1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 #include <linux/kmemleak.h> 71 72 #include <asm/cacheflush.h> 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/io.h> 76 77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 79 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 80 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 81 #define PCPU_EMPTY_POP_PAGES_LOW 2 82 #define PCPU_EMPTY_POP_PAGES_HIGH 4 83 84 #ifdef CONFIG_SMP 85 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 86 #ifndef __addr_to_pcpu_ptr 87 #define __addr_to_pcpu_ptr(addr) \ 88 (void __percpu *)((unsigned long)(addr) - \ 89 (unsigned long)pcpu_base_addr + \ 90 (unsigned long)__per_cpu_start) 91 #endif 92 #ifndef __pcpu_ptr_to_addr 93 #define __pcpu_ptr_to_addr(ptr) \ 94 (void __force *)((unsigned long)(ptr) + \ 95 (unsigned long)pcpu_base_addr - \ 96 (unsigned long)__per_cpu_start) 97 #endif 98 #else /* CONFIG_SMP */ 99 /* on UP, it's always identity mapped */ 100 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 101 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 102 #endif /* CONFIG_SMP */ 103 104 struct pcpu_chunk { 105 struct list_head list; /* linked to pcpu_slot lists */ 106 int free_size; /* free bytes in the chunk */ 107 int contig_hint; /* max contiguous size hint */ 108 void *base_addr; /* base address of this chunk */ 109 110 int map_used; /* # of map entries used before the sentry */ 111 int map_alloc; /* # of map entries allocated */ 112 int *map; /* allocation map */ 113 struct work_struct map_extend_work;/* async ->map[] extension */ 114 115 void *data; /* chunk data */ 116 int first_free; /* no free below this */ 117 bool immutable; /* no [de]population allowed */ 118 int nr_populated; /* # of populated pages */ 119 unsigned long populated[]; /* populated bitmap */ 120 }; 121 122 static int pcpu_unit_pages __read_mostly; 123 static int pcpu_unit_size __read_mostly; 124 static int pcpu_nr_units __read_mostly; 125 static int pcpu_atom_size __read_mostly; 126 static int pcpu_nr_slots __read_mostly; 127 static size_t pcpu_chunk_struct_size __read_mostly; 128 129 /* cpus with the lowest and highest unit addresses */ 130 static unsigned int pcpu_low_unit_cpu __read_mostly; 131 static unsigned int pcpu_high_unit_cpu __read_mostly; 132 133 /* the address of the first chunk which starts with the kernel static area */ 134 void *pcpu_base_addr __read_mostly; 135 EXPORT_SYMBOL_GPL(pcpu_base_addr); 136 137 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 138 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 139 140 /* group information, used for vm allocation */ 141 static int pcpu_nr_groups __read_mostly; 142 static const unsigned long *pcpu_group_offsets __read_mostly; 143 static const size_t *pcpu_group_sizes __read_mostly; 144 145 /* 146 * The first chunk which always exists. Note that unlike other 147 * chunks, this one can be allocated and mapped in several different 148 * ways and thus often doesn't live in the vmalloc area. 149 */ 150 static struct pcpu_chunk *pcpu_first_chunk; 151 152 /* 153 * Optional reserved chunk. This chunk reserves part of the first 154 * chunk and serves it for reserved allocations. The amount of 155 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 156 * area doesn't exist, the following variables contain NULL and 0 157 * respectively. 158 */ 159 static struct pcpu_chunk *pcpu_reserved_chunk; 160 static int pcpu_reserved_chunk_limit; 161 162 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 163 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */ 164 165 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 166 167 /* 168 * The number of empty populated pages, protected by pcpu_lock. The 169 * reserved chunk doesn't contribute to the count. 170 */ 171 static int pcpu_nr_empty_pop_pages; 172 173 /* 174 * Balance work is used to populate or destroy chunks asynchronously. We 175 * try to keep the number of populated free pages between 176 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 177 * empty chunk. 178 */ 179 static void pcpu_balance_workfn(struct work_struct *work); 180 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 181 static bool pcpu_async_enabled __read_mostly; 182 static bool pcpu_atomic_alloc_failed; 183 184 static void pcpu_schedule_balance_work(void) 185 { 186 if (pcpu_async_enabled) 187 schedule_work(&pcpu_balance_work); 188 } 189 190 static bool pcpu_addr_in_first_chunk(void *addr) 191 { 192 void *first_start = pcpu_first_chunk->base_addr; 193 194 return addr >= first_start && addr < first_start + pcpu_unit_size; 195 } 196 197 static bool pcpu_addr_in_reserved_chunk(void *addr) 198 { 199 void *first_start = pcpu_first_chunk->base_addr; 200 201 return addr >= first_start && 202 addr < first_start + pcpu_reserved_chunk_limit; 203 } 204 205 static int __pcpu_size_to_slot(int size) 206 { 207 int highbit = fls(size); /* size is in bytes */ 208 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 209 } 210 211 static int pcpu_size_to_slot(int size) 212 { 213 if (size == pcpu_unit_size) 214 return pcpu_nr_slots - 1; 215 return __pcpu_size_to_slot(size); 216 } 217 218 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 219 { 220 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 221 return 0; 222 223 return pcpu_size_to_slot(chunk->free_size); 224 } 225 226 /* set the pointer to a chunk in a page struct */ 227 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 228 { 229 page->index = (unsigned long)pcpu; 230 } 231 232 /* obtain pointer to a chunk from a page struct */ 233 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 234 { 235 return (struct pcpu_chunk *)page->index; 236 } 237 238 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 239 { 240 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 241 } 242 243 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 244 unsigned int cpu, int page_idx) 245 { 246 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 247 (page_idx << PAGE_SHIFT); 248 } 249 250 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 251 int *rs, int *re, int end) 252 { 253 *rs = find_next_zero_bit(chunk->populated, end, *rs); 254 *re = find_next_bit(chunk->populated, end, *rs + 1); 255 } 256 257 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 258 int *rs, int *re, int end) 259 { 260 *rs = find_next_bit(chunk->populated, end, *rs); 261 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 262 } 263 264 /* 265 * (Un)populated page region iterators. Iterate over (un)populated 266 * page regions between @start and @end in @chunk. @rs and @re should 267 * be integer variables and will be set to start and end page index of 268 * the current region. 269 */ 270 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 271 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 272 (rs) < (re); \ 273 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 274 275 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 276 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 277 (rs) < (re); \ 278 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 279 280 /** 281 * pcpu_mem_zalloc - allocate memory 282 * @size: bytes to allocate 283 * 284 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 285 * kzalloc() is used; otherwise, vzalloc() is used. The returned 286 * memory is always zeroed. 287 * 288 * CONTEXT: 289 * Does GFP_KERNEL allocation. 290 * 291 * RETURNS: 292 * Pointer to the allocated area on success, NULL on failure. 293 */ 294 static void *pcpu_mem_zalloc(size_t size) 295 { 296 if (WARN_ON_ONCE(!slab_is_available())) 297 return NULL; 298 299 if (size <= PAGE_SIZE) 300 return kzalloc(size, GFP_KERNEL); 301 else 302 return vzalloc(size); 303 } 304 305 /** 306 * pcpu_mem_free - free memory 307 * @ptr: memory to free 308 * 309 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 310 */ 311 static void pcpu_mem_free(void *ptr) 312 { 313 kvfree(ptr); 314 } 315 316 /** 317 * pcpu_count_occupied_pages - count the number of pages an area occupies 318 * @chunk: chunk of interest 319 * @i: index of the area in question 320 * 321 * Count the number of pages chunk's @i'th area occupies. When the area's 322 * start and/or end address isn't aligned to page boundary, the straddled 323 * page is included in the count iff the rest of the page is free. 324 */ 325 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) 326 { 327 int off = chunk->map[i] & ~1; 328 int end = chunk->map[i + 1] & ~1; 329 330 if (!PAGE_ALIGNED(off) && i > 0) { 331 int prev = chunk->map[i - 1]; 332 333 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) 334 off = round_down(off, PAGE_SIZE); 335 } 336 337 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { 338 int next = chunk->map[i + 1]; 339 int nend = chunk->map[i + 2] & ~1; 340 341 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) 342 end = round_up(end, PAGE_SIZE); 343 } 344 345 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); 346 } 347 348 /** 349 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 350 * @chunk: chunk of interest 351 * @oslot: the previous slot it was on 352 * 353 * This function is called after an allocation or free changed @chunk. 354 * New slot according to the changed state is determined and @chunk is 355 * moved to the slot. Note that the reserved chunk is never put on 356 * chunk slots. 357 * 358 * CONTEXT: 359 * pcpu_lock. 360 */ 361 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 362 { 363 int nslot = pcpu_chunk_slot(chunk); 364 365 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 366 if (oslot < nslot) 367 list_move(&chunk->list, &pcpu_slot[nslot]); 368 else 369 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 370 } 371 } 372 373 /** 374 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 375 * @chunk: chunk of interest 376 * @is_atomic: the allocation context 377 * 378 * Determine whether area map of @chunk needs to be extended. If 379 * @is_atomic, only the amount necessary for a new allocation is 380 * considered; however, async extension is scheduled if the left amount is 381 * low. If !@is_atomic, it aims for more empty space. Combined, this 382 * ensures that the map is likely to have enough available space to 383 * accomodate atomic allocations which can't extend maps directly. 384 * 385 * CONTEXT: 386 * pcpu_lock. 387 * 388 * RETURNS: 389 * New target map allocation length if extension is necessary, 0 390 * otherwise. 391 */ 392 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) 393 { 394 int margin, new_alloc; 395 396 if (is_atomic) { 397 margin = 3; 398 399 if (chunk->map_alloc < 400 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW && 401 pcpu_async_enabled) 402 schedule_work(&chunk->map_extend_work); 403 } else { 404 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; 405 } 406 407 if (chunk->map_alloc >= chunk->map_used + margin) 408 return 0; 409 410 new_alloc = PCPU_DFL_MAP_ALLOC; 411 while (new_alloc < chunk->map_used + margin) 412 new_alloc *= 2; 413 414 return new_alloc; 415 } 416 417 /** 418 * pcpu_extend_area_map - extend area map of a chunk 419 * @chunk: chunk of interest 420 * @new_alloc: new target allocation length of the area map 421 * 422 * Extend area map of @chunk to have @new_alloc entries. 423 * 424 * CONTEXT: 425 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 426 * 427 * RETURNS: 428 * 0 on success, -errno on failure. 429 */ 430 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 431 { 432 int *old = NULL, *new = NULL; 433 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 434 unsigned long flags; 435 436 new = pcpu_mem_zalloc(new_size); 437 if (!new) 438 return -ENOMEM; 439 440 /* acquire pcpu_lock and switch to new area map */ 441 spin_lock_irqsave(&pcpu_lock, flags); 442 443 if (new_alloc <= chunk->map_alloc) 444 goto out_unlock; 445 446 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 447 old = chunk->map; 448 449 memcpy(new, old, old_size); 450 451 chunk->map_alloc = new_alloc; 452 chunk->map = new; 453 new = NULL; 454 455 out_unlock: 456 spin_unlock_irqrestore(&pcpu_lock, flags); 457 458 /* 459 * pcpu_mem_free() might end up calling vfree() which uses 460 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 461 */ 462 pcpu_mem_free(old); 463 pcpu_mem_free(new); 464 465 return 0; 466 } 467 468 static void pcpu_map_extend_workfn(struct work_struct *work) 469 { 470 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk, 471 map_extend_work); 472 int new_alloc; 473 474 spin_lock_irq(&pcpu_lock); 475 new_alloc = pcpu_need_to_extend(chunk, false); 476 spin_unlock_irq(&pcpu_lock); 477 478 if (new_alloc) 479 pcpu_extend_area_map(chunk, new_alloc); 480 } 481 482 /** 483 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area 484 * @chunk: chunk the candidate area belongs to 485 * @off: the offset to the start of the candidate area 486 * @this_size: the size of the candidate area 487 * @size: the size of the target allocation 488 * @align: the alignment of the target allocation 489 * @pop_only: only allocate from already populated region 490 * 491 * We're trying to allocate @size bytes aligned at @align. @chunk's area 492 * at @off sized @this_size is a candidate. This function determines 493 * whether the target allocation fits in the candidate area and returns the 494 * number of bytes to pad after @off. If the target area doesn't fit, -1 495 * is returned. 496 * 497 * If @pop_only is %true, this function only considers the already 498 * populated part of the candidate area. 499 */ 500 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, 501 int size, int align, bool pop_only) 502 { 503 int cand_off = off; 504 505 while (true) { 506 int head = ALIGN(cand_off, align) - off; 507 int page_start, page_end, rs, re; 508 509 if (this_size < head + size) 510 return -1; 511 512 if (!pop_only) 513 return head; 514 515 /* 516 * If the first unpopulated page is beyond the end of the 517 * allocation, the whole allocation is populated; 518 * otherwise, retry from the end of the unpopulated area. 519 */ 520 page_start = PFN_DOWN(head + off); 521 page_end = PFN_UP(head + off + size); 522 523 rs = page_start; 524 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); 525 if (rs >= page_end) 526 return head; 527 cand_off = re * PAGE_SIZE; 528 } 529 } 530 531 /** 532 * pcpu_alloc_area - allocate area from a pcpu_chunk 533 * @chunk: chunk of interest 534 * @size: wanted size in bytes 535 * @align: wanted align 536 * @pop_only: allocate only from the populated area 537 * @occ_pages_p: out param for the number of pages the area occupies 538 * 539 * Try to allocate @size bytes area aligned at @align from @chunk. 540 * Note that this function only allocates the offset. It doesn't 541 * populate or map the area. 542 * 543 * @chunk->map must have at least two free slots. 544 * 545 * CONTEXT: 546 * pcpu_lock. 547 * 548 * RETURNS: 549 * Allocated offset in @chunk on success, -1 if no matching area is 550 * found. 551 */ 552 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, 553 bool pop_only, int *occ_pages_p) 554 { 555 int oslot = pcpu_chunk_slot(chunk); 556 int max_contig = 0; 557 int i, off; 558 bool seen_free = false; 559 int *p; 560 561 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { 562 int head, tail; 563 int this_size; 564 565 off = *p; 566 if (off & 1) 567 continue; 568 569 this_size = (p[1] & ~1) - off; 570 571 head = pcpu_fit_in_area(chunk, off, this_size, size, align, 572 pop_only); 573 if (head < 0) { 574 if (!seen_free) { 575 chunk->first_free = i; 576 seen_free = true; 577 } 578 max_contig = max(this_size, max_contig); 579 continue; 580 } 581 582 /* 583 * If head is small or the previous block is free, 584 * merge'em. Note that 'small' is defined as smaller 585 * than sizeof(int), which is very small but isn't too 586 * uncommon for percpu allocations. 587 */ 588 if (head && (head < sizeof(int) || !(p[-1] & 1))) { 589 *p = off += head; 590 if (p[-1] & 1) 591 chunk->free_size -= head; 592 else 593 max_contig = max(*p - p[-1], max_contig); 594 this_size -= head; 595 head = 0; 596 } 597 598 /* if tail is small, just keep it around */ 599 tail = this_size - head - size; 600 if (tail < sizeof(int)) { 601 tail = 0; 602 size = this_size - head; 603 } 604 605 /* split if warranted */ 606 if (head || tail) { 607 int nr_extra = !!head + !!tail; 608 609 /* insert new subblocks */ 610 memmove(p + nr_extra + 1, p + 1, 611 sizeof(chunk->map[0]) * (chunk->map_used - i)); 612 chunk->map_used += nr_extra; 613 614 if (head) { 615 if (!seen_free) { 616 chunk->first_free = i; 617 seen_free = true; 618 } 619 *++p = off += head; 620 ++i; 621 max_contig = max(head, max_contig); 622 } 623 if (tail) { 624 p[1] = off + size; 625 max_contig = max(tail, max_contig); 626 } 627 } 628 629 if (!seen_free) 630 chunk->first_free = i + 1; 631 632 /* update hint and mark allocated */ 633 if (i + 1 == chunk->map_used) 634 chunk->contig_hint = max_contig; /* fully scanned */ 635 else 636 chunk->contig_hint = max(chunk->contig_hint, 637 max_contig); 638 639 chunk->free_size -= size; 640 *p |= 1; 641 642 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 643 pcpu_chunk_relocate(chunk, oslot); 644 return off; 645 } 646 647 chunk->contig_hint = max_contig; /* fully scanned */ 648 pcpu_chunk_relocate(chunk, oslot); 649 650 /* tell the upper layer that this chunk has no matching area */ 651 return -1; 652 } 653 654 /** 655 * pcpu_free_area - free area to a pcpu_chunk 656 * @chunk: chunk of interest 657 * @freeme: offset of area to free 658 * @occ_pages_p: out param for the number of pages the area occupies 659 * 660 * Free area starting from @freeme to @chunk. Note that this function 661 * only modifies the allocation map. It doesn't depopulate or unmap 662 * the area. 663 * 664 * CONTEXT: 665 * pcpu_lock. 666 */ 667 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, 668 int *occ_pages_p) 669 { 670 int oslot = pcpu_chunk_slot(chunk); 671 int off = 0; 672 unsigned i, j; 673 int to_free = 0; 674 int *p; 675 676 freeme |= 1; /* we are searching for <given offset, in use> pair */ 677 678 i = 0; 679 j = chunk->map_used; 680 while (i != j) { 681 unsigned k = (i + j) / 2; 682 off = chunk->map[k]; 683 if (off < freeme) 684 i = k + 1; 685 else if (off > freeme) 686 j = k; 687 else 688 i = j = k; 689 } 690 BUG_ON(off != freeme); 691 692 if (i < chunk->first_free) 693 chunk->first_free = i; 694 695 p = chunk->map + i; 696 *p = off &= ~1; 697 chunk->free_size += (p[1] & ~1) - off; 698 699 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 700 701 /* merge with next? */ 702 if (!(p[1] & 1)) 703 to_free++; 704 /* merge with previous? */ 705 if (i > 0 && !(p[-1] & 1)) { 706 to_free++; 707 i--; 708 p--; 709 } 710 if (to_free) { 711 chunk->map_used -= to_free; 712 memmove(p + 1, p + 1 + to_free, 713 (chunk->map_used - i) * sizeof(chunk->map[0])); 714 } 715 716 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); 717 pcpu_chunk_relocate(chunk, oslot); 718 } 719 720 static struct pcpu_chunk *pcpu_alloc_chunk(void) 721 { 722 struct pcpu_chunk *chunk; 723 724 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 725 if (!chunk) 726 return NULL; 727 728 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 729 sizeof(chunk->map[0])); 730 if (!chunk->map) { 731 pcpu_mem_free(chunk); 732 return NULL; 733 } 734 735 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 736 chunk->map[0] = 0; 737 chunk->map[1] = pcpu_unit_size | 1; 738 chunk->map_used = 1; 739 740 INIT_LIST_HEAD(&chunk->list); 741 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn); 742 chunk->free_size = pcpu_unit_size; 743 chunk->contig_hint = pcpu_unit_size; 744 745 return chunk; 746 } 747 748 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 749 { 750 if (!chunk) 751 return; 752 pcpu_mem_free(chunk->map); 753 pcpu_mem_free(chunk); 754 } 755 756 /** 757 * pcpu_chunk_populated - post-population bookkeeping 758 * @chunk: pcpu_chunk which got populated 759 * @page_start: the start page 760 * @page_end: the end page 761 * 762 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 763 * the bookkeeping information accordingly. Must be called after each 764 * successful population. 765 */ 766 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, 767 int page_start, int page_end) 768 { 769 int nr = page_end - page_start; 770 771 lockdep_assert_held(&pcpu_lock); 772 773 bitmap_set(chunk->populated, page_start, nr); 774 chunk->nr_populated += nr; 775 pcpu_nr_empty_pop_pages += nr; 776 } 777 778 /** 779 * pcpu_chunk_depopulated - post-depopulation bookkeeping 780 * @chunk: pcpu_chunk which got depopulated 781 * @page_start: the start page 782 * @page_end: the end page 783 * 784 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 785 * Update the bookkeeping information accordingly. Must be called after 786 * each successful depopulation. 787 */ 788 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 789 int page_start, int page_end) 790 { 791 int nr = page_end - page_start; 792 793 lockdep_assert_held(&pcpu_lock); 794 795 bitmap_clear(chunk->populated, page_start, nr); 796 chunk->nr_populated -= nr; 797 pcpu_nr_empty_pop_pages -= nr; 798 } 799 800 /* 801 * Chunk management implementation. 802 * 803 * To allow different implementations, chunk alloc/free and 804 * [de]population are implemented in a separate file which is pulled 805 * into this file and compiled together. The following functions 806 * should be implemented. 807 * 808 * pcpu_populate_chunk - populate the specified range of a chunk 809 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 810 * pcpu_create_chunk - create a new chunk 811 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 812 * pcpu_addr_to_page - translate address to physical address 813 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 814 */ 815 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 816 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 817 static struct pcpu_chunk *pcpu_create_chunk(void); 818 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 819 static struct page *pcpu_addr_to_page(void *addr); 820 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 821 822 #ifdef CONFIG_NEED_PER_CPU_KM 823 #include "percpu-km.c" 824 #else 825 #include "percpu-vm.c" 826 #endif 827 828 /** 829 * pcpu_chunk_addr_search - determine chunk containing specified address 830 * @addr: address for which the chunk needs to be determined. 831 * 832 * RETURNS: 833 * The address of the found chunk. 834 */ 835 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 836 { 837 /* is it in the first chunk? */ 838 if (pcpu_addr_in_first_chunk(addr)) { 839 /* is it in the reserved area? */ 840 if (pcpu_addr_in_reserved_chunk(addr)) 841 return pcpu_reserved_chunk; 842 return pcpu_first_chunk; 843 } 844 845 /* 846 * The address is relative to unit0 which might be unused and 847 * thus unmapped. Offset the address to the unit space of the 848 * current processor before looking it up in the vmalloc 849 * space. Note that any possible cpu id can be used here, so 850 * there's no need to worry about preemption or cpu hotplug. 851 */ 852 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 853 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 854 } 855 856 /** 857 * pcpu_alloc - the percpu allocator 858 * @size: size of area to allocate in bytes 859 * @align: alignment of area (max PAGE_SIZE) 860 * @reserved: allocate from the reserved chunk if available 861 * @gfp: allocation flags 862 * 863 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 864 * contain %GFP_KERNEL, the allocation is atomic. 865 * 866 * RETURNS: 867 * Percpu pointer to the allocated area on success, NULL on failure. 868 */ 869 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 870 gfp_t gfp) 871 { 872 static int warn_limit = 10; 873 struct pcpu_chunk *chunk; 874 const char *err; 875 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 876 int occ_pages = 0; 877 int slot, off, new_alloc, cpu, ret; 878 unsigned long flags; 879 void __percpu *ptr; 880 881 /* 882 * We want the lowest bit of offset available for in-use/free 883 * indicator, so force >= 16bit alignment and make size even. 884 */ 885 if (unlikely(align < 2)) 886 align = 2; 887 888 size = ALIGN(size, 2); 889 890 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 891 WARN(true, "illegal size (%zu) or align (%zu) for " 892 "percpu allocation\n", size, align); 893 return NULL; 894 } 895 896 spin_lock_irqsave(&pcpu_lock, flags); 897 898 /* serve reserved allocations from the reserved chunk if available */ 899 if (reserved && pcpu_reserved_chunk) { 900 chunk = pcpu_reserved_chunk; 901 902 if (size > chunk->contig_hint) { 903 err = "alloc from reserved chunk failed"; 904 goto fail_unlock; 905 } 906 907 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { 908 spin_unlock_irqrestore(&pcpu_lock, flags); 909 if (is_atomic || 910 pcpu_extend_area_map(chunk, new_alloc) < 0) { 911 err = "failed to extend area map of reserved chunk"; 912 goto fail; 913 } 914 spin_lock_irqsave(&pcpu_lock, flags); 915 } 916 917 off = pcpu_alloc_area(chunk, size, align, is_atomic, 918 &occ_pages); 919 if (off >= 0) 920 goto area_found; 921 922 err = "alloc from reserved chunk failed"; 923 goto fail_unlock; 924 } 925 926 restart: 927 /* search through normal chunks */ 928 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 929 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 930 if (size > chunk->contig_hint) 931 continue; 932 933 new_alloc = pcpu_need_to_extend(chunk, is_atomic); 934 if (new_alloc) { 935 if (is_atomic) 936 continue; 937 spin_unlock_irqrestore(&pcpu_lock, flags); 938 if (pcpu_extend_area_map(chunk, 939 new_alloc) < 0) { 940 err = "failed to extend area map"; 941 goto fail; 942 } 943 spin_lock_irqsave(&pcpu_lock, flags); 944 /* 945 * pcpu_lock has been dropped, need to 946 * restart cpu_slot list walking. 947 */ 948 goto restart; 949 } 950 951 off = pcpu_alloc_area(chunk, size, align, is_atomic, 952 &occ_pages); 953 if (off >= 0) 954 goto area_found; 955 } 956 } 957 958 spin_unlock_irqrestore(&pcpu_lock, flags); 959 960 /* 961 * No space left. Create a new chunk. We don't want multiple 962 * tasks to create chunks simultaneously. Serialize and create iff 963 * there's still no empty chunk after grabbing the mutex. 964 */ 965 if (is_atomic) 966 goto fail; 967 968 mutex_lock(&pcpu_alloc_mutex); 969 970 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 971 chunk = pcpu_create_chunk(); 972 if (!chunk) { 973 mutex_unlock(&pcpu_alloc_mutex); 974 err = "failed to allocate new chunk"; 975 goto fail; 976 } 977 978 spin_lock_irqsave(&pcpu_lock, flags); 979 pcpu_chunk_relocate(chunk, -1); 980 } else { 981 spin_lock_irqsave(&pcpu_lock, flags); 982 } 983 984 mutex_unlock(&pcpu_alloc_mutex); 985 goto restart; 986 987 area_found: 988 spin_unlock_irqrestore(&pcpu_lock, flags); 989 990 /* populate if not all pages are already there */ 991 if (!is_atomic) { 992 int page_start, page_end, rs, re; 993 994 mutex_lock(&pcpu_alloc_mutex); 995 996 page_start = PFN_DOWN(off); 997 page_end = PFN_UP(off + size); 998 999 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 1000 WARN_ON(chunk->immutable); 1001 1002 ret = pcpu_populate_chunk(chunk, rs, re); 1003 1004 spin_lock_irqsave(&pcpu_lock, flags); 1005 if (ret) { 1006 mutex_unlock(&pcpu_alloc_mutex); 1007 pcpu_free_area(chunk, off, &occ_pages); 1008 err = "failed to populate"; 1009 goto fail_unlock; 1010 } 1011 pcpu_chunk_populated(chunk, rs, re); 1012 spin_unlock_irqrestore(&pcpu_lock, flags); 1013 } 1014 1015 mutex_unlock(&pcpu_alloc_mutex); 1016 } 1017 1018 if (chunk != pcpu_reserved_chunk) 1019 pcpu_nr_empty_pop_pages -= occ_pages; 1020 1021 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1022 pcpu_schedule_balance_work(); 1023 1024 /* clear the areas and return address relative to base address */ 1025 for_each_possible_cpu(cpu) 1026 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1027 1028 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1029 kmemleak_alloc_percpu(ptr, size, gfp); 1030 return ptr; 1031 1032 fail_unlock: 1033 spin_unlock_irqrestore(&pcpu_lock, flags); 1034 fail: 1035 if (!is_atomic && warn_limit) { 1036 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1037 size, align, is_atomic, err); 1038 dump_stack(); 1039 if (!--warn_limit) 1040 pr_info("PERCPU: limit reached, disable warning\n"); 1041 } 1042 if (is_atomic) { 1043 /* see the flag handling in pcpu_blance_workfn() */ 1044 pcpu_atomic_alloc_failed = true; 1045 pcpu_schedule_balance_work(); 1046 } 1047 return NULL; 1048 } 1049 1050 /** 1051 * __alloc_percpu_gfp - allocate dynamic percpu area 1052 * @size: size of area to allocate in bytes 1053 * @align: alignment of area (max PAGE_SIZE) 1054 * @gfp: allocation flags 1055 * 1056 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1057 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1058 * be called from any context but is a lot more likely to fail. 1059 * 1060 * RETURNS: 1061 * Percpu pointer to the allocated area on success, NULL on failure. 1062 */ 1063 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1064 { 1065 return pcpu_alloc(size, align, false, gfp); 1066 } 1067 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1068 1069 /** 1070 * __alloc_percpu - allocate dynamic percpu area 1071 * @size: size of area to allocate in bytes 1072 * @align: alignment of area (max PAGE_SIZE) 1073 * 1074 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1075 */ 1076 void __percpu *__alloc_percpu(size_t size, size_t align) 1077 { 1078 return pcpu_alloc(size, align, false, GFP_KERNEL); 1079 } 1080 EXPORT_SYMBOL_GPL(__alloc_percpu); 1081 1082 /** 1083 * __alloc_reserved_percpu - allocate reserved percpu area 1084 * @size: size of area to allocate in bytes 1085 * @align: alignment of area (max PAGE_SIZE) 1086 * 1087 * Allocate zero-filled percpu area of @size bytes aligned at @align 1088 * from reserved percpu area if arch has set it up; otherwise, 1089 * allocation is served from the same dynamic area. Might sleep. 1090 * Might trigger writeouts. 1091 * 1092 * CONTEXT: 1093 * Does GFP_KERNEL allocation. 1094 * 1095 * RETURNS: 1096 * Percpu pointer to the allocated area on success, NULL on failure. 1097 */ 1098 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1099 { 1100 return pcpu_alloc(size, align, true, GFP_KERNEL); 1101 } 1102 1103 /** 1104 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1105 * @work: unused 1106 * 1107 * Reclaim all fully free chunks except for the first one. 1108 */ 1109 static void pcpu_balance_workfn(struct work_struct *work) 1110 { 1111 LIST_HEAD(to_free); 1112 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1113 struct pcpu_chunk *chunk, *next; 1114 int slot, nr_to_pop, ret; 1115 1116 /* 1117 * There's no reason to keep around multiple unused chunks and VM 1118 * areas can be scarce. Destroy all free chunks except for one. 1119 */ 1120 mutex_lock(&pcpu_alloc_mutex); 1121 spin_lock_irq(&pcpu_lock); 1122 1123 list_for_each_entry_safe(chunk, next, free_head, list) { 1124 WARN_ON(chunk->immutable); 1125 1126 /* spare the first one */ 1127 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1128 continue; 1129 1130 list_move(&chunk->list, &to_free); 1131 } 1132 1133 spin_unlock_irq(&pcpu_lock); 1134 1135 list_for_each_entry_safe(chunk, next, &to_free, list) { 1136 int rs, re; 1137 1138 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1139 pcpu_depopulate_chunk(chunk, rs, re); 1140 spin_lock_irq(&pcpu_lock); 1141 pcpu_chunk_depopulated(chunk, rs, re); 1142 spin_unlock_irq(&pcpu_lock); 1143 } 1144 pcpu_destroy_chunk(chunk); 1145 } 1146 1147 /* 1148 * Ensure there are certain number of free populated pages for 1149 * atomic allocs. Fill up from the most packed so that atomic 1150 * allocs don't increase fragmentation. If atomic allocation 1151 * failed previously, always populate the maximum amount. This 1152 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1153 * failing indefinitely; however, large atomic allocs are not 1154 * something we support properly and can be highly unreliable and 1155 * inefficient. 1156 */ 1157 retry_pop: 1158 if (pcpu_atomic_alloc_failed) { 1159 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1160 /* best effort anyway, don't worry about synchronization */ 1161 pcpu_atomic_alloc_failed = false; 1162 } else { 1163 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1164 pcpu_nr_empty_pop_pages, 1165 0, PCPU_EMPTY_POP_PAGES_HIGH); 1166 } 1167 1168 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1169 int nr_unpop = 0, rs, re; 1170 1171 if (!nr_to_pop) 1172 break; 1173 1174 spin_lock_irq(&pcpu_lock); 1175 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1176 nr_unpop = pcpu_unit_pages - chunk->nr_populated; 1177 if (nr_unpop) 1178 break; 1179 } 1180 spin_unlock_irq(&pcpu_lock); 1181 1182 if (!nr_unpop) 1183 continue; 1184 1185 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1186 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1187 int nr = min(re - rs, nr_to_pop); 1188 1189 ret = pcpu_populate_chunk(chunk, rs, rs + nr); 1190 if (!ret) { 1191 nr_to_pop -= nr; 1192 spin_lock_irq(&pcpu_lock); 1193 pcpu_chunk_populated(chunk, rs, rs + nr); 1194 spin_unlock_irq(&pcpu_lock); 1195 } else { 1196 nr_to_pop = 0; 1197 } 1198 1199 if (!nr_to_pop) 1200 break; 1201 } 1202 } 1203 1204 if (nr_to_pop) { 1205 /* ran out of chunks to populate, create a new one and retry */ 1206 chunk = pcpu_create_chunk(); 1207 if (chunk) { 1208 spin_lock_irq(&pcpu_lock); 1209 pcpu_chunk_relocate(chunk, -1); 1210 spin_unlock_irq(&pcpu_lock); 1211 goto retry_pop; 1212 } 1213 } 1214 1215 mutex_unlock(&pcpu_alloc_mutex); 1216 } 1217 1218 /** 1219 * free_percpu - free percpu area 1220 * @ptr: pointer to area to free 1221 * 1222 * Free percpu area @ptr. 1223 * 1224 * CONTEXT: 1225 * Can be called from atomic context. 1226 */ 1227 void free_percpu(void __percpu *ptr) 1228 { 1229 void *addr; 1230 struct pcpu_chunk *chunk; 1231 unsigned long flags; 1232 int off, occ_pages; 1233 1234 if (!ptr) 1235 return; 1236 1237 kmemleak_free_percpu(ptr); 1238 1239 addr = __pcpu_ptr_to_addr(ptr); 1240 1241 spin_lock_irqsave(&pcpu_lock, flags); 1242 1243 chunk = pcpu_chunk_addr_search(addr); 1244 off = addr - chunk->base_addr; 1245 1246 pcpu_free_area(chunk, off, &occ_pages); 1247 1248 if (chunk != pcpu_reserved_chunk) 1249 pcpu_nr_empty_pop_pages += occ_pages; 1250 1251 /* if there are more than one fully free chunks, wake up grim reaper */ 1252 if (chunk->free_size == pcpu_unit_size) { 1253 struct pcpu_chunk *pos; 1254 1255 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1256 if (pos != chunk) { 1257 pcpu_schedule_balance_work(); 1258 break; 1259 } 1260 } 1261 1262 spin_unlock_irqrestore(&pcpu_lock, flags); 1263 } 1264 EXPORT_SYMBOL_GPL(free_percpu); 1265 1266 /** 1267 * is_kernel_percpu_address - test whether address is from static percpu area 1268 * @addr: address to test 1269 * 1270 * Test whether @addr belongs to in-kernel static percpu area. Module 1271 * static percpu areas are not considered. For those, use 1272 * is_module_percpu_address(). 1273 * 1274 * RETURNS: 1275 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1276 */ 1277 bool is_kernel_percpu_address(unsigned long addr) 1278 { 1279 #ifdef CONFIG_SMP 1280 const size_t static_size = __per_cpu_end - __per_cpu_start; 1281 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1282 unsigned int cpu; 1283 1284 for_each_possible_cpu(cpu) { 1285 void *start = per_cpu_ptr(base, cpu); 1286 1287 if ((void *)addr >= start && (void *)addr < start + static_size) 1288 return true; 1289 } 1290 #endif 1291 /* on UP, can't distinguish from other static vars, always false */ 1292 return false; 1293 } 1294 1295 /** 1296 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1297 * @addr: the address to be converted to physical address 1298 * 1299 * Given @addr which is dereferenceable address obtained via one of 1300 * percpu access macros, this function translates it into its physical 1301 * address. The caller is responsible for ensuring @addr stays valid 1302 * until this function finishes. 1303 * 1304 * percpu allocator has special setup for the first chunk, which currently 1305 * supports either embedding in linear address space or vmalloc mapping, 1306 * and, from the second one, the backing allocator (currently either vm or 1307 * km) provides translation. 1308 * 1309 * The addr can be translated simply without checking if it falls into the 1310 * first chunk. But the current code reflects better how percpu allocator 1311 * actually works, and the verification can discover both bugs in percpu 1312 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1313 * code. 1314 * 1315 * RETURNS: 1316 * The physical address for @addr. 1317 */ 1318 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1319 { 1320 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1321 bool in_first_chunk = false; 1322 unsigned long first_low, first_high; 1323 unsigned int cpu; 1324 1325 /* 1326 * The following test on unit_low/high isn't strictly 1327 * necessary but will speed up lookups of addresses which 1328 * aren't in the first chunk. 1329 */ 1330 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1331 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1332 pcpu_unit_pages); 1333 if ((unsigned long)addr >= first_low && 1334 (unsigned long)addr < first_high) { 1335 for_each_possible_cpu(cpu) { 1336 void *start = per_cpu_ptr(base, cpu); 1337 1338 if (addr >= start && addr < start + pcpu_unit_size) { 1339 in_first_chunk = true; 1340 break; 1341 } 1342 } 1343 } 1344 1345 if (in_first_chunk) { 1346 if (!is_vmalloc_addr(addr)) 1347 return __pa(addr); 1348 else 1349 return page_to_phys(vmalloc_to_page(addr)) + 1350 offset_in_page(addr); 1351 } else 1352 return page_to_phys(pcpu_addr_to_page(addr)) + 1353 offset_in_page(addr); 1354 } 1355 1356 /** 1357 * pcpu_alloc_alloc_info - allocate percpu allocation info 1358 * @nr_groups: the number of groups 1359 * @nr_units: the number of units 1360 * 1361 * Allocate ai which is large enough for @nr_groups groups containing 1362 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1363 * cpu_map array which is long enough for @nr_units and filled with 1364 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1365 * pointer of other groups. 1366 * 1367 * RETURNS: 1368 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1369 * failure. 1370 */ 1371 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1372 int nr_units) 1373 { 1374 struct pcpu_alloc_info *ai; 1375 size_t base_size, ai_size; 1376 void *ptr; 1377 int unit; 1378 1379 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1380 __alignof__(ai->groups[0].cpu_map[0])); 1381 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1382 1383 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); 1384 if (!ptr) 1385 return NULL; 1386 ai = ptr; 1387 ptr += base_size; 1388 1389 ai->groups[0].cpu_map = ptr; 1390 1391 for (unit = 0; unit < nr_units; unit++) 1392 ai->groups[0].cpu_map[unit] = NR_CPUS; 1393 1394 ai->nr_groups = nr_groups; 1395 ai->__ai_size = PFN_ALIGN(ai_size); 1396 1397 return ai; 1398 } 1399 1400 /** 1401 * pcpu_free_alloc_info - free percpu allocation info 1402 * @ai: pcpu_alloc_info to free 1403 * 1404 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1405 */ 1406 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1407 { 1408 memblock_free_early(__pa(ai), ai->__ai_size); 1409 } 1410 1411 /** 1412 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1413 * @lvl: loglevel 1414 * @ai: allocation info to dump 1415 * 1416 * Print out information about @ai using loglevel @lvl. 1417 */ 1418 static void pcpu_dump_alloc_info(const char *lvl, 1419 const struct pcpu_alloc_info *ai) 1420 { 1421 int group_width = 1, cpu_width = 1, width; 1422 char empty_str[] = "--------"; 1423 int alloc = 0, alloc_end = 0; 1424 int group, v; 1425 int upa, apl; /* units per alloc, allocs per line */ 1426 1427 v = ai->nr_groups; 1428 while (v /= 10) 1429 group_width++; 1430 1431 v = num_possible_cpus(); 1432 while (v /= 10) 1433 cpu_width++; 1434 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1435 1436 upa = ai->alloc_size / ai->unit_size; 1437 width = upa * (cpu_width + 1) + group_width + 3; 1438 apl = rounddown_pow_of_two(max(60 / width, 1)); 1439 1440 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1441 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1442 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1443 1444 for (group = 0; group < ai->nr_groups; group++) { 1445 const struct pcpu_group_info *gi = &ai->groups[group]; 1446 int unit = 0, unit_end = 0; 1447 1448 BUG_ON(gi->nr_units % upa); 1449 for (alloc_end += gi->nr_units / upa; 1450 alloc < alloc_end; alloc++) { 1451 if (!(alloc % apl)) { 1452 printk(KERN_CONT "\n"); 1453 printk("%spcpu-alloc: ", lvl); 1454 } 1455 printk(KERN_CONT "[%0*d] ", group_width, group); 1456 1457 for (unit_end += upa; unit < unit_end; unit++) 1458 if (gi->cpu_map[unit] != NR_CPUS) 1459 printk(KERN_CONT "%0*d ", cpu_width, 1460 gi->cpu_map[unit]); 1461 else 1462 printk(KERN_CONT "%s ", empty_str); 1463 } 1464 } 1465 printk(KERN_CONT "\n"); 1466 } 1467 1468 /** 1469 * pcpu_setup_first_chunk - initialize the first percpu chunk 1470 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1471 * @base_addr: mapped address 1472 * 1473 * Initialize the first percpu chunk which contains the kernel static 1474 * perpcu area. This function is to be called from arch percpu area 1475 * setup path. 1476 * 1477 * @ai contains all information necessary to initialize the first 1478 * chunk and prime the dynamic percpu allocator. 1479 * 1480 * @ai->static_size is the size of static percpu area. 1481 * 1482 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1483 * reserve after the static area in the first chunk. This reserves 1484 * the first chunk such that it's available only through reserved 1485 * percpu allocation. This is primarily used to serve module percpu 1486 * static areas on architectures where the addressing model has 1487 * limited offset range for symbol relocations to guarantee module 1488 * percpu symbols fall inside the relocatable range. 1489 * 1490 * @ai->dyn_size determines the number of bytes available for dynamic 1491 * allocation in the first chunk. The area between @ai->static_size + 1492 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1493 * 1494 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1495 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1496 * @ai->dyn_size. 1497 * 1498 * @ai->atom_size is the allocation atom size and used as alignment 1499 * for vm areas. 1500 * 1501 * @ai->alloc_size is the allocation size and always multiple of 1502 * @ai->atom_size. This is larger than @ai->atom_size if 1503 * @ai->unit_size is larger than @ai->atom_size. 1504 * 1505 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1506 * percpu areas. Units which should be colocated are put into the 1507 * same group. Dynamic VM areas will be allocated according to these 1508 * groupings. If @ai->nr_groups is zero, a single group containing 1509 * all units is assumed. 1510 * 1511 * The caller should have mapped the first chunk at @base_addr and 1512 * copied static data to each unit. 1513 * 1514 * If the first chunk ends up with both reserved and dynamic areas, it 1515 * is served by two chunks - one to serve the core static and reserved 1516 * areas and the other for the dynamic area. They share the same vm 1517 * and page map but uses different area allocation map to stay away 1518 * from each other. The latter chunk is circulated in the chunk slots 1519 * and available for dynamic allocation like any other chunks. 1520 * 1521 * RETURNS: 1522 * 0 on success, -errno on failure. 1523 */ 1524 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1525 void *base_addr) 1526 { 1527 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1528 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1529 size_t dyn_size = ai->dyn_size; 1530 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1531 struct pcpu_chunk *schunk, *dchunk = NULL; 1532 unsigned long *group_offsets; 1533 size_t *group_sizes; 1534 unsigned long *unit_off; 1535 unsigned int cpu; 1536 int *unit_map; 1537 int group, unit, i; 1538 1539 #define PCPU_SETUP_BUG_ON(cond) do { \ 1540 if (unlikely(cond)) { \ 1541 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1542 pr_emerg("PERCPU: cpu_possible_mask=%*pb\n", \ 1543 cpumask_pr_args(cpu_possible_mask)); \ 1544 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1545 BUG(); \ 1546 } \ 1547 } while (0) 1548 1549 /* sanity checks */ 1550 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1551 #ifdef CONFIG_SMP 1552 PCPU_SETUP_BUG_ON(!ai->static_size); 1553 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 1554 #endif 1555 PCPU_SETUP_BUG_ON(!base_addr); 1556 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 1557 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1558 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 1559 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1560 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1561 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1562 1563 /* process group information and build config tables accordingly */ 1564 group_offsets = memblock_virt_alloc(ai->nr_groups * 1565 sizeof(group_offsets[0]), 0); 1566 group_sizes = memblock_virt_alloc(ai->nr_groups * 1567 sizeof(group_sizes[0]), 0); 1568 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 1569 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 1570 1571 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1572 unit_map[cpu] = UINT_MAX; 1573 1574 pcpu_low_unit_cpu = NR_CPUS; 1575 pcpu_high_unit_cpu = NR_CPUS; 1576 1577 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1578 const struct pcpu_group_info *gi = &ai->groups[group]; 1579 1580 group_offsets[group] = gi->base_offset; 1581 group_sizes[group] = gi->nr_units * ai->unit_size; 1582 1583 for (i = 0; i < gi->nr_units; i++) { 1584 cpu = gi->cpu_map[i]; 1585 if (cpu == NR_CPUS) 1586 continue; 1587 1588 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 1589 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1590 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1591 1592 unit_map[cpu] = unit + i; 1593 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1594 1595 /* determine low/high unit_cpu */ 1596 if (pcpu_low_unit_cpu == NR_CPUS || 1597 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1598 pcpu_low_unit_cpu = cpu; 1599 if (pcpu_high_unit_cpu == NR_CPUS || 1600 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1601 pcpu_high_unit_cpu = cpu; 1602 } 1603 } 1604 pcpu_nr_units = unit; 1605 1606 for_each_possible_cpu(cpu) 1607 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1608 1609 /* we're done parsing the input, undefine BUG macro and dump config */ 1610 #undef PCPU_SETUP_BUG_ON 1611 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1612 1613 pcpu_nr_groups = ai->nr_groups; 1614 pcpu_group_offsets = group_offsets; 1615 pcpu_group_sizes = group_sizes; 1616 pcpu_unit_map = unit_map; 1617 pcpu_unit_offsets = unit_off; 1618 1619 /* determine basic parameters */ 1620 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1621 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1622 pcpu_atom_size = ai->atom_size; 1623 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1624 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1625 1626 /* 1627 * Allocate chunk slots. The additional last slot is for 1628 * empty chunks. 1629 */ 1630 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1631 pcpu_slot = memblock_virt_alloc( 1632 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 1633 for (i = 0; i < pcpu_nr_slots; i++) 1634 INIT_LIST_HEAD(&pcpu_slot[i]); 1635 1636 /* 1637 * Initialize static chunk. If reserved_size is zero, the 1638 * static chunk covers static area + dynamic allocation area 1639 * in the first chunk. If reserved_size is not zero, it 1640 * covers static area + reserved area (mostly used for module 1641 * static percpu allocation). 1642 */ 1643 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1644 INIT_LIST_HEAD(&schunk->list); 1645 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn); 1646 schunk->base_addr = base_addr; 1647 schunk->map = smap; 1648 schunk->map_alloc = ARRAY_SIZE(smap); 1649 schunk->immutable = true; 1650 bitmap_fill(schunk->populated, pcpu_unit_pages); 1651 schunk->nr_populated = pcpu_unit_pages; 1652 1653 if (ai->reserved_size) { 1654 schunk->free_size = ai->reserved_size; 1655 pcpu_reserved_chunk = schunk; 1656 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1657 } else { 1658 schunk->free_size = dyn_size; 1659 dyn_size = 0; /* dynamic area covered */ 1660 } 1661 schunk->contig_hint = schunk->free_size; 1662 1663 schunk->map[0] = 1; 1664 schunk->map[1] = ai->static_size; 1665 schunk->map_used = 1; 1666 if (schunk->free_size) 1667 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size; 1668 schunk->map[schunk->map_used] |= 1; 1669 1670 /* init dynamic chunk if necessary */ 1671 if (dyn_size) { 1672 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1673 INIT_LIST_HEAD(&dchunk->list); 1674 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn); 1675 dchunk->base_addr = base_addr; 1676 dchunk->map = dmap; 1677 dchunk->map_alloc = ARRAY_SIZE(dmap); 1678 dchunk->immutable = true; 1679 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1680 dchunk->nr_populated = pcpu_unit_pages; 1681 1682 dchunk->contig_hint = dchunk->free_size = dyn_size; 1683 dchunk->map[0] = 1; 1684 dchunk->map[1] = pcpu_reserved_chunk_limit; 1685 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; 1686 dchunk->map_used = 2; 1687 } 1688 1689 /* link the first chunk in */ 1690 pcpu_first_chunk = dchunk ?: schunk; 1691 pcpu_nr_empty_pop_pages += 1692 pcpu_count_occupied_pages(pcpu_first_chunk, 1); 1693 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1694 1695 /* we're done */ 1696 pcpu_base_addr = base_addr; 1697 return 0; 1698 } 1699 1700 #ifdef CONFIG_SMP 1701 1702 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 1703 [PCPU_FC_AUTO] = "auto", 1704 [PCPU_FC_EMBED] = "embed", 1705 [PCPU_FC_PAGE] = "page", 1706 }; 1707 1708 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1709 1710 static int __init percpu_alloc_setup(char *str) 1711 { 1712 if (!str) 1713 return -EINVAL; 1714 1715 if (0) 1716 /* nada */; 1717 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1718 else if (!strcmp(str, "embed")) 1719 pcpu_chosen_fc = PCPU_FC_EMBED; 1720 #endif 1721 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1722 else if (!strcmp(str, "page")) 1723 pcpu_chosen_fc = PCPU_FC_PAGE; 1724 #endif 1725 else 1726 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1727 1728 return 0; 1729 } 1730 early_param("percpu_alloc", percpu_alloc_setup); 1731 1732 /* 1733 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1734 * Build it if needed by the arch config or the generic setup is going 1735 * to be used. 1736 */ 1737 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1738 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1739 #define BUILD_EMBED_FIRST_CHUNK 1740 #endif 1741 1742 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1743 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1744 #define BUILD_PAGE_FIRST_CHUNK 1745 #endif 1746 1747 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1748 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1749 /** 1750 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1751 * @reserved_size: the size of reserved percpu area in bytes 1752 * @dyn_size: minimum free size for dynamic allocation in bytes 1753 * @atom_size: allocation atom size 1754 * @cpu_distance_fn: callback to determine distance between cpus, optional 1755 * 1756 * This function determines grouping of units, their mappings to cpus 1757 * and other parameters considering needed percpu size, allocation 1758 * atom size and distances between CPUs. 1759 * 1760 * Groups are always multiples of atom size and CPUs which are of 1761 * LOCAL_DISTANCE both ways are grouped together and share space for 1762 * units in the same group. The returned configuration is guaranteed 1763 * to have CPUs on different nodes on different groups and >=75% usage 1764 * of allocated virtual address space. 1765 * 1766 * RETURNS: 1767 * On success, pointer to the new allocation_info is returned. On 1768 * failure, ERR_PTR value is returned. 1769 */ 1770 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1771 size_t reserved_size, size_t dyn_size, 1772 size_t atom_size, 1773 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1774 { 1775 static int group_map[NR_CPUS] __initdata; 1776 static int group_cnt[NR_CPUS] __initdata; 1777 const size_t static_size = __per_cpu_end - __per_cpu_start; 1778 int nr_groups = 1, nr_units = 0; 1779 size_t size_sum, min_unit_size, alloc_size; 1780 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1781 int last_allocs, group, unit; 1782 unsigned int cpu, tcpu; 1783 struct pcpu_alloc_info *ai; 1784 unsigned int *cpu_map; 1785 1786 /* this function may be called multiple times */ 1787 memset(group_map, 0, sizeof(group_map)); 1788 memset(group_cnt, 0, sizeof(group_cnt)); 1789 1790 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1791 size_sum = PFN_ALIGN(static_size + reserved_size + 1792 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1793 dyn_size = size_sum - static_size - reserved_size; 1794 1795 /* 1796 * Determine min_unit_size, alloc_size and max_upa such that 1797 * alloc_size is multiple of atom_size and is the smallest 1798 * which can accommodate 4k aligned segments which are equal to 1799 * or larger than min_unit_size. 1800 */ 1801 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1802 1803 alloc_size = roundup(min_unit_size, atom_size); 1804 upa = alloc_size / min_unit_size; 1805 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 1806 upa--; 1807 max_upa = upa; 1808 1809 /* group cpus according to their proximity */ 1810 for_each_possible_cpu(cpu) { 1811 group = 0; 1812 next_group: 1813 for_each_possible_cpu(tcpu) { 1814 if (cpu == tcpu) 1815 break; 1816 if (group_map[tcpu] == group && cpu_distance_fn && 1817 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1818 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1819 group++; 1820 nr_groups = max(nr_groups, group + 1); 1821 goto next_group; 1822 } 1823 } 1824 group_map[cpu] = group; 1825 group_cnt[group]++; 1826 } 1827 1828 /* 1829 * Expand unit size until address space usage goes over 75% 1830 * and then as much as possible without using more address 1831 * space. 1832 */ 1833 last_allocs = INT_MAX; 1834 for (upa = max_upa; upa; upa--) { 1835 int allocs = 0, wasted = 0; 1836 1837 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 1838 continue; 1839 1840 for (group = 0; group < nr_groups; group++) { 1841 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1842 allocs += this_allocs; 1843 wasted += this_allocs * upa - group_cnt[group]; 1844 } 1845 1846 /* 1847 * Don't accept if wastage is over 1/3. The 1848 * greater-than comparison ensures upa==1 always 1849 * passes the following check. 1850 */ 1851 if (wasted > num_possible_cpus() / 3) 1852 continue; 1853 1854 /* and then don't consume more memory */ 1855 if (allocs > last_allocs) 1856 break; 1857 last_allocs = allocs; 1858 best_upa = upa; 1859 } 1860 upa = best_upa; 1861 1862 /* allocate and fill alloc_info */ 1863 for (group = 0; group < nr_groups; group++) 1864 nr_units += roundup(group_cnt[group], upa); 1865 1866 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1867 if (!ai) 1868 return ERR_PTR(-ENOMEM); 1869 cpu_map = ai->groups[0].cpu_map; 1870 1871 for (group = 0; group < nr_groups; group++) { 1872 ai->groups[group].cpu_map = cpu_map; 1873 cpu_map += roundup(group_cnt[group], upa); 1874 } 1875 1876 ai->static_size = static_size; 1877 ai->reserved_size = reserved_size; 1878 ai->dyn_size = dyn_size; 1879 ai->unit_size = alloc_size / upa; 1880 ai->atom_size = atom_size; 1881 ai->alloc_size = alloc_size; 1882 1883 for (group = 0, unit = 0; group_cnt[group]; group++) { 1884 struct pcpu_group_info *gi = &ai->groups[group]; 1885 1886 /* 1887 * Initialize base_offset as if all groups are located 1888 * back-to-back. The caller should update this to 1889 * reflect actual allocation. 1890 */ 1891 gi->base_offset = unit * ai->unit_size; 1892 1893 for_each_possible_cpu(cpu) 1894 if (group_map[cpu] == group) 1895 gi->cpu_map[gi->nr_units++] = cpu; 1896 gi->nr_units = roundup(gi->nr_units, upa); 1897 unit += gi->nr_units; 1898 } 1899 BUG_ON(unit != nr_units); 1900 1901 return ai; 1902 } 1903 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1904 1905 #if defined(BUILD_EMBED_FIRST_CHUNK) 1906 /** 1907 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1908 * @reserved_size: the size of reserved percpu area in bytes 1909 * @dyn_size: minimum free size for dynamic allocation in bytes 1910 * @atom_size: allocation atom size 1911 * @cpu_distance_fn: callback to determine distance between cpus, optional 1912 * @alloc_fn: function to allocate percpu page 1913 * @free_fn: function to free percpu page 1914 * 1915 * This is a helper to ease setting up embedded first percpu chunk and 1916 * can be called where pcpu_setup_first_chunk() is expected. 1917 * 1918 * If this function is used to setup the first chunk, it is allocated 1919 * by calling @alloc_fn and used as-is without being mapped into 1920 * vmalloc area. Allocations are always whole multiples of @atom_size 1921 * aligned to @atom_size. 1922 * 1923 * This enables the first chunk to piggy back on the linear physical 1924 * mapping which often uses larger page size. Please note that this 1925 * can result in very sparse cpu->unit mapping on NUMA machines thus 1926 * requiring large vmalloc address space. Don't use this allocator if 1927 * vmalloc space is not orders of magnitude larger than distances 1928 * between node memory addresses (ie. 32bit NUMA machines). 1929 * 1930 * @dyn_size specifies the minimum dynamic area size. 1931 * 1932 * If the needed size is smaller than the minimum or specified unit 1933 * size, the leftover is returned using @free_fn. 1934 * 1935 * RETURNS: 1936 * 0 on success, -errno on failure. 1937 */ 1938 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1939 size_t atom_size, 1940 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1941 pcpu_fc_alloc_fn_t alloc_fn, 1942 pcpu_fc_free_fn_t free_fn) 1943 { 1944 void *base = (void *)ULONG_MAX; 1945 void **areas = NULL; 1946 struct pcpu_alloc_info *ai; 1947 size_t size_sum, areas_size, max_distance; 1948 int group, i, rc; 1949 1950 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1951 cpu_distance_fn); 1952 if (IS_ERR(ai)) 1953 return PTR_ERR(ai); 1954 1955 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1956 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1957 1958 areas = memblock_virt_alloc_nopanic(areas_size, 0); 1959 if (!areas) { 1960 rc = -ENOMEM; 1961 goto out_free; 1962 } 1963 1964 /* allocate, copy and determine base address */ 1965 for (group = 0; group < ai->nr_groups; group++) { 1966 struct pcpu_group_info *gi = &ai->groups[group]; 1967 unsigned int cpu = NR_CPUS; 1968 void *ptr; 1969 1970 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1971 cpu = gi->cpu_map[i]; 1972 BUG_ON(cpu == NR_CPUS); 1973 1974 /* allocate space for the whole group */ 1975 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1976 if (!ptr) { 1977 rc = -ENOMEM; 1978 goto out_free_areas; 1979 } 1980 /* kmemleak tracks the percpu allocations separately */ 1981 kmemleak_free(ptr); 1982 areas[group] = ptr; 1983 1984 base = min(ptr, base); 1985 } 1986 1987 /* 1988 * Copy data and free unused parts. This should happen after all 1989 * allocations are complete; otherwise, we may end up with 1990 * overlapping groups. 1991 */ 1992 for (group = 0; group < ai->nr_groups; group++) { 1993 struct pcpu_group_info *gi = &ai->groups[group]; 1994 void *ptr = areas[group]; 1995 1996 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1997 if (gi->cpu_map[i] == NR_CPUS) { 1998 /* unused unit, free whole */ 1999 free_fn(ptr, ai->unit_size); 2000 continue; 2001 } 2002 /* copy and return the unused part */ 2003 memcpy(ptr, __per_cpu_load, ai->static_size); 2004 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2005 } 2006 } 2007 2008 /* base address is now known, determine group base offsets */ 2009 max_distance = 0; 2010 for (group = 0; group < ai->nr_groups; group++) { 2011 ai->groups[group].base_offset = areas[group] - base; 2012 max_distance = max_t(size_t, max_distance, 2013 ai->groups[group].base_offset); 2014 } 2015 max_distance += ai->unit_size; 2016 2017 /* warn if maximum distance is further than 75% of vmalloc space */ 2018 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2019 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 2020 "space 0x%lx\n", max_distance, 2021 VMALLOC_TOTAL); 2022 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2023 /* and fail if we have fallback */ 2024 rc = -EINVAL; 2025 goto out_free; 2026 #endif 2027 } 2028 2029 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2030 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2031 ai->dyn_size, ai->unit_size); 2032 2033 rc = pcpu_setup_first_chunk(ai, base); 2034 goto out_free; 2035 2036 out_free_areas: 2037 for (group = 0; group < ai->nr_groups; group++) 2038 if (areas[group]) 2039 free_fn(areas[group], 2040 ai->groups[group].nr_units * ai->unit_size); 2041 out_free: 2042 pcpu_free_alloc_info(ai); 2043 if (areas) 2044 memblock_free_early(__pa(areas), areas_size); 2045 return rc; 2046 } 2047 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2048 2049 #ifdef BUILD_PAGE_FIRST_CHUNK 2050 /** 2051 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2052 * @reserved_size: the size of reserved percpu area in bytes 2053 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2054 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2055 * @populate_pte_fn: function to populate pte 2056 * 2057 * This is a helper to ease setting up page-remapped first percpu 2058 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2059 * 2060 * This is the basic allocator. Static percpu area is allocated 2061 * page-by-page into vmalloc area. 2062 * 2063 * RETURNS: 2064 * 0 on success, -errno on failure. 2065 */ 2066 int __init pcpu_page_first_chunk(size_t reserved_size, 2067 pcpu_fc_alloc_fn_t alloc_fn, 2068 pcpu_fc_free_fn_t free_fn, 2069 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2070 { 2071 static struct vm_struct vm; 2072 struct pcpu_alloc_info *ai; 2073 char psize_str[16]; 2074 int unit_pages; 2075 size_t pages_size; 2076 struct page **pages; 2077 int unit, i, j, rc; 2078 2079 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2080 2081 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2082 if (IS_ERR(ai)) 2083 return PTR_ERR(ai); 2084 BUG_ON(ai->nr_groups != 1); 2085 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 2086 2087 unit_pages = ai->unit_size >> PAGE_SHIFT; 2088 2089 /* unaligned allocations can't be freed, round up to page size */ 2090 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2091 sizeof(pages[0])); 2092 pages = memblock_virt_alloc(pages_size, 0); 2093 2094 /* allocate pages */ 2095 j = 0; 2096 for (unit = 0; unit < num_possible_cpus(); unit++) 2097 for (i = 0; i < unit_pages; i++) { 2098 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2099 void *ptr; 2100 2101 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2102 if (!ptr) { 2103 pr_warning("PERCPU: failed to allocate %s page " 2104 "for cpu%u\n", psize_str, cpu); 2105 goto enomem; 2106 } 2107 /* kmemleak tracks the percpu allocations separately */ 2108 kmemleak_free(ptr); 2109 pages[j++] = virt_to_page(ptr); 2110 } 2111 2112 /* allocate vm area, map the pages and copy static data */ 2113 vm.flags = VM_ALLOC; 2114 vm.size = num_possible_cpus() * ai->unit_size; 2115 vm_area_register_early(&vm, PAGE_SIZE); 2116 2117 for (unit = 0; unit < num_possible_cpus(); unit++) { 2118 unsigned long unit_addr = 2119 (unsigned long)vm.addr + unit * ai->unit_size; 2120 2121 for (i = 0; i < unit_pages; i++) 2122 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2123 2124 /* pte already populated, the following shouldn't fail */ 2125 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2126 unit_pages); 2127 if (rc < 0) 2128 panic("failed to map percpu area, err=%d\n", rc); 2129 2130 /* 2131 * FIXME: Archs with virtual cache should flush local 2132 * cache for the linear mapping here - something 2133 * equivalent to flush_cache_vmap() on the local cpu. 2134 * flush_cache_vmap() can't be used as most supporting 2135 * data structures are not set up yet. 2136 */ 2137 2138 /* copy static data */ 2139 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2140 } 2141 2142 /* we're ready, commit */ 2143 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 2144 unit_pages, psize_str, vm.addr, ai->static_size, 2145 ai->reserved_size, ai->dyn_size); 2146 2147 rc = pcpu_setup_first_chunk(ai, vm.addr); 2148 goto out_free_ar; 2149 2150 enomem: 2151 while (--j >= 0) 2152 free_fn(page_address(pages[j]), PAGE_SIZE); 2153 rc = -ENOMEM; 2154 out_free_ar: 2155 memblock_free_early(__pa(pages), pages_size); 2156 pcpu_free_alloc_info(ai); 2157 return rc; 2158 } 2159 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2160 2161 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2162 /* 2163 * Generic SMP percpu area setup. 2164 * 2165 * The embedding helper is used because its behavior closely resembles 2166 * the original non-dynamic generic percpu area setup. This is 2167 * important because many archs have addressing restrictions and might 2168 * fail if the percpu area is located far away from the previous 2169 * location. As an added bonus, in non-NUMA cases, embedding is 2170 * generally a good idea TLB-wise because percpu area can piggy back 2171 * on the physical linear memory mapping which uses large page 2172 * mappings on applicable archs. 2173 */ 2174 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2175 EXPORT_SYMBOL(__per_cpu_offset); 2176 2177 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2178 size_t align) 2179 { 2180 return memblock_virt_alloc_from_nopanic( 2181 size, align, __pa(MAX_DMA_ADDRESS)); 2182 } 2183 2184 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2185 { 2186 memblock_free_early(__pa(ptr), size); 2187 } 2188 2189 void __init setup_per_cpu_areas(void) 2190 { 2191 unsigned long delta; 2192 unsigned int cpu; 2193 int rc; 2194 2195 /* 2196 * Always reserve area for module percpu variables. That's 2197 * what the legacy allocator did. 2198 */ 2199 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2200 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2201 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2202 if (rc < 0) 2203 panic("Failed to initialize percpu areas."); 2204 2205 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2206 for_each_possible_cpu(cpu) 2207 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2208 } 2209 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2210 2211 #else /* CONFIG_SMP */ 2212 2213 /* 2214 * UP percpu area setup. 2215 * 2216 * UP always uses km-based percpu allocator with identity mapping. 2217 * Static percpu variables are indistinguishable from the usual static 2218 * variables and don't require any special preparation. 2219 */ 2220 void __init setup_per_cpu_areas(void) 2221 { 2222 const size_t unit_size = 2223 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2224 PERCPU_DYNAMIC_RESERVE)); 2225 struct pcpu_alloc_info *ai; 2226 void *fc; 2227 2228 ai = pcpu_alloc_alloc_info(1, 1); 2229 fc = memblock_virt_alloc_from_nopanic(unit_size, 2230 PAGE_SIZE, 2231 __pa(MAX_DMA_ADDRESS)); 2232 if (!ai || !fc) 2233 panic("Failed to allocate memory for percpu areas."); 2234 /* kmemleak tracks the percpu allocations separately */ 2235 kmemleak_free(fc); 2236 2237 ai->dyn_size = unit_size; 2238 ai->unit_size = unit_size; 2239 ai->atom_size = unit_size; 2240 ai->alloc_size = unit_size; 2241 ai->groups[0].nr_units = 1; 2242 ai->groups[0].cpu_map[0] = 0; 2243 2244 if (pcpu_setup_first_chunk(ai, fc) < 0) 2245 panic("Failed to initialize percpu areas."); 2246 } 2247 2248 #endif /* CONFIG_SMP */ 2249 2250 /* 2251 * First and reserved chunks are initialized with temporary allocation 2252 * map in initdata so that they can be used before slab is online. 2253 * This function is called after slab is brought up and replaces those 2254 * with properly allocated maps. 2255 */ 2256 void __init percpu_init_late(void) 2257 { 2258 struct pcpu_chunk *target_chunks[] = 2259 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 2260 struct pcpu_chunk *chunk; 2261 unsigned long flags; 2262 int i; 2263 2264 for (i = 0; (chunk = target_chunks[i]); i++) { 2265 int *map; 2266 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 2267 2268 BUILD_BUG_ON(size > PAGE_SIZE); 2269 2270 map = pcpu_mem_zalloc(size); 2271 BUG_ON(!map); 2272 2273 spin_lock_irqsave(&pcpu_lock, flags); 2274 memcpy(map, chunk->map, size); 2275 chunk->map = map; 2276 spin_unlock_irqrestore(&pcpu_lock, flags); 2277 } 2278 } 2279 2280 /* 2281 * Percpu allocator is initialized early during boot when neither slab or 2282 * workqueue is available. Plug async management until everything is up 2283 * and running. 2284 */ 2285 static int __init percpu_enable_async(void) 2286 { 2287 pcpu_async_enabled = true; 2288 return 0; 2289 } 2290 subsys_initcall(percpu_enable_async); 2291