1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 #include <linux/kmemleak.h> 71 72 #include <asm/cacheflush.h> 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/io.h> 76 77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 79 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 80 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 81 #define PCPU_EMPTY_POP_PAGES_LOW 2 82 #define PCPU_EMPTY_POP_PAGES_HIGH 4 83 84 #ifdef CONFIG_SMP 85 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 86 #ifndef __addr_to_pcpu_ptr 87 #define __addr_to_pcpu_ptr(addr) \ 88 (void __percpu *)((unsigned long)(addr) - \ 89 (unsigned long)pcpu_base_addr + \ 90 (unsigned long)__per_cpu_start) 91 #endif 92 #ifndef __pcpu_ptr_to_addr 93 #define __pcpu_ptr_to_addr(ptr) \ 94 (void __force *)((unsigned long)(ptr) + \ 95 (unsigned long)pcpu_base_addr - \ 96 (unsigned long)__per_cpu_start) 97 #endif 98 #else /* CONFIG_SMP */ 99 /* on UP, it's always identity mapped */ 100 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 101 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 102 #endif /* CONFIG_SMP */ 103 104 struct pcpu_chunk { 105 struct list_head list; /* linked to pcpu_slot lists */ 106 int free_size; /* free bytes in the chunk */ 107 int contig_hint; /* max contiguous size hint */ 108 void *base_addr; /* base address of this chunk */ 109 110 int map_used; /* # of map entries used before the sentry */ 111 int map_alloc; /* # of map entries allocated */ 112 int *map; /* allocation map */ 113 struct work_struct map_extend_work;/* async ->map[] extension */ 114 115 void *data; /* chunk data */ 116 int first_free; /* no free below this */ 117 bool immutable; /* no [de]population allowed */ 118 int nr_populated; /* # of populated pages */ 119 unsigned long populated[]; /* populated bitmap */ 120 }; 121 122 static int pcpu_unit_pages __read_mostly; 123 static int pcpu_unit_size __read_mostly; 124 static int pcpu_nr_units __read_mostly; 125 static int pcpu_atom_size __read_mostly; 126 static int pcpu_nr_slots __read_mostly; 127 static size_t pcpu_chunk_struct_size __read_mostly; 128 129 /* cpus with the lowest and highest unit addresses */ 130 static unsigned int pcpu_low_unit_cpu __read_mostly; 131 static unsigned int pcpu_high_unit_cpu __read_mostly; 132 133 /* the address of the first chunk which starts with the kernel static area */ 134 void *pcpu_base_addr __read_mostly; 135 EXPORT_SYMBOL_GPL(pcpu_base_addr); 136 137 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 138 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 139 140 /* group information, used for vm allocation */ 141 static int pcpu_nr_groups __read_mostly; 142 static const unsigned long *pcpu_group_offsets __read_mostly; 143 static const size_t *pcpu_group_sizes __read_mostly; 144 145 /* 146 * The first chunk which always exists. Note that unlike other 147 * chunks, this one can be allocated and mapped in several different 148 * ways and thus often doesn't live in the vmalloc area. 149 */ 150 static struct pcpu_chunk *pcpu_first_chunk; 151 152 /* 153 * Optional reserved chunk. This chunk reserves part of the first 154 * chunk and serves it for reserved allocations. The amount of 155 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 156 * area doesn't exist, the following variables contain NULL and 0 157 * respectively. 158 */ 159 static struct pcpu_chunk *pcpu_reserved_chunk; 160 static int pcpu_reserved_chunk_limit; 161 162 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 163 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */ 164 165 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 166 167 /* 168 * The number of empty populated pages, protected by pcpu_lock. The 169 * reserved chunk doesn't contribute to the count. 170 */ 171 static int pcpu_nr_empty_pop_pages; 172 173 /* 174 * Balance work is used to populate or destroy chunks asynchronously. We 175 * try to keep the number of populated free pages between 176 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 177 * empty chunk. 178 */ 179 static void pcpu_balance_workfn(struct work_struct *work); 180 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 181 static bool pcpu_async_enabled __read_mostly; 182 static bool pcpu_atomic_alloc_failed; 183 184 static void pcpu_schedule_balance_work(void) 185 { 186 if (pcpu_async_enabled) 187 schedule_work(&pcpu_balance_work); 188 } 189 190 static bool pcpu_addr_in_first_chunk(void *addr) 191 { 192 void *first_start = pcpu_first_chunk->base_addr; 193 194 return addr >= first_start && addr < first_start + pcpu_unit_size; 195 } 196 197 static bool pcpu_addr_in_reserved_chunk(void *addr) 198 { 199 void *first_start = pcpu_first_chunk->base_addr; 200 201 return addr >= first_start && 202 addr < first_start + pcpu_reserved_chunk_limit; 203 } 204 205 static int __pcpu_size_to_slot(int size) 206 { 207 int highbit = fls(size); /* size is in bytes */ 208 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 209 } 210 211 static int pcpu_size_to_slot(int size) 212 { 213 if (size == pcpu_unit_size) 214 return pcpu_nr_slots - 1; 215 return __pcpu_size_to_slot(size); 216 } 217 218 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 219 { 220 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 221 return 0; 222 223 return pcpu_size_to_slot(chunk->free_size); 224 } 225 226 /* set the pointer to a chunk in a page struct */ 227 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 228 { 229 page->index = (unsigned long)pcpu; 230 } 231 232 /* obtain pointer to a chunk from a page struct */ 233 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 234 { 235 return (struct pcpu_chunk *)page->index; 236 } 237 238 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 239 { 240 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 241 } 242 243 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 244 unsigned int cpu, int page_idx) 245 { 246 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 247 (page_idx << PAGE_SHIFT); 248 } 249 250 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 251 int *rs, int *re, int end) 252 { 253 *rs = find_next_zero_bit(chunk->populated, end, *rs); 254 *re = find_next_bit(chunk->populated, end, *rs + 1); 255 } 256 257 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 258 int *rs, int *re, int end) 259 { 260 *rs = find_next_bit(chunk->populated, end, *rs); 261 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 262 } 263 264 /* 265 * (Un)populated page region iterators. Iterate over (un)populated 266 * page regions between @start and @end in @chunk. @rs and @re should 267 * be integer variables and will be set to start and end page index of 268 * the current region. 269 */ 270 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 271 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 272 (rs) < (re); \ 273 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 274 275 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 276 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 277 (rs) < (re); \ 278 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 279 280 /** 281 * pcpu_mem_zalloc - allocate memory 282 * @size: bytes to allocate 283 * 284 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 285 * kzalloc() is used; otherwise, vzalloc() is used. The returned 286 * memory is always zeroed. 287 * 288 * CONTEXT: 289 * Does GFP_KERNEL allocation. 290 * 291 * RETURNS: 292 * Pointer to the allocated area on success, NULL on failure. 293 */ 294 static void *pcpu_mem_zalloc(size_t size) 295 { 296 if (WARN_ON_ONCE(!slab_is_available())) 297 return NULL; 298 299 if (size <= PAGE_SIZE) 300 return kzalloc(size, GFP_KERNEL); 301 else 302 return vzalloc(size); 303 } 304 305 /** 306 * pcpu_mem_free - free memory 307 * @ptr: memory to free 308 * @size: size of the area 309 * 310 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 311 */ 312 static void pcpu_mem_free(void *ptr, size_t size) 313 { 314 if (size <= PAGE_SIZE) 315 kfree(ptr); 316 else 317 vfree(ptr); 318 } 319 320 /** 321 * pcpu_count_occupied_pages - count the number of pages an area occupies 322 * @chunk: chunk of interest 323 * @i: index of the area in question 324 * 325 * Count the number of pages chunk's @i'th area occupies. When the area's 326 * start and/or end address isn't aligned to page boundary, the straddled 327 * page is included in the count iff the rest of the page is free. 328 */ 329 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) 330 { 331 int off = chunk->map[i] & ~1; 332 int end = chunk->map[i + 1] & ~1; 333 334 if (!PAGE_ALIGNED(off) && i > 0) { 335 int prev = chunk->map[i - 1]; 336 337 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) 338 off = round_down(off, PAGE_SIZE); 339 } 340 341 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { 342 int next = chunk->map[i + 1]; 343 int nend = chunk->map[i + 2] & ~1; 344 345 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) 346 end = round_up(end, PAGE_SIZE); 347 } 348 349 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); 350 } 351 352 /** 353 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 354 * @chunk: chunk of interest 355 * @oslot: the previous slot it was on 356 * 357 * This function is called after an allocation or free changed @chunk. 358 * New slot according to the changed state is determined and @chunk is 359 * moved to the slot. Note that the reserved chunk is never put on 360 * chunk slots. 361 * 362 * CONTEXT: 363 * pcpu_lock. 364 */ 365 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 366 { 367 int nslot = pcpu_chunk_slot(chunk); 368 369 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 370 if (oslot < nslot) 371 list_move(&chunk->list, &pcpu_slot[nslot]); 372 else 373 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 374 } 375 } 376 377 /** 378 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 379 * @chunk: chunk of interest 380 * @is_atomic: the allocation context 381 * 382 * Determine whether area map of @chunk needs to be extended. If 383 * @is_atomic, only the amount necessary for a new allocation is 384 * considered; however, async extension is scheduled if the left amount is 385 * low. If !@is_atomic, it aims for more empty space. Combined, this 386 * ensures that the map is likely to have enough available space to 387 * accomodate atomic allocations which can't extend maps directly. 388 * 389 * CONTEXT: 390 * pcpu_lock. 391 * 392 * RETURNS: 393 * New target map allocation length if extension is necessary, 0 394 * otherwise. 395 */ 396 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) 397 { 398 int margin, new_alloc; 399 400 if (is_atomic) { 401 margin = 3; 402 403 if (chunk->map_alloc < 404 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW && 405 pcpu_async_enabled) 406 schedule_work(&chunk->map_extend_work); 407 } else { 408 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; 409 } 410 411 if (chunk->map_alloc >= chunk->map_used + margin) 412 return 0; 413 414 new_alloc = PCPU_DFL_MAP_ALLOC; 415 while (new_alloc < chunk->map_used + margin) 416 new_alloc *= 2; 417 418 return new_alloc; 419 } 420 421 /** 422 * pcpu_extend_area_map - extend area map of a chunk 423 * @chunk: chunk of interest 424 * @new_alloc: new target allocation length of the area map 425 * 426 * Extend area map of @chunk to have @new_alloc entries. 427 * 428 * CONTEXT: 429 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 430 * 431 * RETURNS: 432 * 0 on success, -errno on failure. 433 */ 434 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 435 { 436 int *old = NULL, *new = NULL; 437 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 438 unsigned long flags; 439 440 new = pcpu_mem_zalloc(new_size); 441 if (!new) 442 return -ENOMEM; 443 444 /* acquire pcpu_lock and switch to new area map */ 445 spin_lock_irqsave(&pcpu_lock, flags); 446 447 if (new_alloc <= chunk->map_alloc) 448 goto out_unlock; 449 450 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 451 old = chunk->map; 452 453 memcpy(new, old, old_size); 454 455 chunk->map_alloc = new_alloc; 456 chunk->map = new; 457 new = NULL; 458 459 out_unlock: 460 spin_unlock_irqrestore(&pcpu_lock, flags); 461 462 /* 463 * pcpu_mem_free() might end up calling vfree() which uses 464 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 465 */ 466 pcpu_mem_free(old, old_size); 467 pcpu_mem_free(new, new_size); 468 469 return 0; 470 } 471 472 static void pcpu_map_extend_workfn(struct work_struct *work) 473 { 474 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk, 475 map_extend_work); 476 int new_alloc; 477 478 spin_lock_irq(&pcpu_lock); 479 new_alloc = pcpu_need_to_extend(chunk, false); 480 spin_unlock_irq(&pcpu_lock); 481 482 if (new_alloc) 483 pcpu_extend_area_map(chunk, new_alloc); 484 } 485 486 /** 487 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area 488 * @chunk: chunk the candidate area belongs to 489 * @off: the offset to the start of the candidate area 490 * @this_size: the size of the candidate area 491 * @size: the size of the target allocation 492 * @align: the alignment of the target allocation 493 * @pop_only: only allocate from already populated region 494 * 495 * We're trying to allocate @size bytes aligned at @align. @chunk's area 496 * at @off sized @this_size is a candidate. This function determines 497 * whether the target allocation fits in the candidate area and returns the 498 * number of bytes to pad after @off. If the target area doesn't fit, -1 499 * is returned. 500 * 501 * If @pop_only is %true, this function only considers the already 502 * populated part of the candidate area. 503 */ 504 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, 505 int size, int align, bool pop_only) 506 { 507 int cand_off = off; 508 509 while (true) { 510 int head = ALIGN(cand_off, align) - off; 511 int page_start, page_end, rs, re; 512 513 if (this_size < head + size) 514 return -1; 515 516 if (!pop_only) 517 return head; 518 519 /* 520 * If the first unpopulated page is beyond the end of the 521 * allocation, the whole allocation is populated; 522 * otherwise, retry from the end of the unpopulated area. 523 */ 524 page_start = PFN_DOWN(head + off); 525 page_end = PFN_UP(head + off + size); 526 527 rs = page_start; 528 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); 529 if (rs >= page_end) 530 return head; 531 cand_off = re * PAGE_SIZE; 532 } 533 } 534 535 /** 536 * pcpu_alloc_area - allocate area from a pcpu_chunk 537 * @chunk: chunk of interest 538 * @size: wanted size in bytes 539 * @align: wanted align 540 * @pop_only: allocate only from the populated area 541 * @occ_pages_p: out param for the number of pages the area occupies 542 * 543 * Try to allocate @size bytes area aligned at @align from @chunk. 544 * Note that this function only allocates the offset. It doesn't 545 * populate or map the area. 546 * 547 * @chunk->map must have at least two free slots. 548 * 549 * CONTEXT: 550 * pcpu_lock. 551 * 552 * RETURNS: 553 * Allocated offset in @chunk on success, -1 if no matching area is 554 * found. 555 */ 556 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, 557 bool pop_only, int *occ_pages_p) 558 { 559 int oslot = pcpu_chunk_slot(chunk); 560 int max_contig = 0; 561 int i, off; 562 bool seen_free = false; 563 int *p; 564 565 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { 566 int head, tail; 567 int this_size; 568 569 off = *p; 570 if (off & 1) 571 continue; 572 573 this_size = (p[1] & ~1) - off; 574 575 head = pcpu_fit_in_area(chunk, off, this_size, size, align, 576 pop_only); 577 if (head < 0) { 578 if (!seen_free) { 579 chunk->first_free = i; 580 seen_free = true; 581 } 582 max_contig = max(this_size, max_contig); 583 continue; 584 } 585 586 /* 587 * If head is small or the previous block is free, 588 * merge'em. Note that 'small' is defined as smaller 589 * than sizeof(int), which is very small but isn't too 590 * uncommon for percpu allocations. 591 */ 592 if (head && (head < sizeof(int) || !(p[-1] & 1))) { 593 *p = off += head; 594 if (p[-1] & 1) 595 chunk->free_size -= head; 596 else 597 max_contig = max(*p - p[-1], max_contig); 598 this_size -= head; 599 head = 0; 600 } 601 602 /* if tail is small, just keep it around */ 603 tail = this_size - head - size; 604 if (tail < sizeof(int)) { 605 tail = 0; 606 size = this_size - head; 607 } 608 609 /* split if warranted */ 610 if (head || tail) { 611 int nr_extra = !!head + !!tail; 612 613 /* insert new subblocks */ 614 memmove(p + nr_extra + 1, p + 1, 615 sizeof(chunk->map[0]) * (chunk->map_used - i)); 616 chunk->map_used += nr_extra; 617 618 if (head) { 619 if (!seen_free) { 620 chunk->first_free = i; 621 seen_free = true; 622 } 623 *++p = off += head; 624 ++i; 625 max_contig = max(head, max_contig); 626 } 627 if (tail) { 628 p[1] = off + size; 629 max_contig = max(tail, max_contig); 630 } 631 } 632 633 if (!seen_free) 634 chunk->first_free = i + 1; 635 636 /* update hint and mark allocated */ 637 if (i + 1 == chunk->map_used) 638 chunk->contig_hint = max_contig; /* fully scanned */ 639 else 640 chunk->contig_hint = max(chunk->contig_hint, 641 max_contig); 642 643 chunk->free_size -= size; 644 *p |= 1; 645 646 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 647 pcpu_chunk_relocate(chunk, oslot); 648 return off; 649 } 650 651 chunk->contig_hint = max_contig; /* fully scanned */ 652 pcpu_chunk_relocate(chunk, oslot); 653 654 /* tell the upper layer that this chunk has no matching area */ 655 return -1; 656 } 657 658 /** 659 * pcpu_free_area - free area to a pcpu_chunk 660 * @chunk: chunk of interest 661 * @freeme: offset of area to free 662 * @occ_pages_p: out param for the number of pages the area occupies 663 * 664 * Free area starting from @freeme to @chunk. Note that this function 665 * only modifies the allocation map. It doesn't depopulate or unmap 666 * the area. 667 * 668 * CONTEXT: 669 * pcpu_lock. 670 */ 671 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, 672 int *occ_pages_p) 673 { 674 int oslot = pcpu_chunk_slot(chunk); 675 int off = 0; 676 unsigned i, j; 677 int to_free = 0; 678 int *p; 679 680 freeme |= 1; /* we are searching for <given offset, in use> pair */ 681 682 i = 0; 683 j = chunk->map_used; 684 while (i != j) { 685 unsigned k = (i + j) / 2; 686 off = chunk->map[k]; 687 if (off < freeme) 688 i = k + 1; 689 else if (off > freeme) 690 j = k; 691 else 692 i = j = k; 693 } 694 BUG_ON(off != freeme); 695 696 if (i < chunk->first_free) 697 chunk->first_free = i; 698 699 p = chunk->map + i; 700 *p = off &= ~1; 701 chunk->free_size += (p[1] & ~1) - off; 702 703 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 704 705 /* merge with next? */ 706 if (!(p[1] & 1)) 707 to_free++; 708 /* merge with previous? */ 709 if (i > 0 && !(p[-1] & 1)) { 710 to_free++; 711 i--; 712 p--; 713 } 714 if (to_free) { 715 chunk->map_used -= to_free; 716 memmove(p + 1, p + 1 + to_free, 717 (chunk->map_used - i) * sizeof(chunk->map[0])); 718 } 719 720 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); 721 pcpu_chunk_relocate(chunk, oslot); 722 } 723 724 static struct pcpu_chunk *pcpu_alloc_chunk(void) 725 { 726 struct pcpu_chunk *chunk; 727 728 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 729 if (!chunk) 730 return NULL; 731 732 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 733 sizeof(chunk->map[0])); 734 if (!chunk->map) { 735 pcpu_mem_free(chunk, pcpu_chunk_struct_size); 736 return NULL; 737 } 738 739 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 740 chunk->map[0] = 0; 741 chunk->map[1] = pcpu_unit_size | 1; 742 chunk->map_used = 1; 743 744 INIT_LIST_HEAD(&chunk->list); 745 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn); 746 chunk->free_size = pcpu_unit_size; 747 chunk->contig_hint = pcpu_unit_size; 748 749 return chunk; 750 } 751 752 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 753 { 754 if (!chunk) 755 return; 756 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 757 pcpu_mem_free(chunk, pcpu_chunk_struct_size); 758 } 759 760 /** 761 * pcpu_chunk_populated - post-population bookkeeping 762 * @chunk: pcpu_chunk which got populated 763 * @page_start: the start page 764 * @page_end: the end page 765 * 766 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 767 * the bookkeeping information accordingly. Must be called after each 768 * successful population. 769 */ 770 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, 771 int page_start, int page_end) 772 { 773 int nr = page_end - page_start; 774 775 lockdep_assert_held(&pcpu_lock); 776 777 bitmap_set(chunk->populated, page_start, nr); 778 chunk->nr_populated += nr; 779 pcpu_nr_empty_pop_pages += nr; 780 } 781 782 /** 783 * pcpu_chunk_depopulated - post-depopulation bookkeeping 784 * @chunk: pcpu_chunk which got depopulated 785 * @page_start: the start page 786 * @page_end: the end page 787 * 788 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 789 * Update the bookkeeping information accordingly. Must be called after 790 * each successful depopulation. 791 */ 792 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 793 int page_start, int page_end) 794 { 795 int nr = page_end - page_start; 796 797 lockdep_assert_held(&pcpu_lock); 798 799 bitmap_clear(chunk->populated, page_start, nr); 800 chunk->nr_populated -= nr; 801 pcpu_nr_empty_pop_pages -= nr; 802 } 803 804 /* 805 * Chunk management implementation. 806 * 807 * To allow different implementations, chunk alloc/free and 808 * [de]population are implemented in a separate file which is pulled 809 * into this file and compiled together. The following functions 810 * should be implemented. 811 * 812 * pcpu_populate_chunk - populate the specified range of a chunk 813 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 814 * pcpu_create_chunk - create a new chunk 815 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 816 * pcpu_addr_to_page - translate address to physical address 817 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 818 */ 819 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 820 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 821 static struct pcpu_chunk *pcpu_create_chunk(void); 822 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 823 static struct page *pcpu_addr_to_page(void *addr); 824 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 825 826 #ifdef CONFIG_NEED_PER_CPU_KM 827 #include "percpu-km.c" 828 #else 829 #include "percpu-vm.c" 830 #endif 831 832 /** 833 * pcpu_chunk_addr_search - determine chunk containing specified address 834 * @addr: address for which the chunk needs to be determined. 835 * 836 * RETURNS: 837 * The address of the found chunk. 838 */ 839 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 840 { 841 /* is it in the first chunk? */ 842 if (pcpu_addr_in_first_chunk(addr)) { 843 /* is it in the reserved area? */ 844 if (pcpu_addr_in_reserved_chunk(addr)) 845 return pcpu_reserved_chunk; 846 return pcpu_first_chunk; 847 } 848 849 /* 850 * The address is relative to unit0 which might be unused and 851 * thus unmapped. Offset the address to the unit space of the 852 * current processor before looking it up in the vmalloc 853 * space. Note that any possible cpu id can be used here, so 854 * there's no need to worry about preemption or cpu hotplug. 855 */ 856 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 857 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 858 } 859 860 /** 861 * pcpu_alloc - the percpu allocator 862 * @size: size of area to allocate in bytes 863 * @align: alignment of area (max PAGE_SIZE) 864 * @reserved: allocate from the reserved chunk if available 865 * @gfp: allocation flags 866 * 867 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 868 * contain %GFP_KERNEL, the allocation is atomic. 869 * 870 * RETURNS: 871 * Percpu pointer to the allocated area on success, NULL on failure. 872 */ 873 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 874 gfp_t gfp) 875 { 876 static int warn_limit = 10; 877 struct pcpu_chunk *chunk; 878 const char *err; 879 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 880 int occ_pages = 0; 881 int slot, off, new_alloc, cpu, ret; 882 unsigned long flags; 883 void __percpu *ptr; 884 885 /* 886 * We want the lowest bit of offset available for in-use/free 887 * indicator, so force >= 16bit alignment and make size even. 888 */ 889 if (unlikely(align < 2)) 890 align = 2; 891 892 size = ALIGN(size, 2); 893 894 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 895 WARN(true, "illegal size (%zu) or align (%zu) for " 896 "percpu allocation\n", size, align); 897 return NULL; 898 } 899 900 spin_lock_irqsave(&pcpu_lock, flags); 901 902 /* serve reserved allocations from the reserved chunk if available */ 903 if (reserved && pcpu_reserved_chunk) { 904 chunk = pcpu_reserved_chunk; 905 906 if (size > chunk->contig_hint) { 907 err = "alloc from reserved chunk failed"; 908 goto fail_unlock; 909 } 910 911 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { 912 spin_unlock_irqrestore(&pcpu_lock, flags); 913 if (is_atomic || 914 pcpu_extend_area_map(chunk, new_alloc) < 0) { 915 err = "failed to extend area map of reserved chunk"; 916 goto fail; 917 } 918 spin_lock_irqsave(&pcpu_lock, flags); 919 } 920 921 off = pcpu_alloc_area(chunk, size, align, is_atomic, 922 &occ_pages); 923 if (off >= 0) 924 goto area_found; 925 926 err = "alloc from reserved chunk failed"; 927 goto fail_unlock; 928 } 929 930 restart: 931 /* search through normal chunks */ 932 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 933 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 934 if (size > chunk->contig_hint) 935 continue; 936 937 new_alloc = pcpu_need_to_extend(chunk, is_atomic); 938 if (new_alloc) { 939 if (is_atomic) 940 continue; 941 spin_unlock_irqrestore(&pcpu_lock, flags); 942 if (pcpu_extend_area_map(chunk, 943 new_alloc) < 0) { 944 err = "failed to extend area map"; 945 goto fail; 946 } 947 spin_lock_irqsave(&pcpu_lock, flags); 948 /* 949 * pcpu_lock has been dropped, need to 950 * restart cpu_slot list walking. 951 */ 952 goto restart; 953 } 954 955 off = pcpu_alloc_area(chunk, size, align, is_atomic, 956 &occ_pages); 957 if (off >= 0) 958 goto area_found; 959 } 960 } 961 962 spin_unlock_irqrestore(&pcpu_lock, flags); 963 964 /* 965 * No space left. Create a new chunk. We don't want multiple 966 * tasks to create chunks simultaneously. Serialize and create iff 967 * there's still no empty chunk after grabbing the mutex. 968 */ 969 if (is_atomic) 970 goto fail; 971 972 mutex_lock(&pcpu_alloc_mutex); 973 974 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 975 chunk = pcpu_create_chunk(); 976 if (!chunk) { 977 mutex_unlock(&pcpu_alloc_mutex); 978 err = "failed to allocate new chunk"; 979 goto fail; 980 } 981 982 spin_lock_irqsave(&pcpu_lock, flags); 983 pcpu_chunk_relocate(chunk, -1); 984 } else { 985 spin_lock_irqsave(&pcpu_lock, flags); 986 } 987 988 mutex_unlock(&pcpu_alloc_mutex); 989 goto restart; 990 991 area_found: 992 spin_unlock_irqrestore(&pcpu_lock, flags); 993 994 /* populate if not all pages are already there */ 995 if (!is_atomic) { 996 int page_start, page_end, rs, re; 997 998 mutex_lock(&pcpu_alloc_mutex); 999 1000 page_start = PFN_DOWN(off); 1001 page_end = PFN_UP(off + size); 1002 1003 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 1004 WARN_ON(chunk->immutable); 1005 1006 ret = pcpu_populate_chunk(chunk, rs, re); 1007 1008 spin_lock_irqsave(&pcpu_lock, flags); 1009 if (ret) { 1010 mutex_unlock(&pcpu_alloc_mutex); 1011 pcpu_free_area(chunk, off, &occ_pages); 1012 err = "failed to populate"; 1013 goto fail_unlock; 1014 } 1015 pcpu_chunk_populated(chunk, rs, re); 1016 spin_unlock_irqrestore(&pcpu_lock, flags); 1017 } 1018 1019 mutex_unlock(&pcpu_alloc_mutex); 1020 } 1021 1022 if (chunk != pcpu_reserved_chunk) 1023 pcpu_nr_empty_pop_pages -= occ_pages; 1024 1025 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1026 pcpu_schedule_balance_work(); 1027 1028 /* clear the areas and return address relative to base address */ 1029 for_each_possible_cpu(cpu) 1030 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1031 1032 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1033 kmemleak_alloc_percpu(ptr, size); 1034 return ptr; 1035 1036 fail_unlock: 1037 spin_unlock_irqrestore(&pcpu_lock, flags); 1038 fail: 1039 if (!is_atomic && warn_limit) { 1040 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1041 size, align, is_atomic, err); 1042 dump_stack(); 1043 if (!--warn_limit) 1044 pr_info("PERCPU: limit reached, disable warning\n"); 1045 } 1046 if (is_atomic) { 1047 /* see the flag handling in pcpu_blance_workfn() */ 1048 pcpu_atomic_alloc_failed = true; 1049 pcpu_schedule_balance_work(); 1050 } 1051 return NULL; 1052 } 1053 1054 /** 1055 * __alloc_percpu_gfp - allocate dynamic percpu area 1056 * @size: size of area to allocate in bytes 1057 * @align: alignment of area (max PAGE_SIZE) 1058 * @gfp: allocation flags 1059 * 1060 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1061 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1062 * be called from any context but is a lot more likely to fail. 1063 * 1064 * RETURNS: 1065 * Percpu pointer to the allocated area on success, NULL on failure. 1066 */ 1067 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1068 { 1069 return pcpu_alloc(size, align, false, gfp); 1070 } 1071 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1072 1073 /** 1074 * __alloc_percpu - allocate dynamic percpu area 1075 * @size: size of area to allocate in bytes 1076 * @align: alignment of area (max PAGE_SIZE) 1077 * 1078 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1079 */ 1080 void __percpu *__alloc_percpu(size_t size, size_t align) 1081 { 1082 return pcpu_alloc(size, align, false, GFP_KERNEL); 1083 } 1084 EXPORT_SYMBOL_GPL(__alloc_percpu); 1085 1086 /** 1087 * __alloc_reserved_percpu - allocate reserved percpu area 1088 * @size: size of area to allocate in bytes 1089 * @align: alignment of area (max PAGE_SIZE) 1090 * 1091 * Allocate zero-filled percpu area of @size bytes aligned at @align 1092 * from reserved percpu area if arch has set it up; otherwise, 1093 * allocation is served from the same dynamic area. Might sleep. 1094 * Might trigger writeouts. 1095 * 1096 * CONTEXT: 1097 * Does GFP_KERNEL allocation. 1098 * 1099 * RETURNS: 1100 * Percpu pointer to the allocated area on success, NULL on failure. 1101 */ 1102 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1103 { 1104 return pcpu_alloc(size, align, true, GFP_KERNEL); 1105 } 1106 1107 /** 1108 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1109 * @work: unused 1110 * 1111 * Reclaim all fully free chunks except for the first one. 1112 */ 1113 static void pcpu_balance_workfn(struct work_struct *work) 1114 { 1115 LIST_HEAD(to_free); 1116 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1117 struct pcpu_chunk *chunk, *next; 1118 int slot, nr_to_pop, ret; 1119 1120 /* 1121 * There's no reason to keep around multiple unused chunks and VM 1122 * areas can be scarce. Destroy all free chunks except for one. 1123 */ 1124 mutex_lock(&pcpu_alloc_mutex); 1125 spin_lock_irq(&pcpu_lock); 1126 1127 list_for_each_entry_safe(chunk, next, free_head, list) { 1128 WARN_ON(chunk->immutable); 1129 1130 /* spare the first one */ 1131 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1132 continue; 1133 1134 list_move(&chunk->list, &to_free); 1135 } 1136 1137 spin_unlock_irq(&pcpu_lock); 1138 1139 list_for_each_entry_safe(chunk, next, &to_free, list) { 1140 int rs, re; 1141 1142 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1143 pcpu_depopulate_chunk(chunk, rs, re); 1144 spin_lock_irq(&pcpu_lock); 1145 pcpu_chunk_depopulated(chunk, rs, re); 1146 spin_unlock_irq(&pcpu_lock); 1147 } 1148 pcpu_destroy_chunk(chunk); 1149 } 1150 1151 /* 1152 * Ensure there are certain number of free populated pages for 1153 * atomic allocs. Fill up from the most packed so that atomic 1154 * allocs don't increase fragmentation. If atomic allocation 1155 * failed previously, always populate the maximum amount. This 1156 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1157 * failing indefinitely; however, large atomic allocs are not 1158 * something we support properly and can be highly unreliable and 1159 * inefficient. 1160 */ 1161 retry_pop: 1162 if (pcpu_atomic_alloc_failed) { 1163 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1164 /* best effort anyway, don't worry about synchronization */ 1165 pcpu_atomic_alloc_failed = false; 1166 } else { 1167 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1168 pcpu_nr_empty_pop_pages, 1169 0, PCPU_EMPTY_POP_PAGES_HIGH); 1170 } 1171 1172 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1173 int nr_unpop = 0, rs, re; 1174 1175 if (!nr_to_pop) 1176 break; 1177 1178 spin_lock_irq(&pcpu_lock); 1179 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1180 nr_unpop = pcpu_unit_pages - chunk->nr_populated; 1181 if (nr_unpop) 1182 break; 1183 } 1184 spin_unlock_irq(&pcpu_lock); 1185 1186 if (!nr_unpop) 1187 continue; 1188 1189 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1190 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1191 int nr = min(re - rs, nr_to_pop); 1192 1193 ret = pcpu_populate_chunk(chunk, rs, rs + nr); 1194 if (!ret) { 1195 nr_to_pop -= nr; 1196 spin_lock_irq(&pcpu_lock); 1197 pcpu_chunk_populated(chunk, rs, rs + nr); 1198 spin_unlock_irq(&pcpu_lock); 1199 } else { 1200 nr_to_pop = 0; 1201 } 1202 1203 if (!nr_to_pop) 1204 break; 1205 } 1206 } 1207 1208 if (nr_to_pop) { 1209 /* ran out of chunks to populate, create a new one and retry */ 1210 chunk = pcpu_create_chunk(); 1211 if (chunk) { 1212 spin_lock_irq(&pcpu_lock); 1213 pcpu_chunk_relocate(chunk, -1); 1214 spin_unlock_irq(&pcpu_lock); 1215 goto retry_pop; 1216 } 1217 } 1218 1219 mutex_unlock(&pcpu_alloc_mutex); 1220 } 1221 1222 /** 1223 * free_percpu - free percpu area 1224 * @ptr: pointer to area to free 1225 * 1226 * Free percpu area @ptr. 1227 * 1228 * CONTEXT: 1229 * Can be called from atomic context. 1230 */ 1231 void free_percpu(void __percpu *ptr) 1232 { 1233 void *addr; 1234 struct pcpu_chunk *chunk; 1235 unsigned long flags; 1236 int off, occ_pages; 1237 1238 if (!ptr) 1239 return; 1240 1241 kmemleak_free_percpu(ptr); 1242 1243 addr = __pcpu_ptr_to_addr(ptr); 1244 1245 spin_lock_irqsave(&pcpu_lock, flags); 1246 1247 chunk = pcpu_chunk_addr_search(addr); 1248 off = addr - chunk->base_addr; 1249 1250 pcpu_free_area(chunk, off, &occ_pages); 1251 1252 if (chunk != pcpu_reserved_chunk) 1253 pcpu_nr_empty_pop_pages += occ_pages; 1254 1255 /* if there are more than one fully free chunks, wake up grim reaper */ 1256 if (chunk->free_size == pcpu_unit_size) { 1257 struct pcpu_chunk *pos; 1258 1259 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1260 if (pos != chunk) { 1261 pcpu_schedule_balance_work(); 1262 break; 1263 } 1264 } 1265 1266 spin_unlock_irqrestore(&pcpu_lock, flags); 1267 } 1268 EXPORT_SYMBOL_GPL(free_percpu); 1269 1270 /** 1271 * is_kernel_percpu_address - test whether address is from static percpu area 1272 * @addr: address to test 1273 * 1274 * Test whether @addr belongs to in-kernel static percpu area. Module 1275 * static percpu areas are not considered. For those, use 1276 * is_module_percpu_address(). 1277 * 1278 * RETURNS: 1279 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1280 */ 1281 bool is_kernel_percpu_address(unsigned long addr) 1282 { 1283 #ifdef CONFIG_SMP 1284 const size_t static_size = __per_cpu_end - __per_cpu_start; 1285 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1286 unsigned int cpu; 1287 1288 for_each_possible_cpu(cpu) { 1289 void *start = per_cpu_ptr(base, cpu); 1290 1291 if ((void *)addr >= start && (void *)addr < start + static_size) 1292 return true; 1293 } 1294 #endif 1295 /* on UP, can't distinguish from other static vars, always false */ 1296 return false; 1297 } 1298 1299 /** 1300 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1301 * @addr: the address to be converted to physical address 1302 * 1303 * Given @addr which is dereferenceable address obtained via one of 1304 * percpu access macros, this function translates it into its physical 1305 * address. The caller is responsible for ensuring @addr stays valid 1306 * until this function finishes. 1307 * 1308 * percpu allocator has special setup for the first chunk, which currently 1309 * supports either embedding in linear address space or vmalloc mapping, 1310 * and, from the second one, the backing allocator (currently either vm or 1311 * km) provides translation. 1312 * 1313 * The addr can be tranlated simply without checking if it falls into the 1314 * first chunk. But the current code reflects better how percpu allocator 1315 * actually works, and the verification can discover both bugs in percpu 1316 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1317 * code. 1318 * 1319 * RETURNS: 1320 * The physical address for @addr. 1321 */ 1322 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1323 { 1324 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1325 bool in_first_chunk = false; 1326 unsigned long first_low, first_high; 1327 unsigned int cpu; 1328 1329 /* 1330 * The following test on unit_low/high isn't strictly 1331 * necessary but will speed up lookups of addresses which 1332 * aren't in the first chunk. 1333 */ 1334 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1335 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1336 pcpu_unit_pages); 1337 if ((unsigned long)addr >= first_low && 1338 (unsigned long)addr < first_high) { 1339 for_each_possible_cpu(cpu) { 1340 void *start = per_cpu_ptr(base, cpu); 1341 1342 if (addr >= start && addr < start + pcpu_unit_size) { 1343 in_first_chunk = true; 1344 break; 1345 } 1346 } 1347 } 1348 1349 if (in_first_chunk) { 1350 if (!is_vmalloc_addr(addr)) 1351 return __pa(addr); 1352 else 1353 return page_to_phys(vmalloc_to_page(addr)) + 1354 offset_in_page(addr); 1355 } else 1356 return page_to_phys(pcpu_addr_to_page(addr)) + 1357 offset_in_page(addr); 1358 } 1359 1360 /** 1361 * pcpu_alloc_alloc_info - allocate percpu allocation info 1362 * @nr_groups: the number of groups 1363 * @nr_units: the number of units 1364 * 1365 * Allocate ai which is large enough for @nr_groups groups containing 1366 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1367 * cpu_map array which is long enough for @nr_units and filled with 1368 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1369 * pointer of other groups. 1370 * 1371 * RETURNS: 1372 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1373 * failure. 1374 */ 1375 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1376 int nr_units) 1377 { 1378 struct pcpu_alloc_info *ai; 1379 size_t base_size, ai_size; 1380 void *ptr; 1381 int unit; 1382 1383 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1384 __alignof__(ai->groups[0].cpu_map[0])); 1385 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1386 1387 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); 1388 if (!ptr) 1389 return NULL; 1390 ai = ptr; 1391 ptr += base_size; 1392 1393 ai->groups[0].cpu_map = ptr; 1394 1395 for (unit = 0; unit < nr_units; unit++) 1396 ai->groups[0].cpu_map[unit] = NR_CPUS; 1397 1398 ai->nr_groups = nr_groups; 1399 ai->__ai_size = PFN_ALIGN(ai_size); 1400 1401 return ai; 1402 } 1403 1404 /** 1405 * pcpu_free_alloc_info - free percpu allocation info 1406 * @ai: pcpu_alloc_info to free 1407 * 1408 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1409 */ 1410 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1411 { 1412 memblock_free_early(__pa(ai), ai->__ai_size); 1413 } 1414 1415 /** 1416 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1417 * @lvl: loglevel 1418 * @ai: allocation info to dump 1419 * 1420 * Print out information about @ai using loglevel @lvl. 1421 */ 1422 static void pcpu_dump_alloc_info(const char *lvl, 1423 const struct pcpu_alloc_info *ai) 1424 { 1425 int group_width = 1, cpu_width = 1, width; 1426 char empty_str[] = "--------"; 1427 int alloc = 0, alloc_end = 0; 1428 int group, v; 1429 int upa, apl; /* units per alloc, allocs per line */ 1430 1431 v = ai->nr_groups; 1432 while (v /= 10) 1433 group_width++; 1434 1435 v = num_possible_cpus(); 1436 while (v /= 10) 1437 cpu_width++; 1438 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1439 1440 upa = ai->alloc_size / ai->unit_size; 1441 width = upa * (cpu_width + 1) + group_width + 3; 1442 apl = rounddown_pow_of_two(max(60 / width, 1)); 1443 1444 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1445 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1446 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1447 1448 for (group = 0; group < ai->nr_groups; group++) { 1449 const struct pcpu_group_info *gi = &ai->groups[group]; 1450 int unit = 0, unit_end = 0; 1451 1452 BUG_ON(gi->nr_units % upa); 1453 for (alloc_end += gi->nr_units / upa; 1454 alloc < alloc_end; alloc++) { 1455 if (!(alloc % apl)) { 1456 printk(KERN_CONT "\n"); 1457 printk("%spcpu-alloc: ", lvl); 1458 } 1459 printk(KERN_CONT "[%0*d] ", group_width, group); 1460 1461 for (unit_end += upa; unit < unit_end; unit++) 1462 if (gi->cpu_map[unit] != NR_CPUS) 1463 printk(KERN_CONT "%0*d ", cpu_width, 1464 gi->cpu_map[unit]); 1465 else 1466 printk(KERN_CONT "%s ", empty_str); 1467 } 1468 } 1469 printk(KERN_CONT "\n"); 1470 } 1471 1472 /** 1473 * pcpu_setup_first_chunk - initialize the first percpu chunk 1474 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1475 * @base_addr: mapped address 1476 * 1477 * Initialize the first percpu chunk which contains the kernel static 1478 * perpcu area. This function is to be called from arch percpu area 1479 * setup path. 1480 * 1481 * @ai contains all information necessary to initialize the first 1482 * chunk and prime the dynamic percpu allocator. 1483 * 1484 * @ai->static_size is the size of static percpu area. 1485 * 1486 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1487 * reserve after the static area in the first chunk. This reserves 1488 * the first chunk such that it's available only through reserved 1489 * percpu allocation. This is primarily used to serve module percpu 1490 * static areas on architectures where the addressing model has 1491 * limited offset range for symbol relocations to guarantee module 1492 * percpu symbols fall inside the relocatable range. 1493 * 1494 * @ai->dyn_size determines the number of bytes available for dynamic 1495 * allocation in the first chunk. The area between @ai->static_size + 1496 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1497 * 1498 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1499 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1500 * @ai->dyn_size. 1501 * 1502 * @ai->atom_size is the allocation atom size and used as alignment 1503 * for vm areas. 1504 * 1505 * @ai->alloc_size is the allocation size and always multiple of 1506 * @ai->atom_size. This is larger than @ai->atom_size if 1507 * @ai->unit_size is larger than @ai->atom_size. 1508 * 1509 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1510 * percpu areas. Units which should be colocated are put into the 1511 * same group. Dynamic VM areas will be allocated according to these 1512 * groupings. If @ai->nr_groups is zero, a single group containing 1513 * all units is assumed. 1514 * 1515 * The caller should have mapped the first chunk at @base_addr and 1516 * copied static data to each unit. 1517 * 1518 * If the first chunk ends up with both reserved and dynamic areas, it 1519 * is served by two chunks - one to serve the core static and reserved 1520 * areas and the other for the dynamic area. They share the same vm 1521 * and page map but uses different area allocation map to stay away 1522 * from each other. The latter chunk is circulated in the chunk slots 1523 * and available for dynamic allocation like any other chunks. 1524 * 1525 * RETURNS: 1526 * 0 on success, -errno on failure. 1527 */ 1528 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1529 void *base_addr) 1530 { 1531 static char cpus_buf[4096] __initdata; 1532 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1533 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1534 size_t dyn_size = ai->dyn_size; 1535 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1536 struct pcpu_chunk *schunk, *dchunk = NULL; 1537 unsigned long *group_offsets; 1538 size_t *group_sizes; 1539 unsigned long *unit_off; 1540 unsigned int cpu; 1541 int *unit_map; 1542 int group, unit, i; 1543 1544 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1545 1546 #define PCPU_SETUP_BUG_ON(cond) do { \ 1547 if (unlikely(cond)) { \ 1548 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1549 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1550 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1551 BUG(); \ 1552 } \ 1553 } while (0) 1554 1555 /* sanity checks */ 1556 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1557 #ifdef CONFIG_SMP 1558 PCPU_SETUP_BUG_ON(!ai->static_size); 1559 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); 1560 #endif 1561 PCPU_SETUP_BUG_ON(!base_addr); 1562 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); 1563 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1564 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1565 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1566 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1567 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1568 1569 /* process group information and build config tables accordingly */ 1570 group_offsets = memblock_virt_alloc(ai->nr_groups * 1571 sizeof(group_offsets[0]), 0); 1572 group_sizes = memblock_virt_alloc(ai->nr_groups * 1573 sizeof(group_sizes[0]), 0); 1574 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 1575 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 1576 1577 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1578 unit_map[cpu] = UINT_MAX; 1579 1580 pcpu_low_unit_cpu = NR_CPUS; 1581 pcpu_high_unit_cpu = NR_CPUS; 1582 1583 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1584 const struct pcpu_group_info *gi = &ai->groups[group]; 1585 1586 group_offsets[group] = gi->base_offset; 1587 group_sizes[group] = gi->nr_units * ai->unit_size; 1588 1589 for (i = 0; i < gi->nr_units; i++) { 1590 cpu = gi->cpu_map[i]; 1591 if (cpu == NR_CPUS) 1592 continue; 1593 1594 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 1595 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1596 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1597 1598 unit_map[cpu] = unit + i; 1599 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1600 1601 /* determine low/high unit_cpu */ 1602 if (pcpu_low_unit_cpu == NR_CPUS || 1603 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1604 pcpu_low_unit_cpu = cpu; 1605 if (pcpu_high_unit_cpu == NR_CPUS || 1606 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1607 pcpu_high_unit_cpu = cpu; 1608 } 1609 } 1610 pcpu_nr_units = unit; 1611 1612 for_each_possible_cpu(cpu) 1613 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1614 1615 /* we're done parsing the input, undefine BUG macro and dump config */ 1616 #undef PCPU_SETUP_BUG_ON 1617 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1618 1619 pcpu_nr_groups = ai->nr_groups; 1620 pcpu_group_offsets = group_offsets; 1621 pcpu_group_sizes = group_sizes; 1622 pcpu_unit_map = unit_map; 1623 pcpu_unit_offsets = unit_off; 1624 1625 /* determine basic parameters */ 1626 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1627 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1628 pcpu_atom_size = ai->atom_size; 1629 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1630 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1631 1632 /* 1633 * Allocate chunk slots. The additional last slot is for 1634 * empty chunks. 1635 */ 1636 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1637 pcpu_slot = memblock_virt_alloc( 1638 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 1639 for (i = 0; i < pcpu_nr_slots; i++) 1640 INIT_LIST_HEAD(&pcpu_slot[i]); 1641 1642 /* 1643 * Initialize static chunk. If reserved_size is zero, the 1644 * static chunk covers static area + dynamic allocation area 1645 * in the first chunk. If reserved_size is not zero, it 1646 * covers static area + reserved area (mostly used for module 1647 * static percpu allocation). 1648 */ 1649 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1650 INIT_LIST_HEAD(&schunk->list); 1651 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn); 1652 schunk->base_addr = base_addr; 1653 schunk->map = smap; 1654 schunk->map_alloc = ARRAY_SIZE(smap); 1655 schunk->immutable = true; 1656 bitmap_fill(schunk->populated, pcpu_unit_pages); 1657 schunk->nr_populated = pcpu_unit_pages; 1658 1659 if (ai->reserved_size) { 1660 schunk->free_size = ai->reserved_size; 1661 pcpu_reserved_chunk = schunk; 1662 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1663 } else { 1664 schunk->free_size = dyn_size; 1665 dyn_size = 0; /* dynamic area covered */ 1666 } 1667 schunk->contig_hint = schunk->free_size; 1668 1669 schunk->map[0] = 1; 1670 schunk->map[1] = ai->static_size; 1671 schunk->map_used = 1; 1672 if (schunk->free_size) 1673 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size); 1674 else 1675 schunk->map[1] |= 1; 1676 1677 /* init dynamic chunk if necessary */ 1678 if (dyn_size) { 1679 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1680 INIT_LIST_HEAD(&dchunk->list); 1681 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn); 1682 dchunk->base_addr = base_addr; 1683 dchunk->map = dmap; 1684 dchunk->map_alloc = ARRAY_SIZE(dmap); 1685 dchunk->immutable = true; 1686 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1687 dchunk->nr_populated = pcpu_unit_pages; 1688 1689 dchunk->contig_hint = dchunk->free_size = dyn_size; 1690 dchunk->map[0] = 1; 1691 dchunk->map[1] = pcpu_reserved_chunk_limit; 1692 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; 1693 dchunk->map_used = 2; 1694 } 1695 1696 /* link the first chunk in */ 1697 pcpu_first_chunk = dchunk ?: schunk; 1698 pcpu_nr_empty_pop_pages += 1699 pcpu_count_occupied_pages(pcpu_first_chunk, 1); 1700 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1701 1702 /* we're done */ 1703 pcpu_base_addr = base_addr; 1704 return 0; 1705 } 1706 1707 #ifdef CONFIG_SMP 1708 1709 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 1710 [PCPU_FC_AUTO] = "auto", 1711 [PCPU_FC_EMBED] = "embed", 1712 [PCPU_FC_PAGE] = "page", 1713 }; 1714 1715 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1716 1717 static int __init percpu_alloc_setup(char *str) 1718 { 1719 if (!str) 1720 return -EINVAL; 1721 1722 if (0) 1723 /* nada */; 1724 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1725 else if (!strcmp(str, "embed")) 1726 pcpu_chosen_fc = PCPU_FC_EMBED; 1727 #endif 1728 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1729 else if (!strcmp(str, "page")) 1730 pcpu_chosen_fc = PCPU_FC_PAGE; 1731 #endif 1732 else 1733 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1734 1735 return 0; 1736 } 1737 early_param("percpu_alloc", percpu_alloc_setup); 1738 1739 /* 1740 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1741 * Build it if needed by the arch config or the generic setup is going 1742 * to be used. 1743 */ 1744 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1745 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1746 #define BUILD_EMBED_FIRST_CHUNK 1747 #endif 1748 1749 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1750 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1751 #define BUILD_PAGE_FIRST_CHUNK 1752 #endif 1753 1754 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1755 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1756 /** 1757 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1758 * @reserved_size: the size of reserved percpu area in bytes 1759 * @dyn_size: minimum free size for dynamic allocation in bytes 1760 * @atom_size: allocation atom size 1761 * @cpu_distance_fn: callback to determine distance between cpus, optional 1762 * 1763 * This function determines grouping of units, their mappings to cpus 1764 * and other parameters considering needed percpu size, allocation 1765 * atom size and distances between CPUs. 1766 * 1767 * Groups are always mutliples of atom size and CPUs which are of 1768 * LOCAL_DISTANCE both ways are grouped together and share space for 1769 * units in the same group. The returned configuration is guaranteed 1770 * to have CPUs on different nodes on different groups and >=75% usage 1771 * of allocated virtual address space. 1772 * 1773 * RETURNS: 1774 * On success, pointer to the new allocation_info is returned. On 1775 * failure, ERR_PTR value is returned. 1776 */ 1777 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1778 size_t reserved_size, size_t dyn_size, 1779 size_t atom_size, 1780 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1781 { 1782 static int group_map[NR_CPUS] __initdata; 1783 static int group_cnt[NR_CPUS] __initdata; 1784 const size_t static_size = __per_cpu_end - __per_cpu_start; 1785 int nr_groups = 1, nr_units = 0; 1786 size_t size_sum, min_unit_size, alloc_size; 1787 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1788 int last_allocs, group, unit; 1789 unsigned int cpu, tcpu; 1790 struct pcpu_alloc_info *ai; 1791 unsigned int *cpu_map; 1792 1793 /* this function may be called multiple times */ 1794 memset(group_map, 0, sizeof(group_map)); 1795 memset(group_cnt, 0, sizeof(group_cnt)); 1796 1797 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1798 size_sum = PFN_ALIGN(static_size + reserved_size + 1799 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1800 dyn_size = size_sum - static_size - reserved_size; 1801 1802 /* 1803 * Determine min_unit_size, alloc_size and max_upa such that 1804 * alloc_size is multiple of atom_size and is the smallest 1805 * which can accommodate 4k aligned segments which are equal to 1806 * or larger than min_unit_size. 1807 */ 1808 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1809 1810 alloc_size = roundup(min_unit_size, atom_size); 1811 upa = alloc_size / min_unit_size; 1812 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1813 upa--; 1814 max_upa = upa; 1815 1816 /* group cpus according to their proximity */ 1817 for_each_possible_cpu(cpu) { 1818 group = 0; 1819 next_group: 1820 for_each_possible_cpu(tcpu) { 1821 if (cpu == tcpu) 1822 break; 1823 if (group_map[tcpu] == group && cpu_distance_fn && 1824 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1825 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1826 group++; 1827 nr_groups = max(nr_groups, group + 1); 1828 goto next_group; 1829 } 1830 } 1831 group_map[cpu] = group; 1832 group_cnt[group]++; 1833 } 1834 1835 /* 1836 * Expand unit size until address space usage goes over 75% 1837 * and then as much as possible without using more address 1838 * space. 1839 */ 1840 last_allocs = INT_MAX; 1841 for (upa = max_upa; upa; upa--) { 1842 int allocs = 0, wasted = 0; 1843 1844 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1845 continue; 1846 1847 for (group = 0; group < nr_groups; group++) { 1848 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1849 allocs += this_allocs; 1850 wasted += this_allocs * upa - group_cnt[group]; 1851 } 1852 1853 /* 1854 * Don't accept if wastage is over 1/3. The 1855 * greater-than comparison ensures upa==1 always 1856 * passes the following check. 1857 */ 1858 if (wasted > num_possible_cpus() / 3) 1859 continue; 1860 1861 /* and then don't consume more memory */ 1862 if (allocs > last_allocs) 1863 break; 1864 last_allocs = allocs; 1865 best_upa = upa; 1866 } 1867 upa = best_upa; 1868 1869 /* allocate and fill alloc_info */ 1870 for (group = 0; group < nr_groups; group++) 1871 nr_units += roundup(group_cnt[group], upa); 1872 1873 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1874 if (!ai) 1875 return ERR_PTR(-ENOMEM); 1876 cpu_map = ai->groups[0].cpu_map; 1877 1878 for (group = 0; group < nr_groups; group++) { 1879 ai->groups[group].cpu_map = cpu_map; 1880 cpu_map += roundup(group_cnt[group], upa); 1881 } 1882 1883 ai->static_size = static_size; 1884 ai->reserved_size = reserved_size; 1885 ai->dyn_size = dyn_size; 1886 ai->unit_size = alloc_size / upa; 1887 ai->atom_size = atom_size; 1888 ai->alloc_size = alloc_size; 1889 1890 for (group = 0, unit = 0; group_cnt[group]; group++) { 1891 struct pcpu_group_info *gi = &ai->groups[group]; 1892 1893 /* 1894 * Initialize base_offset as if all groups are located 1895 * back-to-back. The caller should update this to 1896 * reflect actual allocation. 1897 */ 1898 gi->base_offset = unit * ai->unit_size; 1899 1900 for_each_possible_cpu(cpu) 1901 if (group_map[cpu] == group) 1902 gi->cpu_map[gi->nr_units++] = cpu; 1903 gi->nr_units = roundup(gi->nr_units, upa); 1904 unit += gi->nr_units; 1905 } 1906 BUG_ON(unit != nr_units); 1907 1908 return ai; 1909 } 1910 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1911 1912 #if defined(BUILD_EMBED_FIRST_CHUNK) 1913 /** 1914 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1915 * @reserved_size: the size of reserved percpu area in bytes 1916 * @dyn_size: minimum free size for dynamic allocation in bytes 1917 * @atom_size: allocation atom size 1918 * @cpu_distance_fn: callback to determine distance between cpus, optional 1919 * @alloc_fn: function to allocate percpu page 1920 * @free_fn: function to free percpu page 1921 * 1922 * This is a helper to ease setting up embedded first percpu chunk and 1923 * can be called where pcpu_setup_first_chunk() is expected. 1924 * 1925 * If this function is used to setup the first chunk, it is allocated 1926 * by calling @alloc_fn and used as-is without being mapped into 1927 * vmalloc area. Allocations are always whole multiples of @atom_size 1928 * aligned to @atom_size. 1929 * 1930 * This enables the first chunk to piggy back on the linear physical 1931 * mapping which often uses larger page size. Please note that this 1932 * can result in very sparse cpu->unit mapping on NUMA machines thus 1933 * requiring large vmalloc address space. Don't use this allocator if 1934 * vmalloc space is not orders of magnitude larger than distances 1935 * between node memory addresses (ie. 32bit NUMA machines). 1936 * 1937 * @dyn_size specifies the minimum dynamic area size. 1938 * 1939 * If the needed size is smaller than the minimum or specified unit 1940 * size, the leftover is returned using @free_fn. 1941 * 1942 * RETURNS: 1943 * 0 on success, -errno on failure. 1944 */ 1945 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1946 size_t atom_size, 1947 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1948 pcpu_fc_alloc_fn_t alloc_fn, 1949 pcpu_fc_free_fn_t free_fn) 1950 { 1951 void *base = (void *)ULONG_MAX; 1952 void **areas = NULL; 1953 struct pcpu_alloc_info *ai; 1954 size_t size_sum, areas_size, max_distance; 1955 int group, i, rc; 1956 1957 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1958 cpu_distance_fn); 1959 if (IS_ERR(ai)) 1960 return PTR_ERR(ai); 1961 1962 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1963 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1964 1965 areas = memblock_virt_alloc_nopanic(areas_size, 0); 1966 if (!areas) { 1967 rc = -ENOMEM; 1968 goto out_free; 1969 } 1970 1971 /* allocate, copy and determine base address */ 1972 for (group = 0; group < ai->nr_groups; group++) { 1973 struct pcpu_group_info *gi = &ai->groups[group]; 1974 unsigned int cpu = NR_CPUS; 1975 void *ptr; 1976 1977 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1978 cpu = gi->cpu_map[i]; 1979 BUG_ON(cpu == NR_CPUS); 1980 1981 /* allocate space for the whole group */ 1982 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1983 if (!ptr) { 1984 rc = -ENOMEM; 1985 goto out_free_areas; 1986 } 1987 /* kmemleak tracks the percpu allocations separately */ 1988 kmemleak_free(ptr); 1989 areas[group] = ptr; 1990 1991 base = min(ptr, base); 1992 } 1993 1994 /* 1995 * Copy data and free unused parts. This should happen after all 1996 * allocations are complete; otherwise, we may end up with 1997 * overlapping groups. 1998 */ 1999 for (group = 0; group < ai->nr_groups; group++) { 2000 struct pcpu_group_info *gi = &ai->groups[group]; 2001 void *ptr = areas[group]; 2002 2003 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2004 if (gi->cpu_map[i] == NR_CPUS) { 2005 /* unused unit, free whole */ 2006 free_fn(ptr, ai->unit_size); 2007 continue; 2008 } 2009 /* copy and return the unused part */ 2010 memcpy(ptr, __per_cpu_load, ai->static_size); 2011 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2012 } 2013 } 2014 2015 /* base address is now known, determine group base offsets */ 2016 max_distance = 0; 2017 for (group = 0; group < ai->nr_groups; group++) { 2018 ai->groups[group].base_offset = areas[group] - base; 2019 max_distance = max_t(size_t, max_distance, 2020 ai->groups[group].base_offset); 2021 } 2022 max_distance += ai->unit_size; 2023 2024 /* warn if maximum distance is further than 75% of vmalloc space */ 2025 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2026 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 2027 "space 0x%lx\n", max_distance, 2028 VMALLOC_TOTAL); 2029 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2030 /* and fail if we have fallback */ 2031 rc = -EINVAL; 2032 goto out_free; 2033 #endif 2034 } 2035 2036 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2037 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2038 ai->dyn_size, ai->unit_size); 2039 2040 rc = pcpu_setup_first_chunk(ai, base); 2041 goto out_free; 2042 2043 out_free_areas: 2044 for (group = 0; group < ai->nr_groups; group++) 2045 if (areas[group]) 2046 free_fn(areas[group], 2047 ai->groups[group].nr_units * ai->unit_size); 2048 out_free: 2049 pcpu_free_alloc_info(ai); 2050 if (areas) 2051 memblock_free_early(__pa(areas), areas_size); 2052 return rc; 2053 } 2054 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2055 2056 #ifdef BUILD_PAGE_FIRST_CHUNK 2057 /** 2058 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2059 * @reserved_size: the size of reserved percpu area in bytes 2060 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2061 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2062 * @populate_pte_fn: function to populate pte 2063 * 2064 * This is a helper to ease setting up page-remapped first percpu 2065 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2066 * 2067 * This is the basic allocator. Static percpu area is allocated 2068 * page-by-page into vmalloc area. 2069 * 2070 * RETURNS: 2071 * 0 on success, -errno on failure. 2072 */ 2073 int __init pcpu_page_first_chunk(size_t reserved_size, 2074 pcpu_fc_alloc_fn_t alloc_fn, 2075 pcpu_fc_free_fn_t free_fn, 2076 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2077 { 2078 static struct vm_struct vm; 2079 struct pcpu_alloc_info *ai; 2080 char psize_str[16]; 2081 int unit_pages; 2082 size_t pages_size; 2083 struct page **pages; 2084 int unit, i, j, rc; 2085 2086 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2087 2088 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2089 if (IS_ERR(ai)) 2090 return PTR_ERR(ai); 2091 BUG_ON(ai->nr_groups != 1); 2092 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 2093 2094 unit_pages = ai->unit_size >> PAGE_SHIFT; 2095 2096 /* unaligned allocations can't be freed, round up to page size */ 2097 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2098 sizeof(pages[0])); 2099 pages = memblock_virt_alloc(pages_size, 0); 2100 2101 /* allocate pages */ 2102 j = 0; 2103 for (unit = 0; unit < num_possible_cpus(); unit++) 2104 for (i = 0; i < unit_pages; i++) { 2105 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2106 void *ptr; 2107 2108 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2109 if (!ptr) { 2110 pr_warning("PERCPU: failed to allocate %s page " 2111 "for cpu%u\n", psize_str, cpu); 2112 goto enomem; 2113 } 2114 /* kmemleak tracks the percpu allocations separately */ 2115 kmemleak_free(ptr); 2116 pages[j++] = virt_to_page(ptr); 2117 } 2118 2119 /* allocate vm area, map the pages and copy static data */ 2120 vm.flags = VM_ALLOC; 2121 vm.size = num_possible_cpus() * ai->unit_size; 2122 vm_area_register_early(&vm, PAGE_SIZE); 2123 2124 for (unit = 0; unit < num_possible_cpus(); unit++) { 2125 unsigned long unit_addr = 2126 (unsigned long)vm.addr + unit * ai->unit_size; 2127 2128 for (i = 0; i < unit_pages; i++) 2129 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2130 2131 /* pte already populated, the following shouldn't fail */ 2132 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2133 unit_pages); 2134 if (rc < 0) 2135 panic("failed to map percpu area, err=%d\n", rc); 2136 2137 /* 2138 * FIXME: Archs with virtual cache should flush local 2139 * cache for the linear mapping here - something 2140 * equivalent to flush_cache_vmap() on the local cpu. 2141 * flush_cache_vmap() can't be used as most supporting 2142 * data structures are not set up yet. 2143 */ 2144 2145 /* copy static data */ 2146 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2147 } 2148 2149 /* we're ready, commit */ 2150 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 2151 unit_pages, psize_str, vm.addr, ai->static_size, 2152 ai->reserved_size, ai->dyn_size); 2153 2154 rc = pcpu_setup_first_chunk(ai, vm.addr); 2155 goto out_free_ar; 2156 2157 enomem: 2158 while (--j >= 0) 2159 free_fn(page_address(pages[j]), PAGE_SIZE); 2160 rc = -ENOMEM; 2161 out_free_ar: 2162 memblock_free_early(__pa(pages), pages_size); 2163 pcpu_free_alloc_info(ai); 2164 return rc; 2165 } 2166 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2167 2168 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2169 /* 2170 * Generic SMP percpu area setup. 2171 * 2172 * The embedding helper is used because its behavior closely resembles 2173 * the original non-dynamic generic percpu area setup. This is 2174 * important because many archs have addressing restrictions and might 2175 * fail if the percpu area is located far away from the previous 2176 * location. As an added bonus, in non-NUMA cases, embedding is 2177 * generally a good idea TLB-wise because percpu area can piggy back 2178 * on the physical linear memory mapping which uses large page 2179 * mappings on applicable archs. 2180 */ 2181 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2182 EXPORT_SYMBOL(__per_cpu_offset); 2183 2184 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2185 size_t align) 2186 { 2187 return memblock_virt_alloc_from_nopanic( 2188 size, align, __pa(MAX_DMA_ADDRESS)); 2189 } 2190 2191 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2192 { 2193 memblock_free_early(__pa(ptr), size); 2194 } 2195 2196 void __init setup_per_cpu_areas(void) 2197 { 2198 unsigned long delta; 2199 unsigned int cpu; 2200 int rc; 2201 2202 /* 2203 * Always reserve area for module percpu variables. That's 2204 * what the legacy allocator did. 2205 */ 2206 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2207 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2208 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2209 if (rc < 0) 2210 panic("Failed to initialize percpu areas."); 2211 2212 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2213 for_each_possible_cpu(cpu) 2214 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2215 } 2216 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2217 2218 #else /* CONFIG_SMP */ 2219 2220 /* 2221 * UP percpu area setup. 2222 * 2223 * UP always uses km-based percpu allocator with identity mapping. 2224 * Static percpu variables are indistinguishable from the usual static 2225 * variables and don't require any special preparation. 2226 */ 2227 void __init setup_per_cpu_areas(void) 2228 { 2229 const size_t unit_size = 2230 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2231 PERCPU_DYNAMIC_RESERVE)); 2232 struct pcpu_alloc_info *ai; 2233 void *fc; 2234 2235 ai = pcpu_alloc_alloc_info(1, 1); 2236 fc = memblock_virt_alloc_from_nopanic(unit_size, 2237 PAGE_SIZE, 2238 __pa(MAX_DMA_ADDRESS)); 2239 if (!ai || !fc) 2240 panic("Failed to allocate memory for percpu areas."); 2241 /* kmemleak tracks the percpu allocations separately */ 2242 kmemleak_free(fc); 2243 2244 ai->dyn_size = unit_size; 2245 ai->unit_size = unit_size; 2246 ai->atom_size = unit_size; 2247 ai->alloc_size = unit_size; 2248 ai->groups[0].nr_units = 1; 2249 ai->groups[0].cpu_map[0] = 0; 2250 2251 if (pcpu_setup_first_chunk(ai, fc) < 0) 2252 panic("Failed to initialize percpu areas."); 2253 } 2254 2255 #endif /* CONFIG_SMP */ 2256 2257 /* 2258 * First and reserved chunks are initialized with temporary allocation 2259 * map in initdata so that they can be used before slab is online. 2260 * This function is called after slab is brought up and replaces those 2261 * with properly allocated maps. 2262 */ 2263 void __init percpu_init_late(void) 2264 { 2265 struct pcpu_chunk *target_chunks[] = 2266 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 2267 struct pcpu_chunk *chunk; 2268 unsigned long flags; 2269 int i; 2270 2271 for (i = 0; (chunk = target_chunks[i]); i++) { 2272 int *map; 2273 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 2274 2275 BUILD_BUG_ON(size > PAGE_SIZE); 2276 2277 map = pcpu_mem_zalloc(size); 2278 BUG_ON(!map); 2279 2280 spin_lock_irqsave(&pcpu_lock, flags); 2281 memcpy(map, chunk->map, size); 2282 chunk->map = map; 2283 spin_unlock_irqrestore(&pcpu_lock, flags); 2284 } 2285 } 2286 2287 /* 2288 * Percpu allocator is initialized early during boot when neither slab or 2289 * workqueue is available. Plug async management until everything is up 2290 * and running. 2291 */ 2292 static int __init percpu_enable_async(void) 2293 { 2294 pcpu_async_enabled = true; 2295 return 0; 2296 } 2297 subsys_initcall(percpu_enable_async); 2298