xref: /linux/mm/percpu.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * tries to allocate from the fullest chunk first.  Each chunk is managed
41  * by a bitmap with metadata blocks.  The allocation map is updated on
42  * every allocation and free to reflect the current state while the boundary
43  * map is only updated on allocation.  Each metadata block contains
44  * information to help mitigate the need to iterate over large portions
45  * of the bitmap.  The reverse mapping from page to chunk is stored in
46  * the page's index.  Lastly, units are lazily backed and grow in unison.
47  *
48  * There is a unique conversion that goes on here between bytes and bits.
49  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
50  * tracks the number of pages it is responsible for in nr_pages.  Helper
51  * functions are used to convert from between the bytes, bits, and blocks.
52  * All hints are managed in bits unless explicitly stated.
53  *
54  * To use this allocator, arch code should do the following:
55  *
56  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57  *   regular address to percpu pointer and back if they need to be
58  *   different from the default
59  *
60  * - use pcpu_setup_first_chunk() during percpu area initialization to
61  *   setup the first chunk containing the kernel static percpu area
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
72 #include <linux/mm.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
83 
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91 
92 #include "percpu-internal.h"
93 
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT		5
96 /* chunks in slots below this are subject to being sidelined on failed alloc */
97 #define PCPU_SLOT_FAIL_THRESHOLD	3
98 
99 #define PCPU_EMPTY_POP_PAGES_LOW	2
100 #define PCPU_EMPTY_POP_PAGES_HIGH	4
101 
102 #ifdef CONFIG_SMP
103 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
104 #ifndef __addr_to_pcpu_ptr
105 #define __addr_to_pcpu_ptr(addr)					\
106 	(void __percpu *)((unsigned long)(addr) -			\
107 			  (unsigned long)pcpu_base_addr	+		\
108 			  (unsigned long)__per_cpu_start)
109 #endif
110 #ifndef __pcpu_ptr_to_addr
111 #define __pcpu_ptr_to_addr(ptr)						\
112 	(void __force *)((unsigned long)(ptr) +				\
113 			 (unsigned long)pcpu_base_addr -		\
114 			 (unsigned long)__per_cpu_start)
115 #endif
116 #else	/* CONFIG_SMP */
117 /* on UP, it's always identity mapped */
118 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
119 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
120 #endif	/* CONFIG_SMP */
121 
122 static int pcpu_unit_pages __ro_after_init;
123 static int pcpu_unit_size __ro_after_init;
124 static int pcpu_nr_units __ro_after_init;
125 static int pcpu_atom_size __ro_after_init;
126 int pcpu_nr_slots __ro_after_init;
127 static size_t pcpu_chunk_struct_size __ro_after_init;
128 
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __ro_after_init;
131 static unsigned int pcpu_high_unit_cpu __ro_after_init;
132 
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __ro_after_init;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr);
136 
137 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
139 
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __ro_after_init;
142 static const unsigned long *pcpu_group_offsets __ro_after_init;
143 static const size_t *pcpu_group_sizes __ro_after_init;
144 
145 /*
146  * The first chunk which always exists.  Note that unlike other
147  * chunks, this one can be allocated and mapped in several different
148  * ways and thus often doesn't live in the vmalloc area.
149  */
150 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
151 
152 /*
153  * Optional reserved chunk.  This chunk reserves part of the first
154  * chunk and serves it for reserved allocations.  When the reserved
155  * region doesn't exist, the following variable is NULL.
156  */
157 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
158 
159 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
160 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
161 
162 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
163 
164 /* chunks which need their map areas extended, protected by pcpu_lock */
165 static LIST_HEAD(pcpu_map_extend_chunks);
166 
167 /*
168  * The number of empty populated pages, protected by pcpu_lock.  The
169  * reserved chunk doesn't contribute to the count.
170  */
171 int pcpu_nr_empty_pop_pages;
172 
173 /*
174  * The number of populated pages in use by the allocator, protected by
175  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
176  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
177  * and increments/decrements this count by 1).
178  */
179 static unsigned long pcpu_nr_populated;
180 
181 /*
182  * Balance work is used to populate or destroy chunks asynchronously.  We
183  * try to keep the number of populated free pages between
184  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
185  * empty chunk.
186  */
187 static void pcpu_balance_workfn(struct work_struct *work);
188 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
189 static bool pcpu_async_enabled __read_mostly;
190 static bool pcpu_atomic_alloc_failed;
191 
192 static void pcpu_schedule_balance_work(void)
193 {
194 	if (pcpu_async_enabled)
195 		schedule_work(&pcpu_balance_work);
196 }
197 
198 /**
199  * pcpu_addr_in_chunk - check if the address is served from this chunk
200  * @chunk: chunk of interest
201  * @addr: percpu address
202  *
203  * RETURNS:
204  * True if the address is served from this chunk.
205  */
206 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
207 {
208 	void *start_addr, *end_addr;
209 
210 	if (!chunk)
211 		return false;
212 
213 	start_addr = chunk->base_addr + chunk->start_offset;
214 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
215 		   chunk->end_offset;
216 
217 	return addr >= start_addr && addr < end_addr;
218 }
219 
220 static int __pcpu_size_to_slot(int size)
221 {
222 	int highbit = fls(size);	/* size is in bytes */
223 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
224 }
225 
226 static int pcpu_size_to_slot(int size)
227 {
228 	if (size == pcpu_unit_size)
229 		return pcpu_nr_slots - 1;
230 	return __pcpu_size_to_slot(size);
231 }
232 
233 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
234 {
235 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
236 
237 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
238 	    chunk_md->contig_hint == 0)
239 		return 0;
240 
241 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
242 }
243 
244 /* set the pointer to a chunk in a page struct */
245 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
246 {
247 	page->index = (unsigned long)pcpu;
248 }
249 
250 /* obtain pointer to a chunk from a page struct */
251 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
252 {
253 	return (struct pcpu_chunk *)page->index;
254 }
255 
256 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
257 {
258 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
259 }
260 
261 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
262 {
263 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
264 }
265 
266 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
267 				     unsigned int cpu, int page_idx)
268 {
269 	return (unsigned long)chunk->base_addr +
270 	       pcpu_unit_page_offset(cpu, page_idx);
271 }
272 
273 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
274 {
275 	*rs = find_next_zero_bit(bitmap, end, *rs);
276 	*re = find_next_bit(bitmap, end, *rs + 1);
277 }
278 
279 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
280 {
281 	*rs = find_next_bit(bitmap, end, *rs);
282 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
283 }
284 
285 /*
286  * Bitmap region iterators.  Iterates over the bitmap between
287  * [@start, @end) in @chunk.  @rs and @re should be integer variables
288  * and will be set to start and end index of the current free region.
289  */
290 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
291 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
292 	     (rs) < (re);						     \
293 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
294 
295 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
296 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
297 	     (rs) < (re);						     \
298 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
299 
300 /*
301  * The following are helper functions to help access bitmaps and convert
302  * between bitmap offsets to address offsets.
303  */
304 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
305 {
306 	return chunk->alloc_map +
307 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
308 }
309 
310 static unsigned long pcpu_off_to_block_index(int off)
311 {
312 	return off / PCPU_BITMAP_BLOCK_BITS;
313 }
314 
315 static unsigned long pcpu_off_to_block_off(int off)
316 {
317 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
318 }
319 
320 static unsigned long pcpu_block_off_to_off(int index, int off)
321 {
322 	return index * PCPU_BITMAP_BLOCK_BITS + off;
323 }
324 
325 /*
326  * pcpu_next_hint - determine which hint to use
327  * @block: block of interest
328  * @alloc_bits: size of allocation
329  *
330  * This determines if we should scan based on the scan_hint or first_free.
331  * In general, we want to scan from first_free to fulfill allocations by
332  * first fit.  However, if we know a scan_hint at position scan_hint_start
333  * cannot fulfill an allocation, we can begin scanning from there knowing
334  * the contig_hint will be our fallback.
335  */
336 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
337 {
338 	/*
339 	 * The three conditions below determine if we can skip past the
340 	 * scan_hint.  First, does the scan hint exist.  Second, is the
341 	 * contig_hint after the scan_hint (possibly not true iff
342 	 * contig_hint == scan_hint).  Third, is the allocation request
343 	 * larger than the scan_hint.
344 	 */
345 	if (block->scan_hint &&
346 	    block->contig_hint_start > block->scan_hint_start &&
347 	    alloc_bits > block->scan_hint)
348 		return block->scan_hint_start + block->scan_hint;
349 
350 	return block->first_free;
351 }
352 
353 /**
354  * pcpu_next_md_free_region - finds the next hint free area
355  * @chunk: chunk of interest
356  * @bit_off: chunk offset
357  * @bits: size of free area
358  *
359  * Helper function for pcpu_for_each_md_free_region.  It checks
360  * block->contig_hint and performs aggregation across blocks to find the
361  * next hint.  It modifies bit_off and bits in-place to be consumed in the
362  * loop.
363  */
364 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
365 				     int *bits)
366 {
367 	int i = pcpu_off_to_block_index(*bit_off);
368 	int block_off = pcpu_off_to_block_off(*bit_off);
369 	struct pcpu_block_md *block;
370 
371 	*bits = 0;
372 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
373 	     block++, i++) {
374 		/* handles contig area across blocks */
375 		if (*bits) {
376 			*bits += block->left_free;
377 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
378 				continue;
379 			return;
380 		}
381 
382 		/*
383 		 * This checks three things.  First is there a contig_hint to
384 		 * check.  Second, have we checked this hint before by
385 		 * comparing the block_off.  Third, is this the same as the
386 		 * right contig hint.  In the last case, it spills over into
387 		 * the next block and should be handled by the contig area
388 		 * across blocks code.
389 		 */
390 		*bits = block->contig_hint;
391 		if (*bits && block->contig_hint_start >= block_off &&
392 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
393 			*bit_off = pcpu_block_off_to_off(i,
394 					block->contig_hint_start);
395 			return;
396 		}
397 		/* reset to satisfy the second predicate above */
398 		block_off = 0;
399 
400 		*bits = block->right_free;
401 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
402 	}
403 }
404 
405 /**
406  * pcpu_next_fit_region - finds fit areas for a given allocation request
407  * @chunk: chunk of interest
408  * @alloc_bits: size of allocation
409  * @align: alignment of area (max PAGE_SIZE)
410  * @bit_off: chunk offset
411  * @bits: size of free area
412  *
413  * Finds the next free region that is viable for use with a given size and
414  * alignment.  This only returns if there is a valid area to be used for this
415  * allocation.  block->first_free is returned if the allocation request fits
416  * within the block to see if the request can be fulfilled prior to the contig
417  * hint.
418  */
419 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
420 				 int align, int *bit_off, int *bits)
421 {
422 	int i = pcpu_off_to_block_index(*bit_off);
423 	int block_off = pcpu_off_to_block_off(*bit_off);
424 	struct pcpu_block_md *block;
425 
426 	*bits = 0;
427 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
428 	     block++, i++) {
429 		/* handles contig area across blocks */
430 		if (*bits) {
431 			*bits += block->left_free;
432 			if (*bits >= alloc_bits)
433 				return;
434 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
435 				continue;
436 		}
437 
438 		/* check block->contig_hint */
439 		*bits = ALIGN(block->contig_hint_start, align) -
440 			block->contig_hint_start;
441 		/*
442 		 * This uses the block offset to determine if this has been
443 		 * checked in the prior iteration.
444 		 */
445 		if (block->contig_hint &&
446 		    block->contig_hint_start >= block_off &&
447 		    block->contig_hint >= *bits + alloc_bits) {
448 			int start = pcpu_next_hint(block, alloc_bits);
449 
450 			*bits += alloc_bits + block->contig_hint_start -
451 				 start;
452 			*bit_off = pcpu_block_off_to_off(i, start);
453 			return;
454 		}
455 		/* reset to satisfy the second predicate above */
456 		block_off = 0;
457 
458 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
459 				 align);
460 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
461 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
462 		if (*bits >= alloc_bits)
463 			return;
464 	}
465 
466 	/* no valid offsets were found - fail condition */
467 	*bit_off = pcpu_chunk_map_bits(chunk);
468 }
469 
470 /*
471  * Metadata free area iterators.  These perform aggregation of free areas
472  * based on the metadata blocks and return the offset @bit_off and size in
473  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
474  * a fit is found for the allocation request.
475  */
476 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
477 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
478 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
479 	     (bit_off) += (bits) + 1,					\
480 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
481 
482 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
483 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
484 				  &(bits));				      \
485 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
486 	     (bit_off) += (bits),					      \
487 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
488 				  &(bits)))
489 
490 /**
491  * pcpu_mem_zalloc - allocate memory
492  * @size: bytes to allocate
493  * @gfp: allocation flags
494  *
495  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
496  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
497  * This is to facilitate passing through whitelisted flags.  The
498  * returned memory is always zeroed.
499  *
500  * RETURNS:
501  * Pointer to the allocated area on success, NULL on failure.
502  */
503 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
504 {
505 	if (WARN_ON_ONCE(!slab_is_available()))
506 		return NULL;
507 
508 	if (size <= PAGE_SIZE)
509 		return kzalloc(size, gfp);
510 	else
511 		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
512 }
513 
514 /**
515  * pcpu_mem_free - free memory
516  * @ptr: memory to free
517  *
518  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
519  */
520 static void pcpu_mem_free(void *ptr)
521 {
522 	kvfree(ptr);
523 }
524 
525 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
526 			      bool move_front)
527 {
528 	if (chunk != pcpu_reserved_chunk) {
529 		if (move_front)
530 			list_move(&chunk->list, &pcpu_slot[slot]);
531 		else
532 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
533 	}
534 }
535 
536 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
537 {
538 	__pcpu_chunk_move(chunk, slot, true);
539 }
540 
541 /**
542  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
543  * @chunk: chunk of interest
544  * @oslot: the previous slot it was on
545  *
546  * This function is called after an allocation or free changed @chunk.
547  * New slot according to the changed state is determined and @chunk is
548  * moved to the slot.  Note that the reserved chunk is never put on
549  * chunk slots.
550  *
551  * CONTEXT:
552  * pcpu_lock.
553  */
554 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
555 {
556 	int nslot = pcpu_chunk_slot(chunk);
557 
558 	if (oslot != nslot)
559 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
560 }
561 
562 /*
563  * pcpu_update_empty_pages - update empty page counters
564  * @chunk: chunk of interest
565  * @nr: nr of empty pages
566  *
567  * This is used to keep track of the empty pages now based on the premise
568  * a md_block covers a page.  The hint update functions recognize if a block
569  * is made full or broken to calculate deltas for keeping track of free pages.
570  */
571 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
572 {
573 	chunk->nr_empty_pop_pages += nr;
574 	if (chunk != pcpu_reserved_chunk)
575 		pcpu_nr_empty_pop_pages += nr;
576 }
577 
578 /*
579  * pcpu_region_overlap - determines if two regions overlap
580  * @a: start of first region, inclusive
581  * @b: end of first region, exclusive
582  * @x: start of second region, inclusive
583  * @y: end of second region, exclusive
584  *
585  * This is used to determine if the hint region [a, b) overlaps with the
586  * allocated region [x, y).
587  */
588 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
589 {
590 	return (a < y) && (x < b);
591 }
592 
593 /**
594  * pcpu_block_update - updates a block given a free area
595  * @block: block of interest
596  * @start: start offset in block
597  * @end: end offset in block
598  *
599  * Updates a block given a known free area.  The region [start, end) is
600  * expected to be the entirety of the free area within a block.  Chooses
601  * the best starting offset if the contig hints are equal.
602  */
603 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
604 {
605 	int contig = end - start;
606 
607 	block->first_free = min(block->first_free, start);
608 	if (start == 0)
609 		block->left_free = contig;
610 
611 	if (end == block->nr_bits)
612 		block->right_free = contig;
613 
614 	if (contig > block->contig_hint) {
615 		/* promote the old contig_hint to be the new scan_hint */
616 		if (start > block->contig_hint_start) {
617 			if (block->contig_hint > block->scan_hint) {
618 				block->scan_hint_start =
619 					block->contig_hint_start;
620 				block->scan_hint = block->contig_hint;
621 			} else if (start < block->scan_hint_start) {
622 				/*
623 				 * The old contig_hint == scan_hint.  But, the
624 				 * new contig is larger so hold the invariant
625 				 * scan_hint_start < contig_hint_start.
626 				 */
627 				block->scan_hint = 0;
628 			}
629 		} else {
630 			block->scan_hint = 0;
631 		}
632 		block->contig_hint_start = start;
633 		block->contig_hint = contig;
634 	} else if (contig == block->contig_hint) {
635 		if (block->contig_hint_start &&
636 		    (!start ||
637 		     __ffs(start) > __ffs(block->contig_hint_start))) {
638 			/* start has a better alignment so use it */
639 			block->contig_hint_start = start;
640 			if (start < block->scan_hint_start &&
641 			    block->contig_hint > block->scan_hint)
642 				block->scan_hint = 0;
643 		} else if (start > block->scan_hint_start ||
644 			   block->contig_hint > block->scan_hint) {
645 			/*
646 			 * Knowing contig == contig_hint, update the scan_hint
647 			 * if it is farther than or larger than the current
648 			 * scan_hint.
649 			 */
650 			block->scan_hint_start = start;
651 			block->scan_hint = contig;
652 		}
653 	} else {
654 		/*
655 		 * The region is smaller than the contig_hint.  So only update
656 		 * the scan_hint if it is larger than or equal and farther than
657 		 * the current scan_hint.
658 		 */
659 		if ((start < block->contig_hint_start &&
660 		     (contig > block->scan_hint ||
661 		      (contig == block->scan_hint &&
662 		       start > block->scan_hint_start)))) {
663 			block->scan_hint_start = start;
664 			block->scan_hint = contig;
665 		}
666 	}
667 }
668 
669 /*
670  * pcpu_block_update_scan - update a block given a free area from a scan
671  * @chunk: chunk of interest
672  * @bit_off: chunk offset
673  * @bits: size of free area
674  *
675  * Finding the final allocation spot first goes through pcpu_find_block_fit()
676  * to find a block that can hold the allocation and then pcpu_alloc_area()
677  * where a scan is used.  When allocations require specific alignments,
678  * we can inadvertently create holes which will not be seen in the alloc
679  * or free paths.
680  *
681  * This takes a given free area hole and updates a block as it may change the
682  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
683  * from alignment.
684  */
685 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
686 				   int bits)
687 {
688 	int s_off = pcpu_off_to_block_off(bit_off);
689 	int e_off = s_off + bits;
690 	int s_index, l_bit;
691 	struct pcpu_block_md *block;
692 
693 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
694 		return;
695 
696 	s_index = pcpu_off_to_block_index(bit_off);
697 	block = chunk->md_blocks + s_index;
698 
699 	/* scan backwards in case of alignment skipping free bits */
700 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
701 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
702 
703 	pcpu_block_update(block, s_off, e_off);
704 }
705 
706 /**
707  * pcpu_chunk_refresh_hint - updates metadata about a chunk
708  * @chunk: chunk of interest
709  * @full_scan: if we should scan from the beginning
710  *
711  * Iterates over the metadata blocks to find the largest contig area.
712  * A full scan can be avoided on the allocation path as this is triggered
713  * if we broke the contig_hint.  In doing so, the scan_hint will be before
714  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
715  * be prevented on freeing as we want to find the largest area possibly
716  * spanning blocks.
717  */
718 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
719 {
720 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
721 	int bit_off, bits;
722 
723 	/* promote scan_hint to contig_hint */
724 	if (!full_scan && chunk_md->scan_hint) {
725 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
726 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
727 		chunk_md->contig_hint = chunk_md->scan_hint;
728 		chunk_md->scan_hint = 0;
729 	} else {
730 		bit_off = chunk_md->first_free;
731 		chunk_md->contig_hint = 0;
732 	}
733 
734 	bits = 0;
735 	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
736 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
737 	}
738 }
739 
740 /**
741  * pcpu_block_refresh_hint
742  * @chunk: chunk of interest
743  * @index: index of the metadata block
744  *
745  * Scans over the block beginning at first_free and updates the block
746  * metadata accordingly.
747  */
748 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
749 {
750 	struct pcpu_block_md *block = chunk->md_blocks + index;
751 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
752 	int rs, re, start;	/* region start, region end */
753 
754 	/* promote scan_hint to contig_hint */
755 	if (block->scan_hint) {
756 		start = block->scan_hint_start + block->scan_hint;
757 		block->contig_hint_start = block->scan_hint_start;
758 		block->contig_hint = block->scan_hint;
759 		block->scan_hint = 0;
760 	} else {
761 		start = block->first_free;
762 		block->contig_hint = 0;
763 	}
764 
765 	block->right_free = 0;
766 
767 	/* iterate over free areas and update the contig hints */
768 	pcpu_for_each_unpop_region(alloc_map, rs, re, start,
769 				   PCPU_BITMAP_BLOCK_BITS) {
770 		pcpu_block_update(block, rs, re);
771 	}
772 }
773 
774 /**
775  * pcpu_block_update_hint_alloc - update hint on allocation path
776  * @chunk: chunk of interest
777  * @bit_off: chunk offset
778  * @bits: size of request
779  *
780  * Updates metadata for the allocation path.  The metadata only has to be
781  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
782  * scans are required if the block's contig hint is broken.
783  */
784 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
785 					 int bits)
786 {
787 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
788 	int nr_empty_pages = 0;
789 	struct pcpu_block_md *s_block, *e_block, *block;
790 	int s_index, e_index;	/* block indexes of the freed allocation */
791 	int s_off, e_off;	/* block offsets of the freed allocation */
792 
793 	/*
794 	 * Calculate per block offsets.
795 	 * The calculation uses an inclusive range, but the resulting offsets
796 	 * are [start, end).  e_index always points to the last block in the
797 	 * range.
798 	 */
799 	s_index = pcpu_off_to_block_index(bit_off);
800 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
801 	s_off = pcpu_off_to_block_off(bit_off);
802 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
803 
804 	s_block = chunk->md_blocks + s_index;
805 	e_block = chunk->md_blocks + e_index;
806 
807 	/*
808 	 * Update s_block.
809 	 * block->first_free must be updated if the allocation takes its place.
810 	 * If the allocation breaks the contig_hint, a scan is required to
811 	 * restore this hint.
812 	 */
813 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
814 		nr_empty_pages++;
815 
816 	if (s_off == s_block->first_free)
817 		s_block->first_free = find_next_zero_bit(
818 					pcpu_index_alloc_map(chunk, s_index),
819 					PCPU_BITMAP_BLOCK_BITS,
820 					s_off + bits);
821 
822 	if (pcpu_region_overlap(s_block->scan_hint_start,
823 				s_block->scan_hint_start + s_block->scan_hint,
824 				s_off,
825 				s_off + bits))
826 		s_block->scan_hint = 0;
827 
828 	if (pcpu_region_overlap(s_block->contig_hint_start,
829 				s_block->contig_hint_start +
830 				s_block->contig_hint,
831 				s_off,
832 				s_off + bits)) {
833 		/* block contig hint is broken - scan to fix it */
834 		if (!s_off)
835 			s_block->left_free = 0;
836 		pcpu_block_refresh_hint(chunk, s_index);
837 	} else {
838 		/* update left and right contig manually */
839 		s_block->left_free = min(s_block->left_free, s_off);
840 		if (s_index == e_index)
841 			s_block->right_free = min_t(int, s_block->right_free,
842 					PCPU_BITMAP_BLOCK_BITS - e_off);
843 		else
844 			s_block->right_free = 0;
845 	}
846 
847 	/*
848 	 * Update e_block.
849 	 */
850 	if (s_index != e_index) {
851 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
852 			nr_empty_pages++;
853 
854 		/*
855 		 * When the allocation is across blocks, the end is along
856 		 * the left part of the e_block.
857 		 */
858 		e_block->first_free = find_next_zero_bit(
859 				pcpu_index_alloc_map(chunk, e_index),
860 				PCPU_BITMAP_BLOCK_BITS, e_off);
861 
862 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
863 			/* reset the block */
864 			e_block++;
865 		} else {
866 			if (e_off > e_block->scan_hint_start)
867 				e_block->scan_hint = 0;
868 
869 			e_block->left_free = 0;
870 			if (e_off > e_block->contig_hint_start) {
871 				/* contig hint is broken - scan to fix it */
872 				pcpu_block_refresh_hint(chunk, e_index);
873 			} else {
874 				e_block->right_free =
875 					min_t(int, e_block->right_free,
876 					      PCPU_BITMAP_BLOCK_BITS - e_off);
877 			}
878 		}
879 
880 		/* update in-between md_blocks */
881 		nr_empty_pages += (e_index - s_index - 1);
882 		for (block = s_block + 1; block < e_block; block++) {
883 			block->scan_hint = 0;
884 			block->contig_hint = 0;
885 			block->left_free = 0;
886 			block->right_free = 0;
887 		}
888 	}
889 
890 	if (nr_empty_pages)
891 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
892 
893 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
894 				chunk_md->scan_hint_start +
895 				chunk_md->scan_hint,
896 				bit_off,
897 				bit_off + bits))
898 		chunk_md->scan_hint = 0;
899 
900 	/*
901 	 * The only time a full chunk scan is required is if the chunk
902 	 * contig hint is broken.  Otherwise, it means a smaller space
903 	 * was used and therefore the chunk contig hint is still correct.
904 	 */
905 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
906 				chunk_md->contig_hint_start +
907 				chunk_md->contig_hint,
908 				bit_off,
909 				bit_off + bits))
910 		pcpu_chunk_refresh_hint(chunk, false);
911 }
912 
913 /**
914  * pcpu_block_update_hint_free - updates the block hints on the free path
915  * @chunk: chunk of interest
916  * @bit_off: chunk offset
917  * @bits: size of request
918  *
919  * Updates metadata for the allocation path.  This avoids a blind block
920  * refresh by making use of the block contig hints.  If this fails, it scans
921  * forward and backward to determine the extent of the free area.  This is
922  * capped at the boundary of blocks.
923  *
924  * A chunk update is triggered if a page becomes free, a block becomes free,
925  * or the free spans across blocks.  This tradeoff is to minimize iterating
926  * over the block metadata to update chunk_md->contig_hint.
927  * chunk_md->contig_hint may be off by up to a page, but it will never be more
928  * than the available space.  If the contig hint is contained in one block, it
929  * will be accurate.
930  */
931 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
932 					int bits)
933 {
934 	int nr_empty_pages = 0;
935 	struct pcpu_block_md *s_block, *e_block, *block;
936 	int s_index, e_index;	/* block indexes of the freed allocation */
937 	int s_off, e_off;	/* block offsets of the freed allocation */
938 	int start, end;		/* start and end of the whole free area */
939 
940 	/*
941 	 * Calculate per block offsets.
942 	 * The calculation uses an inclusive range, but the resulting offsets
943 	 * are [start, end).  e_index always points to the last block in the
944 	 * range.
945 	 */
946 	s_index = pcpu_off_to_block_index(bit_off);
947 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
948 	s_off = pcpu_off_to_block_off(bit_off);
949 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
950 
951 	s_block = chunk->md_blocks + s_index;
952 	e_block = chunk->md_blocks + e_index;
953 
954 	/*
955 	 * Check if the freed area aligns with the block->contig_hint.
956 	 * If it does, then the scan to find the beginning/end of the
957 	 * larger free area can be avoided.
958 	 *
959 	 * start and end refer to beginning and end of the free area
960 	 * within each their respective blocks.  This is not necessarily
961 	 * the entire free area as it may span blocks past the beginning
962 	 * or end of the block.
963 	 */
964 	start = s_off;
965 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
966 		start = s_block->contig_hint_start;
967 	} else {
968 		/*
969 		 * Scan backwards to find the extent of the free area.
970 		 * find_last_bit returns the starting bit, so if the start bit
971 		 * is returned, that means there was no last bit and the
972 		 * remainder of the chunk is free.
973 		 */
974 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
975 					  start);
976 		start = (start == l_bit) ? 0 : l_bit + 1;
977 	}
978 
979 	end = e_off;
980 	if (e_off == e_block->contig_hint_start)
981 		end = e_block->contig_hint_start + e_block->contig_hint;
982 	else
983 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
984 				    PCPU_BITMAP_BLOCK_BITS, end);
985 
986 	/* update s_block */
987 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
988 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
989 		nr_empty_pages++;
990 	pcpu_block_update(s_block, start, e_off);
991 
992 	/* freeing in the same block */
993 	if (s_index != e_index) {
994 		/* update e_block */
995 		if (end == PCPU_BITMAP_BLOCK_BITS)
996 			nr_empty_pages++;
997 		pcpu_block_update(e_block, 0, end);
998 
999 		/* reset md_blocks in the middle */
1000 		nr_empty_pages += (e_index - s_index - 1);
1001 		for (block = s_block + 1; block < e_block; block++) {
1002 			block->first_free = 0;
1003 			block->scan_hint = 0;
1004 			block->contig_hint_start = 0;
1005 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1006 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
1007 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
1008 		}
1009 	}
1010 
1011 	if (nr_empty_pages)
1012 		pcpu_update_empty_pages(chunk, nr_empty_pages);
1013 
1014 	/*
1015 	 * Refresh chunk metadata when the free makes a block free or spans
1016 	 * across blocks.  The contig_hint may be off by up to a page, but if
1017 	 * the contig_hint is contained in a block, it will be accurate with
1018 	 * the else condition below.
1019 	 */
1020 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1021 		pcpu_chunk_refresh_hint(chunk, true);
1022 	else
1023 		pcpu_block_update(&chunk->chunk_md,
1024 				  pcpu_block_off_to_off(s_index, start),
1025 				  end);
1026 }
1027 
1028 /**
1029  * pcpu_is_populated - determines if the region is populated
1030  * @chunk: chunk of interest
1031  * @bit_off: chunk offset
1032  * @bits: size of area
1033  * @next_off: return value for the next offset to start searching
1034  *
1035  * For atomic allocations, check if the backing pages are populated.
1036  *
1037  * RETURNS:
1038  * Bool if the backing pages are populated.
1039  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1040  */
1041 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1042 			      int *next_off)
1043 {
1044 	int page_start, page_end, rs, re;
1045 
1046 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1047 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1048 
1049 	rs = page_start;
1050 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
1051 	if (rs >= page_end)
1052 		return true;
1053 
1054 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1055 	return false;
1056 }
1057 
1058 /**
1059  * pcpu_find_block_fit - finds the block index to start searching
1060  * @chunk: chunk of interest
1061  * @alloc_bits: size of request in allocation units
1062  * @align: alignment of area (max PAGE_SIZE bytes)
1063  * @pop_only: use populated regions only
1064  *
1065  * Given a chunk and an allocation spec, find the offset to begin searching
1066  * for a free region.  This iterates over the bitmap metadata blocks to
1067  * find an offset that will be guaranteed to fit the requirements.  It is
1068  * not quite first fit as if the allocation does not fit in the contig hint
1069  * of a block or chunk, it is skipped.  This errs on the side of caution
1070  * to prevent excess iteration.  Poor alignment can cause the allocator to
1071  * skip over blocks and chunks that have valid free areas.
1072  *
1073  * RETURNS:
1074  * The offset in the bitmap to begin searching.
1075  * -1 if no offset is found.
1076  */
1077 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1078 			       size_t align, bool pop_only)
1079 {
1080 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1081 	int bit_off, bits, next_off;
1082 
1083 	/*
1084 	 * Check to see if the allocation can fit in the chunk's contig hint.
1085 	 * This is an optimization to prevent scanning by assuming if it
1086 	 * cannot fit in the global hint, there is memory pressure and creating
1087 	 * a new chunk would happen soon.
1088 	 */
1089 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1090 		  chunk_md->contig_hint_start;
1091 	if (bit_off + alloc_bits > chunk_md->contig_hint)
1092 		return -1;
1093 
1094 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1095 	bits = 0;
1096 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1097 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1098 						   &next_off))
1099 			break;
1100 
1101 		bit_off = next_off;
1102 		bits = 0;
1103 	}
1104 
1105 	if (bit_off == pcpu_chunk_map_bits(chunk))
1106 		return -1;
1107 
1108 	return bit_off;
1109 }
1110 
1111 /*
1112  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1113  * @map: the address to base the search on
1114  * @size: the bitmap size in bits
1115  * @start: the bitnumber to start searching at
1116  * @nr: the number of zeroed bits we're looking for
1117  * @align_mask: alignment mask for zero area
1118  * @largest_off: offset of the largest area skipped
1119  * @largest_bits: size of the largest area skipped
1120  *
1121  * The @align_mask should be one less than a power of 2.
1122  *
1123  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1124  * the largest area that was skipped.  This is imperfect, but in general is
1125  * good enough.  The largest remembered region is the largest failed region
1126  * seen.  This does not include anything we possibly skipped due to alignment.
1127  * pcpu_block_update_scan() does scan backwards to try and recover what was
1128  * lost to alignment.  While this can cause scanning to miss earlier possible
1129  * free areas, smaller allocations will eventually fill those holes.
1130  */
1131 static unsigned long pcpu_find_zero_area(unsigned long *map,
1132 					 unsigned long size,
1133 					 unsigned long start,
1134 					 unsigned long nr,
1135 					 unsigned long align_mask,
1136 					 unsigned long *largest_off,
1137 					 unsigned long *largest_bits)
1138 {
1139 	unsigned long index, end, i, area_off, area_bits;
1140 again:
1141 	index = find_next_zero_bit(map, size, start);
1142 
1143 	/* Align allocation */
1144 	index = __ALIGN_MASK(index, align_mask);
1145 	area_off = index;
1146 
1147 	end = index + nr;
1148 	if (end > size)
1149 		return end;
1150 	i = find_next_bit(map, end, index);
1151 	if (i < end) {
1152 		area_bits = i - area_off;
1153 		/* remember largest unused area with best alignment */
1154 		if (area_bits > *largest_bits ||
1155 		    (area_bits == *largest_bits && *largest_off &&
1156 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1157 			*largest_off = area_off;
1158 			*largest_bits = area_bits;
1159 		}
1160 
1161 		start = i + 1;
1162 		goto again;
1163 	}
1164 	return index;
1165 }
1166 
1167 /**
1168  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1169  * @chunk: chunk of interest
1170  * @alloc_bits: size of request in allocation units
1171  * @align: alignment of area (max PAGE_SIZE)
1172  * @start: bit_off to start searching
1173  *
1174  * This function takes in a @start offset to begin searching to fit an
1175  * allocation of @alloc_bits with alignment @align.  It needs to scan
1176  * the allocation map because if it fits within the block's contig hint,
1177  * @start will be block->first_free. This is an attempt to fill the
1178  * allocation prior to breaking the contig hint.  The allocation and
1179  * boundary maps are updated accordingly if it confirms a valid
1180  * free area.
1181  *
1182  * RETURNS:
1183  * Allocated addr offset in @chunk on success.
1184  * -1 if no matching area is found.
1185  */
1186 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1187 			   size_t align, int start)
1188 {
1189 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1190 	size_t align_mask = (align) ? (align - 1) : 0;
1191 	unsigned long area_off = 0, area_bits = 0;
1192 	int bit_off, end, oslot;
1193 
1194 	lockdep_assert_held(&pcpu_lock);
1195 
1196 	oslot = pcpu_chunk_slot(chunk);
1197 
1198 	/*
1199 	 * Search to find a fit.
1200 	 */
1201 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1202 		    pcpu_chunk_map_bits(chunk));
1203 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1204 				      align_mask, &area_off, &area_bits);
1205 	if (bit_off >= end)
1206 		return -1;
1207 
1208 	if (area_bits)
1209 		pcpu_block_update_scan(chunk, area_off, area_bits);
1210 
1211 	/* update alloc map */
1212 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1213 
1214 	/* update boundary map */
1215 	set_bit(bit_off, chunk->bound_map);
1216 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1217 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1218 
1219 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1220 
1221 	/* update first free bit */
1222 	if (bit_off == chunk_md->first_free)
1223 		chunk_md->first_free = find_next_zero_bit(
1224 					chunk->alloc_map,
1225 					pcpu_chunk_map_bits(chunk),
1226 					bit_off + alloc_bits);
1227 
1228 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1229 
1230 	pcpu_chunk_relocate(chunk, oslot);
1231 
1232 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1233 }
1234 
1235 /**
1236  * pcpu_free_area - frees the corresponding offset
1237  * @chunk: chunk of interest
1238  * @off: addr offset into chunk
1239  *
1240  * This function determines the size of an allocation to free using
1241  * the boundary bitmap and clears the allocation map.
1242  */
1243 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1244 {
1245 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1246 	int bit_off, bits, end, oslot;
1247 
1248 	lockdep_assert_held(&pcpu_lock);
1249 	pcpu_stats_area_dealloc(chunk);
1250 
1251 	oslot = pcpu_chunk_slot(chunk);
1252 
1253 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1254 
1255 	/* find end index */
1256 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1257 			    bit_off + 1);
1258 	bits = end - bit_off;
1259 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1260 
1261 	/* update metadata */
1262 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1263 
1264 	/* update first free bit */
1265 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1266 
1267 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1268 
1269 	pcpu_chunk_relocate(chunk, oslot);
1270 }
1271 
1272 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1273 {
1274 	block->scan_hint = 0;
1275 	block->contig_hint = nr_bits;
1276 	block->left_free = nr_bits;
1277 	block->right_free = nr_bits;
1278 	block->first_free = 0;
1279 	block->nr_bits = nr_bits;
1280 }
1281 
1282 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1283 {
1284 	struct pcpu_block_md *md_block;
1285 
1286 	/* init the chunk's block */
1287 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1288 
1289 	for (md_block = chunk->md_blocks;
1290 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1291 	     md_block++)
1292 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1293 }
1294 
1295 /**
1296  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1297  * @tmp_addr: the start of the region served
1298  * @map_size: size of the region served
1299  *
1300  * This is responsible for creating the chunks that serve the first chunk.  The
1301  * base_addr is page aligned down of @tmp_addr while the region end is page
1302  * aligned up.  Offsets are kept track of to determine the region served. All
1303  * this is done to appease the bitmap allocator in avoiding partial blocks.
1304  *
1305  * RETURNS:
1306  * Chunk serving the region at @tmp_addr of @map_size.
1307  */
1308 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1309 							 int map_size)
1310 {
1311 	struct pcpu_chunk *chunk;
1312 	unsigned long aligned_addr, lcm_align;
1313 	int start_offset, offset_bits, region_size, region_bits;
1314 	size_t alloc_size;
1315 
1316 	/* region calculations */
1317 	aligned_addr = tmp_addr & PAGE_MASK;
1318 
1319 	start_offset = tmp_addr - aligned_addr;
1320 
1321 	/*
1322 	 * Align the end of the region with the LCM of PAGE_SIZE and
1323 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1324 	 * the other.
1325 	 */
1326 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1327 	region_size = ALIGN(start_offset + map_size, lcm_align);
1328 
1329 	/* allocate chunk */
1330 	alloc_size = sizeof(struct pcpu_chunk) +
1331 		BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1332 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1333 	if (!chunk)
1334 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1335 		      alloc_size);
1336 
1337 	INIT_LIST_HEAD(&chunk->list);
1338 
1339 	chunk->base_addr = (void *)aligned_addr;
1340 	chunk->start_offset = start_offset;
1341 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1342 
1343 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1344 	region_bits = pcpu_chunk_map_bits(chunk);
1345 
1346 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1347 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1348 	if (!chunk->alloc_map)
1349 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1350 		      alloc_size);
1351 
1352 	alloc_size =
1353 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1354 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1355 	if (!chunk->bound_map)
1356 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1357 		      alloc_size);
1358 
1359 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1360 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1361 	if (!chunk->md_blocks)
1362 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1363 		      alloc_size);
1364 
1365 	pcpu_init_md_blocks(chunk);
1366 
1367 	/* manage populated page bitmap */
1368 	chunk->immutable = true;
1369 	bitmap_fill(chunk->populated, chunk->nr_pages);
1370 	chunk->nr_populated = chunk->nr_pages;
1371 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1372 
1373 	chunk->free_bytes = map_size;
1374 
1375 	if (chunk->start_offset) {
1376 		/* hide the beginning of the bitmap */
1377 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1378 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1379 		set_bit(0, chunk->bound_map);
1380 		set_bit(offset_bits, chunk->bound_map);
1381 
1382 		chunk->chunk_md.first_free = offset_bits;
1383 
1384 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1385 	}
1386 
1387 	if (chunk->end_offset) {
1388 		/* hide the end of the bitmap */
1389 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1390 		bitmap_set(chunk->alloc_map,
1391 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1392 			   offset_bits);
1393 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1394 			chunk->bound_map);
1395 		set_bit(region_bits, chunk->bound_map);
1396 
1397 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1398 					     - offset_bits, offset_bits);
1399 	}
1400 
1401 	return chunk;
1402 }
1403 
1404 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1405 {
1406 	struct pcpu_chunk *chunk;
1407 	int region_bits;
1408 
1409 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1410 	if (!chunk)
1411 		return NULL;
1412 
1413 	INIT_LIST_HEAD(&chunk->list);
1414 	chunk->nr_pages = pcpu_unit_pages;
1415 	region_bits = pcpu_chunk_map_bits(chunk);
1416 
1417 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1418 					   sizeof(chunk->alloc_map[0]), gfp);
1419 	if (!chunk->alloc_map)
1420 		goto alloc_map_fail;
1421 
1422 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1423 					   sizeof(chunk->bound_map[0]), gfp);
1424 	if (!chunk->bound_map)
1425 		goto bound_map_fail;
1426 
1427 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1428 					   sizeof(chunk->md_blocks[0]), gfp);
1429 	if (!chunk->md_blocks)
1430 		goto md_blocks_fail;
1431 
1432 	pcpu_init_md_blocks(chunk);
1433 
1434 	/* init metadata */
1435 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1436 
1437 	return chunk;
1438 
1439 md_blocks_fail:
1440 	pcpu_mem_free(chunk->bound_map);
1441 bound_map_fail:
1442 	pcpu_mem_free(chunk->alloc_map);
1443 alloc_map_fail:
1444 	pcpu_mem_free(chunk);
1445 
1446 	return NULL;
1447 }
1448 
1449 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1450 {
1451 	if (!chunk)
1452 		return;
1453 	pcpu_mem_free(chunk->md_blocks);
1454 	pcpu_mem_free(chunk->bound_map);
1455 	pcpu_mem_free(chunk->alloc_map);
1456 	pcpu_mem_free(chunk);
1457 }
1458 
1459 /**
1460  * pcpu_chunk_populated - post-population bookkeeping
1461  * @chunk: pcpu_chunk which got populated
1462  * @page_start: the start page
1463  * @page_end: the end page
1464  *
1465  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1466  * the bookkeeping information accordingly.  Must be called after each
1467  * successful population.
1468  *
1469  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1470  * is to serve an allocation in that area.
1471  */
1472 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1473 				 int page_end)
1474 {
1475 	int nr = page_end - page_start;
1476 
1477 	lockdep_assert_held(&pcpu_lock);
1478 
1479 	bitmap_set(chunk->populated, page_start, nr);
1480 	chunk->nr_populated += nr;
1481 	pcpu_nr_populated += nr;
1482 
1483 	pcpu_update_empty_pages(chunk, nr);
1484 }
1485 
1486 /**
1487  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1488  * @chunk: pcpu_chunk which got depopulated
1489  * @page_start: the start page
1490  * @page_end: the end page
1491  *
1492  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1493  * Update the bookkeeping information accordingly.  Must be called after
1494  * each successful depopulation.
1495  */
1496 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1497 				   int page_start, int page_end)
1498 {
1499 	int nr = page_end - page_start;
1500 
1501 	lockdep_assert_held(&pcpu_lock);
1502 
1503 	bitmap_clear(chunk->populated, page_start, nr);
1504 	chunk->nr_populated -= nr;
1505 	pcpu_nr_populated -= nr;
1506 
1507 	pcpu_update_empty_pages(chunk, -nr);
1508 }
1509 
1510 /*
1511  * Chunk management implementation.
1512  *
1513  * To allow different implementations, chunk alloc/free and
1514  * [de]population are implemented in a separate file which is pulled
1515  * into this file and compiled together.  The following functions
1516  * should be implemented.
1517  *
1518  * pcpu_populate_chunk		- populate the specified range of a chunk
1519  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1520  * pcpu_create_chunk		- create a new chunk
1521  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1522  * pcpu_addr_to_page		- translate address to physical address
1523  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1524  */
1525 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1526 			       int page_start, int page_end, gfp_t gfp);
1527 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1528 				  int page_start, int page_end);
1529 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1530 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1531 static struct page *pcpu_addr_to_page(void *addr);
1532 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1533 
1534 #ifdef CONFIG_NEED_PER_CPU_KM
1535 #include "percpu-km.c"
1536 #else
1537 #include "percpu-vm.c"
1538 #endif
1539 
1540 /**
1541  * pcpu_chunk_addr_search - determine chunk containing specified address
1542  * @addr: address for which the chunk needs to be determined.
1543  *
1544  * This is an internal function that handles all but static allocations.
1545  * Static percpu address values should never be passed into the allocator.
1546  *
1547  * RETURNS:
1548  * The address of the found chunk.
1549  */
1550 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1551 {
1552 	/* is it in the dynamic region (first chunk)? */
1553 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1554 		return pcpu_first_chunk;
1555 
1556 	/* is it in the reserved region? */
1557 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1558 		return pcpu_reserved_chunk;
1559 
1560 	/*
1561 	 * The address is relative to unit0 which might be unused and
1562 	 * thus unmapped.  Offset the address to the unit space of the
1563 	 * current processor before looking it up in the vmalloc
1564 	 * space.  Note that any possible cpu id can be used here, so
1565 	 * there's no need to worry about preemption or cpu hotplug.
1566 	 */
1567 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1568 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1569 }
1570 
1571 /**
1572  * pcpu_alloc - the percpu allocator
1573  * @size: size of area to allocate in bytes
1574  * @align: alignment of area (max PAGE_SIZE)
1575  * @reserved: allocate from the reserved chunk if available
1576  * @gfp: allocation flags
1577  *
1578  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1579  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1580  * then no warning will be triggered on invalid or failed allocation
1581  * requests.
1582  *
1583  * RETURNS:
1584  * Percpu pointer to the allocated area on success, NULL on failure.
1585  */
1586 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1587 				 gfp_t gfp)
1588 {
1589 	/* whitelisted flags that can be passed to the backing allocators */
1590 	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1591 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1592 	bool do_warn = !(gfp & __GFP_NOWARN);
1593 	static int warn_limit = 10;
1594 	struct pcpu_chunk *chunk, *next;
1595 	const char *err;
1596 	int slot, off, cpu, ret;
1597 	unsigned long flags;
1598 	void __percpu *ptr;
1599 	size_t bits, bit_align;
1600 
1601 	/*
1602 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1603 	 * therefore alignment must be a minimum of that many bytes.
1604 	 * An allocation may have internal fragmentation from rounding up
1605 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1606 	 */
1607 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1608 		align = PCPU_MIN_ALLOC_SIZE;
1609 
1610 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1611 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1612 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1613 
1614 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1615 		     !is_power_of_2(align))) {
1616 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1617 		     size, align);
1618 		return NULL;
1619 	}
1620 
1621 	if (!is_atomic) {
1622 		/*
1623 		 * pcpu_balance_workfn() allocates memory under this mutex,
1624 		 * and it may wait for memory reclaim. Allow current task
1625 		 * to become OOM victim, in case of memory pressure.
1626 		 */
1627 		if (gfp & __GFP_NOFAIL)
1628 			mutex_lock(&pcpu_alloc_mutex);
1629 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1630 			return NULL;
1631 	}
1632 
1633 	spin_lock_irqsave(&pcpu_lock, flags);
1634 
1635 	/* serve reserved allocations from the reserved chunk if available */
1636 	if (reserved && pcpu_reserved_chunk) {
1637 		chunk = pcpu_reserved_chunk;
1638 
1639 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1640 		if (off < 0) {
1641 			err = "alloc from reserved chunk failed";
1642 			goto fail_unlock;
1643 		}
1644 
1645 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1646 		if (off >= 0)
1647 			goto area_found;
1648 
1649 		err = "alloc from reserved chunk failed";
1650 		goto fail_unlock;
1651 	}
1652 
1653 restart:
1654 	/* search through normal chunks */
1655 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1656 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1657 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1658 						  is_atomic);
1659 			if (off < 0) {
1660 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1661 					pcpu_chunk_move(chunk, 0);
1662 				continue;
1663 			}
1664 
1665 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1666 			if (off >= 0)
1667 				goto area_found;
1668 
1669 		}
1670 	}
1671 
1672 	spin_unlock_irqrestore(&pcpu_lock, flags);
1673 
1674 	/*
1675 	 * No space left.  Create a new chunk.  We don't want multiple
1676 	 * tasks to create chunks simultaneously.  Serialize and create iff
1677 	 * there's still no empty chunk after grabbing the mutex.
1678 	 */
1679 	if (is_atomic) {
1680 		err = "atomic alloc failed, no space left";
1681 		goto fail;
1682 	}
1683 
1684 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1685 		chunk = pcpu_create_chunk(pcpu_gfp);
1686 		if (!chunk) {
1687 			err = "failed to allocate new chunk";
1688 			goto fail;
1689 		}
1690 
1691 		spin_lock_irqsave(&pcpu_lock, flags);
1692 		pcpu_chunk_relocate(chunk, -1);
1693 	} else {
1694 		spin_lock_irqsave(&pcpu_lock, flags);
1695 	}
1696 
1697 	goto restart;
1698 
1699 area_found:
1700 	pcpu_stats_area_alloc(chunk, size);
1701 	spin_unlock_irqrestore(&pcpu_lock, flags);
1702 
1703 	/* populate if not all pages are already there */
1704 	if (!is_atomic) {
1705 		int page_start, page_end, rs, re;
1706 
1707 		page_start = PFN_DOWN(off);
1708 		page_end = PFN_UP(off + size);
1709 
1710 		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1711 					   page_start, page_end) {
1712 			WARN_ON(chunk->immutable);
1713 
1714 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1715 
1716 			spin_lock_irqsave(&pcpu_lock, flags);
1717 			if (ret) {
1718 				pcpu_free_area(chunk, off);
1719 				err = "failed to populate";
1720 				goto fail_unlock;
1721 			}
1722 			pcpu_chunk_populated(chunk, rs, re);
1723 			spin_unlock_irqrestore(&pcpu_lock, flags);
1724 		}
1725 
1726 		mutex_unlock(&pcpu_alloc_mutex);
1727 	}
1728 
1729 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1730 		pcpu_schedule_balance_work();
1731 
1732 	/* clear the areas and return address relative to base address */
1733 	for_each_possible_cpu(cpu)
1734 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1735 
1736 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1737 	kmemleak_alloc_percpu(ptr, size, gfp);
1738 
1739 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1740 			chunk->base_addr, off, ptr);
1741 
1742 	return ptr;
1743 
1744 fail_unlock:
1745 	spin_unlock_irqrestore(&pcpu_lock, flags);
1746 fail:
1747 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1748 
1749 	if (!is_atomic && do_warn && warn_limit) {
1750 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1751 			size, align, is_atomic, err);
1752 		dump_stack();
1753 		if (!--warn_limit)
1754 			pr_info("limit reached, disable warning\n");
1755 	}
1756 	if (is_atomic) {
1757 		/* see the flag handling in pcpu_blance_workfn() */
1758 		pcpu_atomic_alloc_failed = true;
1759 		pcpu_schedule_balance_work();
1760 	} else {
1761 		mutex_unlock(&pcpu_alloc_mutex);
1762 	}
1763 	return NULL;
1764 }
1765 
1766 /**
1767  * __alloc_percpu_gfp - allocate dynamic percpu area
1768  * @size: size of area to allocate in bytes
1769  * @align: alignment of area (max PAGE_SIZE)
1770  * @gfp: allocation flags
1771  *
1772  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1773  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1774  * be called from any context but is a lot more likely to fail. If @gfp
1775  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1776  * allocation requests.
1777  *
1778  * RETURNS:
1779  * Percpu pointer to the allocated area on success, NULL on failure.
1780  */
1781 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1782 {
1783 	return pcpu_alloc(size, align, false, gfp);
1784 }
1785 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1786 
1787 /**
1788  * __alloc_percpu - allocate dynamic percpu area
1789  * @size: size of area to allocate in bytes
1790  * @align: alignment of area (max PAGE_SIZE)
1791  *
1792  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1793  */
1794 void __percpu *__alloc_percpu(size_t size, size_t align)
1795 {
1796 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1797 }
1798 EXPORT_SYMBOL_GPL(__alloc_percpu);
1799 
1800 /**
1801  * __alloc_reserved_percpu - allocate reserved percpu area
1802  * @size: size of area to allocate in bytes
1803  * @align: alignment of area (max PAGE_SIZE)
1804  *
1805  * Allocate zero-filled percpu area of @size bytes aligned at @align
1806  * from reserved percpu area if arch has set it up; otherwise,
1807  * allocation is served from the same dynamic area.  Might sleep.
1808  * Might trigger writeouts.
1809  *
1810  * CONTEXT:
1811  * Does GFP_KERNEL allocation.
1812  *
1813  * RETURNS:
1814  * Percpu pointer to the allocated area on success, NULL on failure.
1815  */
1816 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1817 {
1818 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1819 }
1820 
1821 /**
1822  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1823  * @work: unused
1824  *
1825  * Reclaim all fully free chunks except for the first one.  This is also
1826  * responsible for maintaining the pool of empty populated pages.  However,
1827  * it is possible that this is called when physical memory is scarce causing
1828  * OOM killer to be triggered.  We should avoid doing so until an actual
1829  * allocation causes the failure as it is possible that requests can be
1830  * serviced from already backed regions.
1831  */
1832 static void pcpu_balance_workfn(struct work_struct *work)
1833 {
1834 	/* gfp flags passed to underlying allocators */
1835 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1836 	LIST_HEAD(to_free);
1837 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1838 	struct pcpu_chunk *chunk, *next;
1839 	int slot, nr_to_pop, ret;
1840 
1841 	/*
1842 	 * There's no reason to keep around multiple unused chunks and VM
1843 	 * areas can be scarce.  Destroy all free chunks except for one.
1844 	 */
1845 	mutex_lock(&pcpu_alloc_mutex);
1846 	spin_lock_irq(&pcpu_lock);
1847 
1848 	list_for_each_entry_safe(chunk, next, free_head, list) {
1849 		WARN_ON(chunk->immutable);
1850 
1851 		/* spare the first one */
1852 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1853 			continue;
1854 
1855 		list_move(&chunk->list, &to_free);
1856 	}
1857 
1858 	spin_unlock_irq(&pcpu_lock);
1859 
1860 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1861 		int rs, re;
1862 
1863 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1864 					 chunk->nr_pages) {
1865 			pcpu_depopulate_chunk(chunk, rs, re);
1866 			spin_lock_irq(&pcpu_lock);
1867 			pcpu_chunk_depopulated(chunk, rs, re);
1868 			spin_unlock_irq(&pcpu_lock);
1869 		}
1870 		pcpu_destroy_chunk(chunk);
1871 		cond_resched();
1872 	}
1873 
1874 	/*
1875 	 * Ensure there are certain number of free populated pages for
1876 	 * atomic allocs.  Fill up from the most packed so that atomic
1877 	 * allocs don't increase fragmentation.  If atomic allocation
1878 	 * failed previously, always populate the maximum amount.  This
1879 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1880 	 * failing indefinitely; however, large atomic allocs are not
1881 	 * something we support properly and can be highly unreliable and
1882 	 * inefficient.
1883 	 */
1884 retry_pop:
1885 	if (pcpu_atomic_alloc_failed) {
1886 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1887 		/* best effort anyway, don't worry about synchronization */
1888 		pcpu_atomic_alloc_failed = false;
1889 	} else {
1890 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1891 				  pcpu_nr_empty_pop_pages,
1892 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1893 	}
1894 
1895 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1896 		int nr_unpop = 0, rs, re;
1897 
1898 		if (!nr_to_pop)
1899 			break;
1900 
1901 		spin_lock_irq(&pcpu_lock);
1902 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1903 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1904 			if (nr_unpop)
1905 				break;
1906 		}
1907 		spin_unlock_irq(&pcpu_lock);
1908 
1909 		if (!nr_unpop)
1910 			continue;
1911 
1912 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1913 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1914 					   chunk->nr_pages) {
1915 			int nr = min(re - rs, nr_to_pop);
1916 
1917 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1918 			if (!ret) {
1919 				nr_to_pop -= nr;
1920 				spin_lock_irq(&pcpu_lock);
1921 				pcpu_chunk_populated(chunk, rs, rs + nr);
1922 				spin_unlock_irq(&pcpu_lock);
1923 			} else {
1924 				nr_to_pop = 0;
1925 			}
1926 
1927 			if (!nr_to_pop)
1928 				break;
1929 		}
1930 	}
1931 
1932 	if (nr_to_pop) {
1933 		/* ran out of chunks to populate, create a new one and retry */
1934 		chunk = pcpu_create_chunk(gfp);
1935 		if (chunk) {
1936 			spin_lock_irq(&pcpu_lock);
1937 			pcpu_chunk_relocate(chunk, -1);
1938 			spin_unlock_irq(&pcpu_lock);
1939 			goto retry_pop;
1940 		}
1941 	}
1942 
1943 	mutex_unlock(&pcpu_alloc_mutex);
1944 }
1945 
1946 /**
1947  * free_percpu - free percpu area
1948  * @ptr: pointer to area to free
1949  *
1950  * Free percpu area @ptr.
1951  *
1952  * CONTEXT:
1953  * Can be called from atomic context.
1954  */
1955 void free_percpu(void __percpu *ptr)
1956 {
1957 	void *addr;
1958 	struct pcpu_chunk *chunk;
1959 	unsigned long flags;
1960 	int off;
1961 	bool need_balance = false;
1962 
1963 	if (!ptr)
1964 		return;
1965 
1966 	kmemleak_free_percpu(ptr);
1967 
1968 	addr = __pcpu_ptr_to_addr(ptr);
1969 
1970 	spin_lock_irqsave(&pcpu_lock, flags);
1971 
1972 	chunk = pcpu_chunk_addr_search(addr);
1973 	off = addr - chunk->base_addr;
1974 
1975 	pcpu_free_area(chunk, off);
1976 
1977 	/* if there are more than one fully free chunks, wake up grim reaper */
1978 	if (chunk->free_bytes == pcpu_unit_size) {
1979 		struct pcpu_chunk *pos;
1980 
1981 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1982 			if (pos != chunk) {
1983 				need_balance = true;
1984 				break;
1985 			}
1986 	}
1987 
1988 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1989 
1990 	spin_unlock_irqrestore(&pcpu_lock, flags);
1991 
1992 	if (need_balance)
1993 		pcpu_schedule_balance_work();
1994 }
1995 EXPORT_SYMBOL_GPL(free_percpu);
1996 
1997 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1998 {
1999 #ifdef CONFIG_SMP
2000 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2001 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2002 	unsigned int cpu;
2003 
2004 	for_each_possible_cpu(cpu) {
2005 		void *start = per_cpu_ptr(base, cpu);
2006 		void *va = (void *)addr;
2007 
2008 		if (va >= start && va < start + static_size) {
2009 			if (can_addr) {
2010 				*can_addr = (unsigned long) (va - start);
2011 				*can_addr += (unsigned long)
2012 					per_cpu_ptr(base, get_boot_cpu_id());
2013 			}
2014 			return true;
2015 		}
2016 	}
2017 #endif
2018 	/* on UP, can't distinguish from other static vars, always false */
2019 	return false;
2020 }
2021 
2022 /**
2023  * is_kernel_percpu_address - test whether address is from static percpu area
2024  * @addr: address to test
2025  *
2026  * Test whether @addr belongs to in-kernel static percpu area.  Module
2027  * static percpu areas are not considered.  For those, use
2028  * is_module_percpu_address().
2029  *
2030  * RETURNS:
2031  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2032  */
2033 bool is_kernel_percpu_address(unsigned long addr)
2034 {
2035 	return __is_kernel_percpu_address(addr, NULL);
2036 }
2037 
2038 /**
2039  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2040  * @addr: the address to be converted to physical address
2041  *
2042  * Given @addr which is dereferenceable address obtained via one of
2043  * percpu access macros, this function translates it into its physical
2044  * address.  The caller is responsible for ensuring @addr stays valid
2045  * until this function finishes.
2046  *
2047  * percpu allocator has special setup for the first chunk, which currently
2048  * supports either embedding in linear address space or vmalloc mapping,
2049  * and, from the second one, the backing allocator (currently either vm or
2050  * km) provides translation.
2051  *
2052  * The addr can be translated simply without checking if it falls into the
2053  * first chunk. But the current code reflects better how percpu allocator
2054  * actually works, and the verification can discover both bugs in percpu
2055  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2056  * code.
2057  *
2058  * RETURNS:
2059  * The physical address for @addr.
2060  */
2061 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2062 {
2063 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2064 	bool in_first_chunk = false;
2065 	unsigned long first_low, first_high;
2066 	unsigned int cpu;
2067 
2068 	/*
2069 	 * The following test on unit_low/high isn't strictly
2070 	 * necessary but will speed up lookups of addresses which
2071 	 * aren't in the first chunk.
2072 	 *
2073 	 * The address check is against full chunk sizes.  pcpu_base_addr
2074 	 * points to the beginning of the first chunk including the
2075 	 * static region.  Assumes good intent as the first chunk may
2076 	 * not be full (ie. < pcpu_unit_pages in size).
2077 	 */
2078 	first_low = (unsigned long)pcpu_base_addr +
2079 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2080 	first_high = (unsigned long)pcpu_base_addr +
2081 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2082 	if ((unsigned long)addr >= first_low &&
2083 	    (unsigned long)addr < first_high) {
2084 		for_each_possible_cpu(cpu) {
2085 			void *start = per_cpu_ptr(base, cpu);
2086 
2087 			if (addr >= start && addr < start + pcpu_unit_size) {
2088 				in_first_chunk = true;
2089 				break;
2090 			}
2091 		}
2092 	}
2093 
2094 	if (in_first_chunk) {
2095 		if (!is_vmalloc_addr(addr))
2096 			return __pa(addr);
2097 		else
2098 			return page_to_phys(vmalloc_to_page(addr)) +
2099 			       offset_in_page(addr);
2100 	} else
2101 		return page_to_phys(pcpu_addr_to_page(addr)) +
2102 		       offset_in_page(addr);
2103 }
2104 
2105 /**
2106  * pcpu_alloc_alloc_info - allocate percpu allocation info
2107  * @nr_groups: the number of groups
2108  * @nr_units: the number of units
2109  *
2110  * Allocate ai which is large enough for @nr_groups groups containing
2111  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2112  * cpu_map array which is long enough for @nr_units and filled with
2113  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2114  * pointer of other groups.
2115  *
2116  * RETURNS:
2117  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2118  * failure.
2119  */
2120 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2121 						      int nr_units)
2122 {
2123 	struct pcpu_alloc_info *ai;
2124 	size_t base_size, ai_size;
2125 	void *ptr;
2126 	int unit;
2127 
2128 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2129 			  __alignof__(ai->groups[0].cpu_map[0]));
2130 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2131 
2132 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2133 	if (!ptr)
2134 		return NULL;
2135 	ai = ptr;
2136 	ptr += base_size;
2137 
2138 	ai->groups[0].cpu_map = ptr;
2139 
2140 	for (unit = 0; unit < nr_units; unit++)
2141 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2142 
2143 	ai->nr_groups = nr_groups;
2144 	ai->__ai_size = PFN_ALIGN(ai_size);
2145 
2146 	return ai;
2147 }
2148 
2149 /**
2150  * pcpu_free_alloc_info - free percpu allocation info
2151  * @ai: pcpu_alloc_info to free
2152  *
2153  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2154  */
2155 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2156 {
2157 	memblock_free_early(__pa(ai), ai->__ai_size);
2158 }
2159 
2160 /**
2161  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2162  * @lvl: loglevel
2163  * @ai: allocation info to dump
2164  *
2165  * Print out information about @ai using loglevel @lvl.
2166  */
2167 static void pcpu_dump_alloc_info(const char *lvl,
2168 				 const struct pcpu_alloc_info *ai)
2169 {
2170 	int group_width = 1, cpu_width = 1, width;
2171 	char empty_str[] = "--------";
2172 	int alloc = 0, alloc_end = 0;
2173 	int group, v;
2174 	int upa, apl;	/* units per alloc, allocs per line */
2175 
2176 	v = ai->nr_groups;
2177 	while (v /= 10)
2178 		group_width++;
2179 
2180 	v = num_possible_cpus();
2181 	while (v /= 10)
2182 		cpu_width++;
2183 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2184 
2185 	upa = ai->alloc_size / ai->unit_size;
2186 	width = upa * (cpu_width + 1) + group_width + 3;
2187 	apl = rounddown_pow_of_two(max(60 / width, 1));
2188 
2189 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2190 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2191 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2192 
2193 	for (group = 0; group < ai->nr_groups; group++) {
2194 		const struct pcpu_group_info *gi = &ai->groups[group];
2195 		int unit = 0, unit_end = 0;
2196 
2197 		BUG_ON(gi->nr_units % upa);
2198 		for (alloc_end += gi->nr_units / upa;
2199 		     alloc < alloc_end; alloc++) {
2200 			if (!(alloc % apl)) {
2201 				pr_cont("\n");
2202 				printk("%spcpu-alloc: ", lvl);
2203 			}
2204 			pr_cont("[%0*d] ", group_width, group);
2205 
2206 			for (unit_end += upa; unit < unit_end; unit++)
2207 				if (gi->cpu_map[unit] != NR_CPUS)
2208 					pr_cont("%0*d ",
2209 						cpu_width, gi->cpu_map[unit]);
2210 				else
2211 					pr_cont("%s ", empty_str);
2212 		}
2213 	}
2214 	pr_cont("\n");
2215 }
2216 
2217 /**
2218  * pcpu_setup_first_chunk - initialize the first percpu chunk
2219  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2220  * @base_addr: mapped address
2221  *
2222  * Initialize the first percpu chunk which contains the kernel static
2223  * percpu area.  This function is to be called from arch percpu area
2224  * setup path.
2225  *
2226  * @ai contains all information necessary to initialize the first
2227  * chunk and prime the dynamic percpu allocator.
2228  *
2229  * @ai->static_size is the size of static percpu area.
2230  *
2231  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2232  * reserve after the static area in the first chunk.  This reserves
2233  * the first chunk such that it's available only through reserved
2234  * percpu allocation.  This is primarily used to serve module percpu
2235  * static areas on architectures where the addressing model has
2236  * limited offset range for symbol relocations to guarantee module
2237  * percpu symbols fall inside the relocatable range.
2238  *
2239  * @ai->dyn_size determines the number of bytes available for dynamic
2240  * allocation in the first chunk.  The area between @ai->static_size +
2241  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2242  *
2243  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2244  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2245  * @ai->dyn_size.
2246  *
2247  * @ai->atom_size is the allocation atom size and used as alignment
2248  * for vm areas.
2249  *
2250  * @ai->alloc_size is the allocation size and always multiple of
2251  * @ai->atom_size.  This is larger than @ai->atom_size if
2252  * @ai->unit_size is larger than @ai->atom_size.
2253  *
2254  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2255  * percpu areas.  Units which should be colocated are put into the
2256  * same group.  Dynamic VM areas will be allocated according to these
2257  * groupings.  If @ai->nr_groups is zero, a single group containing
2258  * all units is assumed.
2259  *
2260  * The caller should have mapped the first chunk at @base_addr and
2261  * copied static data to each unit.
2262  *
2263  * The first chunk will always contain a static and a dynamic region.
2264  * However, the static region is not managed by any chunk.  If the first
2265  * chunk also contains a reserved region, it is served by two chunks -
2266  * one for the reserved region and one for the dynamic region.  They
2267  * share the same vm, but use offset regions in the area allocation map.
2268  * The chunk serving the dynamic region is circulated in the chunk slots
2269  * and available for dynamic allocation like any other chunk.
2270  */
2271 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2272 				   void *base_addr)
2273 {
2274 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2275 	size_t static_size, dyn_size;
2276 	struct pcpu_chunk *chunk;
2277 	unsigned long *group_offsets;
2278 	size_t *group_sizes;
2279 	unsigned long *unit_off;
2280 	unsigned int cpu;
2281 	int *unit_map;
2282 	int group, unit, i;
2283 	int map_size;
2284 	unsigned long tmp_addr;
2285 	size_t alloc_size;
2286 
2287 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2288 	if (unlikely(cond)) {						\
2289 		pr_emerg("failed to initialize, %s\n", #cond);		\
2290 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2291 			 cpumask_pr_args(cpu_possible_mask));		\
2292 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2293 		BUG();							\
2294 	}								\
2295 } while (0)
2296 
2297 	/* sanity checks */
2298 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2299 #ifdef CONFIG_SMP
2300 	PCPU_SETUP_BUG_ON(!ai->static_size);
2301 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2302 #endif
2303 	PCPU_SETUP_BUG_ON(!base_addr);
2304 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2305 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2306 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2307 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2308 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2309 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2310 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2311 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2312 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2313 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2314 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2315 
2316 	/* process group information and build config tables accordingly */
2317 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2318 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2319 	if (!group_offsets)
2320 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2321 		      alloc_size);
2322 
2323 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2324 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2325 	if (!group_sizes)
2326 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2327 		      alloc_size);
2328 
2329 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2330 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2331 	if (!unit_map)
2332 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2333 		      alloc_size);
2334 
2335 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2336 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2337 	if (!unit_off)
2338 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2339 		      alloc_size);
2340 
2341 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2342 		unit_map[cpu] = UINT_MAX;
2343 
2344 	pcpu_low_unit_cpu = NR_CPUS;
2345 	pcpu_high_unit_cpu = NR_CPUS;
2346 
2347 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2348 		const struct pcpu_group_info *gi = &ai->groups[group];
2349 
2350 		group_offsets[group] = gi->base_offset;
2351 		group_sizes[group] = gi->nr_units * ai->unit_size;
2352 
2353 		for (i = 0; i < gi->nr_units; i++) {
2354 			cpu = gi->cpu_map[i];
2355 			if (cpu == NR_CPUS)
2356 				continue;
2357 
2358 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2359 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2360 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2361 
2362 			unit_map[cpu] = unit + i;
2363 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2364 
2365 			/* determine low/high unit_cpu */
2366 			if (pcpu_low_unit_cpu == NR_CPUS ||
2367 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2368 				pcpu_low_unit_cpu = cpu;
2369 			if (pcpu_high_unit_cpu == NR_CPUS ||
2370 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2371 				pcpu_high_unit_cpu = cpu;
2372 		}
2373 	}
2374 	pcpu_nr_units = unit;
2375 
2376 	for_each_possible_cpu(cpu)
2377 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2378 
2379 	/* we're done parsing the input, undefine BUG macro and dump config */
2380 #undef PCPU_SETUP_BUG_ON
2381 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2382 
2383 	pcpu_nr_groups = ai->nr_groups;
2384 	pcpu_group_offsets = group_offsets;
2385 	pcpu_group_sizes = group_sizes;
2386 	pcpu_unit_map = unit_map;
2387 	pcpu_unit_offsets = unit_off;
2388 
2389 	/* determine basic parameters */
2390 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2391 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2392 	pcpu_atom_size = ai->atom_size;
2393 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2394 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2395 
2396 	pcpu_stats_save_ai(ai);
2397 
2398 	/*
2399 	 * Allocate chunk slots.  The additional last slot is for
2400 	 * empty chunks.
2401 	 */
2402 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2403 	pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2404 				   SMP_CACHE_BYTES);
2405 	if (!pcpu_slot)
2406 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2407 		      pcpu_nr_slots * sizeof(pcpu_slot[0]));
2408 	for (i = 0; i < pcpu_nr_slots; i++)
2409 		INIT_LIST_HEAD(&pcpu_slot[i]);
2410 
2411 	/*
2412 	 * The end of the static region needs to be aligned with the
2413 	 * minimum allocation size as this offsets the reserved and
2414 	 * dynamic region.  The first chunk ends page aligned by
2415 	 * expanding the dynamic region, therefore the dynamic region
2416 	 * can be shrunk to compensate while still staying above the
2417 	 * configured sizes.
2418 	 */
2419 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2420 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2421 
2422 	/*
2423 	 * Initialize first chunk.
2424 	 * If the reserved_size is non-zero, this initializes the reserved
2425 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2426 	 * and the dynamic region is initialized here.  The first chunk,
2427 	 * pcpu_first_chunk, will always point to the chunk that serves
2428 	 * the dynamic region.
2429 	 */
2430 	tmp_addr = (unsigned long)base_addr + static_size;
2431 	map_size = ai->reserved_size ?: dyn_size;
2432 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2433 
2434 	/* init dynamic chunk if necessary */
2435 	if (ai->reserved_size) {
2436 		pcpu_reserved_chunk = chunk;
2437 
2438 		tmp_addr = (unsigned long)base_addr + static_size +
2439 			   ai->reserved_size;
2440 		map_size = dyn_size;
2441 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2442 	}
2443 
2444 	/* link the first chunk in */
2445 	pcpu_first_chunk = chunk;
2446 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2447 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2448 
2449 	/* include all regions of the first chunk */
2450 	pcpu_nr_populated += PFN_DOWN(size_sum);
2451 
2452 	pcpu_stats_chunk_alloc();
2453 	trace_percpu_create_chunk(base_addr);
2454 
2455 	/* we're done */
2456 	pcpu_base_addr = base_addr;
2457 }
2458 
2459 #ifdef CONFIG_SMP
2460 
2461 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2462 	[PCPU_FC_AUTO]	= "auto",
2463 	[PCPU_FC_EMBED]	= "embed",
2464 	[PCPU_FC_PAGE]	= "page",
2465 };
2466 
2467 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2468 
2469 static int __init percpu_alloc_setup(char *str)
2470 {
2471 	if (!str)
2472 		return -EINVAL;
2473 
2474 	if (0)
2475 		/* nada */;
2476 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2477 	else if (!strcmp(str, "embed"))
2478 		pcpu_chosen_fc = PCPU_FC_EMBED;
2479 #endif
2480 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2481 	else if (!strcmp(str, "page"))
2482 		pcpu_chosen_fc = PCPU_FC_PAGE;
2483 #endif
2484 	else
2485 		pr_warn("unknown allocator %s specified\n", str);
2486 
2487 	return 0;
2488 }
2489 early_param("percpu_alloc", percpu_alloc_setup);
2490 
2491 /*
2492  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2493  * Build it if needed by the arch config or the generic setup is going
2494  * to be used.
2495  */
2496 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2497 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2498 #define BUILD_EMBED_FIRST_CHUNK
2499 #endif
2500 
2501 /* build pcpu_page_first_chunk() iff needed by the arch config */
2502 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2503 #define BUILD_PAGE_FIRST_CHUNK
2504 #endif
2505 
2506 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2507 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2508 /**
2509  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2510  * @reserved_size: the size of reserved percpu area in bytes
2511  * @dyn_size: minimum free size for dynamic allocation in bytes
2512  * @atom_size: allocation atom size
2513  * @cpu_distance_fn: callback to determine distance between cpus, optional
2514  *
2515  * This function determines grouping of units, their mappings to cpus
2516  * and other parameters considering needed percpu size, allocation
2517  * atom size and distances between CPUs.
2518  *
2519  * Groups are always multiples of atom size and CPUs which are of
2520  * LOCAL_DISTANCE both ways are grouped together and share space for
2521  * units in the same group.  The returned configuration is guaranteed
2522  * to have CPUs on different nodes on different groups and >=75% usage
2523  * of allocated virtual address space.
2524  *
2525  * RETURNS:
2526  * On success, pointer to the new allocation_info is returned.  On
2527  * failure, ERR_PTR value is returned.
2528  */
2529 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2530 				size_t reserved_size, size_t dyn_size,
2531 				size_t atom_size,
2532 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2533 {
2534 	static int group_map[NR_CPUS] __initdata;
2535 	static int group_cnt[NR_CPUS] __initdata;
2536 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2537 	int nr_groups = 1, nr_units = 0;
2538 	size_t size_sum, min_unit_size, alloc_size;
2539 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2540 	int last_allocs, group, unit;
2541 	unsigned int cpu, tcpu;
2542 	struct pcpu_alloc_info *ai;
2543 	unsigned int *cpu_map;
2544 
2545 	/* this function may be called multiple times */
2546 	memset(group_map, 0, sizeof(group_map));
2547 	memset(group_cnt, 0, sizeof(group_cnt));
2548 
2549 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2550 	size_sum = PFN_ALIGN(static_size + reserved_size +
2551 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2552 	dyn_size = size_sum - static_size - reserved_size;
2553 
2554 	/*
2555 	 * Determine min_unit_size, alloc_size and max_upa such that
2556 	 * alloc_size is multiple of atom_size and is the smallest
2557 	 * which can accommodate 4k aligned segments which are equal to
2558 	 * or larger than min_unit_size.
2559 	 */
2560 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2561 
2562 	/* determine the maximum # of units that can fit in an allocation */
2563 	alloc_size = roundup(min_unit_size, atom_size);
2564 	upa = alloc_size / min_unit_size;
2565 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2566 		upa--;
2567 	max_upa = upa;
2568 
2569 	/* group cpus according to their proximity */
2570 	for_each_possible_cpu(cpu) {
2571 		group = 0;
2572 	next_group:
2573 		for_each_possible_cpu(tcpu) {
2574 			if (cpu == tcpu)
2575 				break;
2576 			if (group_map[tcpu] == group && cpu_distance_fn &&
2577 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2578 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2579 				group++;
2580 				nr_groups = max(nr_groups, group + 1);
2581 				goto next_group;
2582 			}
2583 		}
2584 		group_map[cpu] = group;
2585 		group_cnt[group]++;
2586 	}
2587 
2588 	/*
2589 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2590 	 * Expand the unit_size until we use >= 75% of the units allocated.
2591 	 * Related to atom_size, which could be much larger than the unit_size.
2592 	 */
2593 	last_allocs = INT_MAX;
2594 	for (upa = max_upa; upa; upa--) {
2595 		int allocs = 0, wasted = 0;
2596 
2597 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2598 			continue;
2599 
2600 		for (group = 0; group < nr_groups; group++) {
2601 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2602 			allocs += this_allocs;
2603 			wasted += this_allocs * upa - group_cnt[group];
2604 		}
2605 
2606 		/*
2607 		 * Don't accept if wastage is over 1/3.  The
2608 		 * greater-than comparison ensures upa==1 always
2609 		 * passes the following check.
2610 		 */
2611 		if (wasted > num_possible_cpus() / 3)
2612 			continue;
2613 
2614 		/* and then don't consume more memory */
2615 		if (allocs > last_allocs)
2616 			break;
2617 		last_allocs = allocs;
2618 		best_upa = upa;
2619 	}
2620 	upa = best_upa;
2621 
2622 	/* allocate and fill alloc_info */
2623 	for (group = 0; group < nr_groups; group++)
2624 		nr_units += roundup(group_cnt[group], upa);
2625 
2626 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2627 	if (!ai)
2628 		return ERR_PTR(-ENOMEM);
2629 	cpu_map = ai->groups[0].cpu_map;
2630 
2631 	for (group = 0; group < nr_groups; group++) {
2632 		ai->groups[group].cpu_map = cpu_map;
2633 		cpu_map += roundup(group_cnt[group], upa);
2634 	}
2635 
2636 	ai->static_size = static_size;
2637 	ai->reserved_size = reserved_size;
2638 	ai->dyn_size = dyn_size;
2639 	ai->unit_size = alloc_size / upa;
2640 	ai->atom_size = atom_size;
2641 	ai->alloc_size = alloc_size;
2642 
2643 	for (group = 0, unit = 0; group < nr_groups; group++) {
2644 		struct pcpu_group_info *gi = &ai->groups[group];
2645 
2646 		/*
2647 		 * Initialize base_offset as if all groups are located
2648 		 * back-to-back.  The caller should update this to
2649 		 * reflect actual allocation.
2650 		 */
2651 		gi->base_offset = unit * ai->unit_size;
2652 
2653 		for_each_possible_cpu(cpu)
2654 			if (group_map[cpu] == group)
2655 				gi->cpu_map[gi->nr_units++] = cpu;
2656 		gi->nr_units = roundup(gi->nr_units, upa);
2657 		unit += gi->nr_units;
2658 	}
2659 	BUG_ON(unit != nr_units);
2660 
2661 	return ai;
2662 }
2663 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2664 
2665 #if defined(BUILD_EMBED_FIRST_CHUNK)
2666 /**
2667  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2668  * @reserved_size: the size of reserved percpu area in bytes
2669  * @dyn_size: minimum free size for dynamic allocation in bytes
2670  * @atom_size: allocation atom size
2671  * @cpu_distance_fn: callback to determine distance between cpus, optional
2672  * @alloc_fn: function to allocate percpu page
2673  * @free_fn: function to free percpu page
2674  *
2675  * This is a helper to ease setting up embedded first percpu chunk and
2676  * can be called where pcpu_setup_first_chunk() is expected.
2677  *
2678  * If this function is used to setup the first chunk, it is allocated
2679  * by calling @alloc_fn and used as-is without being mapped into
2680  * vmalloc area.  Allocations are always whole multiples of @atom_size
2681  * aligned to @atom_size.
2682  *
2683  * This enables the first chunk to piggy back on the linear physical
2684  * mapping which often uses larger page size.  Please note that this
2685  * can result in very sparse cpu->unit mapping on NUMA machines thus
2686  * requiring large vmalloc address space.  Don't use this allocator if
2687  * vmalloc space is not orders of magnitude larger than distances
2688  * between node memory addresses (ie. 32bit NUMA machines).
2689  *
2690  * @dyn_size specifies the minimum dynamic area size.
2691  *
2692  * If the needed size is smaller than the minimum or specified unit
2693  * size, the leftover is returned using @free_fn.
2694  *
2695  * RETURNS:
2696  * 0 on success, -errno on failure.
2697  */
2698 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2699 				  size_t atom_size,
2700 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2701 				  pcpu_fc_alloc_fn_t alloc_fn,
2702 				  pcpu_fc_free_fn_t free_fn)
2703 {
2704 	void *base = (void *)ULONG_MAX;
2705 	void **areas = NULL;
2706 	struct pcpu_alloc_info *ai;
2707 	size_t size_sum, areas_size;
2708 	unsigned long max_distance;
2709 	int group, i, highest_group, rc = 0;
2710 
2711 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2712 				   cpu_distance_fn);
2713 	if (IS_ERR(ai))
2714 		return PTR_ERR(ai);
2715 
2716 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2717 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2718 
2719 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2720 	if (!areas) {
2721 		rc = -ENOMEM;
2722 		goto out_free;
2723 	}
2724 
2725 	/* allocate, copy and determine base address & max_distance */
2726 	highest_group = 0;
2727 	for (group = 0; group < ai->nr_groups; group++) {
2728 		struct pcpu_group_info *gi = &ai->groups[group];
2729 		unsigned int cpu = NR_CPUS;
2730 		void *ptr;
2731 
2732 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2733 			cpu = gi->cpu_map[i];
2734 		BUG_ON(cpu == NR_CPUS);
2735 
2736 		/* allocate space for the whole group */
2737 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2738 		if (!ptr) {
2739 			rc = -ENOMEM;
2740 			goto out_free_areas;
2741 		}
2742 		/* kmemleak tracks the percpu allocations separately */
2743 		kmemleak_free(ptr);
2744 		areas[group] = ptr;
2745 
2746 		base = min(ptr, base);
2747 		if (ptr > areas[highest_group])
2748 			highest_group = group;
2749 	}
2750 	max_distance = areas[highest_group] - base;
2751 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2752 
2753 	/* warn if maximum distance is further than 75% of vmalloc space */
2754 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2755 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2756 				max_distance, VMALLOC_TOTAL);
2757 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2758 		/* and fail if we have fallback */
2759 		rc = -EINVAL;
2760 		goto out_free_areas;
2761 #endif
2762 	}
2763 
2764 	/*
2765 	 * Copy data and free unused parts.  This should happen after all
2766 	 * allocations are complete; otherwise, we may end up with
2767 	 * overlapping groups.
2768 	 */
2769 	for (group = 0; group < ai->nr_groups; group++) {
2770 		struct pcpu_group_info *gi = &ai->groups[group];
2771 		void *ptr = areas[group];
2772 
2773 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2774 			if (gi->cpu_map[i] == NR_CPUS) {
2775 				/* unused unit, free whole */
2776 				free_fn(ptr, ai->unit_size);
2777 				continue;
2778 			}
2779 			/* copy and return the unused part */
2780 			memcpy(ptr, __per_cpu_load, ai->static_size);
2781 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2782 		}
2783 	}
2784 
2785 	/* base address is now known, determine group base offsets */
2786 	for (group = 0; group < ai->nr_groups; group++) {
2787 		ai->groups[group].base_offset = areas[group] - base;
2788 	}
2789 
2790 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2791 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2792 		ai->dyn_size, ai->unit_size);
2793 
2794 	pcpu_setup_first_chunk(ai, base);
2795 	goto out_free;
2796 
2797 out_free_areas:
2798 	for (group = 0; group < ai->nr_groups; group++)
2799 		if (areas[group])
2800 			free_fn(areas[group],
2801 				ai->groups[group].nr_units * ai->unit_size);
2802 out_free:
2803 	pcpu_free_alloc_info(ai);
2804 	if (areas)
2805 		memblock_free_early(__pa(areas), areas_size);
2806 	return rc;
2807 }
2808 #endif /* BUILD_EMBED_FIRST_CHUNK */
2809 
2810 #ifdef BUILD_PAGE_FIRST_CHUNK
2811 /**
2812  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2813  * @reserved_size: the size of reserved percpu area in bytes
2814  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2815  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2816  * @populate_pte_fn: function to populate pte
2817  *
2818  * This is a helper to ease setting up page-remapped first percpu
2819  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2820  *
2821  * This is the basic allocator.  Static percpu area is allocated
2822  * page-by-page into vmalloc area.
2823  *
2824  * RETURNS:
2825  * 0 on success, -errno on failure.
2826  */
2827 int __init pcpu_page_first_chunk(size_t reserved_size,
2828 				 pcpu_fc_alloc_fn_t alloc_fn,
2829 				 pcpu_fc_free_fn_t free_fn,
2830 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2831 {
2832 	static struct vm_struct vm;
2833 	struct pcpu_alloc_info *ai;
2834 	char psize_str[16];
2835 	int unit_pages;
2836 	size_t pages_size;
2837 	struct page **pages;
2838 	int unit, i, j, rc = 0;
2839 	int upa;
2840 	int nr_g0_units;
2841 
2842 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2843 
2844 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2845 	if (IS_ERR(ai))
2846 		return PTR_ERR(ai);
2847 	BUG_ON(ai->nr_groups != 1);
2848 	upa = ai->alloc_size/ai->unit_size;
2849 	nr_g0_units = roundup(num_possible_cpus(), upa);
2850 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2851 		pcpu_free_alloc_info(ai);
2852 		return -EINVAL;
2853 	}
2854 
2855 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2856 
2857 	/* unaligned allocations can't be freed, round up to page size */
2858 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2859 			       sizeof(pages[0]));
2860 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2861 	if (!pages)
2862 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2863 		      pages_size);
2864 
2865 	/* allocate pages */
2866 	j = 0;
2867 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2868 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2869 		for (i = 0; i < unit_pages; i++) {
2870 			void *ptr;
2871 
2872 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2873 			if (!ptr) {
2874 				pr_warn("failed to allocate %s page for cpu%u\n",
2875 						psize_str, cpu);
2876 				goto enomem;
2877 			}
2878 			/* kmemleak tracks the percpu allocations separately */
2879 			kmemleak_free(ptr);
2880 			pages[j++] = virt_to_page(ptr);
2881 		}
2882 	}
2883 
2884 	/* allocate vm area, map the pages and copy static data */
2885 	vm.flags = VM_ALLOC;
2886 	vm.size = num_possible_cpus() * ai->unit_size;
2887 	vm_area_register_early(&vm, PAGE_SIZE);
2888 
2889 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2890 		unsigned long unit_addr =
2891 			(unsigned long)vm.addr + unit * ai->unit_size;
2892 
2893 		for (i = 0; i < unit_pages; i++)
2894 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2895 
2896 		/* pte already populated, the following shouldn't fail */
2897 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2898 				      unit_pages);
2899 		if (rc < 0)
2900 			panic("failed to map percpu area, err=%d\n", rc);
2901 
2902 		/*
2903 		 * FIXME: Archs with virtual cache should flush local
2904 		 * cache for the linear mapping here - something
2905 		 * equivalent to flush_cache_vmap() on the local cpu.
2906 		 * flush_cache_vmap() can't be used as most supporting
2907 		 * data structures are not set up yet.
2908 		 */
2909 
2910 		/* copy static data */
2911 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2912 	}
2913 
2914 	/* we're ready, commit */
2915 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2916 		unit_pages, psize_str, ai->static_size,
2917 		ai->reserved_size, ai->dyn_size);
2918 
2919 	pcpu_setup_first_chunk(ai, vm.addr);
2920 	goto out_free_ar;
2921 
2922 enomem:
2923 	while (--j >= 0)
2924 		free_fn(page_address(pages[j]), PAGE_SIZE);
2925 	rc = -ENOMEM;
2926 out_free_ar:
2927 	memblock_free_early(__pa(pages), pages_size);
2928 	pcpu_free_alloc_info(ai);
2929 	return rc;
2930 }
2931 #endif /* BUILD_PAGE_FIRST_CHUNK */
2932 
2933 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2934 /*
2935  * Generic SMP percpu area setup.
2936  *
2937  * The embedding helper is used because its behavior closely resembles
2938  * the original non-dynamic generic percpu area setup.  This is
2939  * important because many archs have addressing restrictions and might
2940  * fail if the percpu area is located far away from the previous
2941  * location.  As an added bonus, in non-NUMA cases, embedding is
2942  * generally a good idea TLB-wise because percpu area can piggy back
2943  * on the physical linear memory mapping which uses large page
2944  * mappings on applicable archs.
2945  */
2946 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2947 EXPORT_SYMBOL(__per_cpu_offset);
2948 
2949 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2950 				       size_t align)
2951 {
2952 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2953 }
2954 
2955 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2956 {
2957 	memblock_free_early(__pa(ptr), size);
2958 }
2959 
2960 void __init setup_per_cpu_areas(void)
2961 {
2962 	unsigned long delta;
2963 	unsigned int cpu;
2964 	int rc;
2965 
2966 	/*
2967 	 * Always reserve area for module percpu variables.  That's
2968 	 * what the legacy allocator did.
2969 	 */
2970 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2971 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2972 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2973 	if (rc < 0)
2974 		panic("Failed to initialize percpu areas.");
2975 
2976 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2977 	for_each_possible_cpu(cpu)
2978 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2979 }
2980 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2981 
2982 #else	/* CONFIG_SMP */
2983 
2984 /*
2985  * UP percpu area setup.
2986  *
2987  * UP always uses km-based percpu allocator with identity mapping.
2988  * Static percpu variables are indistinguishable from the usual static
2989  * variables and don't require any special preparation.
2990  */
2991 void __init setup_per_cpu_areas(void)
2992 {
2993 	const size_t unit_size =
2994 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2995 					 PERCPU_DYNAMIC_RESERVE));
2996 	struct pcpu_alloc_info *ai;
2997 	void *fc;
2998 
2999 	ai = pcpu_alloc_alloc_info(1, 1);
3000 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3001 	if (!ai || !fc)
3002 		panic("Failed to allocate memory for percpu areas.");
3003 	/* kmemleak tracks the percpu allocations separately */
3004 	kmemleak_free(fc);
3005 
3006 	ai->dyn_size = unit_size;
3007 	ai->unit_size = unit_size;
3008 	ai->atom_size = unit_size;
3009 	ai->alloc_size = unit_size;
3010 	ai->groups[0].nr_units = 1;
3011 	ai->groups[0].cpu_map[0] = 0;
3012 
3013 	pcpu_setup_first_chunk(ai, fc);
3014 	pcpu_free_alloc_info(ai);
3015 }
3016 
3017 #endif	/* CONFIG_SMP */
3018 
3019 /*
3020  * pcpu_nr_pages - calculate total number of populated backing pages
3021  *
3022  * This reflects the number of pages populated to back chunks.  Metadata is
3023  * excluded in the number exposed in meminfo as the number of backing pages
3024  * scales with the number of cpus and can quickly outweigh the memory used for
3025  * metadata.  It also keeps this calculation nice and simple.
3026  *
3027  * RETURNS:
3028  * Total number of populated backing pages in use by the allocator.
3029  */
3030 unsigned long pcpu_nr_pages(void)
3031 {
3032 	return pcpu_nr_populated * pcpu_nr_units;
3033 }
3034 
3035 /*
3036  * Percpu allocator is initialized early during boot when neither slab or
3037  * workqueue is available.  Plug async management until everything is up
3038  * and running.
3039  */
3040 static int __init percpu_enable_async(void)
3041 {
3042 	pcpu_async_enabled = true;
3043 	return 0;
3044 }
3045 subsys_initcall(percpu_enable_async);
3046