&pcpu_alloc_mutex); 721 spin_lock_irqsave(&pcpu_lock, flags); 722 723 /* serve reserved allocations from the reserved chunk if available */ 724 if (reserved && pcpu_reserved_chunk) { 725 chunk = pcpu_reserved_chunk; 726 727 if (size > chunk->contig_hint) { 728 err = "alloc from reserved chunk failed"; 729 goto fail_unlock; 730 } 731 732 while ((new_alloc = pcpu_need_to_extend(chunk))) { 733 spin_unlock_irqrestore(&pcpu_lock, flags); 734 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 735 err = "failed to extend area map of reserved chunk"; 736 goto fail_unlock_mutex; 737 } 738 spin_lock_irqsave(&pcpu_lock, flags); 739 } 740 741 off = pcpu_alloc_area(chunk, size, align); 742 if (off >= 0) 743 goto area_found; 744 745 err = "alloc from reserved chunk failed"; 746 goto fail_unlock; 747 } 748 749 restart: 750 /* search through normal chunks */ 751 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 752 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 753 if (size > chunk->contig_hint) 754 continue; 755 756 new_alloc = pcpu_need_to_extend(chunk); 757 if (new_alloc) { 758 spin_unlock_irqrestore(&pcpu_lock, flags); 759 if (pcpu_extend_area_map(chunk, 760 new_alloc) < 0) { 761 err = "failed to extend area map"; 762 goto fail_unlock_mutex; 763 } 764 spin_lock_irqsave(&pcpu_lock, flags); 765 /* 766 * pcpu_lock has been dropped, need to 767 * restart cpu_slot list walking. 768 */ 769 goto restart; 770 } 771 772 off = pcpu_alloc_area(chunk, size, align); 773 if (off >= 0) 774 goto area_found; 775 } 776 } 777 778 /* hmmm... no space left, create a new chunk */ 779 spin_unlock_irqrestore(&pcpu_lock, flags); 780 781 chunk = pcpu_create_chunk(); 782 if (!chunk) { 783 err = "failed to allocate new chunk"; 784 goto fail_unlock_mutex; 785 } 786 787 spin_lock_irqsave(&pcpu_lock, flags); 788 pcpu_chunk_relocate(chunk, -1); 789 goto restart; 790 791 area_found: 792 spin_unlock_irqrestore(&pcpu_lock, flags); 793 794 /* populate, map and clear the area */ 795 if (pcpu_populate_chunk(chunk, off, size)) { 796 spin_lock_irqsave(&pcpu_lock, flags); 797 pcpu_free_area(chunk, off); 798 err = "failed to populate"; 799 goto fail_unlock; 800 } 801 802 mutex_unlock(&pcpu_alloc_mutex); 803 804 /* return address relative to base address */ 805 return __addr_to_pcpu_ptr(chunk->base_addr + off); 806 807 fail_unlock: 808 spin_unlock_irqrestore(&pcpu_lock, flags); 809 fail_unlock_mutex: 810 mutex_unlock(&pcpu_alloc_mutex); 811 if (warn_limit) { 812 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 813 "%s\n", size, align, err); 814 dump_stack(); 815 if (!--warn_limit) 816 pr_info("PERCPU: limit reached, disable warning\n"); 817 } 818 return NULL; 819 } 820 821 /** 822 * __alloc_percpu - allocate dynamic percpu area 823 * @size: size of area to allocate in bytes 824 * @align: alignment of area (max PAGE_SIZE) 825 * 826 * Allocate zero-filled percpu area of @size bytes aligned at @align. 827 * Might sleep. Might trigger writeouts. 828 * 829 * CONTEXT: 830 * Does GFP_KERNEL allocation. 831 * 832 * RETURNS: 833 * Percpu pointer to the allocated area on success, NULL on failure. 834 */ 835 void __percpu *__alloc_percpu(size_t size, size_t align) 836 { 837 return pcpu_alloc(size, align, false); 838 } 839 EXPORT_SYMBOL_GPL(__alloc_percpu); 840 841 /** 842 * __alloc_reserved_percpu - allocate reserved percpu area 843 * @size: size of area to allocate in bytes 844 * @align: alignment of area (max PAGE_SIZE) 845 * 846 * Allocate zero-filled percpu area of @size bytes aligned at @align 847 * from reserved percpu area if arch has set it up; otherwise, 848 * allocation is served from the same dynamic area. Might sleep. 849 * Might trigger writeouts. 850 * 851 * CONTEXT: 852 * Does GFP_KERNEL allocation. 853 * 854 * RETURNS: 855 * Percpu pointer to the allocated area on success, NULL on failure. 856 */ 857 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 858 { 859 return pcpu_alloc(size, align, true); 860 } 861 862 /** 863 * pcpu_reclaim - reclaim fully free chunks, workqueue function 864 * @work: unused 865 * 866 * Reclaim all fully free chunks except for the first one. 867 * 868 * CONTEXT: 869 * workqueue context. 870 */ 871 static void pcpu_reclaim(struct work_struct *work) 872 { 873 LIST_HEAD(todo); 874 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 875 struct pcpu_chunk *chunk, *next; 876 877 mutex_lock(&pcpu_alloc_mutex); 878 spin_lock_irq(&pcpu_lock); 879 880 list_for_each_entry_safe(chunk, next, head, list) { 881 WARN_ON(chunk->immutable); 882 883 /* spare the first one */ 884 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 885 continue; 886 887 list_move(&chunk->list, &todo); 888 } 889 890 spin_unlock_irq(&pcpu_lock); 891 892 list_for_each_entry_safe(chunk, next, &todo, list) { 893 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 894 pcpu_destroy_chunk(chunk); 895 } 896 897 mutex_unlock(&pcpu_alloc_mutex); 898 } 899 900 /** 901 * free_percpu - free percpu area 902 * @ptr: pointer to area to free 903 * 904 * Free percpu area @ptr. 905 * 906 * CONTEXT: 907 * Can be called from atomic context. 908 */ 909 void free_percpu(void __percpu *ptr) 910 { 911 void *addr; 912 struct pcpu_chunk *chunk; 913 unsigned long flags; 914 int off; 915 916 if (!ptr) 917 return; 918 919 addr = __pcpu_ptr_to_addr(ptr); 920 921 spin_lock_irqsave(&pcpu_lock, flags); 922 923 chunk = pcpu_chunk_addr_search(addr); 924 off = addr - chunk->base_addr; 925 926 pcpu_free_area(chunk, off); 927 928 /* if there are more than one fully free chunks, wake up grim reaper */ 929 if (chunk->free_size == pcpu_unit_size) { 930 struct pcpu_chunk *pos; 931 932 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 933 if (pos != chunk) { 934 schedule_work(&pcpu_reclaim_work); 935 break; 936 } 937 } 938 939 spin_unlock_irqrestore(&pcpu_lock, flags); 940 } 941 EXPORT_SYMBOL_GPL(free_percpu); 942 943 /** 944 * is_kernel_percpu_address - test whether address is from static percpu area 945 * @addr: address to test 946 * 947 * Test whether @addr belongs to in-kernel static percpu area. Module 948 * static percpu areas are not considered. For those, use 949 * is_module_percpu_address(). 950 * 951 * RETURNS: 952 * %true if @addr is from in-kernel static percpu area, %false otherwise. 953 */ 954 bool is_kernel_percpu_address(unsigned long addr) 955 { 956 #ifdef CONFIG_SMP 957 const size_t static_size = __per_cpu_end - __per_cpu_start; 958 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 959 unsigned int cpu; 960 961 for_each_possible_cpu(cpu) { 962 void *start = per_cpu_ptr(base, cpu); 963 964 if ((void *)addr >= start && (void *)addr < start + static_size) 965 return true; 966 } 967 #endif 968 /* on UP, can't distinguish from other static vars, always false */ 969 return false; 970 } 971 972 /** 973 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 974 * @addr: the address to be converted to physical address 975 * 976 * Given @addr which is dereferenceable address obtained via one of 977 * percpu access macros, this function translates it into its physical 978 * address. The caller is responsible for ensuring @addr stays valid 979 * until this function finishes. 980 * 981 * percpu allocator has special setup for the first chunk, which currently 982 * supports either embedding in linear address space or vmalloc mapping, 983 * and, from the second one, the backing allocator (currently either vm or 984 * km) provides translation. 985 * 986 * The addr can be tranlated simply without checking if it falls into the 987 * first chunk. But the current code reflects better how percpu allocator 988 * actually works, and the verification can discover both bugs in percpu 989 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 990 * code. 991 * 992 * RETURNS: 993 * The physical address for @addr. 994 */ 995 phys_addr_t per_cpu_ptr_to_phys(void *addr) 996 { 997 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 998 bool in_first_chunk = false; 999 unsigned long first_low, first_high; 1000 unsigned int cpu; 1001 1002 /* 1003 * The following test on unit_low/high isn't strictly 1004 * necessary but will speed up lookups of addresses which 1005 * aren't in the first chunk. 1006 */ 1007 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1008 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1009 pcpu_unit_pages); 1010 if ((unsigned long)addr >= first_low && 1011 (unsigned long)addr < first_high) { 1012 for_each_possible_cpu(cpu) { 1013 void *start = per_cpu_ptr(base, cpu); 1014 1015 if (addr >= start && addr < start + pcpu_unit_size) { 1016 in_first_chunk = true; 1017 break; 1018 } 1019 } 1020 } 1021 1022 if (in_first_chunk) { 1023 if (!is_vmalloc_addr(addr)) 1024 return __pa(addr); 1025 else 1026 return page_to_phys(vmalloc_to_page(addr)) + 1027 offset_in_page(addr); 1028 } else 1029 return page_to_phys(pcpu_addr_to_page(addr)) + 1030 offset_in_page(addr); 1031 } 1032 1033 /** 1034 * pcpu_alloc_alloc_info - allocate percpu allocation info 1035 * @nr_groups: the number of groups 1036 * @nr_units: the number of units 1037 * 1038 * Allocate ai which is large enough for @nr_groups groups containing 1039 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1040 * cpu_map array which is long enough for @nr_units and filled with 1041 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1042 * pointer of other groups. 1043 * 1044 * RETURNS: 1045 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1046 * failure. 1047 */ 1048 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1049 int nr_units) 1050 { 1051 struct pcpu_alloc_info *ai; 1052 size_t base_size, ai_size; 1053 void *ptr; 1054 int unit; 1055 1056 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1057 __alignof__(ai->groups[0].cpu_map[0])); 1058 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1059 1060 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1061 if (!ptr) 1062 return NULL; 1063 ai = ptr; 1064 ptr += base_size; 1065 1066 ai->groups[0].cpu_map = ptr; 1067 1068 for (unit = 0; unit < nr_units; unit++) 1069 ai->groups[0].cpu_map[unit] = NR_CPUS; 1070 1071 ai->nr_groups = nr_groups; 1072 ai->__ai_size = PFN_ALIGN(ai_size); 1073 1074 return ai; 1075 } 1076 1077 /** 1078 * pcpu_free_alloc_info - free percpu allocation info 1079 * @ai: pcpu_alloc_info to free 1080 * 1081 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1082 */ 1083 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1084 { 1085 free_bootmem(__pa(ai), ai->__ai_size); 1086 } 1087 1088 /** 1089 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1090 * @lvl: loglevel 1091 * @ai: allocation info to dump 1092 * 1093 * Print out information about @ai using loglevel @lvl. 1094 */ 1095 static void pcpu_dump_alloc_info(const char *lvl, 1096 const struct pcpu_alloc_info *ai) 1097 { 1098 int group_width = 1, cpu_width = 1, width; 1099 char empty_str[] = "--------"; 1100 int alloc = 0, alloc_end = 0; 1101 int group, v; 1102 int upa, apl; /* units per alloc, allocs per line */ 1103 1104 v = ai->nr_groups; 1105 while (v /= 10) 1106 group_width++; 1107 1108 v = num_possible_cpus(); 1109 while (v /= 10) 1110 cpu_width++; 1111 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1112 1113 upa = ai->alloc_size / ai->unit_size; 1114 width = upa * (cpu_width + 1) + group_width + 3; 1115 apl = rounddown_pow_of_two(max(60 / width, 1)); 1116 1117 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1118 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1119 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1120 1121 for (group = 0; group < ai->nr_groups; group++) { 1122 const struct pcpu_group_info *gi = &ai->groups[group]; 1123 int unit = 0, unit_end = 0; 1124 1125 BUG_ON(gi->nr_units % upa); 1126 for (alloc_end += gi->nr_units / upa; 1127 alloc < alloc_end; alloc++) { 1128 if (!(alloc % apl)) { 1129 printk("\n"); 1130 printk("%spcpu-alloc: ", lvl); 1131 } 1132 printk("[%0*d] ", group_width, group); 1133 1134 for (unit_end += upa; unit < unit_end; unit++) 1135 if (gi->cpu_map[unit] != NR_CPUS) 1136 printk("%0*d ", cpu_width, 1137 gi->cpu_map[unit]); 1138 else 1139 printk("%s ", empty_str); 1140 } 1141 } 1142 printk("\n"); 1143 } 1144 1145 /** 1146 * pcpu_setup_first_chunk - initialize the first percpu chunk 1147 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1148 * @base_addr: mapped address 1149 * 1150 * Initialize the first percpu chunk which contains the kernel static 1151 * perpcu area. This function is to be called from arch percpu area 1152 * setup path. 1153 * 1154 * @ai contains all information necessary to initialize the first 1155 * chunk and prime the dynamic percpu allocator. 1156 * 1157 * @ai->static_size is the size of static percpu area. 1158 * 1159 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1160 * reserve after the static area in the first chunk. This reserves 1161 * the first chunk such that it's available only through reserved 1162 * percpu allocation. This is primarily used to serve module percpu 1163 * static areas on architectures where the addressing model has 1164 * limited offset range for symbol relocations to guarantee module 1165 * percpu symbols fall inside the relocatable range. 1166 * 1167 * @ai->dyn_size determines the number of bytes available for dynamic 1168 * allocation in the first chunk. The area between @ai->static_size + 1169 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1170 * 1171 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1172 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1173 * @ai->dyn_size. 1174 * 1175 * @ai->atom_size is the allocation atom size and used as alignment 1176 * for vm areas. 1177 * 1178 * @ai->alloc_size is the allocation size and always multiple of 1179 * @ai->atom_size. This is larger than @ai->atom_size if 1180 * @ai->unit_size is larger than @ai->atom_size. 1181 * 1182 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1183 * percpu areas. Units which should be colocated are put into the 1184 * same group. Dynamic VM areas will be allocated according to these 1185 * groupings. If @ai->nr_groups is zero, a single group containing 1186 * all units is assumed. 1187 * 1188 * The caller should have mapped the first chunk at @base_addr and 1189 * copied static data to each unit. 1190 * 1191 * If the first chunk ends up with both reserved and dynamic areas, it 1192 * is served by two chunks - one to serve the core static and reserved 1193 * areas and the other for the dynamic area. They share the same vm 1194 * and page map but uses different area allocation map to stay away 1195 * from each other. The latter chunk is circulated in the chunk slots 1196 * and available for dynamic allocation like any other chunks. 1197 * 1198 * RETURNS: 1199 * 0 on success, -errno on failure. 1200 */ 1201 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1202 void *base_addr) 1203 { 1204 static char cpus_buf[4096] __initdata; 1205 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1206 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1207 size_t dyn_size = ai->dyn_size; 1208 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1209 struct pcpu_chunk *schunk, *dchunk = NULL; 1210 unsigned long *group_offsets; 1211 size_t *group_sizes; 1212 unsigned long *unit_off; 1213 unsigned int cpu; 1214 int *unit_map; 1215 int group, unit, i; 1216 1217 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1218 1219 #define PCPU_SETUP_BUG_ON(cond) do { \ 1220 if (unlikely(cond)) { \ 1221 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1222 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1223 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1224 BUG(); \ 1225 } \ 1226 } while (0) 1227 1228 /* sanity checks */ 1229 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1230 #ifdef CONFIG_SMP 1231 PCPU_SETUP_BUG_ON(!ai->static_size); 1232 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); 1233 #endif 1234 PCPU_SETUP_BUG_ON(!base_addr); 1235 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); 1236 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1237 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1238 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1239 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1240 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1241 1242 /* process group information and build config tables accordingly */ 1243 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1244 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1245 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1246 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1247 1248 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1249 unit_map[cpu] = UINT_MAX; 1250 1251 pcpu_low_unit_cpu = NR_CPUS; 1252 pcpu_high_unit_cpu = NR_CPUS; 1253 1254 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1255 const struct pcpu_group_info *gi = &ai->groups[group]; 1256 1257 group_offsets[group] = gi->base_offset; 1258 group_sizes[group] = gi->nr_units * ai->unit_size; 1259 1260 for (i = 0; i < gi->nr_units; i++) { 1261 cpu = gi->cpu_map[i]; 1262 if (cpu == NR_CPUS) 1263 continue; 1264 1265 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1266 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1267 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1268 1269 unit_map[cpu] = unit + i; 1270 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1271 1272 /* determine low/high unit_cpu */ 1273 if (pcpu_low_unit_cpu == NR_CPUS || 1274 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1275 pcpu_low_unit_cpu = cpu; 1276 if (pcpu_high_unit_cpu == NR_CPUS || 1277 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1278 pcpu_high_unit_cpu = cpu; 1279 } 1280 } 1281 pcpu_nr_units = unit; 1282 1283 for_each_possible_cpu(cpu) 1284 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1285 1286 /* we're done parsing the input, undefine BUG macro and dump config */ 1287 #undef PCPU_SETUP_BUG_ON 1288 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1289 1290 pcpu_nr_groups = ai->nr_groups; 1291 pcpu_group_offsets = group_offsets; 1292 pcpu_group_sizes = group_sizes; 1293 pcpu_unit_map = unit_map; 1294 pcpu_unit_offsets = unit_off; 1295 1296 /* determine basic parameters */ 1297 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1298 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1299 pcpu_atom_size = ai->atom_size; 1300 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1301 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1302 1303 /* 1304 * Allocate chunk slots. The additional last slot is for 1305 * empty chunks. 1306 */ 1307 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1308 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1309 for (i = 0; i < pcpu_nr_slots; i++) 1310 INIT_LIST_HEAD(&pcpu_slot[i]); 1311 1312 /* 1313 * Initialize static chunk. If reserved_size is zero, the 1314 * static chunk covers static area + dynamic allocation area 1315 * in the first chunk. If reserved_size is not zero, it 1316 * covers static area + reserved area (mostly used for module 1317 * static percpu allocation). 1318 */ 1319 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1320 INIT_LIST_HEAD(&schunk->list); 1321 schunk->base_addr = base_addr; 1322 schunk->map = smap; 1323 schunk->map_alloc = ARRAY_SIZE(smap); 1324 schunk->immutable = true; 1325 bitmap_fill(schunk->populated, pcpu_unit_pages); 1326 1327 if (ai->reserved_size) { 1328 schunk->free_size = ai->reserved_size; 1329 pcpu_reserved_chunk = schunk; 1330 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1331 } else { 1332 schunk->free_size = dyn_size; 1333 dyn_size = 0; /* dynamic area covered */ 1334 } 1335 schunk->contig_hint = schunk->free_size; 1336 1337 schunk->map[schunk->map_used++] = -ai->static_size; 1338 if (schunk->free_size) 1339 schunk->map[schunk->map_used++] = schunk->free_size; 1340 1341 /* init dynamic chunk if necessary */ 1342 if (dyn_size) { 1343 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1344 INIT_LIST_HEAD(&dchunk->list); 1345 dchunk->base_addr = base_addr; 1346 dchunk->map = dmap; 1347 dchunk->map_alloc = ARRAY_SIZE(dmap); 1348 dchunk->immutable = true; 1349 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1350 1351 dchunk->contig_hint = dchunk->free_size = dyn_size; 1352 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1353 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1354 } 1355 1356 /* link the first chunk in */ 1357 pcpu_first_chunk = dchunk ?: schunk; 1358 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1359 1360 /* we're done */ 1361 pcpu_base_addr = base_addr; 1362 return 0; 1363 } 1364 1365 #ifdef CONFIG_SMP 1366 1367 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1368 [PCPU_FC_AUTO] = "auto", 1369 [PCPU_FC_EMBED] = "embed", 1370 [PCPU_FC_PAGE] = "page", 1371 }; 1372 1373 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1374 1375 static int __init percpu_alloc_setup(char *str) 1376 { 1377 if (0) 1378 /* nada */; 1379 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1380 else if (!strcmp(str, "embed")) 1381 pcpu_chosen_fc = PCPU_FC_EMBED; 1382 #endif 1383 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1384 else if (!strcmp(str, "page")) 1385 pcpu_chosen_fc = PCPU_FC_PAGE; 1386 #endif 1387 else 1388 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1389 1390 return 0; 1391 } 1392 early_param("percpu_alloc", percpu_alloc_setup); 1393 1394 /* 1395 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1396 * Build it if needed by the arch config or the generic setup is going 1397 * to be used. 1398 */ 1399 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1400 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1401 #define BUILD_EMBED_FIRST_CHUNK 1402 #endif 1403 1404 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1405 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1406 #define BUILD_PAGE_FIRST_CHUNK 1407 #endif 1408 1409 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1410 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1411 /** 1412 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1413 * @reserved_size: the size of reserved percpu area in bytes 1414 * @dyn_size: minimum free size for dynamic allocation in bytes 1415 * @atom_size: allocation atom size 1416 * @cpu_distance_fn: callback to determine distance between cpus, optional 1417 * 1418 * This function determines grouping of units, their mappings to cpus 1419 * and other parameters considering needed percpu size, allocation 1420 * atom size and distances between CPUs. 1421 * 1422 * Groups are always mutliples of atom size and CPUs which are of 1423 * LOCAL_DISTANCE both ways are grouped together and share space for 1424 * units in the same group. The returned configuration is guaranteed 1425 * to have CPUs on different nodes on different groups and >=75% usage 1426 * of allocated virtual address space. 1427 * 1428 * RETURNS: 1429 * On success, pointer to the new allocation_info is returned. On 1430 * failure, ERR_PTR value is returned. 1431 */ 1432 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1433 size_t reserved_size, size_t dyn_size, 1434 size_t atom_size, 1435 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1436 { 1437 static int group_map[NR_CPUS] __initdata; 1438 static int group_cnt[NR_CPUS] __initdata; 1439 const size_t static_size = __per_cpu_end - __per_cpu_start; 1440 int nr_groups = 1, nr_units = 0; 1441 size_t size_sum, min_unit_size, alloc_size; 1442 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1443 int last_allocs, group, unit; 1444 unsigned int cpu, tcpu; 1445 struct pcpu_alloc_info *ai; 1446 unsigned int *cpu_map; 1447 1448 /* this function may be called multiple times */ 1449 memset(group_map, 0, sizeof(group_map)); 1450 memset(group_cnt, 0, sizeof(group_cnt)); 1451 1452 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1453 size_sum = PFN_ALIGN(static_size + reserved_size + 1454 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1455 dyn_size = size_sum - static_size - reserved_size; 1456 1457 /* 1458 * Determine min_unit_size, alloc_size and max_upa such that 1459 * alloc_size is multiple of atom_size and is the smallest 1460 * which can accommodate 4k aligned segments which are equal to 1461 * or larger than min_unit_size. 1462 */ 1463 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1464 1465 alloc_size = roundup(min_unit_size, atom_size); 1466 upa = alloc_size / min_unit_size; 1467 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1468 upa--; 1469 max_upa = upa; 1470 1471 /* group cpus according to their proximity */ 1472 for_each_possible_cpu(cpu) { 1473 group = 0; 1474 next_group: 1475 for_each_possible_cpu(tcpu) { 1476 if (cpu == tcpu) 1477 break; 1478 if (group_map[tcpu] == group && cpu_distance_fn && 1479 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1480 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1481 group++; 1482 nr_groups = max(nr_groups, group + 1); 1483 goto next_group; 1484 } 1485 } 1486 group_map[cpu] = group; 1487 group_cnt[group]++; 1488 } 1489 1490 /* 1491 * Expand unit size until address space usage goes over 75% 1492 * and then as much as possible without using more address 1493 * space. 1494 */ 1495 last_allocs = INT_MAX; 1496 for (upa = max_upa; upa; upa--) { 1497 int allocs = 0, wasted = 0; 1498 1499 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1500 continue; 1501 1502 for (group = 0; group < nr_groups; group++) { 1503 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1504 allocs += this_allocs; 1505 wasted += this_allocs * upa - group_cnt[group]; 1506 } 1507 1508 /* 1509 * Don't accept if wastage is over 1/3. The 1510 * greater-than comparison ensures upa==1 always 1511 * passes the following check. 1512 */ 1513 if (wasted > num_possible_cpus() / 3) 1514 continue; 1515 1516 /* and then don't consume more memory */ 1517 if (allocs > last_allocs) 1518 break; 1519 last_allocs = allocs; 1520 best_upa = upa; 1521 } 1522 upa = best_upa; 1523 1524 /* allocate and fill alloc_info */ 1525 for (group = 0; group < nr_groups; group++) 1526 nr_units += roundup(group_cnt[group], upa); 1527 1528 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1529 if (!ai) 1530 return ERR_PTR(-ENOMEM); 1531 cpu_map = ai->groups[0].cpu_map; 1532 1533 for (group = 0; group < nr_groups; group++) { 1534 ai->groups[group].cpu_map = cpu_map; 1535 cpu_map += roundup(group_cnt[group], upa); 1536 } 1537 1538 ai->static_size = static_size; 1539 ai->reserved_size = reserved_size; 1540 ai->dyn_size = dyn_size; 1541 ai->unit_size = alloc_size / upa; 1542 ai->atom_size = atom_size; 1543 ai->alloc_size = alloc_size; 1544 1545 for (group = 0, unit = 0; group_cnt[group]; group++) { 1546 struct pcpu_group_info *gi = &ai->groups[group]; 1547 1548 /* 1549 * Initialize base_offset as if all groups are located 1550 * back-to-back. The caller should update this to 1551 * reflect actual allocation. 1552 */ 1553 gi->base_offset = unit * ai->unit_size; 1554 1555 for_each_possible_cpu(cpu) 1556 if (group_map[cpu] == group) 1557 gi->cpu_map[gi->nr_units++] = cpu; 1558 gi->nr_units = roundup(gi->nr_units, upa); 1559 unit += gi->nr_units; 1560 } 1561 BUG_ON(unit != nr_units); 1562 1563 return ai; 1564 } 1565 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1566 1567 #if defined(BUILD_EMBED_FIRST_CHUNK) 1568 /** 1569 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1570 * @reserved_size: the size of reserved percpu area in bytes 1571 * @dyn_size: minimum free size for dynamic allocation in bytes 1572 * @atom_size: allocation atom size 1573 * @cpu_distance_fn: callback to determine distance between cpus, optional 1574 * @alloc_fn: function to allocate percpu page 1575 * @free_fn: function to free percpu page 1576 * 1577 * This is a helper to ease setting up embedded first percpu chunk and 1578 * can be called where pcpu_setup_first_chunk() is expected. 1579 * 1580 * If this function is used to setup the first chunk, it is allocated 1581 * by calling @alloc_fn and used as-is without being mapped into 1582 * vmalloc area. Allocations are always whole multiples of @atom_size 1583 * aligned to @atom_size. 1584 * 1585 * This enables the first chunk to piggy back on the linear physical 1586 * mapping which often uses larger page size. Please note that this 1587 * can result in very sparse cpu->unit mapping on NUMA machines thus 1588 * requiring large vmalloc address space. Don't use this allocator if 1589 * vmalloc space is not orders of magnitude larger than distances 1590 * between node memory addresses (ie. 32bit NUMA machines). 1591 * 1592 * @dyn_size specifies the minimum dynamic area size. 1593 * 1594 * If the needed size is smaller than the minimum or specified unit 1595 * size, the leftover is returned using @free_fn. 1596 * 1597 * RETURNS: 1598 * 0 on success, -errno on failure. 1599 */ 1600 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1601 size_t atom_size, 1602 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1603 pcpu_fc_alloc_fn_t alloc_fn, 1604 pcpu_fc_free_fn_t free_fn) 1605 { 1606 void *base = (void *)ULONG_MAX; 1607 void **areas = NULL; 1608 struct pcpu_alloc_info *ai; 1609 size_t size_sum, areas_size, max_distance; 1610 int group, i, rc; 1611 1612 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1613 cpu_distance_fn); 1614 if (IS_ERR(ai)) 1615 return PTR_ERR(ai); 1616 1617 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1618 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1619 1620 areas = alloc_bootmem_nopanic(areas_size); 1621 if (!areas) { 1622 rc = -ENOMEM; 1623 goto out_free; 1624 } 1625 1626 /* allocate, copy and determine base address */ 1627 for (group = 0; group < ai->nr_groups; group++) { 1628 struct pcpu_group_info *gi = &ai->groups[group]; 1629 unsigned int cpu = NR_CPUS; 1630 void *ptr; 1631 1632 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1633 cpu = gi->cpu_map[i]; 1634 BUG_ON(cpu == NR_CPUS); 1635 1636 /* allocate space for the whole group */ 1637 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1638 if (!ptr) { 1639 rc = -ENOMEM; 1640 goto out_free_areas; 1641 } 1642 areas[group] = ptr; 1643 1644 base = min(ptr, base); 1645 1646 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1647 if (gi->cpu_map[i] == NR_CPUS) { 1648 /* unused unit, free whole */ 1649 free_fn(ptr, ai->unit_size); 1650 continue; 1651 } 1652 /* copy and return the unused part */ 1653 memcpy(ptr, __per_cpu_load, ai->static_size); 1654 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1655 } 1656 } 1657 1658 /* base address is now known, determine group base offsets */ 1659 max_distance = 0; 1660 for (group = 0; group < ai->nr_groups; group++) { 1661 ai->groups[group].base_offset = areas[group] - base; 1662 max_distance = max_t(size_t, max_distance, 1663 ai->groups[group].base_offset); 1664 } 1665 max_distance += ai->unit_size; 1666 1667 /* warn if maximum distance is further than 75% of vmalloc space */ 1668 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1669 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1670 "space 0x%lx\n", max_distance, 1671 (unsigned long)(VMALLOC_END - VMALLOC_START)); 1672 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1673 /* and fail if we have fallback */ 1674 rc = -EINVAL; 1675 goto out_free; 1676 #endif 1677 } 1678 1679 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1680 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1681 ai->dyn_size, ai->unit_size); 1682 1683 rc = pcpu_setup_first_chunk(ai, base); 1684 goto out_free; 1685 1686 out_free_areas: 1687 for (group = 0; group < ai->nr_groups; group++) 1688 free_fn(areas[group], 1689 ai->groups[group].nr_units * ai->unit_size); 1690 out_free: 1691 pcpu_free_alloc_info(ai); 1692 if (areas) 1693 free_bootmem(__pa(areas), areas_size); 1694 return rc; 1695 } 1696 #endif /* BUILD_EMBED_FIRST_CHUNK */ 1697 1698 #ifdef BUILD_PAGE_FIRST_CHUNK 1699 /** 1700 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1701 * @reserved_size: the size of reserved percpu area in bytes 1702 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1703 * @free_fn: function to free percpu page, always called with PAGE_SIZE 1704 * @populate_pte_fn: function to populate pte 1705 * 1706 * This is a helper to ease setting up page-remapped first percpu 1707 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1708 * 1709 * This is the basic allocator. Static percpu area is allocated 1710 * page-by-page into vmalloc area. 1711 * 1712 * RETURNS: 1713 * 0 on success, -errno on failure. 1714 */ 1715 int __init pcpu_page_first_chunk(size_t reserved_size, 1716 pcpu_fc_alloc_fn_t alloc_fn, 1717 pcpu_fc_free_fn_t free_fn, 1718 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1719 { 1720 static struct vm_struct vm; 1721 struct pcpu_alloc_info *ai; 1722 char psize_str[16]; 1723 int unit_pages; 1724 size_t pages_size; 1725 struct page **pages; 1726 int unit, i, j, rc; 1727 1728 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1729 1730 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 1731 if (IS_ERR(ai)) 1732 return PTR_ERR(ai); 1733 BUG_ON(ai->nr_groups != 1); 1734 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1735 1736 unit_pages = ai->unit_size >> PAGE_SHIFT; 1737 1738 /* unaligned allocations can't be freed, round up to page size */ 1739 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1740 sizeof(pages[0])); 1741 pages = alloc_bootmem(pages_size); 1742 1743 /* allocate pages */ 1744 j = 0; 1745 for (unit = 0; unit < num_possible_cpus(); unit++) 1746 for (i = 0; i < unit_pages; i++) { 1747 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1748 void *ptr; 1749 1750 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1751 if (!ptr) { 1752 pr_warning("PERCPU: failed to allocate %s page " 1753 "for cpu%u\n", psize_str, cpu); 1754 goto enomem; 1755 } 1756 pages[j++] = virt_to_page(ptr); 1757 } 1758 1759 /* allocate vm area, map the pages and copy static data */ 1760 vm.flags = VM_ALLOC; 1761 vm.size = num_possible_cpus() * ai->unit_size; 1762 vm_area_register_early(&vm, PAGE_SIZE); 1763 1764 for (unit = 0; unit < num_possible_cpus(); unit++) { 1765 unsigned long unit_addr = 1766 (unsigned long)vm.addr + unit * ai->unit_size; 1767 1768 for (i = 0; i < unit_pages; i++) 1769 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1770 1771 /* pte already populated, the following shouldn't fail */ 1772 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1773 unit_pages); 1774 if (rc < 0) 1775 panic("failed to map percpu area, err=%d\n", rc); 1776 1777 /* 1778 * FIXME: Archs with virtual cache should flush local 1779 * cache for the linear mapping here - something 1780 * equivalent to flush_cache_vmap() on the local cpu. 1781 * flush_cache_vmap() can't be used as most supporting 1782 * data structures are not set up yet. 1783 */ 1784 1785 /* copy static data */ 1786 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1787 } 1788 1789 /* we're ready, commit */ 1790 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1791 unit_pages, psize_str, vm.addr, ai->static_size, 1792 ai->reserved_size, ai->dyn_size); 1793 1794 rc = pcpu_setup_first_chunk(ai, vm.addr); 1795 goto out_free_ar; 1796 1797 enomem: 1798 while (--j >= 0) 1799 free_fn(page_address(pages[j]), PAGE_SIZE); 1800 rc = -ENOMEM; 1801 out_free_ar: 1802 free_bootmem(__pa(pages), pages_size); 1803 pcpu_free_alloc_info(ai); 1804 return rc; 1805 } 1806 #endif /* BUILD_PAGE_FIRST_CHUNK */ 1807 1808 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1809 /* 1810 * Generic SMP percpu area setup. 1811 * 1812 * The embedding helper is used because its behavior closely resembles 1813 * the original non-dynamic generic percpu area setup. This is 1814 * important because many archs have addressing restrictions and might 1815 * fail if the percpu area is located far away from the previous 1816 * location. As an added bonus, in non-NUMA cases, embedding is 1817 * generally a good idea TLB-wise because percpu area can piggy back 1818 * on the physical linear memory mapping which uses large page 1819 * mappings on applicable archs. 1820 */ 1821 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1822 EXPORT_SYMBOL(__per_cpu_offset); 1823 1824 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1825 size_t align) 1826 { 1827 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 1828 } 1829 1830 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1831 { 1832 free_bootmem(__pa(ptr), size); 1833 } 1834 1835 void __init setup_per_cpu_areas(void) 1836 { 1837 unsigned long delta; 1838 unsigned int cpu; 1839 int rc; 1840 1841 /* 1842 * Always reserve area for module percpu variables. That's 1843 * what the legacy allocator did. 1844 */ 1845 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1846 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1847 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1848 if (rc < 0) 1849 panic("Failed to initialize percpu areas."); 1850 1851 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1852 for_each_possible_cpu(cpu) 1853 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1854 } 1855 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1856 1857 #else /* CONFIG_SMP */ 1858 1859 /* 1860 * UP percpu area setup. 1861 * 1862 * UP always uses km-based percpu allocator with identity mapping. 1863 * Static percpu variables are indistinguishable from the usual static 1864 * variables and don't require any special preparation. 1865 */ 1866 void __init setup_per_cpu_areas(void) 1867 { 1868 const size_t unit_size = 1869 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 1870 PERCPU_DYNAMIC_RESERVE)); 1871 struct pcpu_alloc_info *ai; 1872 void *fc; 1873 1874 ai = pcpu_alloc_alloc_info(1, 1); 1875 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 1876 if (!ai || !fc) 1877 panic("Failed to allocate memory for percpu areas."); 1878 1879 ai->dyn_size = unit_size; 1880 ai->unit_size = unit_size; 1881 ai->atom_size = unit_size; 1882 ai->alloc_size = unit_size; 1883 ai->groups[0].nr_units = 1; 1884 ai->groups[0].cpu_map[0] = 0; 1885 1886 if (pcpu_setup_first_chunk(ai, fc) < 0) 1887 panic("Failed to initialize percpu areas."); 1888 } 1889 1890 #endif /* CONFIG_SMP */ 1891 1892 /* 1893 * First and reserved chunks are initialized with temporary allocation 1894 * map in initdata so that they can be used before slab is online. 1895 * This function is called after slab is brought up and replaces those 1896 * with properly allocated maps. 1897 */ 1898 void __init percpu_init_late(void) 1899 { 1900 struct pcpu_chunk *target_chunks[] = 1901 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 1902 struct pcpu_chunk *chunk; 1903 unsigned long flags; 1904 int i; 1905 1906 for (i = 0; (chunk = target_chunks[i]); i++) { 1907 int *map; 1908 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 1909 1910 BUILD_BUG_ON(size > PAGE_SIZE); 1911 1912 map = pcpu_mem_zalloc(size); 1913 BUG_ON(!map); 1914 1915 spin_lock_irqsave(&pcpu_lock, flags); 1916 memcpy(map, chunk->map, size); 1917 chunk->map = map; 1918 spin_unlock_irqrestore(&pcpu_lock, flags); 1919 } 1920 } 1921