1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * Copyright (C) 2017 Facebook Inc. 8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com> 9 * 10 * This file is released under the GPLv2 license. 11 * 12 * The percpu allocator handles both static and dynamic areas. Percpu 13 * areas are allocated in chunks which are divided into units. There is 14 * a 1-to-1 mapping for units to possible cpus. These units are grouped 15 * based on NUMA properties of the machine. 16 * 17 * c0 c1 c2 18 * ------------------- ------------------- ------------ 19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 20 * ------------------- ...... ------------------- .... ------------ 21 * 22 * Allocation is done by offsets into a unit's address space. Ie., an 23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 25 * and even sparse. Access is handled by configuring percpu base 26 * registers according to the cpu to unit mappings and offsetting the 27 * base address using pcpu_unit_size. 28 * 29 * There is special consideration for the first chunk which must handle 30 * the static percpu variables in the kernel image as allocation services 31 * are not online yet. In short, the first chunk is structured like so: 32 * 33 * <Static | [Reserved] | Dynamic> 34 * 35 * The static data is copied from the original section managed by the 36 * linker. The reserved section, if non-zero, primarily manages static 37 * percpu variables from kernel modules. Finally, the dynamic section 38 * takes care of normal allocations. 39 * 40 * The allocator organizes chunks into lists according to free size and 41 * tries to allocate from the fullest chunk first. Each chunk is managed 42 * by a bitmap with metadata blocks. The allocation map is updated on 43 * every allocation and free to reflect the current state while the boundary 44 * map is only updated on allocation. Each metadata block contains 45 * information to help mitigate the need to iterate over large portions 46 * of the bitmap. The reverse mapping from page to chunk is stored in 47 * the page's index. Lastly, units are lazily backed and grow in unison. 48 * 49 * There is a unique conversion that goes on here between bytes and bits. 50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 51 * tracks the number of pages it is responsible for in nr_pages. Helper 52 * functions are used to convert from between the bytes, bits, and blocks. 53 * All hints are managed in bits unless explicitly stated. 54 * 55 * To use this allocator, arch code should do the following: 56 * 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 58 * regular address to percpu pointer and back if they need to be 59 * different from the default 60 * 61 * - use pcpu_setup_first_chunk() during percpu area initialization to 62 * setup the first chunk containing the kernel static percpu area 63 */ 64 65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 66 67 #include <linux/bitmap.h> 68 #include <linux/memblock.h> 69 #include <linux/err.h> 70 #include <linux/lcm.h> 71 #include <linux/list.h> 72 #include <linux/log2.h> 73 #include <linux/mm.h> 74 #include <linux/module.h> 75 #include <linux/mutex.h> 76 #include <linux/percpu.h> 77 #include <linux/pfn.h> 78 #include <linux/slab.h> 79 #include <linux/spinlock.h> 80 #include <linux/vmalloc.h> 81 #include <linux/workqueue.h> 82 #include <linux/kmemleak.h> 83 #include <linux/sched.h> 84 85 #include <asm/cacheflush.h> 86 #include <asm/sections.h> 87 #include <asm/tlbflush.h> 88 #include <asm/io.h> 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/percpu.h> 92 93 #include "percpu-internal.h" 94 95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 96 #define PCPU_SLOT_BASE_SHIFT 5 97 98 #define PCPU_EMPTY_POP_PAGES_LOW 2 99 #define PCPU_EMPTY_POP_PAGES_HIGH 4 100 101 #ifdef CONFIG_SMP 102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 103 #ifndef __addr_to_pcpu_ptr 104 #define __addr_to_pcpu_ptr(addr) \ 105 (void __percpu *)((unsigned long)(addr) - \ 106 (unsigned long)pcpu_base_addr + \ 107 (unsigned long)__per_cpu_start) 108 #endif 109 #ifndef __pcpu_ptr_to_addr 110 #define __pcpu_ptr_to_addr(ptr) \ 111 (void __force *)((unsigned long)(ptr) + \ 112 (unsigned long)pcpu_base_addr - \ 113 (unsigned long)__per_cpu_start) 114 #endif 115 #else /* CONFIG_SMP */ 116 /* on UP, it's always identity mapped */ 117 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 118 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 119 #endif /* CONFIG_SMP */ 120 121 static int pcpu_unit_pages __ro_after_init; 122 static int pcpu_unit_size __ro_after_init; 123 static int pcpu_nr_units __ro_after_init; 124 static int pcpu_atom_size __ro_after_init; 125 int pcpu_nr_slots __ro_after_init; 126 static size_t pcpu_chunk_struct_size __ro_after_init; 127 128 /* cpus with the lowest and highest unit addresses */ 129 static unsigned int pcpu_low_unit_cpu __ro_after_init; 130 static unsigned int pcpu_high_unit_cpu __ro_after_init; 131 132 /* the address of the first chunk which starts with the kernel static area */ 133 void *pcpu_base_addr __ro_after_init; 134 EXPORT_SYMBOL_GPL(pcpu_base_addr); 135 136 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 137 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 138 139 /* group information, used for vm allocation */ 140 static int pcpu_nr_groups __ro_after_init; 141 static const unsigned long *pcpu_group_offsets __ro_after_init; 142 static const size_t *pcpu_group_sizes __ro_after_init; 143 144 /* 145 * The first chunk which always exists. Note that unlike other 146 * chunks, this one can be allocated and mapped in several different 147 * ways and thus often doesn't live in the vmalloc area. 148 */ 149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 150 151 /* 152 * Optional reserved chunk. This chunk reserves part of the first 153 * chunk and serves it for reserved allocations. When the reserved 154 * region doesn't exist, the following variable is NULL. 155 */ 156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 157 158 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 159 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 160 161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 162 163 /* chunks which need their map areas extended, protected by pcpu_lock */ 164 static LIST_HEAD(pcpu_map_extend_chunks); 165 166 /* 167 * The number of empty populated pages, protected by pcpu_lock. The 168 * reserved chunk doesn't contribute to the count. 169 */ 170 int pcpu_nr_empty_pop_pages; 171 172 /* 173 * The number of populated pages in use by the allocator, protected by 174 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 175 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 176 * and increments/decrements this count by 1). 177 */ 178 static unsigned long pcpu_nr_populated; 179 180 /* 181 * Balance work is used to populate or destroy chunks asynchronously. We 182 * try to keep the number of populated free pages between 183 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 184 * empty chunk. 185 */ 186 static void pcpu_balance_workfn(struct work_struct *work); 187 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 188 static bool pcpu_async_enabled __read_mostly; 189 static bool pcpu_atomic_alloc_failed; 190 191 static void pcpu_schedule_balance_work(void) 192 { 193 if (pcpu_async_enabled) 194 schedule_work(&pcpu_balance_work); 195 } 196 197 /** 198 * pcpu_addr_in_chunk - check if the address is served from this chunk 199 * @chunk: chunk of interest 200 * @addr: percpu address 201 * 202 * RETURNS: 203 * True if the address is served from this chunk. 204 */ 205 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 206 { 207 void *start_addr, *end_addr; 208 209 if (!chunk) 210 return false; 211 212 start_addr = chunk->base_addr + chunk->start_offset; 213 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 214 chunk->end_offset; 215 216 return addr >= start_addr && addr < end_addr; 217 } 218 219 static int __pcpu_size_to_slot(int size) 220 { 221 int highbit = fls(size); /* size is in bytes */ 222 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 223 } 224 225 static int pcpu_size_to_slot(int size) 226 { 227 if (size == pcpu_unit_size) 228 return pcpu_nr_slots - 1; 229 return __pcpu_size_to_slot(size); 230 } 231 232 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 233 { 234 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) 235 return 0; 236 237 return pcpu_size_to_slot(chunk->free_bytes); 238 } 239 240 /* set the pointer to a chunk in a page struct */ 241 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 242 { 243 page->index = (unsigned long)pcpu; 244 } 245 246 /* obtain pointer to a chunk from a page struct */ 247 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 248 { 249 return (struct pcpu_chunk *)page->index; 250 } 251 252 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 253 { 254 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 255 } 256 257 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 258 { 259 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 260 } 261 262 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 263 unsigned int cpu, int page_idx) 264 { 265 return (unsigned long)chunk->base_addr + 266 pcpu_unit_page_offset(cpu, page_idx); 267 } 268 269 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) 270 { 271 *rs = find_next_zero_bit(bitmap, end, *rs); 272 *re = find_next_bit(bitmap, end, *rs + 1); 273 } 274 275 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) 276 { 277 *rs = find_next_bit(bitmap, end, *rs); 278 *re = find_next_zero_bit(bitmap, end, *rs + 1); 279 } 280 281 /* 282 * Bitmap region iterators. Iterates over the bitmap between 283 * [@start, @end) in @chunk. @rs and @re should be integer variables 284 * and will be set to start and end index of the current free region. 285 */ 286 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \ 287 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ 288 (rs) < (re); \ 289 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) 290 291 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \ 292 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \ 293 (rs) < (re); \ 294 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) 295 296 /* 297 * The following are helper functions to help access bitmaps and convert 298 * between bitmap offsets to address offsets. 299 */ 300 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 301 { 302 return chunk->alloc_map + 303 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 304 } 305 306 static unsigned long pcpu_off_to_block_index(int off) 307 { 308 return off / PCPU_BITMAP_BLOCK_BITS; 309 } 310 311 static unsigned long pcpu_off_to_block_off(int off) 312 { 313 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 314 } 315 316 static unsigned long pcpu_block_off_to_off(int index, int off) 317 { 318 return index * PCPU_BITMAP_BLOCK_BITS + off; 319 } 320 321 /** 322 * pcpu_next_md_free_region - finds the next hint free area 323 * @chunk: chunk of interest 324 * @bit_off: chunk offset 325 * @bits: size of free area 326 * 327 * Helper function for pcpu_for_each_md_free_region. It checks 328 * block->contig_hint and performs aggregation across blocks to find the 329 * next hint. It modifies bit_off and bits in-place to be consumed in the 330 * loop. 331 */ 332 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 333 int *bits) 334 { 335 int i = pcpu_off_to_block_index(*bit_off); 336 int block_off = pcpu_off_to_block_off(*bit_off); 337 struct pcpu_block_md *block; 338 339 *bits = 0; 340 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 341 block++, i++) { 342 /* handles contig area across blocks */ 343 if (*bits) { 344 *bits += block->left_free; 345 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 346 continue; 347 return; 348 } 349 350 /* 351 * This checks three things. First is there a contig_hint to 352 * check. Second, have we checked this hint before by 353 * comparing the block_off. Third, is this the same as the 354 * right contig hint. In the last case, it spills over into 355 * the next block and should be handled by the contig area 356 * across blocks code. 357 */ 358 *bits = block->contig_hint; 359 if (*bits && block->contig_hint_start >= block_off && 360 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 361 *bit_off = pcpu_block_off_to_off(i, 362 block->contig_hint_start); 363 return; 364 } 365 /* reset to satisfy the second predicate above */ 366 block_off = 0; 367 368 *bits = block->right_free; 369 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 370 } 371 } 372 373 /** 374 * pcpu_next_fit_region - finds fit areas for a given allocation request 375 * @chunk: chunk of interest 376 * @alloc_bits: size of allocation 377 * @align: alignment of area (max PAGE_SIZE) 378 * @bit_off: chunk offset 379 * @bits: size of free area 380 * 381 * Finds the next free region that is viable for use with a given size and 382 * alignment. This only returns if there is a valid area to be used for this 383 * allocation. block->first_free is returned if the allocation request fits 384 * within the block to see if the request can be fulfilled prior to the contig 385 * hint. 386 */ 387 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 388 int align, int *bit_off, int *bits) 389 { 390 int i = pcpu_off_to_block_index(*bit_off); 391 int block_off = pcpu_off_to_block_off(*bit_off); 392 struct pcpu_block_md *block; 393 394 *bits = 0; 395 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 396 block++, i++) { 397 /* handles contig area across blocks */ 398 if (*bits) { 399 *bits += block->left_free; 400 if (*bits >= alloc_bits) 401 return; 402 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 403 continue; 404 } 405 406 /* check block->contig_hint */ 407 *bits = ALIGN(block->contig_hint_start, align) - 408 block->contig_hint_start; 409 /* 410 * This uses the block offset to determine if this has been 411 * checked in the prior iteration. 412 */ 413 if (block->contig_hint && 414 block->contig_hint_start >= block_off && 415 block->contig_hint >= *bits + alloc_bits) { 416 *bits += alloc_bits + block->contig_hint_start - 417 block->first_free; 418 *bit_off = pcpu_block_off_to_off(i, block->first_free); 419 return; 420 } 421 /* reset to satisfy the second predicate above */ 422 block_off = 0; 423 424 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 425 align); 426 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 427 *bit_off = pcpu_block_off_to_off(i, *bit_off); 428 if (*bits >= alloc_bits) 429 return; 430 } 431 432 /* no valid offsets were found - fail condition */ 433 *bit_off = pcpu_chunk_map_bits(chunk); 434 } 435 436 /* 437 * Metadata free area iterators. These perform aggregation of free areas 438 * based on the metadata blocks and return the offset @bit_off and size in 439 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 440 * a fit is found for the allocation request. 441 */ 442 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 443 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 444 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 445 (bit_off) += (bits) + 1, \ 446 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 447 448 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 449 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 450 &(bits)); \ 451 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 452 (bit_off) += (bits), \ 453 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 454 &(bits))) 455 456 /** 457 * pcpu_mem_zalloc - allocate memory 458 * @size: bytes to allocate 459 * @gfp: allocation flags 460 * 461 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 462 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 463 * This is to facilitate passing through whitelisted flags. The 464 * returned memory is always zeroed. 465 * 466 * RETURNS: 467 * Pointer to the allocated area on success, NULL on failure. 468 */ 469 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 470 { 471 if (WARN_ON_ONCE(!slab_is_available())) 472 return NULL; 473 474 if (size <= PAGE_SIZE) 475 return kzalloc(size, gfp); 476 else 477 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL); 478 } 479 480 /** 481 * pcpu_mem_free - free memory 482 * @ptr: memory to free 483 * 484 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 485 */ 486 static void pcpu_mem_free(void *ptr) 487 { 488 kvfree(ptr); 489 } 490 491 /** 492 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 493 * @chunk: chunk of interest 494 * @oslot: the previous slot it was on 495 * 496 * This function is called after an allocation or free changed @chunk. 497 * New slot according to the changed state is determined and @chunk is 498 * moved to the slot. Note that the reserved chunk is never put on 499 * chunk slots. 500 * 501 * CONTEXT: 502 * pcpu_lock. 503 */ 504 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 505 { 506 int nslot = pcpu_chunk_slot(chunk); 507 508 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 509 if (oslot < nslot) 510 list_move(&chunk->list, &pcpu_slot[nslot]); 511 else 512 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 513 } 514 } 515 516 /** 517 * pcpu_cnt_pop_pages- counts populated backing pages in range 518 * @chunk: chunk of interest 519 * @bit_off: start offset 520 * @bits: size of area to check 521 * 522 * Calculates the number of populated pages in the region 523 * [page_start, page_end). This keeps track of how many empty populated 524 * pages are available and decide if async work should be scheduled. 525 * 526 * RETURNS: 527 * The nr of populated pages. 528 */ 529 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, 530 int bits) 531 { 532 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); 533 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 534 535 if (page_start >= page_end) 536 return 0; 537 538 /* 539 * bitmap_weight counts the number of bits set in a bitmap up to 540 * the specified number of bits. This is counting the populated 541 * pages up to page_end and then subtracting the populated pages 542 * up to page_start to count the populated pages in 543 * [page_start, page_end). 544 */ 545 return bitmap_weight(chunk->populated, page_end) - 546 bitmap_weight(chunk->populated, page_start); 547 } 548 549 /** 550 * pcpu_chunk_update - updates the chunk metadata given a free area 551 * @chunk: chunk of interest 552 * @bit_off: chunk offset 553 * @bits: size of free area 554 * 555 * This updates the chunk's contig hint and starting offset given a free area. 556 * Choose the best starting offset if the contig hint is equal. 557 */ 558 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits) 559 { 560 if (bits > chunk->contig_bits) { 561 chunk->contig_bits_start = bit_off; 562 chunk->contig_bits = bits; 563 } else if (bits == chunk->contig_bits && chunk->contig_bits_start && 564 (!bit_off || 565 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) { 566 /* use the start with the best alignment */ 567 chunk->contig_bits_start = bit_off; 568 } 569 } 570 571 /** 572 * pcpu_chunk_refresh_hint - updates metadata about a chunk 573 * @chunk: chunk of interest 574 * 575 * Iterates over the metadata blocks to find the largest contig area. 576 * It also counts the populated pages and uses the delta to update the 577 * global count. 578 * 579 * Updates: 580 * chunk->contig_bits 581 * chunk->contig_bits_start 582 * nr_empty_pop_pages (chunk and global) 583 */ 584 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk) 585 { 586 int bit_off, bits, nr_empty_pop_pages; 587 588 /* clear metadata */ 589 chunk->contig_bits = 0; 590 591 bit_off = chunk->first_bit; 592 bits = nr_empty_pop_pages = 0; 593 pcpu_for_each_md_free_region(chunk, bit_off, bits) { 594 pcpu_chunk_update(chunk, bit_off, bits); 595 596 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits); 597 } 598 599 /* 600 * Keep track of nr_empty_pop_pages. 601 * 602 * The chunk maintains the previous number of free pages it held, 603 * so the delta is used to update the global counter. The reserved 604 * chunk is not part of the free page count as they are populated 605 * at init and are special to serving reserved allocations. 606 */ 607 if (chunk != pcpu_reserved_chunk) 608 pcpu_nr_empty_pop_pages += 609 (nr_empty_pop_pages - chunk->nr_empty_pop_pages); 610 611 chunk->nr_empty_pop_pages = nr_empty_pop_pages; 612 } 613 614 /** 615 * pcpu_block_update - updates a block given a free area 616 * @block: block of interest 617 * @start: start offset in block 618 * @end: end offset in block 619 * 620 * Updates a block given a known free area. The region [start, end) is 621 * expected to be the entirety of the free area within a block. Chooses 622 * the best starting offset if the contig hints are equal. 623 */ 624 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 625 { 626 int contig = end - start; 627 628 block->first_free = min(block->first_free, start); 629 if (start == 0) 630 block->left_free = contig; 631 632 if (end == PCPU_BITMAP_BLOCK_BITS) 633 block->right_free = contig; 634 635 if (contig > block->contig_hint) { 636 block->contig_hint_start = start; 637 block->contig_hint = contig; 638 } else if (block->contig_hint_start && contig == block->contig_hint && 639 (!start || __ffs(start) > __ffs(block->contig_hint_start))) { 640 /* use the start with the best alignment */ 641 block->contig_hint_start = start; 642 } 643 } 644 645 /** 646 * pcpu_block_refresh_hint 647 * @chunk: chunk of interest 648 * @index: index of the metadata block 649 * 650 * Scans over the block beginning at first_free and updates the block 651 * metadata accordingly. 652 */ 653 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 654 { 655 struct pcpu_block_md *block = chunk->md_blocks + index; 656 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 657 int rs, re; /* region start, region end */ 658 659 /* clear hints */ 660 block->contig_hint = 0; 661 block->left_free = block->right_free = 0; 662 663 /* iterate over free areas and update the contig hints */ 664 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, 665 PCPU_BITMAP_BLOCK_BITS) { 666 pcpu_block_update(block, rs, re); 667 } 668 } 669 670 /** 671 * pcpu_block_update_hint_alloc - update hint on allocation path 672 * @chunk: chunk of interest 673 * @bit_off: chunk offset 674 * @bits: size of request 675 * 676 * Updates metadata for the allocation path. The metadata only has to be 677 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 678 * scans are required if the block's contig hint is broken. 679 */ 680 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 681 int bits) 682 { 683 struct pcpu_block_md *s_block, *e_block, *block; 684 int s_index, e_index; /* block indexes of the freed allocation */ 685 int s_off, e_off; /* block offsets of the freed allocation */ 686 687 /* 688 * Calculate per block offsets. 689 * The calculation uses an inclusive range, but the resulting offsets 690 * are [start, end). e_index always points to the last block in the 691 * range. 692 */ 693 s_index = pcpu_off_to_block_index(bit_off); 694 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 695 s_off = pcpu_off_to_block_off(bit_off); 696 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 697 698 s_block = chunk->md_blocks + s_index; 699 e_block = chunk->md_blocks + e_index; 700 701 /* 702 * Update s_block. 703 * block->first_free must be updated if the allocation takes its place. 704 * If the allocation breaks the contig_hint, a scan is required to 705 * restore this hint. 706 */ 707 if (s_off == s_block->first_free) 708 s_block->first_free = find_next_zero_bit( 709 pcpu_index_alloc_map(chunk, s_index), 710 PCPU_BITMAP_BLOCK_BITS, 711 s_off + bits); 712 713 if (s_off >= s_block->contig_hint_start && 714 s_off < s_block->contig_hint_start + s_block->contig_hint) { 715 /* block contig hint is broken - scan to fix it */ 716 pcpu_block_refresh_hint(chunk, s_index); 717 } else { 718 /* update left and right contig manually */ 719 s_block->left_free = min(s_block->left_free, s_off); 720 if (s_index == e_index) 721 s_block->right_free = min_t(int, s_block->right_free, 722 PCPU_BITMAP_BLOCK_BITS - e_off); 723 else 724 s_block->right_free = 0; 725 } 726 727 /* 728 * Update e_block. 729 */ 730 if (s_index != e_index) { 731 /* 732 * When the allocation is across blocks, the end is along 733 * the left part of the e_block. 734 */ 735 e_block->first_free = find_next_zero_bit( 736 pcpu_index_alloc_map(chunk, e_index), 737 PCPU_BITMAP_BLOCK_BITS, e_off); 738 739 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 740 /* reset the block */ 741 e_block++; 742 } else { 743 if (e_off > e_block->contig_hint_start) { 744 /* contig hint is broken - scan to fix it */ 745 pcpu_block_refresh_hint(chunk, e_index); 746 } else { 747 e_block->left_free = 0; 748 e_block->right_free = 749 min_t(int, e_block->right_free, 750 PCPU_BITMAP_BLOCK_BITS - e_off); 751 } 752 } 753 754 /* update in-between md_blocks */ 755 for (block = s_block + 1; block < e_block; block++) { 756 block->contig_hint = 0; 757 block->left_free = 0; 758 block->right_free = 0; 759 } 760 } 761 762 /* 763 * The only time a full chunk scan is required is if the chunk 764 * contig hint is broken. Otherwise, it means a smaller space 765 * was used and therefore the chunk contig hint is still correct. 766 */ 767 if (bit_off >= chunk->contig_bits_start && 768 bit_off < chunk->contig_bits_start + chunk->contig_bits) 769 pcpu_chunk_refresh_hint(chunk); 770 } 771 772 /** 773 * pcpu_block_update_hint_free - updates the block hints on the free path 774 * @chunk: chunk of interest 775 * @bit_off: chunk offset 776 * @bits: size of request 777 * 778 * Updates metadata for the allocation path. This avoids a blind block 779 * refresh by making use of the block contig hints. If this fails, it scans 780 * forward and backward to determine the extent of the free area. This is 781 * capped at the boundary of blocks. 782 * 783 * A chunk update is triggered if a page becomes free, a block becomes free, 784 * or the free spans across blocks. This tradeoff is to minimize iterating 785 * over the block metadata to update chunk->contig_bits. chunk->contig_bits 786 * may be off by up to a page, but it will never be more than the available 787 * space. If the contig hint is contained in one block, it will be accurate. 788 */ 789 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 790 int bits) 791 { 792 struct pcpu_block_md *s_block, *e_block, *block; 793 int s_index, e_index; /* block indexes of the freed allocation */ 794 int s_off, e_off; /* block offsets of the freed allocation */ 795 int start, end; /* start and end of the whole free area */ 796 797 /* 798 * Calculate per block offsets. 799 * The calculation uses an inclusive range, but the resulting offsets 800 * are [start, end). e_index always points to the last block in the 801 * range. 802 */ 803 s_index = pcpu_off_to_block_index(bit_off); 804 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 805 s_off = pcpu_off_to_block_off(bit_off); 806 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 807 808 s_block = chunk->md_blocks + s_index; 809 e_block = chunk->md_blocks + e_index; 810 811 /* 812 * Check if the freed area aligns with the block->contig_hint. 813 * If it does, then the scan to find the beginning/end of the 814 * larger free area can be avoided. 815 * 816 * start and end refer to beginning and end of the free area 817 * within each their respective blocks. This is not necessarily 818 * the entire free area as it may span blocks past the beginning 819 * or end of the block. 820 */ 821 start = s_off; 822 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 823 start = s_block->contig_hint_start; 824 } else { 825 /* 826 * Scan backwards to find the extent of the free area. 827 * find_last_bit returns the starting bit, so if the start bit 828 * is returned, that means there was no last bit and the 829 * remainder of the chunk is free. 830 */ 831 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 832 start); 833 start = (start == l_bit) ? 0 : l_bit + 1; 834 } 835 836 end = e_off; 837 if (e_off == e_block->contig_hint_start) 838 end = e_block->contig_hint_start + e_block->contig_hint; 839 else 840 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 841 PCPU_BITMAP_BLOCK_BITS, end); 842 843 /* update s_block */ 844 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 845 pcpu_block_update(s_block, start, e_off); 846 847 /* freeing in the same block */ 848 if (s_index != e_index) { 849 /* update e_block */ 850 pcpu_block_update(e_block, 0, end); 851 852 /* reset md_blocks in the middle */ 853 for (block = s_block + 1; block < e_block; block++) { 854 block->first_free = 0; 855 block->contig_hint_start = 0; 856 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 857 block->left_free = PCPU_BITMAP_BLOCK_BITS; 858 block->right_free = PCPU_BITMAP_BLOCK_BITS; 859 } 860 } 861 862 /* 863 * Refresh chunk metadata when the free makes a page free, a block 864 * free, or spans across blocks. The contig hint may be off by up to 865 * a page, but if the hint is contained in a block, it will be accurate 866 * with the else condition below. 867 */ 868 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > 869 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || 870 s_index != e_index) 871 pcpu_chunk_refresh_hint(chunk); 872 else 873 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), 874 s_block->contig_hint); 875 } 876 877 /** 878 * pcpu_is_populated - determines if the region is populated 879 * @chunk: chunk of interest 880 * @bit_off: chunk offset 881 * @bits: size of area 882 * @next_off: return value for the next offset to start searching 883 * 884 * For atomic allocations, check if the backing pages are populated. 885 * 886 * RETURNS: 887 * Bool if the backing pages are populated. 888 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 889 */ 890 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 891 int *next_off) 892 { 893 int page_start, page_end, rs, re; 894 895 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 896 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 897 898 rs = page_start; 899 pcpu_next_unpop(chunk->populated, &rs, &re, page_end); 900 if (rs >= page_end) 901 return true; 902 903 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 904 return false; 905 } 906 907 /** 908 * pcpu_find_block_fit - finds the block index to start searching 909 * @chunk: chunk of interest 910 * @alloc_bits: size of request in allocation units 911 * @align: alignment of area (max PAGE_SIZE bytes) 912 * @pop_only: use populated regions only 913 * 914 * Given a chunk and an allocation spec, find the offset to begin searching 915 * for a free region. This iterates over the bitmap metadata blocks to 916 * find an offset that will be guaranteed to fit the requirements. It is 917 * not quite first fit as if the allocation does not fit in the contig hint 918 * of a block or chunk, it is skipped. This errs on the side of caution 919 * to prevent excess iteration. Poor alignment can cause the allocator to 920 * skip over blocks and chunks that have valid free areas. 921 * 922 * RETURNS: 923 * The offset in the bitmap to begin searching. 924 * -1 if no offset is found. 925 */ 926 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 927 size_t align, bool pop_only) 928 { 929 int bit_off, bits, next_off; 930 931 /* 932 * Check to see if the allocation can fit in the chunk's contig hint. 933 * This is an optimization to prevent scanning by assuming if it 934 * cannot fit in the global hint, there is memory pressure and creating 935 * a new chunk would happen soon. 936 */ 937 bit_off = ALIGN(chunk->contig_bits_start, align) - 938 chunk->contig_bits_start; 939 if (bit_off + alloc_bits > chunk->contig_bits) 940 return -1; 941 942 bit_off = chunk->first_bit; 943 bits = 0; 944 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 945 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 946 &next_off)) 947 break; 948 949 bit_off = next_off; 950 bits = 0; 951 } 952 953 if (bit_off == pcpu_chunk_map_bits(chunk)) 954 return -1; 955 956 return bit_off; 957 } 958 959 /** 960 * pcpu_alloc_area - allocates an area from a pcpu_chunk 961 * @chunk: chunk of interest 962 * @alloc_bits: size of request in allocation units 963 * @align: alignment of area (max PAGE_SIZE) 964 * @start: bit_off to start searching 965 * 966 * This function takes in a @start offset to begin searching to fit an 967 * allocation of @alloc_bits with alignment @align. It needs to scan 968 * the allocation map because if it fits within the block's contig hint, 969 * @start will be block->first_free. This is an attempt to fill the 970 * allocation prior to breaking the contig hint. The allocation and 971 * boundary maps are updated accordingly if it confirms a valid 972 * free area. 973 * 974 * RETURNS: 975 * Allocated addr offset in @chunk on success. 976 * -1 if no matching area is found. 977 */ 978 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 979 size_t align, int start) 980 { 981 size_t align_mask = (align) ? (align - 1) : 0; 982 int bit_off, end, oslot; 983 984 lockdep_assert_held(&pcpu_lock); 985 986 oslot = pcpu_chunk_slot(chunk); 987 988 /* 989 * Search to find a fit. 990 */ 991 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS; 992 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, 993 alloc_bits, align_mask); 994 if (bit_off >= end) 995 return -1; 996 997 /* update alloc map */ 998 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 999 1000 /* update boundary map */ 1001 set_bit(bit_off, chunk->bound_map); 1002 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1003 set_bit(bit_off + alloc_bits, chunk->bound_map); 1004 1005 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1006 1007 /* update first free bit */ 1008 if (bit_off == chunk->first_bit) 1009 chunk->first_bit = find_next_zero_bit( 1010 chunk->alloc_map, 1011 pcpu_chunk_map_bits(chunk), 1012 bit_off + alloc_bits); 1013 1014 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1015 1016 pcpu_chunk_relocate(chunk, oslot); 1017 1018 return bit_off * PCPU_MIN_ALLOC_SIZE; 1019 } 1020 1021 /** 1022 * pcpu_free_area - frees the corresponding offset 1023 * @chunk: chunk of interest 1024 * @off: addr offset into chunk 1025 * 1026 * This function determines the size of an allocation to free using 1027 * the boundary bitmap and clears the allocation map. 1028 */ 1029 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1030 { 1031 int bit_off, bits, end, oslot; 1032 1033 lockdep_assert_held(&pcpu_lock); 1034 pcpu_stats_area_dealloc(chunk); 1035 1036 oslot = pcpu_chunk_slot(chunk); 1037 1038 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1039 1040 /* find end index */ 1041 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1042 bit_off + 1); 1043 bits = end - bit_off; 1044 bitmap_clear(chunk->alloc_map, bit_off, bits); 1045 1046 /* update metadata */ 1047 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1048 1049 /* update first free bit */ 1050 chunk->first_bit = min(chunk->first_bit, bit_off); 1051 1052 pcpu_block_update_hint_free(chunk, bit_off, bits); 1053 1054 pcpu_chunk_relocate(chunk, oslot); 1055 } 1056 1057 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1058 { 1059 struct pcpu_block_md *md_block; 1060 1061 for (md_block = chunk->md_blocks; 1062 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1063 md_block++) { 1064 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1065 md_block->left_free = PCPU_BITMAP_BLOCK_BITS; 1066 md_block->right_free = PCPU_BITMAP_BLOCK_BITS; 1067 } 1068 } 1069 1070 /** 1071 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1072 * @tmp_addr: the start of the region served 1073 * @map_size: size of the region served 1074 * 1075 * This is responsible for creating the chunks that serve the first chunk. The 1076 * base_addr is page aligned down of @tmp_addr while the region end is page 1077 * aligned up. Offsets are kept track of to determine the region served. All 1078 * this is done to appease the bitmap allocator in avoiding partial blocks. 1079 * 1080 * RETURNS: 1081 * Chunk serving the region at @tmp_addr of @map_size. 1082 */ 1083 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1084 int map_size) 1085 { 1086 struct pcpu_chunk *chunk; 1087 unsigned long aligned_addr, lcm_align; 1088 int start_offset, offset_bits, region_size, region_bits; 1089 size_t alloc_size; 1090 1091 /* region calculations */ 1092 aligned_addr = tmp_addr & PAGE_MASK; 1093 1094 start_offset = tmp_addr - aligned_addr; 1095 1096 /* 1097 * Align the end of the region with the LCM of PAGE_SIZE and 1098 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1099 * the other. 1100 */ 1101 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1102 region_size = ALIGN(start_offset + map_size, lcm_align); 1103 1104 /* allocate chunk */ 1105 alloc_size = sizeof(struct pcpu_chunk) + 1106 BITS_TO_LONGS(region_size >> PAGE_SHIFT); 1107 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1108 if (!chunk) 1109 panic("%s: Failed to allocate %zu bytes\n", __func__, 1110 alloc_size); 1111 1112 INIT_LIST_HEAD(&chunk->list); 1113 1114 chunk->base_addr = (void *)aligned_addr; 1115 chunk->start_offset = start_offset; 1116 chunk->end_offset = region_size - chunk->start_offset - map_size; 1117 1118 chunk->nr_pages = region_size >> PAGE_SHIFT; 1119 region_bits = pcpu_chunk_map_bits(chunk); 1120 1121 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1122 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1123 if (!chunk->alloc_map) 1124 panic("%s: Failed to allocate %zu bytes\n", __func__, 1125 alloc_size); 1126 1127 alloc_size = 1128 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1129 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1130 if (!chunk->bound_map) 1131 panic("%s: Failed to allocate %zu bytes\n", __func__, 1132 alloc_size); 1133 1134 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1135 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1136 if (!chunk->md_blocks) 1137 panic("%s: Failed to allocate %zu bytes\n", __func__, 1138 alloc_size); 1139 1140 pcpu_init_md_blocks(chunk); 1141 1142 /* manage populated page bitmap */ 1143 chunk->immutable = true; 1144 bitmap_fill(chunk->populated, chunk->nr_pages); 1145 chunk->nr_populated = chunk->nr_pages; 1146 chunk->nr_empty_pop_pages = 1147 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE, 1148 map_size / PCPU_MIN_ALLOC_SIZE); 1149 1150 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE; 1151 chunk->free_bytes = map_size; 1152 1153 if (chunk->start_offset) { 1154 /* hide the beginning of the bitmap */ 1155 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1156 bitmap_set(chunk->alloc_map, 0, offset_bits); 1157 set_bit(0, chunk->bound_map); 1158 set_bit(offset_bits, chunk->bound_map); 1159 1160 chunk->first_bit = offset_bits; 1161 1162 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1163 } 1164 1165 if (chunk->end_offset) { 1166 /* hide the end of the bitmap */ 1167 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1168 bitmap_set(chunk->alloc_map, 1169 pcpu_chunk_map_bits(chunk) - offset_bits, 1170 offset_bits); 1171 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1172 chunk->bound_map); 1173 set_bit(region_bits, chunk->bound_map); 1174 1175 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1176 - offset_bits, offset_bits); 1177 } 1178 1179 return chunk; 1180 } 1181 1182 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1183 { 1184 struct pcpu_chunk *chunk; 1185 int region_bits; 1186 1187 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1188 if (!chunk) 1189 return NULL; 1190 1191 INIT_LIST_HEAD(&chunk->list); 1192 chunk->nr_pages = pcpu_unit_pages; 1193 region_bits = pcpu_chunk_map_bits(chunk); 1194 1195 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1196 sizeof(chunk->alloc_map[0]), gfp); 1197 if (!chunk->alloc_map) 1198 goto alloc_map_fail; 1199 1200 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1201 sizeof(chunk->bound_map[0]), gfp); 1202 if (!chunk->bound_map) 1203 goto bound_map_fail; 1204 1205 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1206 sizeof(chunk->md_blocks[0]), gfp); 1207 if (!chunk->md_blocks) 1208 goto md_blocks_fail; 1209 1210 pcpu_init_md_blocks(chunk); 1211 1212 /* init metadata */ 1213 chunk->contig_bits = region_bits; 1214 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1215 1216 return chunk; 1217 1218 md_blocks_fail: 1219 pcpu_mem_free(chunk->bound_map); 1220 bound_map_fail: 1221 pcpu_mem_free(chunk->alloc_map); 1222 alloc_map_fail: 1223 pcpu_mem_free(chunk); 1224 1225 return NULL; 1226 } 1227 1228 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1229 { 1230 if (!chunk) 1231 return; 1232 pcpu_mem_free(chunk->md_blocks); 1233 pcpu_mem_free(chunk->bound_map); 1234 pcpu_mem_free(chunk->alloc_map); 1235 pcpu_mem_free(chunk); 1236 } 1237 1238 /** 1239 * pcpu_chunk_populated - post-population bookkeeping 1240 * @chunk: pcpu_chunk which got populated 1241 * @page_start: the start page 1242 * @page_end: the end page 1243 * @for_alloc: if this is to populate for allocation 1244 * 1245 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1246 * the bookkeeping information accordingly. Must be called after each 1247 * successful population. 1248 * 1249 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1250 * is to serve an allocation in that area. 1251 */ 1252 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1253 int page_end, bool for_alloc) 1254 { 1255 int nr = page_end - page_start; 1256 1257 lockdep_assert_held(&pcpu_lock); 1258 1259 bitmap_set(chunk->populated, page_start, nr); 1260 chunk->nr_populated += nr; 1261 pcpu_nr_populated += nr; 1262 1263 if (!for_alloc) { 1264 chunk->nr_empty_pop_pages += nr; 1265 pcpu_nr_empty_pop_pages += nr; 1266 } 1267 } 1268 1269 /** 1270 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1271 * @chunk: pcpu_chunk which got depopulated 1272 * @page_start: the start page 1273 * @page_end: the end page 1274 * 1275 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1276 * Update the bookkeeping information accordingly. Must be called after 1277 * each successful depopulation. 1278 */ 1279 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1280 int page_start, int page_end) 1281 { 1282 int nr = page_end - page_start; 1283 1284 lockdep_assert_held(&pcpu_lock); 1285 1286 bitmap_clear(chunk->populated, page_start, nr); 1287 chunk->nr_populated -= nr; 1288 chunk->nr_empty_pop_pages -= nr; 1289 pcpu_nr_empty_pop_pages -= nr; 1290 pcpu_nr_populated -= nr; 1291 } 1292 1293 /* 1294 * Chunk management implementation. 1295 * 1296 * To allow different implementations, chunk alloc/free and 1297 * [de]population are implemented in a separate file which is pulled 1298 * into this file and compiled together. The following functions 1299 * should be implemented. 1300 * 1301 * pcpu_populate_chunk - populate the specified range of a chunk 1302 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1303 * pcpu_create_chunk - create a new chunk 1304 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1305 * pcpu_addr_to_page - translate address to physical address 1306 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1307 */ 1308 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1309 int page_start, int page_end, gfp_t gfp); 1310 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1311 int page_start, int page_end); 1312 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1313 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1314 static struct page *pcpu_addr_to_page(void *addr); 1315 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1316 1317 #ifdef CONFIG_NEED_PER_CPU_KM 1318 #include "percpu-km.c" 1319 #else 1320 #include "percpu-vm.c" 1321 #endif 1322 1323 /** 1324 * pcpu_chunk_addr_search - determine chunk containing specified address 1325 * @addr: address for which the chunk needs to be determined. 1326 * 1327 * This is an internal function that handles all but static allocations. 1328 * Static percpu address values should never be passed into the allocator. 1329 * 1330 * RETURNS: 1331 * The address of the found chunk. 1332 */ 1333 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1334 { 1335 /* is it in the dynamic region (first chunk)? */ 1336 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1337 return pcpu_first_chunk; 1338 1339 /* is it in the reserved region? */ 1340 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1341 return pcpu_reserved_chunk; 1342 1343 /* 1344 * The address is relative to unit0 which might be unused and 1345 * thus unmapped. Offset the address to the unit space of the 1346 * current processor before looking it up in the vmalloc 1347 * space. Note that any possible cpu id can be used here, so 1348 * there's no need to worry about preemption or cpu hotplug. 1349 */ 1350 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1351 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1352 } 1353 1354 /** 1355 * pcpu_alloc - the percpu allocator 1356 * @size: size of area to allocate in bytes 1357 * @align: alignment of area (max PAGE_SIZE) 1358 * @reserved: allocate from the reserved chunk if available 1359 * @gfp: allocation flags 1360 * 1361 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1362 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1363 * then no warning will be triggered on invalid or failed allocation 1364 * requests. 1365 * 1366 * RETURNS: 1367 * Percpu pointer to the allocated area on success, NULL on failure. 1368 */ 1369 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1370 gfp_t gfp) 1371 { 1372 /* whitelisted flags that can be passed to the backing allocators */ 1373 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1374 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1375 bool do_warn = !(gfp & __GFP_NOWARN); 1376 static int warn_limit = 10; 1377 struct pcpu_chunk *chunk; 1378 const char *err; 1379 int slot, off, cpu, ret; 1380 unsigned long flags; 1381 void __percpu *ptr; 1382 size_t bits, bit_align; 1383 1384 /* 1385 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1386 * therefore alignment must be a minimum of that many bytes. 1387 * An allocation may have internal fragmentation from rounding up 1388 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1389 */ 1390 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1391 align = PCPU_MIN_ALLOC_SIZE; 1392 1393 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1394 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1395 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1396 1397 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1398 !is_power_of_2(align))) { 1399 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1400 size, align); 1401 return NULL; 1402 } 1403 1404 if (!is_atomic) { 1405 /* 1406 * pcpu_balance_workfn() allocates memory under this mutex, 1407 * and it may wait for memory reclaim. Allow current task 1408 * to become OOM victim, in case of memory pressure. 1409 */ 1410 if (gfp & __GFP_NOFAIL) 1411 mutex_lock(&pcpu_alloc_mutex); 1412 else if (mutex_lock_killable(&pcpu_alloc_mutex)) 1413 return NULL; 1414 } 1415 1416 spin_lock_irqsave(&pcpu_lock, flags); 1417 1418 /* serve reserved allocations from the reserved chunk if available */ 1419 if (reserved && pcpu_reserved_chunk) { 1420 chunk = pcpu_reserved_chunk; 1421 1422 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1423 if (off < 0) { 1424 err = "alloc from reserved chunk failed"; 1425 goto fail_unlock; 1426 } 1427 1428 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1429 if (off >= 0) 1430 goto area_found; 1431 1432 err = "alloc from reserved chunk failed"; 1433 goto fail_unlock; 1434 } 1435 1436 restart: 1437 /* search through normal chunks */ 1438 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1439 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1440 off = pcpu_find_block_fit(chunk, bits, bit_align, 1441 is_atomic); 1442 if (off < 0) 1443 continue; 1444 1445 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1446 if (off >= 0) 1447 goto area_found; 1448 1449 } 1450 } 1451 1452 spin_unlock_irqrestore(&pcpu_lock, flags); 1453 1454 /* 1455 * No space left. Create a new chunk. We don't want multiple 1456 * tasks to create chunks simultaneously. Serialize and create iff 1457 * there's still no empty chunk after grabbing the mutex. 1458 */ 1459 if (is_atomic) { 1460 err = "atomic alloc failed, no space left"; 1461 goto fail; 1462 } 1463 1464 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1465 chunk = pcpu_create_chunk(pcpu_gfp); 1466 if (!chunk) { 1467 err = "failed to allocate new chunk"; 1468 goto fail; 1469 } 1470 1471 spin_lock_irqsave(&pcpu_lock, flags); 1472 pcpu_chunk_relocate(chunk, -1); 1473 } else { 1474 spin_lock_irqsave(&pcpu_lock, flags); 1475 } 1476 1477 goto restart; 1478 1479 area_found: 1480 pcpu_stats_area_alloc(chunk, size); 1481 spin_unlock_irqrestore(&pcpu_lock, flags); 1482 1483 /* populate if not all pages are already there */ 1484 if (!is_atomic) { 1485 int page_start, page_end, rs, re; 1486 1487 page_start = PFN_DOWN(off); 1488 page_end = PFN_UP(off + size); 1489 1490 pcpu_for_each_unpop_region(chunk->populated, rs, re, 1491 page_start, page_end) { 1492 WARN_ON(chunk->immutable); 1493 1494 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1495 1496 spin_lock_irqsave(&pcpu_lock, flags); 1497 if (ret) { 1498 pcpu_free_area(chunk, off); 1499 err = "failed to populate"; 1500 goto fail_unlock; 1501 } 1502 pcpu_chunk_populated(chunk, rs, re, true); 1503 spin_unlock_irqrestore(&pcpu_lock, flags); 1504 } 1505 1506 mutex_unlock(&pcpu_alloc_mutex); 1507 } 1508 1509 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1510 pcpu_schedule_balance_work(); 1511 1512 /* clear the areas and return address relative to base address */ 1513 for_each_possible_cpu(cpu) 1514 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1515 1516 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1517 kmemleak_alloc_percpu(ptr, size, gfp); 1518 1519 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1520 chunk->base_addr, off, ptr); 1521 1522 return ptr; 1523 1524 fail_unlock: 1525 spin_unlock_irqrestore(&pcpu_lock, flags); 1526 fail: 1527 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1528 1529 if (!is_atomic && do_warn && warn_limit) { 1530 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1531 size, align, is_atomic, err); 1532 dump_stack(); 1533 if (!--warn_limit) 1534 pr_info("limit reached, disable warning\n"); 1535 } 1536 if (is_atomic) { 1537 /* see the flag handling in pcpu_blance_workfn() */ 1538 pcpu_atomic_alloc_failed = true; 1539 pcpu_schedule_balance_work(); 1540 } else { 1541 mutex_unlock(&pcpu_alloc_mutex); 1542 } 1543 return NULL; 1544 } 1545 1546 /** 1547 * __alloc_percpu_gfp - allocate dynamic percpu area 1548 * @size: size of area to allocate in bytes 1549 * @align: alignment of area (max PAGE_SIZE) 1550 * @gfp: allocation flags 1551 * 1552 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1553 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1554 * be called from any context but is a lot more likely to fail. If @gfp 1555 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1556 * allocation requests. 1557 * 1558 * RETURNS: 1559 * Percpu pointer to the allocated area on success, NULL on failure. 1560 */ 1561 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1562 { 1563 return pcpu_alloc(size, align, false, gfp); 1564 } 1565 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1566 1567 /** 1568 * __alloc_percpu - allocate dynamic percpu area 1569 * @size: size of area to allocate in bytes 1570 * @align: alignment of area (max PAGE_SIZE) 1571 * 1572 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1573 */ 1574 void __percpu *__alloc_percpu(size_t size, size_t align) 1575 { 1576 return pcpu_alloc(size, align, false, GFP_KERNEL); 1577 } 1578 EXPORT_SYMBOL_GPL(__alloc_percpu); 1579 1580 /** 1581 * __alloc_reserved_percpu - allocate reserved percpu area 1582 * @size: size of area to allocate in bytes 1583 * @align: alignment of area (max PAGE_SIZE) 1584 * 1585 * Allocate zero-filled percpu area of @size bytes aligned at @align 1586 * from reserved percpu area if arch has set it up; otherwise, 1587 * allocation is served from the same dynamic area. Might sleep. 1588 * Might trigger writeouts. 1589 * 1590 * CONTEXT: 1591 * Does GFP_KERNEL allocation. 1592 * 1593 * RETURNS: 1594 * Percpu pointer to the allocated area on success, NULL on failure. 1595 */ 1596 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1597 { 1598 return pcpu_alloc(size, align, true, GFP_KERNEL); 1599 } 1600 1601 /** 1602 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1603 * @work: unused 1604 * 1605 * Reclaim all fully free chunks except for the first one. This is also 1606 * responsible for maintaining the pool of empty populated pages. However, 1607 * it is possible that this is called when physical memory is scarce causing 1608 * OOM killer to be triggered. We should avoid doing so until an actual 1609 * allocation causes the failure as it is possible that requests can be 1610 * serviced from already backed regions. 1611 */ 1612 static void pcpu_balance_workfn(struct work_struct *work) 1613 { 1614 /* gfp flags passed to underlying allocators */ 1615 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1616 LIST_HEAD(to_free); 1617 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1618 struct pcpu_chunk *chunk, *next; 1619 int slot, nr_to_pop, ret; 1620 1621 /* 1622 * There's no reason to keep around multiple unused chunks and VM 1623 * areas can be scarce. Destroy all free chunks except for one. 1624 */ 1625 mutex_lock(&pcpu_alloc_mutex); 1626 spin_lock_irq(&pcpu_lock); 1627 1628 list_for_each_entry_safe(chunk, next, free_head, list) { 1629 WARN_ON(chunk->immutable); 1630 1631 /* spare the first one */ 1632 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1633 continue; 1634 1635 list_move(&chunk->list, &to_free); 1636 } 1637 1638 spin_unlock_irq(&pcpu_lock); 1639 1640 list_for_each_entry_safe(chunk, next, &to_free, list) { 1641 int rs, re; 1642 1643 pcpu_for_each_pop_region(chunk->populated, rs, re, 0, 1644 chunk->nr_pages) { 1645 pcpu_depopulate_chunk(chunk, rs, re); 1646 spin_lock_irq(&pcpu_lock); 1647 pcpu_chunk_depopulated(chunk, rs, re); 1648 spin_unlock_irq(&pcpu_lock); 1649 } 1650 pcpu_destroy_chunk(chunk); 1651 cond_resched(); 1652 } 1653 1654 /* 1655 * Ensure there are certain number of free populated pages for 1656 * atomic allocs. Fill up from the most packed so that atomic 1657 * allocs don't increase fragmentation. If atomic allocation 1658 * failed previously, always populate the maximum amount. This 1659 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1660 * failing indefinitely; however, large atomic allocs are not 1661 * something we support properly and can be highly unreliable and 1662 * inefficient. 1663 */ 1664 retry_pop: 1665 if (pcpu_atomic_alloc_failed) { 1666 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1667 /* best effort anyway, don't worry about synchronization */ 1668 pcpu_atomic_alloc_failed = false; 1669 } else { 1670 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1671 pcpu_nr_empty_pop_pages, 1672 0, PCPU_EMPTY_POP_PAGES_HIGH); 1673 } 1674 1675 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1676 int nr_unpop = 0, rs, re; 1677 1678 if (!nr_to_pop) 1679 break; 1680 1681 spin_lock_irq(&pcpu_lock); 1682 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1683 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1684 if (nr_unpop) 1685 break; 1686 } 1687 spin_unlock_irq(&pcpu_lock); 1688 1689 if (!nr_unpop) 1690 continue; 1691 1692 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1693 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, 1694 chunk->nr_pages) { 1695 int nr = min(re - rs, nr_to_pop); 1696 1697 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 1698 if (!ret) { 1699 nr_to_pop -= nr; 1700 spin_lock_irq(&pcpu_lock); 1701 pcpu_chunk_populated(chunk, rs, rs + nr, false); 1702 spin_unlock_irq(&pcpu_lock); 1703 } else { 1704 nr_to_pop = 0; 1705 } 1706 1707 if (!nr_to_pop) 1708 break; 1709 } 1710 } 1711 1712 if (nr_to_pop) { 1713 /* ran out of chunks to populate, create a new one and retry */ 1714 chunk = pcpu_create_chunk(gfp); 1715 if (chunk) { 1716 spin_lock_irq(&pcpu_lock); 1717 pcpu_chunk_relocate(chunk, -1); 1718 spin_unlock_irq(&pcpu_lock); 1719 goto retry_pop; 1720 } 1721 } 1722 1723 mutex_unlock(&pcpu_alloc_mutex); 1724 } 1725 1726 /** 1727 * free_percpu - free percpu area 1728 * @ptr: pointer to area to free 1729 * 1730 * Free percpu area @ptr. 1731 * 1732 * CONTEXT: 1733 * Can be called from atomic context. 1734 */ 1735 void free_percpu(void __percpu *ptr) 1736 { 1737 void *addr; 1738 struct pcpu_chunk *chunk; 1739 unsigned long flags; 1740 int off; 1741 1742 if (!ptr) 1743 return; 1744 1745 kmemleak_free_percpu(ptr); 1746 1747 addr = __pcpu_ptr_to_addr(ptr); 1748 1749 spin_lock_irqsave(&pcpu_lock, flags); 1750 1751 chunk = pcpu_chunk_addr_search(addr); 1752 off = addr - chunk->base_addr; 1753 1754 pcpu_free_area(chunk, off); 1755 1756 /* if there are more than one fully free chunks, wake up grim reaper */ 1757 if (chunk->free_bytes == pcpu_unit_size) { 1758 struct pcpu_chunk *pos; 1759 1760 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1761 if (pos != chunk) { 1762 pcpu_schedule_balance_work(); 1763 break; 1764 } 1765 } 1766 1767 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1768 1769 spin_unlock_irqrestore(&pcpu_lock, flags); 1770 } 1771 EXPORT_SYMBOL_GPL(free_percpu); 1772 1773 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1774 { 1775 #ifdef CONFIG_SMP 1776 const size_t static_size = __per_cpu_end - __per_cpu_start; 1777 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1778 unsigned int cpu; 1779 1780 for_each_possible_cpu(cpu) { 1781 void *start = per_cpu_ptr(base, cpu); 1782 void *va = (void *)addr; 1783 1784 if (va >= start && va < start + static_size) { 1785 if (can_addr) { 1786 *can_addr = (unsigned long) (va - start); 1787 *can_addr += (unsigned long) 1788 per_cpu_ptr(base, get_boot_cpu_id()); 1789 } 1790 return true; 1791 } 1792 } 1793 #endif 1794 /* on UP, can't distinguish from other static vars, always false */ 1795 return false; 1796 } 1797 1798 /** 1799 * is_kernel_percpu_address - test whether address is from static percpu area 1800 * @addr: address to test 1801 * 1802 * Test whether @addr belongs to in-kernel static percpu area. Module 1803 * static percpu areas are not considered. For those, use 1804 * is_module_percpu_address(). 1805 * 1806 * RETURNS: 1807 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1808 */ 1809 bool is_kernel_percpu_address(unsigned long addr) 1810 { 1811 return __is_kernel_percpu_address(addr, NULL); 1812 } 1813 1814 /** 1815 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1816 * @addr: the address to be converted to physical address 1817 * 1818 * Given @addr which is dereferenceable address obtained via one of 1819 * percpu access macros, this function translates it into its physical 1820 * address. The caller is responsible for ensuring @addr stays valid 1821 * until this function finishes. 1822 * 1823 * percpu allocator has special setup for the first chunk, which currently 1824 * supports either embedding in linear address space or vmalloc mapping, 1825 * and, from the second one, the backing allocator (currently either vm or 1826 * km) provides translation. 1827 * 1828 * The addr can be translated simply without checking if it falls into the 1829 * first chunk. But the current code reflects better how percpu allocator 1830 * actually works, and the verification can discover both bugs in percpu 1831 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1832 * code. 1833 * 1834 * RETURNS: 1835 * The physical address for @addr. 1836 */ 1837 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1838 { 1839 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1840 bool in_first_chunk = false; 1841 unsigned long first_low, first_high; 1842 unsigned int cpu; 1843 1844 /* 1845 * The following test on unit_low/high isn't strictly 1846 * necessary but will speed up lookups of addresses which 1847 * aren't in the first chunk. 1848 * 1849 * The address check is against full chunk sizes. pcpu_base_addr 1850 * points to the beginning of the first chunk including the 1851 * static region. Assumes good intent as the first chunk may 1852 * not be full (ie. < pcpu_unit_pages in size). 1853 */ 1854 first_low = (unsigned long)pcpu_base_addr + 1855 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 1856 first_high = (unsigned long)pcpu_base_addr + 1857 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 1858 if ((unsigned long)addr >= first_low && 1859 (unsigned long)addr < first_high) { 1860 for_each_possible_cpu(cpu) { 1861 void *start = per_cpu_ptr(base, cpu); 1862 1863 if (addr >= start && addr < start + pcpu_unit_size) { 1864 in_first_chunk = true; 1865 break; 1866 } 1867 } 1868 } 1869 1870 if (in_first_chunk) { 1871 if (!is_vmalloc_addr(addr)) 1872 return __pa(addr); 1873 else 1874 return page_to_phys(vmalloc_to_page(addr)) + 1875 offset_in_page(addr); 1876 } else 1877 return page_to_phys(pcpu_addr_to_page(addr)) + 1878 offset_in_page(addr); 1879 } 1880 1881 /** 1882 * pcpu_alloc_alloc_info - allocate percpu allocation info 1883 * @nr_groups: the number of groups 1884 * @nr_units: the number of units 1885 * 1886 * Allocate ai which is large enough for @nr_groups groups containing 1887 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1888 * cpu_map array which is long enough for @nr_units and filled with 1889 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1890 * pointer of other groups. 1891 * 1892 * RETURNS: 1893 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1894 * failure. 1895 */ 1896 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1897 int nr_units) 1898 { 1899 struct pcpu_alloc_info *ai; 1900 size_t base_size, ai_size; 1901 void *ptr; 1902 int unit; 1903 1904 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1905 __alignof__(ai->groups[0].cpu_map[0])); 1906 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1907 1908 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 1909 if (!ptr) 1910 return NULL; 1911 ai = ptr; 1912 ptr += base_size; 1913 1914 ai->groups[0].cpu_map = ptr; 1915 1916 for (unit = 0; unit < nr_units; unit++) 1917 ai->groups[0].cpu_map[unit] = NR_CPUS; 1918 1919 ai->nr_groups = nr_groups; 1920 ai->__ai_size = PFN_ALIGN(ai_size); 1921 1922 return ai; 1923 } 1924 1925 /** 1926 * pcpu_free_alloc_info - free percpu allocation info 1927 * @ai: pcpu_alloc_info to free 1928 * 1929 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1930 */ 1931 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1932 { 1933 memblock_free_early(__pa(ai), ai->__ai_size); 1934 } 1935 1936 /** 1937 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1938 * @lvl: loglevel 1939 * @ai: allocation info to dump 1940 * 1941 * Print out information about @ai using loglevel @lvl. 1942 */ 1943 static void pcpu_dump_alloc_info(const char *lvl, 1944 const struct pcpu_alloc_info *ai) 1945 { 1946 int group_width = 1, cpu_width = 1, width; 1947 char empty_str[] = "--------"; 1948 int alloc = 0, alloc_end = 0; 1949 int group, v; 1950 int upa, apl; /* units per alloc, allocs per line */ 1951 1952 v = ai->nr_groups; 1953 while (v /= 10) 1954 group_width++; 1955 1956 v = num_possible_cpus(); 1957 while (v /= 10) 1958 cpu_width++; 1959 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1960 1961 upa = ai->alloc_size / ai->unit_size; 1962 width = upa * (cpu_width + 1) + group_width + 3; 1963 apl = rounddown_pow_of_two(max(60 / width, 1)); 1964 1965 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1966 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1967 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1968 1969 for (group = 0; group < ai->nr_groups; group++) { 1970 const struct pcpu_group_info *gi = &ai->groups[group]; 1971 int unit = 0, unit_end = 0; 1972 1973 BUG_ON(gi->nr_units % upa); 1974 for (alloc_end += gi->nr_units / upa; 1975 alloc < alloc_end; alloc++) { 1976 if (!(alloc % apl)) { 1977 pr_cont("\n"); 1978 printk("%spcpu-alloc: ", lvl); 1979 } 1980 pr_cont("[%0*d] ", group_width, group); 1981 1982 for (unit_end += upa; unit < unit_end; unit++) 1983 if (gi->cpu_map[unit] != NR_CPUS) 1984 pr_cont("%0*d ", 1985 cpu_width, gi->cpu_map[unit]); 1986 else 1987 pr_cont("%s ", empty_str); 1988 } 1989 } 1990 pr_cont("\n"); 1991 } 1992 1993 /** 1994 * pcpu_setup_first_chunk - initialize the first percpu chunk 1995 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1996 * @base_addr: mapped address 1997 * 1998 * Initialize the first percpu chunk which contains the kernel static 1999 * perpcu area. This function is to be called from arch percpu area 2000 * setup path. 2001 * 2002 * @ai contains all information necessary to initialize the first 2003 * chunk and prime the dynamic percpu allocator. 2004 * 2005 * @ai->static_size is the size of static percpu area. 2006 * 2007 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2008 * reserve after the static area in the first chunk. This reserves 2009 * the first chunk such that it's available only through reserved 2010 * percpu allocation. This is primarily used to serve module percpu 2011 * static areas on architectures where the addressing model has 2012 * limited offset range for symbol relocations to guarantee module 2013 * percpu symbols fall inside the relocatable range. 2014 * 2015 * @ai->dyn_size determines the number of bytes available for dynamic 2016 * allocation in the first chunk. The area between @ai->static_size + 2017 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2018 * 2019 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2020 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2021 * @ai->dyn_size. 2022 * 2023 * @ai->atom_size is the allocation atom size and used as alignment 2024 * for vm areas. 2025 * 2026 * @ai->alloc_size is the allocation size and always multiple of 2027 * @ai->atom_size. This is larger than @ai->atom_size if 2028 * @ai->unit_size is larger than @ai->atom_size. 2029 * 2030 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2031 * percpu areas. Units which should be colocated are put into the 2032 * same group. Dynamic VM areas will be allocated according to these 2033 * groupings. If @ai->nr_groups is zero, a single group containing 2034 * all units is assumed. 2035 * 2036 * The caller should have mapped the first chunk at @base_addr and 2037 * copied static data to each unit. 2038 * 2039 * The first chunk will always contain a static and a dynamic region. 2040 * However, the static region is not managed by any chunk. If the first 2041 * chunk also contains a reserved region, it is served by two chunks - 2042 * one for the reserved region and one for the dynamic region. They 2043 * share the same vm, but use offset regions in the area allocation map. 2044 * The chunk serving the dynamic region is circulated in the chunk slots 2045 * and available for dynamic allocation like any other chunk. 2046 * 2047 * RETURNS: 2048 * 0 on success, -errno on failure. 2049 */ 2050 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2051 void *base_addr) 2052 { 2053 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2054 size_t static_size, dyn_size; 2055 struct pcpu_chunk *chunk; 2056 unsigned long *group_offsets; 2057 size_t *group_sizes; 2058 unsigned long *unit_off; 2059 unsigned int cpu; 2060 int *unit_map; 2061 int group, unit, i; 2062 int map_size; 2063 unsigned long tmp_addr; 2064 size_t alloc_size; 2065 2066 #define PCPU_SETUP_BUG_ON(cond) do { \ 2067 if (unlikely(cond)) { \ 2068 pr_emerg("failed to initialize, %s\n", #cond); \ 2069 pr_emerg("cpu_possible_mask=%*pb\n", \ 2070 cpumask_pr_args(cpu_possible_mask)); \ 2071 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2072 BUG(); \ 2073 } \ 2074 } while (0) 2075 2076 /* sanity checks */ 2077 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2078 #ifdef CONFIG_SMP 2079 PCPU_SETUP_BUG_ON(!ai->static_size); 2080 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2081 #endif 2082 PCPU_SETUP_BUG_ON(!base_addr); 2083 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2084 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2085 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2086 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2087 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2088 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2089 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2090 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2091 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2092 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2093 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2094 2095 /* process group information and build config tables accordingly */ 2096 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2097 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2098 if (!group_offsets) 2099 panic("%s: Failed to allocate %zu bytes\n", __func__, 2100 alloc_size); 2101 2102 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2103 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2104 if (!group_sizes) 2105 panic("%s: Failed to allocate %zu bytes\n", __func__, 2106 alloc_size); 2107 2108 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2109 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2110 if (!unit_map) 2111 panic("%s: Failed to allocate %zu bytes\n", __func__, 2112 alloc_size); 2113 2114 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2115 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2116 if (!unit_off) 2117 panic("%s: Failed to allocate %zu bytes\n", __func__, 2118 alloc_size); 2119 2120 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2121 unit_map[cpu] = UINT_MAX; 2122 2123 pcpu_low_unit_cpu = NR_CPUS; 2124 pcpu_high_unit_cpu = NR_CPUS; 2125 2126 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2127 const struct pcpu_group_info *gi = &ai->groups[group]; 2128 2129 group_offsets[group] = gi->base_offset; 2130 group_sizes[group] = gi->nr_units * ai->unit_size; 2131 2132 for (i = 0; i < gi->nr_units; i++) { 2133 cpu = gi->cpu_map[i]; 2134 if (cpu == NR_CPUS) 2135 continue; 2136 2137 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2138 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2139 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2140 2141 unit_map[cpu] = unit + i; 2142 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2143 2144 /* determine low/high unit_cpu */ 2145 if (pcpu_low_unit_cpu == NR_CPUS || 2146 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2147 pcpu_low_unit_cpu = cpu; 2148 if (pcpu_high_unit_cpu == NR_CPUS || 2149 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2150 pcpu_high_unit_cpu = cpu; 2151 } 2152 } 2153 pcpu_nr_units = unit; 2154 2155 for_each_possible_cpu(cpu) 2156 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2157 2158 /* we're done parsing the input, undefine BUG macro and dump config */ 2159 #undef PCPU_SETUP_BUG_ON 2160 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2161 2162 pcpu_nr_groups = ai->nr_groups; 2163 pcpu_group_offsets = group_offsets; 2164 pcpu_group_sizes = group_sizes; 2165 pcpu_unit_map = unit_map; 2166 pcpu_unit_offsets = unit_off; 2167 2168 /* determine basic parameters */ 2169 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2170 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2171 pcpu_atom_size = ai->atom_size; 2172 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2173 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2174 2175 pcpu_stats_save_ai(ai); 2176 2177 /* 2178 * Allocate chunk slots. The additional last slot is for 2179 * empty chunks. 2180 */ 2181 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2182 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]), 2183 SMP_CACHE_BYTES); 2184 if (!pcpu_slot) 2185 panic("%s: Failed to allocate %zu bytes\n", __func__, 2186 pcpu_nr_slots * sizeof(pcpu_slot[0])); 2187 for (i = 0; i < pcpu_nr_slots; i++) 2188 INIT_LIST_HEAD(&pcpu_slot[i]); 2189 2190 /* 2191 * The end of the static region needs to be aligned with the 2192 * minimum allocation size as this offsets the reserved and 2193 * dynamic region. The first chunk ends page aligned by 2194 * expanding the dynamic region, therefore the dynamic region 2195 * can be shrunk to compensate while still staying above the 2196 * configured sizes. 2197 */ 2198 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2199 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2200 2201 /* 2202 * Initialize first chunk. 2203 * If the reserved_size is non-zero, this initializes the reserved 2204 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2205 * and the dynamic region is initialized here. The first chunk, 2206 * pcpu_first_chunk, will always point to the chunk that serves 2207 * the dynamic region. 2208 */ 2209 tmp_addr = (unsigned long)base_addr + static_size; 2210 map_size = ai->reserved_size ?: dyn_size; 2211 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2212 2213 /* init dynamic chunk if necessary */ 2214 if (ai->reserved_size) { 2215 pcpu_reserved_chunk = chunk; 2216 2217 tmp_addr = (unsigned long)base_addr + static_size + 2218 ai->reserved_size; 2219 map_size = dyn_size; 2220 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2221 } 2222 2223 /* link the first chunk in */ 2224 pcpu_first_chunk = chunk; 2225 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2226 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2227 2228 /* include all regions of the first chunk */ 2229 pcpu_nr_populated += PFN_DOWN(size_sum); 2230 2231 pcpu_stats_chunk_alloc(); 2232 trace_percpu_create_chunk(base_addr); 2233 2234 /* we're done */ 2235 pcpu_base_addr = base_addr; 2236 return 0; 2237 } 2238 2239 #ifdef CONFIG_SMP 2240 2241 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2242 [PCPU_FC_AUTO] = "auto", 2243 [PCPU_FC_EMBED] = "embed", 2244 [PCPU_FC_PAGE] = "page", 2245 }; 2246 2247 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2248 2249 static int __init percpu_alloc_setup(char *str) 2250 { 2251 if (!str) 2252 return -EINVAL; 2253 2254 if (0) 2255 /* nada */; 2256 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2257 else if (!strcmp(str, "embed")) 2258 pcpu_chosen_fc = PCPU_FC_EMBED; 2259 #endif 2260 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2261 else if (!strcmp(str, "page")) 2262 pcpu_chosen_fc = PCPU_FC_PAGE; 2263 #endif 2264 else 2265 pr_warn("unknown allocator %s specified\n", str); 2266 2267 return 0; 2268 } 2269 early_param("percpu_alloc", percpu_alloc_setup); 2270 2271 /* 2272 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2273 * Build it if needed by the arch config or the generic setup is going 2274 * to be used. 2275 */ 2276 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2277 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2278 #define BUILD_EMBED_FIRST_CHUNK 2279 #endif 2280 2281 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2282 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2283 #define BUILD_PAGE_FIRST_CHUNK 2284 #endif 2285 2286 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2287 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2288 /** 2289 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2290 * @reserved_size: the size of reserved percpu area in bytes 2291 * @dyn_size: minimum free size for dynamic allocation in bytes 2292 * @atom_size: allocation atom size 2293 * @cpu_distance_fn: callback to determine distance between cpus, optional 2294 * 2295 * This function determines grouping of units, their mappings to cpus 2296 * and other parameters considering needed percpu size, allocation 2297 * atom size and distances between CPUs. 2298 * 2299 * Groups are always multiples of atom size and CPUs which are of 2300 * LOCAL_DISTANCE both ways are grouped together and share space for 2301 * units in the same group. The returned configuration is guaranteed 2302 * to have CPUs on different nodes on different groups and >=75% usage 2303 * of allocated virtual address space. 2304 * 2305 * RETURNS: 2306 * On success, pointer to the new allocation_info is returned. On 2307 * failure, ERR_PTR value is returned. 2308 */ 2309 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2310 size_t reserved_size, size_t dyn_size, 2311 size_t atom_size, 2312 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2313 { 2314 static int group_map[NR_CPUS] __initdata; 2315 static int group_cnt[NR_CPUS] __initdata; 2316 const size_t static_size = __per_cpu_end - __per_cpu_start; 2317 int nr_groups = 1, nr_units = 0; 2318 size_t size_sum, min_unit_size, alloc_size; 2319 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2320 int last_allocs, group, unit; 2321 unsigned int cpu, tcpu; 2322 struct pcpu_alloc_info *ai; 2323 unsigned int *cpu_map; 2324 2325 /* this function may be called multiple times */ 2326 memset(group_map, 0, sizeof(group_map)); 2327 memset(group_cnt, 0, sizeof(group_cnt)); 2328 2329 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2330 size_sum = PFN_ALIGN(static_size + reserved_size + 2331 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2332 dyn_size = size_sum - static_size - reserved_size; 2333 2334 /* 2335 * Determine min_unit_size, alloc_size and max_upa such that 2336 * alloc_size is multiple of atom_size and is the smallest 2337 * which can accommodate 4k aligned segments which are equal to 2338 * or larger than min_unit_size. 2339 */ 2340 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2341 2342 /* determine the maximum # of units that can fit in an allocation */ 2343 alloc_size = roundup(min_unit_size, atom_size); 2344 upa = alloc_size / min_unit_size; 2345 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2346 upa--; 2347 max_upa = upa; 2348 2349 /* group cpus according to their proximity */ 2350 for_each_possible_cpu(cpu) { 2351 group = 0; 2352 next_group: 2353 for_each_possible_cpu(tcpu) { 2354 if (cpu == tcpu) 2355 break; 2356 if (group_map[tcpu] == group && cpu_distance_fn && 2357 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2358 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2359 group++; 2360 nr_groups = max(nr_groups, group + 1); 2361 goto next_group; 2362 } 2363 } 2364 group_map[cpu] = group; 2365 group_cnt[group]++; 2366 } 2367 2368 /* 2369 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2370 * Expand the unit_size until we use >= 75% of the units allocated. 2371 * Related to atom_size, which could be much larger than the unit_size. 2372 */ 2373 last_allocs = INT_MAX; 2374 for (upa = max_upa; upa; upa--) { 2375 int allocs = 0, wasted = 0; 2376 2377 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2378 continue; 2379 2380 for (group = 0; group < nr_groups; group++) { 2381 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2382 allocs += this_allocs; 2383 wasted += this_allocs * upa - group_cnt[group]; 2384 } 2385 2386 /* 2387 * Don't accept if wastage is over 1/3. The 2388 * greater-than comparison ensures upa==1 always 2389 * passes the following check. 2390 */ 2391 if (wasted > num_possible_cpus() / 3) 2392 continue; 2393 2394 /* and then don't consume more memory */ 2395 if (allocs > last_allocs) 2396 break; 2397 last_allocs = allocs; 2398 best_upa = upa; 2399 } 2400 upa = best_upa; 2401 2402 /* allocate and fill alloc_info */ 2403 for (group = 0; group < nr_groups; group++) 2404 nr_units += roundup(group_cnt[group], upa); 2405 2406 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2407 if (!ai) 2408 return ERR_PTR(-ENOMEM); 2409 cpu_map = ai->groups[0].cpu_map; 2410 2411 for (group = 0; group < nr_groups; group++) { 2412 ai->groups[group].cpu_map = cpu_map; 2413 cpu_map += roundup(group_cnt[group], upa); 2414 } 2415 2416 ai->static_size = static_size; 2417 ai->reserved_size = reserved_size; 2418 ai->dyn_size = dyn_size; 2419 ai->unit_size = alloc_size / upa; 2420 ai->atom_size = atom_size; 2421 ai->alloc_size = alloc_size; 2422 2423 for (group = 0, unit = 0; group < nr_groups; group++) { 2424 struct pcpu_group_info *gi = &ai->groups[group]; 2425 2426 /* 2427 * Initialize base_offset as if all groups are located 2428 * back-to-back. The caller should update this to 2429 * reflect actual allocation. 2430 */ 2431 gi->base_offset = unit * ai->unit_size; 2432 2433 for_each_possible_cpu(cpu) 2434 if (group_map[cpu] == group) 2435 gi->cpu_map[gi->nr_units++] = cpu; 2436 gi->nr_units = roundup(gi->nr_units, upa); 2437 unit += gi->nr_units; 2438 } 2439 BUG_ON(unit != nr_units); 2440 2441 return ai; 2442 } 2443 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2444 2445 #if defined(BUILD_EMBED_FIRST_CHUNK) 2446 /** 2447 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2448 * @reserved_size: the size of reserved percpu area in bytes 2449 * @dyn_size: minimum free size for dynamic allocation in bytes 2450 * @atom_size: allocation atom size 2451 * @cpu_distance_fn: callback to determine distance between cpus, optional 2452 * @alloc_fn: function to allocate percpu page 2453 * @free_fn: function to free percpu page 2454 * 2455 * This is a helper to ease setting up embedded first percpu chunk and 2456 * can be called where pcpu_setup_first_chunk() is expected. 2457 * 2458 * If this function is used to setup the first chunk, it is allocated 2459 * by calling @alloc_fn and used as-is without being mapped into 2460 * vmalloc area. Allocations are always whole multiples of @atom_size 2461 * aligned to @atom_size. 2462 * 2463 * This enables the first chunk to piggy back on the linear physical 2464 * mapping which often uses larger page size. Please note that this 2465 * can result in very sparse cpu->unit mapping on NUMA machines thus 2466 * requiring large vmalloc address space. Don't use this allocator if 2467 * vmalloc space is not orders of magnitude larger than distances 2468 * between node memory addresses (ie. 32bit NUMA machines). 2469 * 2470 * @dyn_size specifies the minimum dynamic area size. 2471 * 2472 * If the needed size is smaller than the minimum or specified unit 2473 * size, the leftover is returned using @free_fn. 2474 * 2475 * RETURNS: 2476 * 0 on success, -errno on failure. 2477 */ 2478 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2479 size_t atom_size, 2480 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2481 pcpu_fc_alloc_fn_t alloc_fn, 2482 pcpu_fc_free_fn_t free_fn) 2483 { 2484 void *base = (void *)ULONG_MAX; 2485 void **areas = NULL; 2486 struct pcpu_alloc_info *ai; 2487 size_t size_sum, areas_size; 2488 unsigned long max_distance; 2489 int group, i, highest_group, rc; 2490 2491 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2492 cpu_distance_fn); 2493 if (IS_ERR(ai)) 2494 return PTR_ERR(ai); 2495 2496 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2497 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2498 2499 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 2500 if (!areas) { 2501 rc = -ENOMEM; 2502 goto out_free; 2503 } 2504 2505 /* allocate, copy and determine base address & max_distance */ 2506 highest_group = 0; 2507 for (group = 0; group < ai->nr_groups; group++) { 2508 struct pcpu_group_info *gi = &ai->groups[group]; 2509 unsigned int cpu = NR_CPUS; 2510 void *ptr; 2511 2512 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2513 cpu = gi->cpu_map[i]; 2514 BUG_ON(cpu == NR_CPUS); 2515 2516 /* allocate space for the whole group */ 2517 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2518 if (!ptr) { 2519 rc = -ENOMEM; 2520 goto out_free_areas; 2521 } 2522 /* kmemleak tracks the percpu allocations separately */ 2523 kmemleak_free(ptr); 2524 areas[group] = ptr; 2525 2526 base = min(ptr, base); 2527 if (ptr > areas[highest_group]) 2528 highest_group = group; 2529 } 2530 max_distance = areas[highest_group] - base; 2531 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2532 2533 /* warn if maximum distance is further than 75% of vmalloc space */ 2534 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2535 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2536 max_distance, VMALLOC_TOTAL); 2537 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2538 /* and fail if we have fallback */ 2539 rc = -EINVAL; 2540 goto out_free_areas; 2541 #endif 2542 } 2543 2544 /* 2545 * Copy data and free unused parts. This should happen after all 2546 * allocations are complete; otherwise, we may end up with 2547 * overlapping groups. 2548 */ 2549 for (group = 0; group < ai->nr_groups; group++) { 2550 struct pcpu_group_info *gi = &ai->groups[group]; 2551 void *ptr = areas[group]; 2552 2553 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2554 if (gi->cpu_map[i] == NR_CPUS) { 2555 /* unused unit, free whole */ 2556 free_fn(ptr, ai->unit_size); 2557 continue; 2558 } 2559 /* copy and return the unused part */ 2560 memcpy(ptr, __per_cpu_load, ai->static_size); 2561 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2562 } 2563 } 2564 2565 /* base address is now known, determine group base offsets */ 2566 for (group = 0; group < ai->nr_groups; group++) { 2567 ai->groups[group].base_offset = areas[group] - base; 2568 } 2569 2570 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2571 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2572 ai->dyn_size, ai->unit_size); 2573 2574 rc = pcpu_setup_first_chunk(ai, base); 2575 goto out_free; 2576 2577 out_free_areas: 2578 for (group = 0; group < ai->nr_groups; group++) 2579 if (areas[group]) 2580 free_fn(areas[group], 2581 ai->groups[group].nr_units * ai->unit_size); 2582 out_free: 2583 pcpu_free_alloc_info(ai); 2584 if (areas) 2585 memblock_free_early(__pa(areas), areas_size); 2586 return rc; 2587 } 2588 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2589 2590 #ifdef BUILD_PAGE_FIRST_CHUNK 2591 /** 2592 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2593 * @reserved_size: the size of reserved percpu area in bytes 2594 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2595 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2596 * @populate_pte_fn: function to populate pte 2597 * 2598 * This is a helper to ease setting up page-remapped first percpu 2599 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2600 * 2601 * This is the basic allocator. Static percpu area is allocated 2602 * page-by-page into vmalloc area. 2603 * 2604 * RETURNS: 2605 * 0 on success, -errno on failure. 2606 */ 2607 int __init pcpu_page_first_chunk(size_t reserved_size, 2608 pcpu_fc_alloc_fn_t alloc_fn, 2609 pcpu_fc_free_fn_t free_fn, 2610 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2611 { 2612 static struct vm_struct vm; 2613 struct pcpu_alloc_info *ai; 2614 char psize_str[16]; 2615 int unit_pages; 2616 size_t pages_size; 2617 struct page **pages; 2618 int unit, i, j, rc; 2619 int upa; 2620 int nr_g0_units; 2621 2622 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2623 2624 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2625 if (IS_ERR(ai)) 2626 return PTR_ERR(ai); 2627 BUG_ON(ai->nr_groups != 1); 2628 upa = ai->alloc_size/ai->unit_size; 2629 nr_g0_units = roundup(num_possible_cpus(), upa); 2630 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 2631 pcpu_free_alloc_info(ai); 2632 return -EINVAL; 2633 } 2634 2635 unit_pages = ai->unit_size >> PAGE_SHIFT; 2636 2637 /* unaligned allocations can't be freed, round up to page size */ 2638 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2639 sizeof(pages[0])); 2640 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 2641 if (!pages) 2642 panic("%s: Failed to allocate %zu bytes\n", __func__, 2643 pages_size); 2644 2645 /* allocate pages */ 2646 j = 0; 2647 for (unit = 0; unit < num_possible_cpus(); unit++) { 2648 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2649 for (i = 0; i < unit_pages; i++) { 2650 void *ptr; 2651 2652 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2653 if (!ptr) { 2654 pr_warn("failed to allocate %s page for cpu%u\n", 2655 psize_str, cpu); 2656 goto enomem; 2657 } 2658 /* kmemleak tracks the percpu allocations separately */ 2659 kmemleak_free(ptr); 2660 pages[j++] = virt_to_page(ptr); 2661 } 2662 } 2663 2664 /* allocate vm area, map the pages and copy static data */ 2665 vm.flags = VM_ALLOC; 2666 vm.size = num_possible_cpus() * ai->unit_size; 2667 vm_area_register_early(&vm, PAGE_SIZE); 2668 2669 for (unit = 0; unit < num_possible_cpus(); unit++) { 2670 unsigned long unit_addr = 2671 (unsigned long)vm.addr + unit * ai->unit_size; 2672 2673 for (i = 0; i < unit_pages; i++) 2674 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2675 2676 /* pte already populated, the following shouldn't fail */ 2677 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2678 unit_pages); 2679 if (rc < 0) 2680 panic("failed to map percpu area, err=%d\n", rc); 2681 2682 /* 2683 * FIXME: Archs with virtual cache should flush local 2684 * cache for the linear mapping here - something 2685 * equivalent to flush_cache_vmap() on the local cpu. 2686 * flush_cache_vmap() can't be used as most supporting 2687 * data structures are not set up yet. 2688 */ 2689 2690 /* copy static data */ 2691 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2692 } 2693 2694 /* we're ready, commit */ 2695 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", 2696 unit_pages, psize_str, vm.addr, ai->static_size, 2697 ai->reserved_size, ai->dyn_size); 2698 2699 rc = pcpu_setup_first_chunk(ai, vm.addr); 2700 goto out_free_ar; 2701 2702 enomem: 2703 while (--j >= 0) 2704 free_fn(page_address(pages[j]), PAGE_SIZE); 2705 rc = -ENOMEM; 2706 out_free_ar: 2707 memblock_free_early(__pa(pages), pages_size); 2708 pcpu_free_alloc_info(ai); 2709 return rc; 2710 } 2711 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2712 2713 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2714 /* 2715 * Generic SMP percpu area setup. 2716 * 2717 * The embedding helper is used because its behavior closely resembles 2718 * the original non-dynamic generic percpu area setup. This is 2719 * important because many archs have addressing restrictions and might 2720 * fail if the percpu area is located far away from the previous 2721 * location. As an added bonus, in non-NUMA cases, embedding is 2722 * generally a good idea TLB-wise because percpu area can piggy back 2723 * on the physical linear memory mapping which uses large page 2724 * mappings on applicable archs. 2725 */ 2726 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2727 EXPORT_SYMBOL(__per_cpu_offset); 2728 2729 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2730 size_t align) 2731 { 2732 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); 2733 } 2734 2735 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2736 { 2737 memblock_free_early(__pa(ptr), size); 2738 } 2739 2740 void __init setup_per_cpu_areas(void) 2741 { 2742 unsigned long delta; 2743 unsigned int cpu; 2744 int rc; 2745 2746 /* 2747 * Always reserve area for module percpu variables. That's 2748 * what the legacy allocator did. 2749 */ 2750 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2751 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2752 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2753 if (rc < 0) 2754 panic("Failed to initialize percpu areas."); 2755 2756 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2757 for_each_possible_cpu(cpu) 2758 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2759 } 2760 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2761 2762 #else /* CONFIG_SMP */ 2763 2764 /* 2765 * UP percpu area setup. 2766 * 2767 * UP always uses km-based percpu allocator with identity mapping. 2768 * Static percpu variables are indistinguishable from the usual static 2769 * variables and don't require any special preparation. 2770 */ 2771 void __init setup_per_cpu_areas(void) 2772 { 2773 const size_t unit_size = 2774 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2775 PERCPU_DYNAMIC_RESERVE)); 2776 struct pcpu_alloc_info *ai; 2777 void *fc; 2778 2779 ai = pcpu_alloc_alloc_info(1, 1); 2780 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 2781 if (!ai || !fc) 2782 panic("Failed to allocate memory for percpu areas."); 2783 /* kmemleak tracks the percpu allocations separately */ 2784 kmemleak_free(fc); 2785 2786 ai->dyn_size = unit_size; 2787 ai->unit_size = unit_size; 2788 ai->atom_size = unit_size; 2789 ai->alloc_size = unit_size; 2790 ai->groups[0].nr_units = 1; 2791 ai->groups[0].cpu_map[0] = 0; 2792 2793 if (pcpu_setup_first_chunk(ai, fc) < 0) 2794 panic("Failed to initialize percpu areas."); 2795 pcpu_free_alloc_info(ai); 2796 } 2797 2798 #endif /* CONFIG_SMP */ 2799 2800 /* 2801 * pcpu_nr_pages - calculate total number of populated backing pages 2802 * 2803 * This reflects the number of pages populated to back chunks. Metadata is 2804 * excluded in the number exposed in meminfo as the number of backing pages 2805 * scales with the number of cpus and can quickly outweigh the memory used for 2806 * metadata. It also keeps this calculation nice and simple. 2807 * 2808 * RETURNS: 2809 * Total number of populated backing pages in use by the allocator. 2810 */ 2811 unsigned long pcpu_nr_pages(void) 2812 { 2813 return pcpu_nr_populated * pcpu_nr_units; 2814 } 2815 2816 /* 2817 * Percpu allocator is initialized early during boot when neither slab or 2818 * workqueue is available. Plug async management until everything is up 2819 * and running. 2820 */ 2821 static int __init percpu_enable_async(void) 2822 { 2823 pcpu_async_enabled = true; 2824 return 0; 2825 } 2826 subsys_initcall(percpu_enable_async); 2827