1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be eqaul to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 71 #include <asm/cacheflush.h> 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/io.h> 75 76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 78 79 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 80 #ifndef __addr_to_pcpu_ptr 81 #define __addr_to_pcpu_ptr(addr) \ 82 (void __percpu *)((unsigned long)(addr) - \ 83 (unsigned long)pcpu_base_addr + \ 84 (unsigned long)__per_cpu_start) 85 #endif 86 #ifndef __pcpu_ptr_to_addr 87 #define __pcpu_ptr_to_addr(ptr) \ 88 (void __force *)((unsigned long)(ptr) + \ 89 (unsigned long)pcpu_base_addr - \ 90 (unsigned long)__per_cpu_start) 91 #endif 92 93 struct pcpu_chunk { 94 struct list_head list; /* linked to pcpu_slot lists */ 95 int free_size; /* free bytes in the chunk */ 96 int contig_hint; /* max contiguous size hint */ 97 void *base_addr; /* base address of this chunk */ 98 int map_used; /* # of map entries used */ 99 int map_alloc; /* # of map entries allocated */ 100 int *map; /* allocation map */ 101 void *data; /* chunk data */ 102 bool immutable; /* no [de]population allowed */ 103 unsigned long populated[]; /* populated bitmap */ 104 }; 105 106 static int pcpu_unit_pages __read_mostly; 107 static int pcpu_unit_size __read_mostly; 108 static int pcpu_nr_units __read_mostly; 109 static int pcpu_atom_size __read_mostly; 110 static int pcpu_nr_slots __read_mostly; 111 static size_t pcpu_chunk_struct_size __read_mostly; 112 113 /* cpus with the lowest and highest unit numbers */ 114 static unsigned int pcpu_first_unit_cpu __read_mostly; 115 static unsigned int pcpu_last_unit_cpu __read_mostly; 116 117 /* the address of the first chunk which starts with the kernel static area */ 118 void *pcpu_base_addr __read_mostly; 119 EXPORT_SYMBOL_GPL(pcpu_base_addr); 120 121 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 122 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 123 124 /* group information, used for vm allocation */ 125 static int pcpu_nr_groups __read_mostly; 126 static const unsigned long *pcpu_group_offsets __read_mostly; 127 static const size_t *pcpu_group_sizes __read_mostly; 128 129 /* 130 * The first chunk which always exists. Note that unlike other 131 * chunks, this one can be allocated and mapped in several different 132 * ways and thus often doesn't live in the vmalloc area. 133 */ 134 static struct pcpu_chunk *pcpu_first_chunk; 135 136 /* 137 * Optional reserved chunk. This chunk reserves part of the first 138 * chunk and serves it for reserved allocations. The amount of 139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 140 * area doesn't exist, the following variables contain NULL and 0 141 * respectively. 142 */ 143 static struct pcpu_chunk *pcpu_reserved_chunk; 144 static int pcpu_reserved_chunk_limit; 145 146 /* 147 * Synchronization rules. 148 * 149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 150 * protects allocation/reclaim paths, chunks, populated bitmap and 151 * vmalloc mapping. The latter is a spinlock and protects the index 152 * data structures - chunk slots, chunks and area maps in chunks. 153 * 154 * During allocation, pcpu_alloc_mutex is kept locked all the time and 155 * pcpu_lock is grabbed and released as necessary. All actual memory 156 * allocations are done using GFP_KERNEL with pcpu_lock released. In 157 * general, percpu memory can't be allocated with irq off but 158 * irqsave/restore are still used in alloc path so that it can be used 159 * from early init path - sched_init() specifically. 160 * 161 * Free path accesses and alters only the index data structures, so it 162 * can be safely called from atomic context. When memory needs to be 163 * returned to the system, free path schedules reclaim_work which 164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 165 * reclaimed, release both locks and frees the chunks. Note that it's 166 * necessary to grab both locks to remove a chunk from circulation as 167 * allocation path might be referencing the chunk with only 168 * pcpu_alloc_mutex locked. 169 */ 170 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 171 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 172 173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 174 175 /* reclaim work to release fully free chunks, scheduled from free path */ 176 static void pcpu_reclaim(struct work_struct *work); 177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 178 179 static bool pcpu_addr_in_first_chunk(void *addr) 180 { 181 void *first_start = pcpu_first_chunk->base_addr; 182 183 return addr >= first_start && addr < first_start + pcpu_unit_size; 184 } 185 186 static bool pcpu_addr_in_reserved_chunk(void *addr) 187 { 188 void *first_start = pcpu_first_chunk->base_addr; 189 190 return addr >= first_start && 191 addr < first_start + pcpu_reserved_chunk_limit; 192 } 193 194 static int __pcpu_size_to_slot(int size) 195 { 196 int highbit = fls(size); /* size is in bytes */ 197 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 198 } 199 200 static int pcpu_size_to_slot(int size) 201 { 202 if (size == pcpu_unit_size) 203 return pcpu_nr_slots - 1; 204 return __pcpu_size_to_slot(size); 205 } 206 207 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 208 { 209 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 210 return 0; 211 212 return pcpu_size_to_slot(chunk->free_size); 213 } 214 215 /* set the pointer to a chunk in a page struct */ 216 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 217 { 218 page->index = (unsigned long)pcpu; 219 } 220 221 /* obtain pointer to a chunk from a page struct */ 222 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 223 { 224 return (struct pcpu_chunk *)page->index; 225 } 226 227 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 228 { 229 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 230 } 231 232 static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk, 233 unsigned int cpu, int page_idx) 234 { 235 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 236 (page_idx << PAGE_SHIFT); 237 } 238 239 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 240 int *rs, int *re, int end) 241 { 242 *rs = find_next_zero_bit(chunk->populated, end, *rs); 243 *re = find_next_bit(chunk->populated, end, *rs + 1); 244 } 245 246 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 247 int *rs, int *re, int end) 248 { 249 *rs = find_next_bit(chunk->populated, end, *rs); 250 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 251 } 252 253 /* 254 * (Un)populated page region iterators. Iterate over (un)populated 255 * page regions betwen @start and @end in @chunk. @rs and @re should 256 * be integer variables and will be set to start and end page index of 257 * the current region. 258 */ 259 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 260 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 261 (rs) < (re); \ 262 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 263 264 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 265 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 266 (rs) < (re); \ 267 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 268 269 /** 270 * pcpu_mem_alloc - allocate memory 271 * @size: bytes to allocate 272 * 273 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 274 * kzalloc() is used; otherwise, vmalloc() is used. The returned 275 * memory is always zeroed. 276 * 277 * CONTEXT: 278 * Does GFP_KERNEL allocation. 279 * 280 * RETURNS: 281 * Pointer to the allocated area on success, NULL on failure. 282 */ 283 static void *pcpu_mem_alloc(size_t size) 284 { 285 if (size <= PAGE_SIZE) 286 return kzalloc(size, GFP_KERNEL); 287 else { 288 void *ptr = vmalloc(size); 289 if (ptr) 290 memset(ptr, 0, size); 291 return ptr; 292 } 293 } 294 295 /** 296 * pcpu_mem_free - free memory 297 * @ptr: memory to free 298 * @size: size of the area 299 * 300 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). 301 */ 302 static void pcpu_mem_free(void *ptr, size_t size) 303 { 304 if (size <= PAGE_SIZE) 305 kfree(ptr); 306 else 307 vfree(ptr); 308 } 309 310 /** 311 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 312 * @chunk: chunk of interest 313 * @oslot: the previous slot it was on 314 * 315 * This function is called after an allocation or free changed @chunk. 316 * New slot according to the changed state is determined and @chunk is 317 * moved to the slot. Note that the reserved chunk is never put on 318 * chunk slots. 319 * 320 * CONTEXT: 321 * pcpu_lock. 322 */ 323 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 324 { 325 int nslot = pcpu_chunk_slot(chunk); 326 327 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 328 if (oslot < nslot) 329 list_move(&chunk->list, &pcpu_slot[nslot]); 330 else 331 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 332 } 333 } 334 335 /** 336 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 337 * @chunk: chunk of interest 338 * 339 * Determine whether area map of @chunk needs to be extended to 340 * accomodate a new allocation. 341 * 342 * CONTEXT: 343 * pcpu_lock. 344 * 345 * RETURNS: 346 * New target map allocation length if extension is necessary, 0 347 * otherwise. 348 */ 349 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 350 { 351 int new_alloc; 352 353 if (chunk->map_alloc >= chunk->map_used + 2) 354 return 0; 355 356 new_alloc = PCPU_DFL_MAP_ALLOC; 357 while (new_alloc < chunk->map_used + 2) 358 new_alloc *= 2; 359 360 return new_alloc; 361 } 362 363 /** 364 * pcpu_extend_area_map - extend area map of a chunk 365 * @chunk: chunk of interest 366 * @new_alloc: new target allocation length of the area map 367 * 368 * Extend area map of @chunk to have @new_alloc entries. 369 * 370 * CONTEXT: 371 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 372 * 373 * RETURNS: 374 * 0 on success, -errno on failure. 375 */ 376 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 377 { 378 int *old = NULL, *new = NULL; 379 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 380 unsigned long flags; 381 382 new = pcpu_mem_alloc(new_size); 383 if (!new) 384 return -ENOMEM; 385 386 /* acquire pcpu_lock and switch to new area map */ 387 spin_lock_irqsave(&pcpu_lock, flags); 388 389 if (new_alloc <= chunk->map_alloc) 390 goto out_unlock; 391 392 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 393 memcpy(new, chunk->map, old_size); 394 395 /* 396 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is 397 * one of the first chunks and still using static map. 398 */ 399 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) 400 old = chunk->map; 401 402 chunk->map_alloc = new_alloc; 403 chunk->map = new; 404 new = NULL; 405 406 out_unlock: 407 spin_unlock_irqrestore(&pcpu_lock, flags); 408 409 /* 410 * pcpu_mem_free() might end up calling vfree() which uses 411 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 412 */ 413 pcpu_mem_free(old, old_size); 414 pcpu_mem_free(new, new_size); 415 416 return 0; 417 } 418 419 /** 420 * pcpu_split_block - split a map block 421 * @chunk: chunk of interest 422 * @i: index of map block to split 423 * @head: head size in bytes (can be 0) 424 * @tail: tail size in bytes (can be 0) 425 * 426 * Split the @i'th map block into two or three blocks. If @head is 427 * non-zero, @head bytes block is inserted before block @i moving it 428 * to @i+1 and reducing its size by @head bytes. 429 * 430 * If @tail is non-zero, the target block, which can be @i or @i+1 431 * depending on @head, is reduced by @tail bytes and @tail byte block 432 * is inserted after the target block. 433 * 434 * @chunk->map must have enough free slots to accomodate the split. 435 * 436 * CONTEXT: 437 * pcpu_lock. 438 */ 439 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 440 int head, int tail) 441 { 442 int nr_extra = !!head + !!tail; 443 444 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 445 446 /* insert new subblocks */ 447 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 448 sizeof(chunk->map[0]) * (chunk->map_used - i)); 449 chunk->map_used += nr_extra; 450 451 if (head) { 452 chunk->map[i + 1] = chunk->map[i] - head; 453 chunk->map[i++] = head; 454 } 455 if (tail) { 456 chunk->map[i++] -= tail; 457 chunk->map[i] = tail; 458 } 459 } 460 461 /** 462 * pcpu_alloc_area - allocate area from a pcpu_chunk 463 * @chunk: chunk of interest 464 * @size: wanted size in bytes 465 * @align: wanted align 466 * 467 * Try to allocate @size bytes area aligned at @align from @chunk. 468 * Note that this function only allocates the offset. It doesn't 469 * populate or map the area. 470 * 471 * @chunk->map must have at least two free slots. 472 * 473 * CONTEXT: 474 * pcpu_lock. 475 * 476 * RETURNS: 477 * Allocated offset in @chunk on success, -1 if no matching area is 478 * found. 479 */ 480 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 481 { 482 int oslot = pcpu_chunk_slot(chunk); 483 int max_contig = 0; 484 int i, off; 485 486 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 487 bool is_last = i + 1 == chunk->map_used; 488 int head, tail; 489 490 /* extra for alignment requirement */ 491 head = ALIGN(off, align) - off; 492 BUG_ON(i == 0 && head != 0); 493 494 if (chunk->map[i] < 0) 495 continue; 496 if (chunk->map[i] < head + size) { 497 max_contig = max(chunk->map[i], max_contig); 498 continue; 499 } 500 501 /* 502 * If head is small or the previous block is free, 503 * merge'em. Note that 'small' is defined as smaller 504 * than sizeof(int), which is very small but isn't too 505 * uncommon for percpu allocations. 506 */ 507 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 508 if (chunk->map[i - 1] > 0) 509 chunk->map[i - 1] += head; 510 else { 511 chunk->map[i - 1] -= head; 512 chunk->free_size -= head; 513 } 514 chunk->map[i] -= head; 515 off += head; 516 head = 0; 517 } 518 519 /* if tail is small, just keep it around */ 520 tail = chunk->map[i] - head - size; 521 if (tail < sizeof(int)) 522 tail = 0; 523 524 /* split if warranted */ 525 if (head || tail) { 526 pcpu_split_block(chunk, i, head, tail); 527 if (head) { 528 i++; 529 off += head; 530 max_contig = max(chunk->map[i - 1], max_contig); 531 } 532 if (tail) 533 max_contig = max(chunk->map[i + 1], max_contig); 534 } 535 536 /* update hint and mark allocated */ 537 if (is_last) 538 chunk->contig_hint = max_contig; /* fully scanned */ 539 else 540 chunk->contig_hint = max(chunk->contig_hint, 541 max_contig); 542 543 chunk->free_size -= chunk->map[i]; 544 chunk->map[i] = -chunk->map[i]; 545 546 pcpu_chunk_relocate(chunk, oslot); 547 return off; 548 } 549 550 chunk->contig_hint = max_contig; /* fully scanned */ 551 pcpu_chunk_relocate(chunk, oslot); 552 553 /* tell the upper layer that this chunk has no matching area */ 554 return -1; 555 } 556 557 /** 558 * pcpu_free_area - free area to a pcpu_chunk 559 * @chunk: chunk of interest 560 * @freeme: offset of area to free 561 * 562 * Free area starting from @freeme to @chunk. Note that this function 563 * only modifies the allocation map. It doesn't depopulate or unmap 564 * the area. 565 * 566 * CONTEXT: 567 * pcpu_lock. 568 */ 569 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 570 { 571 int oslot = pcpu_chunk_slot(chunk); 572 int i, off; 573 574 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 575 if (off == freeme) 576 break; 577 BUG_ON(off != freeme); 578 BUG_ON(chunk->map[i] > 0); 579 580 chunk->map[i] = -chunk->map[i]; 581 chunk->free_size += chunk->map[i]; 582 583 /* merge with previous? */ 584 if (i > 0 && chunk->map[i - 1] >= 0) { 585 chunk->map[i - 1] += chunk->map[i]; 586 chunk->map_used--; 587 memmove(&chunk->map[i], &chunk->map[i + 1], 588 (chunk->map_used - i) * sizeof(chunk->map[0])); 589 i--; 590 } 591 /* merge with next? */ 592 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 593 chunk->map[i] += chunk->map[i + 1]; 594 chunk->map_used--; 595 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 596 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 597 } 598 599 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 600 pcpu_chunk_relocate(chunk, oslot); 601 } 602 603 static struct pcpu_chunk *pcpu_alloc_chunk(void) 604 { 605 struct pcpu_chunk *chunk; 606 607 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); 608 if (!chunk) 609 return NULL; 610 611 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); 612 if (!chunk->map) { 613 kfree(chunk); 614 return NULL; 615 } 616 617 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 618 chunk->map[chunk->map_used++] = pcpu_unit_size; 619 620 INIT_LIST_HEAD(&chunk->list); 621 chunk->free_size = pcpu_unit_size; 622 chunk->contig_hint = pcpu_unit_size; 623 624 return chunk; 625 } 626 627 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 628 { 629 if (!chunk) 630 return; 631 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 632 kfree(chunk); 633 } 634 635 /* 636 * Chunk management implementation. 637 * 638 * To allow different implementations, chunk alloc/free and 639 * [de]population are implemented in a separate file which is pulled 640 * into this file and compiled together. The following functions 641 * should be implemented. 642 * 643 * pcpu_populate_chunk - populate the specified range of a chunk 644 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 645 * pcpu_create_chunk - create a new chunk 646 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 647 * pcpu_addr_to_page - translate address to physical address 648 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 649 */ 650 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 651 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 652 static struct pcpu_chunk *pcpu_create_chunk(void); 653 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 654 static struct page *pcpu_addr_to_page(void *addr); 655 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 656 657 #ifdef CONFIG_NEED_PER_CPU_KM 658 #include "percpu-km.c" 659 #else 660 #include "percpu-vm.c" 661 #endif 662 663 /** 664 * pcpu_chunk_addr_search - determine chunk containing specified address 665 * @addr: address for which the chunk needs to be determined. 666 * 667 * RETURNS: 668 * The address of the found chunk. 669 */ 670 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 671 { 672 /* is it in the first chunk? */ 673 if (pcpu_addr_in_first_chunk(addr)) { 674 /* is it in the reserved area? */ 675 if (pcpu_addr_in_reserved_chunk(addr)) 676 return pcpu_reserved_chunk; 677 return pcpu_first_chunk; 678 } 679 680 /* 681 * The address is relative to unit0 which might be unused and 682 * thus unmapped. Offset the address to the unit space of the 683 * current processor before looking it up in the vmalloc 684 * space. Note that any possible cpu id can be used here, so 685 * there's no need to worry about preemption or cpu hotplug. 686 */ 687 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 688 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 689 } 690 691 /** 692 * pcpu_alloc - the percpu allocator 693 * @size: size of area to allocate in bytes 694 * @align: alignment of area (max PAGE_SIZE) 695 * @reserved: allocate from the reserved chunk if available 696 * 697 * Allocate percpu area of @size bytes aligned at @align. 698 * 699 * CONTEXT: 700 * Does GFP_KERNEL allocation. 701 * 702 * RETURNS: 703 * Percpu pointer to the allocated area on success, NULL on failure. 704 */ 705 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 706 { 707 static int warn_limit = 10; 708 struct pcpu_chunk *chunk; 709 const char *err; 710 int slot, off, new_alloc; 711 unsigned long flags; 712 713 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 714 WARN(true, "illegal size (%zu) or align (%zu) for " 715 "percpu allocation\n", size, align); 716 return NULL; 717 } 718 719 mutex_lock(&pcpu_alloc_mutex); 720 spin_lock_irqsave(&pcpu_lock, flags); 721 722 /* serve reserved allocations from the reserved chunk if available */ 723 if (reserved && pcpu_reserved_chunk) { 724 chunk = pcpu_reserved_chunk; 725 726 if (size > chunk->contig_hint) { 727 err = "alloc from reserved chunk failed"; 728 goto fail_unlock; 729 } 730 731 while ((new_alloc = pcpu_need_to_extend(chunk))) { 732 spin_unlock_irqrestore(&pcpu_lock, flags); 733 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 734 err = "failed to extend area map of reserved chunk"; 735 goto fail_unlock_mutex; 736 } 737 spin_lock_irqsave(&pcpu_lock, flags); 738 } 739 740 off = pcpu_alloc_area(chunk, size, align); 741 if (off >= 0) 742 goto area_found; 743 744 err = "alloc from reserved chunk failed"; 745 goto fail_unlock; 746 } 747 748 restart: 749 /* search through normal chunks */ 750 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 751 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 752 if (size > chunk->contig_hint) 753 continue; 754 755 new_alloc = pcpu_need_to_extend(chunk); 756 if (new_alloc) { 757 spin_unlock_irqrestore(&pcpu_lock, flags); 758 if (pcpu_extend_area_map(chunk, 759 new_alloc) < 0) { 760 err = "failed to extend area map"; 761 goto fail_unlock_mutex; 762 } 763 spin_lock_irqsave(&pcpu_lock, flags); 764 /* 765 * pcpu_lock has been dropped, need to 766 * restart cpu_slot list walking. 767 */ 768 goto restart; 769 } 770 771 off = pcpu_alloc_area(chunk, size, align); 772 if (off >= 0) 773 goto area_found; 774 } 775 } 776 777 /* hmmm... no space left, create a new chunk */ 778 spin_unlock_irqrestore(&pcpu_lock, flags); 779 780 chunk = pcpu_create_chunk(); 781 if (!chunk) { 782 err = "failed to allocate new chunk"; 783 goto fail_unlock_mutex; 784 } 785 786 spin_lock_irqsave(&pcpu_lock, flags); 787 pcpu_chunk_relocate(chunk, -1); 788 goto restart; 789 790 area_found: 791 spin_unlock_irqrestore(&pcpu_lock, flags); 792 793 /* populate, map and clear the area */ 794 if (pcpu_populate_chunk(chunk, off, size)) { 795 spin_lock_irqsave(&pcpu_lock, flags); 796 pcpu_free_area(chunk, off); 797 err = "failed to populate"; 798 goto fail_unlock; 799 } 800 801 mutex_unlock(&pcpu_alloc_mutex); 802 803 /* return address relative to base address */ 804 return __addr_to_pcpu_ptr(chunk->base_addr + off); 805 806 fail_unlock: 807 spin_unlock_irqrestore(&pcpu_lock, flags); 808 fail_unlock_mutex: 809 mutex_unlock(&pcpu_alloc_mutex); 810 if (warn_limit) { 811 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 812 "%s\n", size, align, err); 813 dump_stack(); 814 if (!--warn_limit) 815 pr_info("PERCPU: limit reached, disable warning\n"); 816 } 817 return NULL; 818 } 819 820 /** 821 * __alloc_percpu - allocate dynamic percpu area 822 * @size: size of area to allocate in bytes 823 * @align: alignment of area (max PAGE_SIZE) 824 * 825 * Allocate percpu area of @size bytes aligned at @align. Might 826 * sleep. Might trigger writeouts. 827 * 828 * CONTEXT: 829 * Does GFP_KERNEL allocation. 830 * 831 * RETURNS: 832 * Percpu pointer to the allocated area on success, NULL on failure. 833 */ 834 void __percpu *__alloc_percpu(size_t size, size_t align) 835 { 836 return pcpu_alloc(size, align, false); 837 } 838 EXPORT_SYMBOL_GPL(__alloc_percpu); 839 840 /** 841 * __alloc_reserved_percpu - allocate reserved percpu area 842 * @size: size of area to allocate in bytes 843 * @align: alignment of area (max PAGE_SIZE) 844 * 845 * Allocate percpu area of @size bytes aligned at @align from reserved 846 * percpu area if arch has set it up; otherwise, allocation is served 847 * from the same dynamic area. Might sleep. Might trigger writeouts. 848 * 849 * CONTEXT: 850 * Does GFP_KERNEL allocation. 851 * 852 * RETURNS: 853 * Percpu pointer to the allocated area on success, NULL on failure. 854 */ 855 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 856 { 857 return pcpu_alloc(size, align, true); 858 } 859 860 /** 861 * pcpu_reclaim - reclaim fully free chunks, workqueue function 862 * @work: unused 863 * 864 * Reclaim all fully free chunks except for the first one. 865 * 866 * CONTEXT: 867 * workqueue context. 868 */ 869 static void pcpu_reclaim(struct work_struct *work) 870 { 871 LIST_HEAD(todo); 872 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 873 struct pcpu_chunk *chunk, *next; 874 875 mutex_lock(&pcpu_alloc_mutex); 876 spin_lock_irq(&pcpu_lock); 877 878 list_for_each_entry_safe(chunk, next, head, list) { 879 WARN_ON(chunk->immutable); 880 881 /* spare the first one */ 882 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 883 continue; 884 885 list_move(&chunk->list, &todo); 886 } 887 888 spin_unlock_irq(&pcpu_lock); 889 890 list_for_each_entry_safe(chunk, next, &todo, list) { 891 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 892 pcpu_destroy_chunk(chunk); 893 } 894 895 mutex_unlock(&pcpu_alloc_mutex); 896 } 897 898 /** 899 * free_percpu - free percpu area 900 * @ptr: pointer to area to free 901 * 902 * Free percpu area @ptr. 903 * 904 * CONTEXT: 905 * Can be called from atomic context. 906 */ 907 void free_percpu(void __percpu *ptr) 908 { 909 void *addr; 910 struct pcpu_chunk *chunk; 911 unsigned long flags; 912 int off; 913 914 if (!ptr) 915 return; 916 917 addr = __pcpu_ptr_to_addr(ptr); 918 919 spin_lock_irqsave(&pcpu_lock, flags); 920 921 chunk = pcpu_chunk_addr_search(addr); 922 off = addr - chunk->base_addr; 923 924 pcpu_free_area(chunk, off); 925 926 /* if there are more than one fully free chunks, wake up grim reaper */ 927 if (chunk->free_size == pcpu_unit_size) { 928 struct pcpu_chunk *pos; 929 930 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 931 if (pos != chunk) { 932 schedule_work(&pcpu_reclaim_work); 933 break; 934 } 935 } 936 937 spin_unlock_irqrestore(&pcpu_lock, flags); 938 } 939 EXPORT_SYMBOL_GPL(free_percpu); 940 941 /** 942 * is_kernel_percpu_address - test whether address is from static percpu area 943 * @addr: address to test 944 * 945 * Test whether @addr belongs to in-kernel static percpu area. Module 946 * static percpu areas are not considered. For those, use 947 * is_module_percpu_address(). 948 * 949 * RETURNS: 950 * %true if @addr is from in-kernel static percpu area, %false otherwise. 951 */ 952 bool is_kernel_percpu_address(unsigned long addr) 953 { 954 const size_t static_size = __per_cpu_end - __per_cpu_start; 955 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 956 unsigned int cpu; 957 958 for_each_possible_cpu(cpu) { 959 void *start = per_cpu_ptr(base, cpu); 960 961 if ((void *)addr >= start && (void *)addr < start + static_size) 962 return true; 963 } 964 return false; 965 } 966 967 /** 968 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 969 * @addr: the address to be converted to physical address 970 * 971 * Given @addr which is dereferenceable address obtained via one of 972 * percpu access macros, this function translates it into its physical 973 * address. The caller is responsible for ensuring @addr stays valid 974 * until this function finishes. 975 * 976 * RETURNS: 977 * The physical address for @addr. 978 */ 979 phys_addr_t per_cpu_ptr_to_phys(void *addr) 980 { 981 if (pcpu_addr_in_first_chunk(addr)) { 982 if ((unsigned long)addr < VMALLOC_START || 983 (unsigned long)addr >= VMALLOC_END) 984 return __pa(addr); 985 else 986 return page_to_phys(vmalloc_to_page(addr)); 987 } else 988 return page_to_phys(pcpu_addr_to_page(addr)); 989 } 990 991 static inline size_t pcpu_calc_fc_sizes(size_t static_size, 992 size_t reserved_size, 993 ssize_t *dyn_sizep) 994 { 995 size_t size_sum; 996 997 size_sum = PFN_ALIGN(static_size + reserved_size + 998 (*dyn_sizep >= 0 ? *dyn_sizep : 0)); 999 if (*dyn_sizep != 0) 1000 *dyn_sizep = size_sum - static_size - reserved_size; 1001 1002 return size_sum; 1003 } 1004 1005 /** 1006 * pcpu_alloc_alloc_info - allocate percpu allocation info 1007 * @nr_groups: the number of groups 1008 * @nr_units: the number of units 1009 * 1010 * Allocate ai which is large enough for @nr_groups groups containing 1011 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1012 * cpu_map array which is long enough for @nr_units and filled with 1013 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1014 * pointer of other groups. 1015 * 1016 * RETURNS: 1017 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1018 * failure. 1019 */ 1020 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1021 int nr_units) 1022 { 1023 struct pcpu_alloc_info *ai; 1024 size_t base_size, ai_size; 1025 void *ptr; 1026 int unit; 1027 1028 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1029 __alignof__(ai->groups[0].cpu_map[0])); 1030 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1031 1032 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1033 if (!ptr) 1034 return NULL; 1035 ai = ptr; 1036 ptr += base_size; 1037 1038 ai->groups[0].cpu_map = ptr; 1039 1040 for (unit = 0; unit < nr_units; unit++) 1041 ai->groups[0].cpu_map[unit] = NR_CPUS; 1042 1043 ai->nr_groups = nr_groups; 1044 ai->__ai_size = PFN_ALIGN(ai_size); 1045 1046 return ai; 1047 } 1048 1049 /** 1050 * pcpu_free_alloc_info - free percpu allocation info 1051 * @ai: pcpu_alloc_info to free 1052 * 1053 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1054 */ 1055 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1056 { 1057 free_bootmem(__pa(ai), ai->__ai_size); 1058 } 1059 1060 /** 1061 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1062 * @reserved_size: the size of reserved percpu area in bytes 1063 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1064 * @atom_size: allocation atom size 1065 * @cpu_distance_fn: callback to determine distance between cpus, optional 1066 * 1067 * This function determines grouping of units, their mappings to cpus 1068 * and other parameters considering needed percpu size, allocation 1069 * atom size and distances between CPUs. 1070 * 1071 * Groups are always mutliples of atom size and CPUs which are of 1072 * LOCAL_DISTANCE both ways are grouped together and share space for 1073 * units in the same group. The returned configuration is guaranteed 1074 * to have CPUs on different nodes on different groups and >=75% usage 1075 * of allocated virtual address space. 1076 * 1077 * RETURNS: 1078 * On success, pointer to the new allocation_info is returned. On 1079 * failure, ERR_PTR value is returned. 1080 */ 1081 struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1082 size_t reserved_size, ssize_t dyn_size, 1083 size_t atom_size, 1084 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1085 { 1086 static int group_map[NR_CPUS] __initdata; 1087 static int group_cnt[NR_CPUS] __initdata; 1088 const size_t static_size = __per_cpu_end - __per_cpu_start; 1089 int group_cnt_max = 0, nr_groups = 1, nr_units = 0; 1090 size_t size_sum, min_unit_size, alloc_size; 1091 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1092 int last_allocs, group, unit; 1093 unsigned int cpu, tcpu; 1094 struct pcpu_alloc_info *ai; 1095 unsigned int *cpu_map; 1096 1097 /* this function may be called multiple times */ 1098 memset(group_map, 0, sizeof(group_map)); 1099 memset(group_cnt, 0, sizeof(group_map)); 1100 1101 /* 1102 * Determine min_unit_size, alloc_size and max_upa such that 1103 * alloc_size is multiple of atom_size and is the smallest 1104 * which can accomodate 4k aligned segments which are equal to 1105 * or larger than min_unit_size. 1106 */ 1107 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); 1108 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1109 1110 alloc_size = roundup(min_unit_size, atom_size); 1111 upa = alloc_size / min_unit_size; 1112 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1113 upa--; 1114 max_upa = upa; 1115 1116 /* group cpus according to their proximity */ 1117 for_each_possible_cpu(cpu) { 1118 group = 0; 1119 next_group: 1120 for_each_possible_cpu(tcpu) { 1121 if (cpu == tcpu) 1122 break; 1123 if (group_map[tcpu] == group && cpu_distance_fn && 1124 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1125 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1126 group++; 1127 nr_groups = max(nr_groups, group + 1); 1128 goto next_group; 1129 } 1130 } 1131 group_map[cpu] = group; 1132 group_cnt[group]++; 1133 group_cnt_max = max(group_cnt_max, group_cnt[group]); 1134 } 1135 1136 /* 1137 * Expand unit size until address space usage goes over 75% 1138 * and then as much as possible without using more address 1139 * space. 1140 */ 1141 last_allocs = INT_MAX; 1142 for (upa = max_upa; upa; upa--) { 1143 int allocs = 0, wasted = 0; 1144 1145 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1146 continue; 1147 1148 for (group = 0; group < nr_groups; group++) { 1149 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1150 allocs += this_allocs; 1151 wasted += this_allocs * upa - group_cnt[group]; 1152 } 1153 1154 /* 1155 * Don't accept if wastage is over 25%. The 1156 * greater-than comparison ensures upa==1 always 1157 * passes the following check. 1158 */ 1159 if (wasted > num_possible_cpus() / 3) 1160 continue; 1161 1162 /* and then don't consume more memory */ 1163 if (allocs > last_allocs) 1164 break; 1165 last_allocs = allocs; 1166 best_upa = upa; 1167 } 1168 upa = best_upa; 1169 1170 /* allocate and fill alloc_info */ 1171 for (group = 0; group < nr_groups; group++) 1172 nr_units += roundup(group_cnt[group], upa); 1173 1174 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1175 if (!ai) 1176 return ERR_PTR(-ENOMEM); 1177 cpu_map = ai->groups[0].cpu_map; 1178 1179 for (group = 0; group < nr_groups; group++) { 1180 ai->groups[group].cpu_map = cpu_map; 1181 cpu_map += roundup(group_cnt[group], upa); 1182 } 1183 1184 ai->static_size = static_size; 1185 ai->reserved_size = reserved_size; 1186 ai->dyn_size = dyn_size; 1187 ai->unit_size = alloc_size / upa; 1188 ai->atom_size = atom_size; 1189 ai->alloc_size = alloc_size; 1190 1191 for (group = 0, unit = 0; group_cnt[group]; group++) { 1192 struct pcpu_group_info *gi = &ai->groups[group]; 1193 1194 /* 1195 * Initialize base_offset as if all groups are located 1196 * back-to-back. The caller should update this to 1197 * reflect actual allocation. 1198 */ 1199 gi->base_offset = unit * ai->unit_size; 1200 1201 for_each_possible_cpu(cpu) 1202 if (group_map[cpu] == group) 1203 gi->cpu_map[gi->nr_units++] = cpu; 1204 gi->nr_units = roundup(gi->nr_units, upa); 1205 unit += gi->nr_units; 1206 } 1207 BUG_ON(unit != nr_units); 1208 1209 return ai; 1210 } 1211 1212 /** 1213 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1214 * @lvl: loglevel 1215 * @ai: allocation info to dump 1216 * 1217 * Print out information about @ai using loglevel @lvl. 1218 */ 1219 static void pcpu_dump_alloc_info(const char *lvl, 1220 const struct pcpu_alloc_info *ai) 1221 { 1222 int group_width = 1, cpu_width = 1, width; 1223 char empty_str[] = "--------"; 1224 int alloc = 0, alloc_end = 0; 1225 int group, v; 1226 int upa, apl; /* units per alloc, allocs per line */ 1227 1228 v = ai->nr_groups; 1229 while (v /= 10) 1230 group_width++; 1231 1232 v = num_possible_cpus(); 1233 while (v /= 10) 1234 cpu_width++; 1235 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1236 1237 upa = ai->alloc_size / ai->unit_size; 1238 width = upa * (cpu_width + 1) + group_width + 3; 1239 apl = rounddown_pow_of_two(max(60 / width, 1)); 1240 1241 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1242 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1243 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1244 1245 for (group = 0; group < ai->nr_groups; group++) { 1246 const struct pcpu_group_info *gi = &ai->groups[group]; 1247 int unit = 0, unit_end = 0; 1248 1249 BUG_ON(gi->nr_units % upa); 1250 for (alloc_end += gi->nr_units / upa; 1251 alloc < alloc_end; alloc++) { 1252 if (!(alloc % apl)) { 1253 printk("\n"); 1254 printk("%spcpu-alloc: ", lvl); 1255 } 1256 printk("[%0*d] ", group_width, group); 1257 1258 for (unit_end += upa; unit < unit_end; unit++) 1259 if (gi->cpu_map[unit] != NR_CPUS) 1260 printk("%0*d ", cpu_width, 1261 gi->cpu_map[unit]); 1262 else 1263 printk("%s ", empty_str); 1264 } 1265 } 1266 printk("\n"); 1267 } 1268 1269 /** 1270 * pcpu_setup_first_chunk - initialize the first percpu chunk 1271 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1272 * @base_addr: mapped address 1273 * 1274 * Initialize the first percpu chunk which contains the kernel static 1275 * perpcu area. This function is to be called from arch percpu area 1276 * setup path. 1277 * 1278 * @ai contains all information necessary to initialize the first 1279 * chunk and prime the dynamic percpu allocator. 1280 * 1281 * @ai->static_size is the size of static percpu area. 1282 * 1283 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1284 * reserve after the static area in the first chunk. This reserves 1285 * the first chunk such that it's available only through reserved 1286 * percpu allocation. This is primarily used to serve module percpu 1287 * static areas on architectures where the addressing model has 1288 * limited offset range for symbol relocations to guarantee module 1289 * percpu symbols fall inside the relocatable range. 1290 * 1291 * @ai->dyn_size determines the number of bytes available for dynamic 1292 * allocation in the first chunk. The area between @ai->static_size + 1293 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1294 * 1295 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1296 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1297 * @ai->dyn_size. 1298 * 1299 * @ai->atom_size is the allocation atom size and used as alignment 1300 * for vm areas. 1301 * 1302 * @ai->alloc_size is the allocation size and always multiple of 1303 * @ai->atom_size. This is larger than @ai->atom_size if 1304 * @ai->unit_size is larger than @ai->atom_size. 1305 * 1306 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1307 * percpu areas. Units which should be colocated are put into the 1308 * same group. Dynamic VM areas will be allocated according to these 1309 * groupings. If @ai->nr_groups is zero, a single group containing 1310 * all units is assumed. 1311 * 1312 * The caller should have mapped the first chunk at @base_addr and 1313 * copied static data to each unit. 1314 * 1315 * If the first chunk ends up with both reserved and dynamic areas, it 1316 * is served by two chunks - one to serve the core static and reserved 1317 * areas and the other for the dynamic area. They share the same vm 1318 * and page map but uses different area allocation map to stay away 1319 * from each other. The latter chunk is circulated in the chunk slots 1320 * and available for dynamic allocation like any other chunks. 1321 * 1322 * RETURNS: 1323 * 0 on success, -errno on failure. 1324 */ 1325 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1326 void *base_addr) 1327 { 1328 static char cpus_buf[4096] __initdata; 1329 static int smap[2], dmap[2]; 1330 size_t dyn_size = ai->dyn_size; 1331 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1332 struct pcpu_chunk *schunk, *dchunk = NULL; 1333 unsigned long *group_offsets; 1334 size_t *group_sizes; 1335 unsigned long *unit_off; 1336 unsigned int cpu; 1337 int *unit_map; 1338 int group, unit, i; 1339 1340 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1341 1342 #define PCPU_SETUP_BUG_ON(cond) do { \ 1343 if (unlikely(cond)) { \ 1344 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1345 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1346 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1347 BUG(); \ 1348 } \ 1349 } while (0) 1350 1351 /* sanity checks */ 1352 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || 1353 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); 1354 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1355 PCPU_SETUP_BUG_ON(!ai->static_size); 1356 PCPU_SETUP_BUG_ON(!base_addr); 1357 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1358 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1359 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1360 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1361 1362 /* process group information and build config tables accordingly */ 1363 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1364 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1365 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1366 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1367 1368 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1369 unit_map[cpu] = UINT_MAX; 1370 pcpu_first_unit_cpu = NR_CPUS; 1371 1372 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1373 const struct pcpu_group_info *gi = &ai->groups[group]; 1374 1375 group_offsets[group] = gi->base_offset; 1376 group_sizes[group] = gi->nr_units * ai->unit_size; 1377 1378 for (i = 0; i < gi->nr_units; i++) { 1379 cpu = gi->cpu_map[i]; 1380 if (cpu == NR_CPUS) 1381 continue; 1382 1383 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1384 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1385 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1386 1387 unit_map[cpu] = unit + i; 1388 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1389 1390 if (pcpu_first_unit_cpu == NR_CPUS) 1391 pcpu_first_unit_cpu = cpu; 1392 } 1393 } 1394 pcpu_last_unit_cpu = cpu; 1395 pcpu_nr_units = unit; 1396 1397 for_each_possible_cpu(cpu) 1398 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1399 1400 /* we're done parsing the input, undefine BUG macro and dump config */ 1401 #undef PCPU_SETUP_BUG_ON 1402 pcpu_dump_alloc_info(KERN_INFO, ai); 1403 1404 pcpu_nr_groups = ai->nr_groups; 1405 pcpu_group_offsets = group_offsets; 1406 pcpu_group_sizes = group_sizes; 1407 pcpu_unit_map = unit_map; 1408 pcpu_unit_offsets = unit_off; 1409 1410 /* determine basic parameters */ 1411 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1412 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1413 pcpu_atom_size = ai->atom_size; 1414 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1415 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1416 1417 /* 1418 * Allocate chunk slots. The additional last slot is for 1419 * empty chunks. 1420 */ 1421 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1422 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1423 for (i = 0; i < pcpu_nr_slots; i++) 1424 INIT_LIST_HEAD(&pcpu_slot[i]); 1425 1426 /* 1427 * Initialize static chunk. If reserved_size is zero, the 1428 * static chunk covers static area + dynamic allocation area 1429 * in the first chunk. If reserved_size is not zero, it 1430 * covers static area + reserved area (mostly used for module 1431 * static percpu allocation). 1432 */ 1433 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1434 INIT_LIST_HEAD(&schunk->list); 1435 schunk->base_addr = base_addr; 1436 schunk->map = smap; 1437 schunk->map_alloc = ARRAY_SIZE(smap); 1438 schunk->immutable = true; 1439 bitmap_fill(schunk->populated, pcpu_unit_pages); 1440 1441 if (ai->reserved_size) { 1442 schunk->free_size = ai->reserved_size; 1443 pcpu_reserved_chunk = schunk; 1444 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1445 } else { 1446 schunk->free_size = dyn_size; 1447 dyn_size = 0; /* dynamic area covered */ 1448 } 1449 schunk->contig_hint = schunk->free_size; 1450 1451 schunk->map[schunk->map_used++] = -ai->static_size; 1452 if (schunk->free_size) 1453 schunk->map[schunk->map_used++] = schunk->free_size; 1454 1455 /* init dynamic chunk if necessary */ 1456 if (dyn_size) { 1457 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1458 INIT_LIST_HEAD(&dchunk->list); 1459 dchunk->base_addr = base_addr; 1460 dchunk->map = dmap; 1461 dchunk->map_alloc = ARRAY_SIZE(dmap); 1462 dchunk->immutable = true; 1463 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1464 1465 dchunk->contig_hint = dchunk->free_size = dyn_size; 1466 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1467 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1468 } 1469 1470 /* link the first chunk in */ 1471 pcpu_first_chunk = dchunk ?: schunk; 1472 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1473 1474 /* we're done */ 1475 pcpu_base_addr = base_addr; 1476 return 0; 1477 } 1478 1479 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1480 [PCPU_FC_AUTO] = "auto", 1481 [PCPU_FC_EMBED] = "embed", 1482 [PCPU_FC_PAGE] = "page", 1483 }; 1484 1485 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1486 1487 static int __init percpu_alloc_setup(char *str) 1488 { 1489 if (0) 1490 /* nada */; 1491 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1492 else if (!strcmp(str, "embed")) 1493 pcpu_chosen_fc = PCPU_FC_EMBED; 1494 #endif 1495 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1496 else if (!strcmp(str, "page")) 1497 pcpu_chosen_fc = PCPU_FC_PAGE; 1498 #endif 1499 else 1500 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1501 1502 return 0; 1503 } 1504 early_param("percpu_alloc", percpu_alloc_setup); 1505 1506 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1507 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1508 /** 1509 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1510 * @reserved_size: the size of reserved percpu area in bytes 1511 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1512 * @atom_size: allocation atom size 1513 * @cpu_distance_fn: callback to determine distance between cpus, optional 1514 * @alloc_fn: function to allocate percpu page 1515 * @free_fn: funtion to free percpu page 1516 * 1517 * This is a helper to ease setting up embedded first percpu chunk and 1518 * can be called where pcpu_setup_first_chunk() is expected. 1519 * 1520 * If this function is used to setup the first chunk, it is allocated 1521 * by calling @alloc_fn and used as-is without being mapped into 1522 * vmalloc area. Allocations are always whole multiples of @atom_size 1523 * aligned to @atom_size. 1524 * 1525 * This enables the first chunk to piggy back on the linear physical 1526 * mapping which often uses larger page size. Please note that this 1527 * can result in very sparse cpu->unit mapping on NUMA machines thus 1528 * requiring large vmalloc address space. Don't use this allocator if 1529 * vmalloc space is not orders of magnitude larger than distances 1530 * between node memory addresses (ie. 32bit NUMA machines). 1531 * 1532 * When @dyn_size is positive, dynamic area might be larger than 1533 * specified to fill page alignment. When @dyn_size is auto, 1534 * @dyn_size is just big enough to fill page alignment after static 1535 * and reserved areas. 1536 * 1537 * If the needed size is smaller than the minimum or specified unit 1538 * size, the leftover is returned using @free_fn. 1539 * 1540 * RETURNS: 1541 * 0 on success, -errno on failure. 1542 */ 1543 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 1544 size_t atom_size, 1545 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1546 pcpu_fc_alloc_fn_t alloc_fn, 1547 pcpu_fc_free_fn_t free_fn) 1548 { 1549 void *base = (void *)ULONG_MAX; 1550 void **areas = NULL; 1551 struct pcpu_alloc_info *ai; 1552 size_t size_sum, areas_size, max_distance; 1553 int group, i, rc; 1554 1555 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1556 cpu_distance_fn); 1557 if (IS_ERR(ai)) 1558 return PTR_ERR(ai); 1559 1560 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1561 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1562 1563 areas = alloc_bootmem_nopanic(areas_size); 1564 if (!areas) { 1565 rc = -ENOMEM; 1566 goto out_free; 1567 } 1568 1569 /* allocate, copy and determine base address */ 1570 for (group = 0; group < ai->nr_groups; group++) { 1571 struct pcpu_group_info *gi = &ai->groups[group]; 1572 unsigned int cpu = NR_CPUS; 1573 void *ptr; 1574 1575 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1576 cpu = gi->cpu_map[i]; 1577 BUG_ON(cpu == NR_CPUS); 1578 1579 /* allocate space for the whole group */ 1580 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1581 if (!ptr) { 1582 rc = -ENOMEM; 1583 goto out_free_areas; 1584 } 1585 areas[group] = ptr; 1586 1587 base = min(ptr, base); 1588 1589 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1590 if (gi->cpu_map[i] == NR_CPUS) { 1591 /* unused unit, free whole */ 1592 free_fn(ptr, ai->unit_size); 1593 continue; 1594 } 1595 /* copy and return the unused part */ 1596 memcpy(ptr, __per_cpu_load, ai->static_size); 1597 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1598 } 1599 } 1600 1601 /* base address is now known, determine group base offsets */ 1602 max_distance = 0; 1603 for (group = 0; group < ai->nr_groups; group++) { 1604 ai->groups[group].base_offset = areas[group] - base; 1605 max_distance = max_t(size_t, max_distance, 1606 ai->groups[group].base_offset); 1607 } 1608 max_distance += ai->unit_size; 1609 1610 /* warn if maximum distance is further than 75% of vmalloc space */ 1611 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1612 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1613 "space 0x%lx\n", 1614 max_distance, VMALLOC_END - VMALLOC_START); 1615 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1616 /* and fail if we have fallback */ 1617 rc = -EINVAL; 1618 goto out_free; 1619 #endif 1620 } 1621 1622 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1623 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1624 ai->dyn_size, ai->unit_size); 1625 1626 rc = pcpu_setup_first_chunk(ai, base); 1627 goto out_free; 1628 1629 out_free_areas: 1630 for (group = 0; group < ai->nr_groups; group++) 1631 free_fn(areas[group], 1632 ai->groups[group].nr_units * ai->unit_size); 1633 out_free: 1634 pcpu_free_alloc_info(ai); 1635 if (areas) 1636 free_bootmem(__pa(areas), areas_size); 1637 return rc; 1638 } 1639 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || 1640 !CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1641 1642 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1643 /** 1644 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1645 * @reserved_size: the size of reserved percpu area in bytes 1646 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1647 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE 1648 * @populate_pte_fn: function to populate pte 1649 * 1650 * This is a helper to ease setting up page-remapped first percpu 1651 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1652 * 1653 * This is the basic allocator. Static percpu area is allocated 1654 * page-by-page into vmalloc area. 1655 * 1656 * RETURNS: 1657 * 0 on success, -errno on failure. 1658 */ 1659 int __init pcpu_page_first_chunk(size_t reserved_size, 1660 pcpu_fc_alloc_fn_t alloc_fn, 1661 pcpu_fc_free_fn_t free_fn, 1662 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1663 { 1664 static struct vm_struct vm; 1665 struct pcpu_alloc_info *ai; 1666 char psize_str[16]; 1667 int unit_pages; 1668 size_t pages_size; 1669 struct page **pages; 1670 int unit, i, j, rc; 1671 1672 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1673 1674 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); 1675 if (IS_ERR(ai)) 1676 return PTR_ERR(ai); 1677 BUG_ON(ai->nr_groups != 1); 1678 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1679 1680 unit_pages = ai->unit_size >> PAGE_SHIFT; 1681 1682 /* unaligned allocations can't be freed, round up to page size */ 1683 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1684 sizeof(pages[0])); 1685 pages = alloc_bootmem(pages_size); 1686 1687 /* allocate pages */ 1688 j = 0; 1689 for (unit = 0; unit < num_possible_cpus(); unit++) 1690 for (i = 0; i < unit_pages; i++) { 1691 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1692 void *ptr; 1693 1694 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1695 if (!ptr) { 1696 pr_warning("PERCPU: failed to allocate %s page " 1697 "for cpu%u\n", psize_str, cpu); 1698 goto enomem; 1699 } 1700 pages[j++] = virt_to_page(ptr); 1701 } 1702 1703 /* allocate vm area, map the pages and copy static data */ 1704 vm.flags = VM_ALLOC; 1705 vm.size = num_possible_cpus() * ai->unit_size; 1706 vm_area_register_early(&vm, PAGE_SIZE); 1707 1708 for (unit = 0; unit < num_possible_cpus(); unit++) { 1709 unsigned long unit_addr = 1710 (unsigned long)vm.addr + unit * ai->unit_size; 1711 1712 for (i = 0; i < unit_pages; i++) 1713 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1714 1715 /* pte already populated, the following shouldn't fail */ 1716 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1717 unit_pages); 1718 if (rc < 0) 1719 panic("failed to map percpu area, err=%d\n", rc); 1720 1721 /* 1722 * FIXME: Archs with virtual cache should flush local 1723 * cache for the linear mapping here - something 1724 * equivalent to flush_cache_vmap() on the local cpu. 1725 * flush_cache_vmap() can't be used as most supporting 1726 * data structures are not set up yet. 1727 */ 1728 1729 /* copy static data */ 1730 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1731 } 1732 1733 /* we're ready, commit */ 1734 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1735 unit_pages, psize_str, vm.addr, ai->static_size, 1736 ai->reserved_size, ai->dyn_size); 1737 1738 rc = pcpu_setup_first_chunk(ai, vm.addr); 1739 goto out_free_ar; 1740 1741 enomem: 1742 while (--j >= 0) 1743 free_fn(page_address(pages[j]), PAGE_SIZE); 1744 rc = -ENOMEM; 1745 out_free_ar: 1746 free_bootmem(__pa(pages), pages_size); 1747 pcpu_free_alloc_info(ai); 1748 return rc; 1749 } 1750 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ 1751 1752 /* 1753 * Generic percpu area setup. 1754 * 1755 * The embedding helper is used because its behavior closely resembles 1756 * the original non-dynamic generic percpu area setup. This is 1757 * important because many archs have addressing restrictions and might 1758 * fail if the percpu area is located far away from the previous 1759 * location. As an added bonus, in non-NUMA cases, embedding is 1760 * generally a good idea TLB-wise because percpu area can piggy back 1761 * on the physical linear memory mapping which uses large page 1762 * mappings on applicable archs. 1763 */ 1764 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1765 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1766 EXPORT_SYMBOL(__per_cpu_offset); 1767 1768 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1769 size_t align) 1770 { 1771 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 1772 } 1773 1774 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1775 { 1776 free_bootmem(__pa(ptr), size); 1777 } 1778 1779 void __init setup_per_cpu_areas(void) 1780 { 1781 unsigned long delta; 1782 unsigned int cpu; 1783 int rc; 1784 1785 /* 1786 * Always reserve area for module percpu variables. That's 1787 * what the legacy allocator did. 1788 */ 1789 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1790 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1791 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1792 if (rc < 0) 1793 panic("Failed to initialized percpu areas."); 1794 1795 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1796 for_each_possible_cpu(cpu) 1797 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1798 } 1799 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1800