xref: /linux/mm/percpu.c (revision 47902f3611b392209e2a412bf7ec02dca95e666d)
1 /*
2  * linux/mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11  * chunk is consisted of boot-time determined number of units and the
12  * first chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.  ie. in
17  * vmalloc area
18  *
19  *  c0                           c1                         c2
20  *  -------------------          -------------------        ------------
21  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22  *  -------------------  ......  -------------------  ....  ------------
23  *
24  * Allocation is done in offset-size areas of single unit space.  Ie,
25  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
27  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
28  * Percpu access can be done by configuring percpu base registers
29  * according to cpu to unit mapping and pcpu_unit_size.
30  *
31  * There are usually many small percpu allocations many of them being
32  * as small as 4 bytes.  The allocator organizes chunks into lists
33  * according to free size and tries to allocate from the fullest one.
34  * Each chunk keeps the maximum contiguous area size hint which is
35  * guaranteed to be eqaul to or larger than the maximum contiguous
36  * area in the chunk.  This helps the allocator not to iterate the
37  * chunk maps unnecessarily.
38  *
39  * Allocation state in each chunk is kept using an array of integers
40  * on chunk->map.  A positive value in the map represents a free
41  * region and negative allocated.  Allocation inside a chunk is done
42  * by scanning this map sequentially and serving the first matching
43  * entry.  This is mostly copied from the percpu_modalloc() allocator.
44  * Chunks can be determined from the address using the index field
45  * in the page struct. The index field contains a pointer to the chunk.
46  *
47  * To use this allocator, arch code should do the followings.
48  *
49  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50  *   regular address to percpu pointer and back if they need to be
51  *   different from the default
52  *
53  * - use pcpu_setup_first_chunk() during percpu area initialization to
54  *   setup the first chunk containing the kernel static percpu area
55  */
56 
57 #include <linux/bitmap.h>
58 #include <linux/bootmem.h>
59 #include <linux/err.h>
60 #include <linux/list.h>
61 #include <linux/log2.h>
62 #include <linux/mm.h>
63 #include <linux/module.h>
64 #include <linux/mutex.h>
65 #include <linux/percpu.h>
66 #include <linux/pfn.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/vmalloc.h>
70 #include <linux/workqueue.h>
71 
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76 
77 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr)					\
83 	(void __percpu *)((unsigned long)(addr) -			\
84 			  (unsigned long)pcpu_base_addr	+		\
85 			  (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr)						\
89 	(void __force *)((unsigned long)(ptr) +				\
90 			 (unsigned long)pcpu_base_addr -		\
91 			 (unsigned long)__per_cpu_start)
92 #endif
93 
94 struct pcpu_chunk {
95 	struct list_head	list;		/* linked to pcpu_slot lists */
96 	int			free_size;	/* free bytes in the chunk */
97 	int			contig_hint;	/* max contiguous size hint */
98 	void			*base_addr;	/* base address of this chunk */
99 	int			map_used;	/* # of map entries used */
100 	int			map_alloc;	/* # of map entries allocated */
101 	int			*map;		/* allocation map */
102 	struct vm_struct	**vms;		/* mapped vmalloc regions */
103 	bool			immutable;	/* no [de]population allowed */
104 	unsigned long		populated[];	/* populated bitmap */
105 };
106 
107 static int pcpu_unit_pages __read_mostly;
108 static int pcpu_unit_size __read_mostly;
109 static int pcpu_nr_units __read_mostly;
110 static int pcpu_atom_size __read_mostly;
111 static int pcpu_nr_slots __read_mostly;
112 static size_t pcpu_chunk_struct_size __read_mostly;
113 
114 /* cpus with the lowest and highest unit numbers */
115 static unsigned int pcpu_first_unit_cpu __read_mostly;
116 static unsigned int pcpu_last_unit_cpu __read_mostly;
117 
118 /* the address of the first chunk which starts with the kernel static area */
119 void *pcpu_base_addr __read_mostly;
120 EXPORT_SYMBOL_GPL(pcpu_base_addr);
121 
122 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
123 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
124 
125 /* group information, used for vm allocation */
126 static int pcpu_nr_groups __read_mostly;
127 static const unsigned long *pcpu_group_offsets __read_mostly;
128 static const size_t *pcpu_group_sizes __read_mostly;
129 
130 /*
131  * The first chunk which always exists.  Note that unlike other
132  * chunks, this one can be allocated and mapped in several different
133  * ways and thus often doesn't live in the vmalloc area.
134  */
135 static struct pcpu_chunk *pcpu_first_chunk;
136 
137 /*
138  * Optional reserved chunk.  This chunk reserves part of the first
139  * chunk and serves it for reserved allocations.  The amount of
140  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
141  * area doesn't exist, the following variables contain NULL and 0
142  * respectively.
143  */
144 static struct pcpu_chunk *pcpu_reserved_chunk;
145 static int pcpu_reserved_chunk_limit;
146 
147 /*
148  * Synchronization rules.
149  *
150  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
151  * protects allocation/reclaim paths, chunks, populated bitmap and
152  * vmalloc mapping.  The latter is a spinlock and protects the index
153  * data structures - chunk slots, chunks and area maps in chunks.
154  *
155  * During allocation, pcpu_alloc_mutex is kept locked all the time and
156  * pcpu_lock is grabbed and released as necessary.  All actual memory
157  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
158  * general, percpu memory can't be allocated with irq off but
159  * irqsave/restore are still used in alloc path so that it can be used
160  * from early init path - sched_init() specifically.
161  *
162  * Free path accesses and alters only the index data structures, so it
163  * can be safely called from atomic context.  When memory needs to be
164  * returned to the system, free path schedules reclaim_work which
165  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
166  * reclaimed, release both locks and frees the chunks.  Note that it's
167  * necessary to grab both locks to remove a chunk from circulation as
168  * allocation path might be referencing the chunk with only
169  * pcpu_alloc_mutex locked.
170  */
171 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
172 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
173 
174 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
175 
176 /* reclaim work to release fully free chunks, scheduled from free path */
177 static void pcpu_reclaim(struct work_struct *work);
178 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
179 
180 static int __pcpu_size_to_slot(int size)
181 {
182 	int highbit = fls(size);	/* size is in bytes */
183 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
184 }
185 
186 static int pcpu_size_to_slot(int size)
187 {
188 	if (size == pcpu_unit_size)
189 		return pcpu_nr_slots - 1;
190 	return __pcpu_size_to_slot(size);
191 }
192 
193 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
194 {
195 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
196 		return 0;
197 
198 	return pcpu_size_to_slot(chunk->free_size);
199 }
200 
201 static int pcpu_page_idx(unsigned int cpu, int page_idx)
202 {
203 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
204 }
205 
206 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
207 				     unsigned int cpu, int page_idx)
208 {
209 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
210 		(page_idx << PAGE_SHIFT);
211 }
212 
213 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
214 				    unsigned int cpu, int page_idx)
215 {
216 	/* must not be used on pre-mapped chunk */
217 	WARN_ON(chunk->immutable);
218 
219 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
220 }
221 
222 /* set the pointer to a chunk in a page struct */
223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224 {
225 	page->index = (unsigned long)pcpu;
226 }
227 
228 /* obtain pointer to a chunk from a page struct */
229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230 {
231 	return (struct pcpu_chunk *)page->index;
232 }
233 
234 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
235 {
236 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
237 	*re = find_next_bit(chunk->populated, end, *rs + 1);
238 }
239 
240 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
241 {
242 	*rs = find_next_bit(chunk->populated, end, *rs);
243 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
244 }
245 
246 /*
247  * (Un)populated page region iterators.  Iterate over (un)populated
248  * page regions betwen @start and @end in @chunk.  @rs and @re should
249  * be integer variables and will be set to start and end page index of
250  * the current region.
251  */
252 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
253 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
254 	     (rs) < (re);						    \
255 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
256 
257 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
258 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
259 	     (rs) < (re);						    \
260 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
261 
262 /**
263  * pcpu_mem_alloc - allocate memory
264  * @size: bytes to allocate
265  *
266  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
267  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
268  * memory is always zeroed.
269  *
270  * CONTEXT:
271  * Does GFP_KERNEL allocation.
272  *
273  * RETURNS:
274  * Pointer to the allocated area on success, NULL on failure.
275  */
276 static void *pcpu_mem_alloc(size_t size)
277 {
278 	if (size <= PAGE_SIZE)
279 		return kzalloc(size, GFP_KERNEL);
280 	else {
281 		void *ptr = vmalloc(size);
282 		if (ptr)
283 			memset(ptr, 0, size);
284 		return ptr;
285 	}
286 }
287 
288 /**
289  * pcpu_mem_free - free memory
290  * @ptr: memory to free
291  * @size: size of the area
292  *
293  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
294  */
295 static void pcpu_mem_free(void *ptr, size_t size)
296 {
297 	if (size <= PAGE_SIZE)
298 		kfree(ptr);
299 	else
300 		vfree(ptr);
301 }
302 
303 /**
304  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
305  * @chunk: chunk of interest
306  * @oslot: the previous slot it was on
307  *
308  * This function is called after an allocation or free changed @chunk.
309  * New slot according to the changed state is determined and @chunk is
310  * moved to the slot.  Note that the reserved chunk is never put on
311  * chunk slots.
312  *
313  * CONTEXT:
314  * pcpu_lock.
315  */
316 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
317 {
318 	int nslot = pcpu_chunk_slot(chunk);
319 
320 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
321 		if (oslot < nslot)
322 			list_move(&chunk->list, &pcpu_slot[nslot]);
323 		else
324 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
325 	}
326 }
327 
328 /**
329  * pcpu_chunk_addr_search - determine chunk containing specified address
330  * @addr: address for which the chunk needs to be determined.
331  *
332  * RETURNS:
333  * The address of the found chunk.
334  */
335 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
336 {
337 	void *first_start = pcpu_first_chunk->base_addr;
338 
339 	/* is it in the first chunk? */
340 	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
341 		/* is it in the reserved area? */
342 		if (addr < first_start + pcpu_reserved_chunk_limit)
343 			return pcpu_reserved_chunk;
344 		return pcpu_first_chunk;
345 	}
346 
347 	/*
348 	 * The address is relative to unit0 which might be unused and
349 	 * thus unmapped.  Offset the address to the unit space of the
350 	 * current processor before looking it up in the vmalloc
351 	 * space.  Note that any possible cpu id can be used here, so
352 	 * there's no need to worry about preemption or cpu hotplug.
353 	 */
354 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
355 	return pcpu_get_page_chunk(vmalloc_to_page(addr));
356 }
357 
358 /**
359  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
360  * @chunk: chunk of interest
361  *
362  * Determine whether area map of @chunk needs to be extended to
363  * accomodate a new allocation.
364  *
365  * CONTEXT:
366  * pcpu_lock.
367  *
368  * RETURNS:
369  * New target map allocation length if extension is necessary, 0
370  * otherwise.
371  */
372 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
373 {
374 	int new_alloc;
375 
376 	if (chunk->map_alloc >= chunk->map_used + 2)
377 		return 0;
378 
379 	new_alloc = PCPU_DFL_MAP_ALLOC;
380 	while (new_alloc < chunk->map_used + 2)
381 		new_alloc *= 2;
382 
383 	return new_alloc;
384 }
385 
386 /**
387  * pcpu_extend_area_map - extend area map of a chunk
388  * @chunk: chunk of interest
389  * @new_alloc: new target allocation length of the area map
390  *
391  * Extend area map of @chunk to have @new_alloc entries.
392  *
393  * CONTEXT:
394  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
395  *
396  * RETURNS:
397  * 0 on success, -errno on failure.
398  */
399 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
400 {
401 	int *old = NULL, *new = NULL;
402 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
403 	unsigned long flags;
404 
405 	new = pcpu_mem_alloc(new_size);
406 	if (!new)
407 		return -ENOMEM;
408 
409 	/* acquire pcpu_lock and switch to new area map */
410 	spin_lock_irqsave(&pcpu_lock, flags);
411 
412 	if (new_alloc <= chunk->map_alloc)
413 		goto out_unlock;
414 
415 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
416 	memcpy(new, chunk->map, old_size);
417 
418 	/*
419 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
420 	 * one of the first chunks and still using static map.
421 	 */
422 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
423 		old = chunk->map;
424 
425 	chunk->map_alloc = new_alloc;
426 	chunk->map = new;
427 	new = NULL;
428 
429 out_unlock:
430 	spin_unlock_irqrestore(&pcpu_lock, flags);
431 
432 	/*
433 	 * pcpu_mem_free() might end up calling vfree() which uses
434 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
435 	 */
436 	pcpu_mem_free(old, old_size);
437 	pcpu_mem_free(new, new_size);
438 
439 	return 0;
440 }
441 
442 /**
443  * pcpu_split_block - split a map block
444  * @chunk: chunk of interest
445  * @i: index of map block to split
446  * @head: head size in bytes (can be 0)
447  * @tail: tail size in bytes (can be 0)
448  *
449  * Split the @i'th map block into two or three blocks.  If @head is
450  * non-zero, @head bytes block is inserted before block @i moving it
451  * to @i+1 and reducing its size by @head bytes.
452  *
453  * If @tail is non-zero, the target block, which can be @i or @i+1
454  * depending on @head, is reduced by @tail bytes and @tail byte block
455  * is inserted after the target block.
456  *
457  * @chunk->map must have enough free slots to accomodate the split.
458  *
459  * CONTEXT:
460  * pcpu_lock.
461  */
462 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
463 			     int head, int tail)
464 {
465 	int nr_extra = !!head + !!tail;
466 
467 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
468 
469 	/* insert new subblocks */
470 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
471 		sizeof(chunk->map[0]) * (chunk->map_used - i));
472 	chunk->map_used += nr_extra;
473 
474 	if (head) {
475 		chunk->map[i + 1] = chunk->map[i] - head;
476 		chunk->map[i++] = head;
477 	}
478 	if (tail) {
479 		chunk->map[i++] -= tail;
480 		chunk->map[i] = tail;
481 	}
482 }
483 
484 /**
485  * pcpu_alloc_area - allocate area from a pcpu_chunk
486  * @chunk: chunk of interest
487  * @size: wanted size in bytes
488  * @align: wanted align
489  *
490  * Try to allocate @size bytes area aligned at @align from @chunk.
491  * Note that this function only allocates the offset.  It doesn't
492  * populate or map the area.
493  *
494  * @chunk->map must have at least two free slots.
495  *
496  * CONTEXT:
497  * pcpu_lock.
498  *
499  * RETURNS:
500  * Allocated offset in @chunk on success, -1 if no matching area is
501  * found.
502  */
503 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
504 {
505 	int oslot = pcpu_chunk_slot(chunk);
506 	int max_contig = 0;
507 	int i, off;
508 
509 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
510 		bool is_last = i + 1 == chunk->map_used;
511 		int head, tail;
512 
513 		/* extra for alignment requirement */
514 		head = ALIGN(off, align) - off;
515 		BUG_ON(i == 0 && head != 0);
516 
517 		if (chunk->map[i] < 0)
518 			continue;
519 		if (chunk->map[i] < head + size) {
520 			max_contig = max(chunk->map[i], max_contig);
521 			continue;
522 		}
523 
524 		/*
525 		 * If head is small or the previous block is free,
526 		 * merge'em.  Note that 'small' is defined as smaller
527 		 * than sizeof(int), which is very small but isn't too
528 		 * uncommon for percpu allocations.
529 		 */
530 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
531 			if (chunk->map[i - 1] > 0)
532 				chunk->map[i - 1] += head;
533 			else {
534 				chunk->map[i - 1] -= head;
535 				chunk->free_size -= head;
536 			}
537 			chunk->map[i] -= head;
538 			off += head;
539 			head = 0;
540 		}
541 
542 		/* if tail is small, just keep it around */
543 		tail = chunk->map[i] - head - size;
544 		if (tail < sizeof(int))
545 			tail = 0;
546 
547 		/* split if warranted */
548 		if (head || tail) {
549 			pcpu_split_block(chunk, i, head, tail);
550 			if (head) {
551 				i++;
552 				off += head;
553 				max_contig = max(chunk->map[i - 1], max_contig);
554 			}
555 			if (tail)
556 				max_contig = max(chunk->map[i + 1], max_contig);
557 		}
558 
559 		/* update hint and mark allocated */
560 		if (is_last)
561 			chunk->contig_hint = max_contig; /* fully scanned */
562 		else
563 			chunk->contig_hint = max(chunk->contig_hint,
564 						 max_contig);
565 
566 		chunk->free_size -= chunk->map[i];
567 		chunk->map[i] = -chunk->map[i];
568 
569 		pcpu_chunk_relocate(chunk, oslot);
570 		return off;
571 	}
572 
573 	chunk->contig_hint = max_contig;	/* fully scanned */
574 	pcpu_chunk_relocate(chunk, oslot);
575 
576 	/* tell the upper layer that this chunk has no matching area */
577 	return -1;
578 }
579 
580 /**
581  * pcpu_free_area - free area to a pcpu_chunk
582  * @chunk: chunk of interest
583  * @freeme: offset of area to free
584  *
585  * Free area starting from @freeme to @chunk.  Note that this function
586  * only modifies the allocation map.  It doesn't depopulate or unmap
587  * the area.
588  *
589  * CONTEXT:
590  * pcpu_lock.
591  */
592 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
593 {
594 	int oslot = pcpu_chunk_slot(chunk);
595 	int i, off;
596 
597 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
598 		if (off == freeme)
599 			break;
600 	BUG_ON(off != freeme);
601 	BUG_ON(chunk->map[i] > 0);
602 
603 	chunk->map[i] = -chunk->map[i];
604 	chunk->free_size += chunk->map[i];
605 
606 	/* merge with previous? */
607 	if (i > 0 && chunk->map[i - 1] >= 0) {
608 		chunk->map[i - 1] += chunk->map[i];
609 		chunk->map_used--;
610 		memmove(&chunk->map[i], &chunk->map[i + 1],
611 			(chunk->map_used - i) * sizeof(chunk->map[0]));
612 		i--;
613 	}
614 	/* merge with next? */
615 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
616 		chunk->map[i] += chunk->map[i + 1];
617 		chunk->map_used--;
618 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
619 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
620 	}
621 
622 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
623 	pcpu_chunk_relocate(chunk, oslot);
624 }
625 
626 /**
627  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
628  * @chunk: chunk of interest
629  * @bitmapp: output parameter for bitmap
630  * @may_alloc: may allocate the array
631  *
632  * Returns pointer to array of pointers to struct page and bitmap,
633  * both of which can be indexed with pcpu_page_idx().  The returned
634  * array is cleared to zero and *@bitmapp is copied from
635  * @chunk->populated.  Note that there is only one array and bitmap
636  * and access exclusion is the caller's responsibility.
637  *
638  * CONTEXT:
639  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
640  * Otherwise, don't care.
641  *
642  * RETURNS:
643  * Pointer to temp pages array on success, NULL on failure.
644  */
645 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
646 					       unsigned long **bitmapp,
647 					       bool may_alloc)
648 {
649 	static struct page **pages;
650 	static unsigned long *bitmap;
651 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
652 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
653 			     sizeof(unsigned long);
654 
655 	if (!pages || !bitmap) {
656 		if (may_alloc && !pages)
657 			pages = pcpu_mem_alloc(pages_size);
658 		if (may_alloc && !bitmap)
659 			bitmap = pcpu_mem_alloc(bitmap_size);
660 		if (!pages || !bitmap)
661 			return NULL;
662 	}
663 
664 	memset(pages, 0, pages_size);
665 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
666 
667 	*bitmapp = bitmap;
668 	return pages;
669 }
670 
671 /**
672  * pcpu_free_pages - free pages which were allocated for @chunk
673  * @chunk: chunk pages were allocated for
674  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
675  * @populated: populated bitmap
676  * @page_start: page index of the first page to be freed
677  * @page_end: page index of the last page to be freed + 1
678  *
679  * Free pages [@page_start and @page_end) in @pages for all units.
680  * The pages were allocated for @chunk.
681  */
682 static void pcpu_free_pages(struct pcpu_chunk *chunk,
683 			    struct page **pages, unsigned long *populated,
684 			    int page_start, int page_end)
685 {
686 	unsigned int cpu;
687 	int i;
688 
689 	for_each_possible_cpu(cpu) {
690 		for (i = page_start; i < page_end; i++) {
691 			struct page *page = pages[pcpu_page_idx(cpu, i)];
692 
693 			if (page)
694 				__free_page(page);
695 		}
696 	}
697 }
698 
699 /**
700  * pcpu_alloc_pages - allocates pages for @chunk
701  * @chunk: target chunk
702  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
703  * @populated: populated bitmap
704  * @page_start: page index of the first page to be allocated
705  * @page_end: page index of the last page to be allocated + 1
706  *
707  * Allocate pages [@page_start,@page_end) into @pages for all units.
708  * The allocation is for @chunk.  Percpu core doesn't care about the
709  * content of @pages and will pass it verbatim to pcpu_map_pages().
710  */
711 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
712 			    struct page **pages, unsigned long *populated,
713 			    int page_start, int page_end)
714 {
715 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
716 	unsigned int cpu;
717 	int i;
718 
719 	for_each_possible_cpu(cpu) {
720 		for (i = page_start; i < page_end; i++) {
721 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
722 
723 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
724 			if (!*pagep) {
725 				pcpu_free_pages(chunk, pages, populated,
726 						page_start, page_end);
727 				return -ENOMEM;
728 			}
729 		}
730 	}
731 	return 0;
732 }
733 
734 /**
735  * pcpu_pre_unmap_flush - flush cache prior to unmapping
736  * @chunk: chunk the regions to be flushed belongs to
737  * @page_start: page index of the first page to be flushed
738  * @page_end: page index of the last page to be flushed + 1
739  *
740  * Pages in [@page_start,@page_end) of @chunk are about to be
741  * unmapped.  Flush cache.  As each flushing trial can be very
742  * expensive, issue flush on the whole region at once rather than
743  * doing it for each cpu.  This could be an overkill but is more
744  * scalable.
745  */
746 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
747 				 int page_start, int page_end)
748 {
749 	flush_cache_vunmap(
750 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
751 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
752 }
753 
754 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
755 {
756 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
757 }
758 
759 /**
760  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
761  * @chunk: chunk of interest
762  * @pages: pages array which can be used to pass information to free
763  * @populated: populated bitmap
764  * @page_start: page index of the first page to unmap
765  * @page_end: page index of the last page to unmap + 1
766  *
767  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
768  * Corresponding elements in @pages were cleared by the caller and can
769  * be used to carry information to pcpu_free_pages() which will be
770  * called after all unmaps are finished.  The caller should call
771  * proper pre/post flush functions.
772  */
773 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
774 			     struct page **pages, unsigned long *populated,
775 			     int page_start, int page_end)
776 {
777 	unsigned int cpu;
778 	int i;
779 
780 	for_each_possible_cpu(cpu) {
781 		for (i = page_start; i < page_end; i++) {
782 			struct page *page;
783 
784 			page = pcpu_chunk_page(chunk, cpu, i);
785 			WARN_ON(!page);
786 			pages[pcpu_page_idx(cpu, i)] = page;
787 		}
788 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
789 				   page_end - page_start);
790 	}
791 
792 	for (i = page_start; i < page_end; i++)
793 		__clear_bit(i, populated);
794 }
795 
796 /**
797  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
798  * @chunk: pcpu_chunk the regions to be flushed belong to
799  * @page_start: page index of the first page to be flushed
800  * @page_end: page index of the last page to be flushed + 1
801  *
802  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
803  * TLB for the regions.  This can be skipped if the area is to be
804  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
805  *
806  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
807  * for the whole region.
808  */
809 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
810 				      int page_start, int page_end)
811 {
812 	flush_tlb_kernel_range(
813 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
814 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
815 }
816 
817 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
818 			    int nr_pages)
819 {
820 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
821 					PAGE_KERNEL, pages);
822 }
823 
824 /**
825  * pcpu_map_pages - map pages into a pcpu_chunk
826  * @chunk: chunk of interest
827  * @pages: pages array containing pages to be mapped
828  * @populated: populated bitmap
829  * @page_start: page index of the first page to map
830  * @page_end: page index of the last page to map + 1
831  *
832  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
833  * caller is responsible for calling pcpu_post_map_flush() after all
834  * mappings are complete.
835  *
836  * This function is responsible for setting corresponding bits in
837  * @chunk->populated bitmap and whatever is necessary for reverse
838  * lookup (addr -> chunk).
839  */
840 static int pcpu_map_pages(struct pcpu_chunk *chunk,
841 			  struct page **pages, unsigned long *populated,
842 			  int page_start, int page_end)
843 {
844 	unsigned int cpu, tcpu;
845 	int i, err;
846 
847 	for_each_possible_cpu(cpu) {
848 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
849 				       &pages[pcpu_page_idx(cpu, page_start)],
850 				       page_end - page_start);
851 		if (err < 0)
852 			goto err;
853 	}
854 
855 	/* mapping successful, link chunk and mark populated */
856 	for (i = page_start; i < page_end; i++) {
857 		for_each_possible_cpu(cpu)
858 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
859 					    chunk);
860 		__set_bit(i, populated);
861 	}
862 
863 	return 0;
864 
865 err:
866 	for_each_possible_cpu(tcpu) {
867 		if (tcpu == cpu)
868 			break;
869 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
870 				   page_end - page_start);
871 	}
872 	return err;
873 }
874 
875 /**
876  * pcpu_post_map_flush - flush cache after mapping
877  * @chunk: pcpu_chunk the regions to be flushed belong to
878  * @page_start: page index of the first page to be flushed
879  * @page_end: page index of the last page to be flushed + 1
880  *
881  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
882  * cache.
883  *
884  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
885  * for the whole region.
886  */
887 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
888 				int page_start, int page_end)
889 {
890 	flush_cache_vmap(
891 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
892 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
893 }
894 
895 /**
896  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
897  * @chunk: chunk to depopulate
898  * @off: offset to the area to depopulate
899  * @size: size of the area to depopulate in bytes
900  * @flush: whether to flush cache and tlb or not
901  *
902  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
903  * from @chunk.  If @flush is true, vcache is flushed before unmapping
904  * and tlb after.
905  *
906  * CONTEXT:
907  * pcpu_alloc_mutex.
908  */
909 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
910 {
911 	int page_start = PFN_DOWN(off);
912 	int page_end = PFN_UP(off + size);
913 	struct page **pages;
914 	unsigned long *populated;
915 	int rs, re;
916 
917 	/* quick path, check whether it's empty already */
918 	rs = page_start;
919 	pcpu_next_unpop(chunk, &rs, &re, page_end);
920 	if (rs == page_start && re == page_end)
921 		return;
922 
923 	/* immutable chunks can't be depopulated */
924 	WARN_ON(chunk->immutable);
925 
926 	/*
927 	 * If control reaches here, there must have been at least one
928 	 * successful population attempt so the temp pages array must
929 	 * be available now.
930 	 */
931 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
932 	BUG_ON(!pages);
933 
934 	/* unmap and free */
935 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
936 
937 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
938 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
939 
940 	/* no need to flush tlb, vmalloc will handle it lazily */
941 
942 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
943 		pcpu_free_pages(chunk, pages, populated, rs, re);
944 
945 	/* commit new bitmap */
946 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
947 }
948 
949 /**
950  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
951  * @chunk: chunk of interest
952  * @off: offset to the area to populate
953  * @size: size of the area to populate in bytes
954  *
955  * For each cpu, populate and map pages [@page_start,@page_end) into
956  * @chunk.  The area is cleared on return.
957  *
958  * CONTEXT:
959  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
960  */
961 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
962 {
963 	int page_start = PFN_DOWN(off);
964 	int page_end = PFN_UP(off + size);
965 	int free_end = page_start, unmap_end = page_start;
966 	struct page **pages;
967 	unsigned long *populated;
968 	unsigned int cpu;
969 	int rs, re, rc;
970 
971 	/* quick path, check whether all pages are already there */
972 	rs = page_start;
973 	pcpu_next_pop(chunk, &rs, &re, page_end);
974 	if (rs == page_start && re == page_end)
975 		goto clear;
976 
977 	/* need to allocate and map pages, this chunk can't be immutable */
978 	WARN_ON(chunk->immutable);
979 
980 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
981 	if (!pages)
982 		return -ENOMEM;
983 
984 	/* alloc and map */
985 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
986 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
987 		if (rc)
988 			goto err_free;
989 		free_end = re;
990 	}
991 
992 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
993 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
994 		if (rc)
995 			goto err_unmap;
996 		unmap_end = re;
997 	}
998 	pcpu_post_map_flush(chunk, page_start, page_end);
999 
1000 	/* commit new bitmap */
1001 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1002 clear:
1003 	for_each_possible_cpu(cpu)
1004 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1005 	return 0;
1006 
1007 err_unmap:
1008 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1009 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1010 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
1011 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1012 err_free:
1013 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1014 		pcpu_free_pages(chunk, pages, populated, rs, re);
1015 	return rc;
1016 }
1017 
1018 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
1019 {
1020 	if (!chunk)
1021 		return;
1022 	if (chunk->vms)
1023 		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1024 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
1025 	kfree(chunk);
1026 }
1027 
1028 static struct pcpu_chunk *alloc_pcpu_chunk(void)
1029 {
1030 	struct pcpu_chunk *chunk;
1031 
1032 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1033 	if (!chunk)
1034 		return NULL;
1035 
1036 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1037 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1038 	chunk->map[chunk->map_used++] = pcpu_unit_size;
1039 
1040 	chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1041 				       pcpu_nr_groups, pcpu_atom_size,
1042 				       GFP_KERNEL);
1043 	if (!chunk->vms) {
1044 		free_pcpu_chunk(chunk);
1045 		return NULL;
1046 	}
1047 
1048 	INIT_LIST_HEAD(&chunk->list);
1049 	chunk->free_size = pcpu_unit_size;
1050 	chunk->contig_hint = pcpu_unit_size;
1051 	chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1052 
1053 	return chunk;
1054 }
1055 
1056 /**
1057  * pcpu_alloc - the percpu allocator
1058  * @size: size of area to allocate in bytes
1059  * @align: alignment of area (max PAGE_SIZE)
1060  * @reserved: allocate from the reserved chunk if available
1061  *
1062  * Allocate percpu area of @size bytes aligned at @align.
1063  *
1064  * CONTEXT:
1065  * Does GFP_KERNEL allocation.
1066  *
1067  * RETURNS:
1068  * Percpu pointer to the allocated area on success, NULL on failure.
1069  */
1070 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
1071 {
1072 	static int warn_limit = 10;
1073 	struct pcpu_chunk *chunk;
1074 	const char *err;
1075 	int slot, off, new_alloc;
1076 	unsigned long flags;
1077 
1078 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1079 		WARN(true, "illegal size (%zu) or align (%zu) for "
1080 		     "percpu allocation\n", size, align);
1081 		return NULL;
1082 	}
1083 
1084 	mutex_lock(&pcpu_alloc_mutex);
1085 	spin_lock_irqsave(&pcpu_lock, flags);
1086 
1087 	/* serve reserved allocations from the reserved chunk if available */
1088 	if (reserved && pcpu_reserved_chunk) {
1089 		chunk = pcpu_reserved_chunk;
1090 
1091 		if (size > chunk->contig_hint) {
1092 			err = "alloc from reserved chunk failed";
1093 			goto fail_unlock;
1094 		}
1095 
1096 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
1097 			spin_unlock_irqrestore(&pcpu_lock, flags);
1098 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1099 				err = "failed to extend area map of reserved chunk";
1100 				goto fail_unlock_mutex;
1101 			}
1102 			spin_lock_irqsave(&pcpu_lock, flags);
1103 		}
1104 
1105 		off = pcpu_alloc_area(chunk, size, align);
1106 		if (off >= 0)
1107 			goto area_found;
1108 
1109 		err = "alloc from reserved chunk failed";
1110 		goto fail_unlock;
1111 	}
1112 
1113 restart:
1114 	/* search through normal chunks */
1115 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1116 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1117 			if (size > chunk->contig_hint)
1118 				continue;
1119 
1120 			new_alloc = pcpu_need_to_extend(chunk);
1121 			if (new_alloc) {
1122 				spin_unlock_irqrestore(&pcpu_lock, flags);
1123 				if (pcpu_extend_area_map(chunk,
1124 							 new_alloc) < 0) {
1125 					err = "failed to extend area map";
1126 					goto fail_unlock_mutex;
1127 				}
1128 				spin_lock_irqsave(&pcpu_lock, flags);
1129 				/*
1130 				 * pcpu_lock has been dropped, need to
1131 				 * restart cpu_slot list walking.
1132 				 */
1133 				goto restart;
1134 			}
1135 
1136 			off = pcpu_alloc_area(chunk, size, align);
1137 			if (off >= 0)
1138 				goto area_found;
1139 		}
1140 	}
1141 
1142 	/* hmmm... no space left, create a new chunk */
1143 	spin_unlock_irqrestore(&pcpu_lock, flags);
1144 
1145 	chunk = alloc_pcpu_chunk();
1146 	if (!chunk) {
1147 		err = "failed to allocate new chunk";
1148 		goto fail_unlock_mutex;
1149 	}
1150 
1151 	spin_lock_irqsave(&pcpu_lock, flags);
1152 	pcpu_chunk_relocate(chunk, -1);
1153 	goto restart;
1154 
1155 area_found:
1156 	spin_unlock_irqrestore(&pcpu_lock, flags);
1157 
1158 	/* populate, map and clear the area */
1159 	if (pcpu_populate_chunk(chunk, off, size)) {
1160 		spin_lock_irqsave(&pcpu_lock, flags);
1161 		pcpu_free_area(chunk, off);
1162 		err = "failed to populate";
1163 		goto fail_unlock;
1164 	}
1165 
1166 	mutex_unlock(&pcpu_alloc_mutex);
1167 
1168 	/* return address relative to base address */
1169 	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1170 
1171 fail_unlock:
1172 	spin_unlock_irqrestore(&pcpu_lock, flags);
1173 fail_unlock_mutex:
1174 	mutex_unlock(&pcpu_alloc_mutex);
1175 	if (warn_limit) {
1176 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1177 			   "%s\n", size, align, err);
1178 		dump_stack();
1179 		if (!--warn_limit)
1180 			pr_info("PERCPU: limit reached, disable warning\n");
1181 	}
1182 	return NULL;
1183 }
1184 
1185 /**
1186  * __alloc_percpu - allocate dynamic percpu area
1187  * @size: size of area to allocate in bytes
1188  * @align: alignment of area (max PAGE_SIZE)
1189  *
1190  * Allocate percpu area of @size bytes aligned at @align.  Might
1191  * sleep.  Might trigger writeouts.
1192  *
1193  * CONTEXT:
1194  * Does GFP_KERNEL allocation.
1195  *
1196  * RETURNS:
1197  * Percpu pointer to the allocated area on success, NULL on failure.
1198  */
1199 void __percpu *__alloc_percpu(size_t size, size_t align)
1200 {
1201 	return pcpu_alloc(size, align, false);
1202 }
1203 EXPORT_SYMBOL_GPL(__alloc_percpu);
1204 
1205 /**
1206  * __alloc_reserved_percpu - allocate reserved percpu area
1207  * @size: size of area to allocate in bytes
1208  * @align: alignment of area (max PAGE_SIZE)
1209  *
1210  * Allocate percpu area of @size bytes aligned at @align from reserved
1211  * percpu area if arch has set it up; otherwise, allocation is served
1212  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1213  *
1214  * CONTEXT:
1215  * Does GFP_KERNEL allocation.
1216  *
1217  * RETURNS:
1218  * Percpu pointer to the allocated area on success, NULL on failure.
1219  */
1220 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1221 {
1222 	return pcpu_alloc(size, align, true);
1223 }
1224 
1225 /**
1226  * pcpu_reclaim - reclaim fully free chunks, workqueue function
1227  * @work: unused
1228  *
1229  * Reclaim all fully free chunks except for the first one.
1230  *
1231  * CONTEXT:
1232  * workqueue context.
1233  */
1234 static void pcpu_reclaim(struct work_struct *work)
1235 {
1236 	LIST_HEAD(todo);
1237 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1238 	struct pcpu_chunk *chunk, *next;
1239 
1240 	mutex_lock(&pcpu_alloc_mutex);
1241 	spin_lock_irq(&pcpu_lock);
1242 
1243 	list_for_each_entry_safe(chunk, next, head, list) {
1244 		WARN_ON(chunk->immutable);
1245 
1246 		/* spare the first one */
1247 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1248 			continue;
1249 
1250 		list_move(&chunk->list, &todo);
1251 	}
1252 
1253 	spin_unlock_irq(&pcpu_lock);
1254 
1255 	list_for_each_entry_safe(chunk, next, &todo, list) {
1256 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1257 		free_pcpu_chunk(chunk);
1258 	}
1259 
1260 	mutex_unlock(&pcpu_alloc_mutex);
1261 }
1262 
1263 /**
1264  * free_percpu - free percpu area
1265  * @ptr: pointer to area to free
1266  *
1267  * Free percpu area @ptr.
1268  *
1269  * CONTEXT:
1270  * Can be called from atomic context.
1271  */
1272 void free_percpu(void __percpu *ptr)
1273 {
1274 	void *addr;
1275 	struct pcpu_chunk *chunk;
1276 	unsigned long flags;
1277 	int off;
1278 
1279 	if (!ptr)
1280 		return;
1281 
1282 	addr = __pcpu_ptr_to_addr(ptr);
1283 
1284 	spin_lock_irqsave(&pcpu_lock, flags);
1285 
1286 	chunk = pcpu_chunk_addr_search(addr);
1287 	off = addr - chunk->base_addr;
1288 
1289 	pcpu_free_area(chunk, off);
1290 
1291 	/* if there are more than one fully free chunks, wake up grim reaper */
1292 	if (chunk->free_size == pcpu_unit_size) {
1293 		struct pcpu_chunk *pos;
1294 
1295 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1296 			if (pos != chunk) {
1297 				schedule_work(&pcpu_reclaim_work);
1298 				break;
1299 			}
1300 	}
1301 
1302 	spin_unlock_irqrestore(&pcpu_lock, flags);
1303 }
1304 EXPORT_SYMBOL_GPL(free_percpu);
1305 
1306 /**
1307  * is_kernel_percpu_address - test whether address is from static percpu area
1308  * @addr: address to test
1309  *
1310  * Test whether @addr belongs to in-kernel static percpu area.  Module
1311  * static percpu areas are not considered.  For those, use
1312  * is_module_percpu_address().
1313  *
1314  * RETURNS:
1315  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1316  */
1317 bool is_kernel_percpu_address(unsigned long addr)
1318 {
1319 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1320 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1321 	unsigned int cpu;
1322 
1323 	for_each_possible_cpu(cpu) {
1324 		void *start = per_cpu_ptr(base, cpu);
1325 
1326 		if ((void *)addr >= start && (void *)addr < start + static_size)
1327 			return true;
1328         }
1329 	return false;
1330 }
1331 
1332 /**
1333  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1334  * @addr: the address to be converted to physical address
1335  *
1336  * Given @addr which is dereferenceable address obtained via one of
1337  * percpu access macros, this function translates it into its physical
1338  * address.  The caller is responsible for ensuring @addr stays valid
1339  * until this function finishes.
1340  *
1341  * RETURNS:
1342  * The physical address for @addr.
1343  */
1344 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1345 {
1346 	if ((unsigned long)addr < VMALLOC_START ||
1347 			(unsigned long)addr >= VMALLOC_END)
1348 		return __pa(addr);
1349 	else
1350 		return page_to_phys(vmalloc_to_page(addr));
1351 }
1352 
1353 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1354 					size_t reserved_size,
1355 					ssize_t *dyn_sizep)
1356 {
1357 	size_t size_sum;
1358 
1359 	size_sum = PFN_ALIGN(static_size + reserved_size +
1360 			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1361 	if (*dyn_sizep != 0)
1362 		*dyn_sizep = size_sum - static_size - reserved_size;
1363 
1364 	return size_sum;
1365 }
1366 
1367 /**
1368  * pcpu_alloc_alloc_info - allocate percpu allocation info
1369  * @nr_groups: the number of groups
1370  * @nr_units: the number of units
1371  *
1372  * Allocate ai which is large enough for @nr_groups groups containing
1373  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1374  * cpu_map array which is long enough for @nr_units and filled with
1375  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1376  * pointer of other groups.
1377  *
1378  * RETURNS:
1379  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1380  * failure.
1381  */
1382 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1383 						      int nr_units)
1384 {
1385 	struct pcpu_alloc_info *ai;
1386 	size_t base_size, ai_size;
1387 	void *ptr;
1388 	int unit;
1389 
1390 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1391 			  __alignof__(ai->groups[0].cpu_map[0]));
1392 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1393 
1394 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1395 	if (!ptr)
1396 		return NULL;
1397 	ai = ptr;
1398 	ptr += base_size;
1399 
1400 	ai->groups[0].cpu_map = ptr;
1401 
1402 	for (unit = 0; unit < nr_units; unit++)
1403 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1404 
1405 	ai->nr_groups = nr_groups;
1406 	ai->__ai_size = PFN_ALIGN(ai_size);
1407 
1408 	return ai;
1409 }
1410 
1411 /**
1412  * pcpu_free_alloc_info - free percpu allocation info
1413  * @ai: pcpu_alloc_info to free
1414  *
1415  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1416  */
1417 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1418 {
1419 	free_bootmem(__pa(ai), ai->__ai_size);
1420 }
1421 
1422 /**
1423  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1424  * @reserved_size: the size of reserved percpu area in bytes
1425  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1426  * @atom_size: allocation atom size
1427  * @cpu_distance_fn: callback to determine distance between cpus, optional
1428  *
1429  * This function determines grouping of units, their mappings to cpus
1430  * and other parameters considering needed percpu size, allocation
1431  * atom size and distances between CPUs.
1432  *
1433  * Groups are always mutliples of atom size and CPUs which are of
1434  * LOCAL_DISTANCE both ways are grouped together and share space for
1435  * units in the same group.  The returned configuration is guaranteed
1436  * to have CPUs on different nodes on different groups and >=75% usage
1437  * of allocated virtual address space.
1438  *
1439  * RETURNS:
1440  * On success, pointer to the new allocation_info is returned.  On
1441  * failure, ERR_PTR value is returned.
1442  */
1443 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1444 				size_t reserved_size, ssize_t dyn_size,
1445 				size_t atom_size,
1446 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1447 {
1448 	static int group_map[NR_CPUS] __initdata;
1449 	static int group_cnt[NR_CPUS] __initdata;
1450 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1451 	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1452 	size_t size_sum, min_unit_size, alloc_size;
1453 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1454 	int last_allocs, group, unit;
1455 	unsigned int cpu, tcpu;
1456 	struct pcpu_alloc_info *ai;
1457 	unsigned int *cpu_map;
1458 
1459 	/* this function may be called multiple times */
1460 	memset(group_map, 0, sizeof(group_map));
1461 	memset(group_cnt, 0, sizeof(group_map));
1462 
1463 	/*
1464 	 * Determine min_unit_size, alloc_size and max_upa such that
1465 	 * alloc_size is multiple of atom_size and is the smallest
1466 	 * which can accomodate 4k aligned segments which are equal to
1467 	 * or larger than min_unit_size.
1468 	 */
1469 	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1470 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1471 
1472 	alloc_size = roundup(min_unit_size, atom_size);
1473 	upa = alloc_size / min_unit_size;
1474 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1475 		upa--;
1476 	max_upa = upa;
1477 
1478 	/* group cpus according to their proximity */
1479 	for_each_possible_cpu(cpu) {
1480 		group = 0;
1481 	next_group:
1482 		for_each_possible_cpu(tcpu) {
1483 			if (cpu == tcpu)
1484 				break;
1485 			if (group_map[tcpu] == group && cpu_distance_fn &&
1486 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1487 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1488 				group++;
1489 				nr_groups = max(nr_groups, group + 1);
1490 				goto next_group;
1491 			}
1492 		}
1493 		group_map[cpu] = group;
1494 		group_cnt[group]++;
1495 		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1496 	}
1497 
1498 	/*
1499 	 * Expand unit size until address space usage goes over 75%
1500 	 * and then as much as possible without using more address
1501 	 * space.
1502 	 */
1503 	last_allocs = INT_MAX;
1504 	for (upa = max_upa; upa; upa--) {
1505 		int allocs = 0, wasted = 0;
1506 
1507 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1508 			continue;
1509 
1510 		for (group = 0; group < nr_groups; group++) {
1511 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1512 			allocs += this_allocs;
1513 			wasted += this_allocs * upa - group_cnt[group];
1514 		}
1515 
1516 		/*
1517 		 * Don't accept if wastage is over 25%.  The
1518 		 * greater-than comparison ensures upa==1 always
1519 		 * passes the following check.
1520 		 */
1521 		if (wasted > num_possible_cpus() / 3)
1522 			continue;
1523 
1524 		/* and then don't consume more memory */
1525 		if (allocs > last_allocs)
1526 			break;
1527 		last_allocs = allocs;
1528 		best_upa = upa;
1529 	}
1530 	upa = best_upa;
1531 
1532 	/* allocate and fill alloc_info */
1533 	for (group = 0; group < nr_groups; group++)
1534 		nr_units += roundup(group_cnt[group], upa);
1535 
1536 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1537 	if (!ai)
1538 		return ERR_PTR(-ENOMEM);
1539 	cpu_map = ai->groups[0].cpu_map;
1540 
1541 	for (group = 0; group < nr_groups; group++) {
1542 		ai->groups[group].cpu_map = cpu_map;
1543 		cpu_map += roundup(group_cnt[group], upa);
1544 	}
1545 
1546 	ai->static_size = static_size;
1547 	ai->reserved_size = reserved_size;
1548 	ai->dyn_size = dyn_size;
1549 	ai->unit_size = alloc_size / upa;
1550 	ai->atom_size = atom_size;
1551 	ai->alloc_size = alloc_size;
1552 
1553 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1554 		struct pcpu_group_info *gi = &ai->groups[group];
1555 
1556 		/*
1557 		 * Initialize base_offset as if all groups are located
1558 		 * back-to-back.  The caller should update this to
1559 		 * reflect actual allocation.
1560 		 */
1561 		gi->base_offset = unit * ai->unit_size;
1562 
1563 		for_each_possible_cpu(cpu)
1564 			if (group_map[cpu] == group)
1565 				gi->cpu_map[gi->nr_units++] = cpu;
1566 		gi->nr_units = roundup(gi->nr_units, upa);
1567 		unit += gi->nr_units;
1568 	}
1569 	BUG_ON(unit != nr_units);
1570 
1571 	return ai;
1572 }
1573 
1574 /**
1575  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1576  * @lvl: loglevel
1577  * @ai: allocation info to dump
1578  *
1579  * Print out information about @ai using loglevel @lvl.
1580  */
1581 static void pcpu_dump_alloc_info(const char *lvl,
1582 				 const struct pcpu_alloc_info *ai)
1583 {
1584 	int group_width = 1, cpu_width = 1, width;
1585 	char empty_str[] = "--------";
1586 	int alloc = 0, alloc_end = 0;
1587 	int group, v;
1588 	int upa, apl;	/* units per alloc, allocs per line */
1589 
1590 	v = ai->nr_groups;
1591 	while (v /= 10)
1592 		group_width++;
1593 
1594 	v = num_possible_cpus();
1595 	while (v /= 10)
1596 		cpu_width++;
1597 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1598 
1599 	upa = ai->alloc_size / ai->unit_size;
1600 	width = upa * (cpu_width + 1) + group_width + 3;
1601 	apl = rounddown_pow_of_two(max(60 / width, 1));
1602 
1603 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1604 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1605 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1606 
1607 	for (group = 0; group < ai->nr_groups; group++) {
1608 		const struct pcpu_group_info *gi = &ai->groups[group];
1609 		int unit = 0, unit_end = 0;
1610 
1611 		BUG_ON(gi->nr_units % upa);
1612 		for (alloc_end += gi->nr_units / upa;
1613 		     alloc < alloc_end; alloc++) {
1614 			if (!(alloc % apl)) {
1615 				printk("\n");
1616 				printk("%spcpu-alloc: ", lvl);
1617 			}
1618 			printk("[%0*d] ", group_width, group);
1619 
1620 			for (unit_end += upa; unit < unit_end; unit++)
1621 				if (gi->cpu_map[unit] != NR_CPUS)
1622 					printk("%0*d ", cpu_width,
1623 					       gi->cpu_map[unit]);
1624 				else
1625 					printk("%s ", empty_str);
1626 		}
1627 	}
1628 	printk("\n");
1629 }
1630 
1631 /**
1632  * pcpu_setup_first_chunk - initialize the first percpu chunk
1633  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1634  * @base_addr: mapped address
1635  *
1636  * Initialize the first percpu chunk which contains the kernel static
1637  * perpcu area.  This function is to be called from arch percpu area
1638  * setup path.
1639  *
1640  * @ai contains all information necessary to initialize the first
1641  * chunk and prime the dynamic percpu allocator.
1642  *
1643  * @ai->static_size is the size of static percpu area.
1644  *
1645  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1646  * reserve after the static area in the first chunk.  This reserves
1647  * the first chunk such that it's available only through reserved
1648  * percpu allocation.  This is primarily used to serve module percpu
1649  * static areas on architectures where the addressing model has
1650  * limited offset range for symbol relocations to guarantee module
1651  * percpu symbols fall inside the relocatable range.
1652  *
1653  * @ai->dyn_size determines the number of bytes available for dynamic
1654  * allocation in the first chunk.  The area between @ai->static_size +
1655  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1656  *
1657  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1658  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1659  * @ai->dyn_size.
1660  *
1661  * @ai->atom_size is the allocation atom size and used as alignment
1662  * for vm areas.
1663  *
1664  * @ai->alloc_size is the allocation size and always multiple of
1665  * @ai->atom_size.  This is larger than @ai->atom_size if
1666  * @ai->unit_size is larger than @ai->atom_size.
1667  *
1668  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1669  * percpu areas.  Units which should be colocated are put into the
1670  * same group.  Dynamic VM areas will be allocated according to these
1671  * groupings.  If @ai->nr_groups is zero, a single group containing
1672  * all units is assumed.
1673  *
1674  * The caller should have mapped the first chunk at @base_addr and
1675  * copied static data to each unit.
1676  *
1677  * If the first chunk ends up with both reserved and dynamic areas, it
1678  * is served by two chunks - one to serve the core static and reserved
1679  * areas and the other for the dynamic area.  They share the same vm
1680  * and page map but uses different area allocation map to stay away
1681  * from each other.  The latter chunk is circulated in the chunk slots
1682  * and available for dynamic allocation like any other chunks.
1683  *
1684  * RETURNS:
1685  * 0 on success, -errno on failure.
1686  */
1687 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1688 				  void *base_addr)
1689 {
1690 	static char cpus_buf[4096] __initdata;
1691 	static int smap[2], dmap[2];
1692 	size_t dyn_size = ai->dyn_size;
1693 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1694 	struct pcpu_chunk *schunk, *dchunk = NULL;
1695 	unsigned long *group_offsets;
1696 	size_t *group_sizes;
1697 	unsigned long *unit_off;
1698 	unsigned int cpu;
1699 	int *unit_map;
1700 	int group, unit, i;
1701 
1702 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1703 
1704 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1705 	if (unlikely(cond)) {						\
1706 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1707 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1708 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1709 		BUG();							\
1710 	}								\
1711 } while (0)
1712 
1713 	/* sanity checks */
1714 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1715 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1716 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1717 	PCPU_SETUP_BUG_ON(!ai->static_size);
1718 	PCPU_SETUP_BUG_ON(!base_addr);
1719 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1720 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1721 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1722 
1723 	/* process group information and build config tables accordingly */
1724 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1725 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1726 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1727 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1728 
1729 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1730 		unit_map[cpu] = UINT_MAX;
1731 	pcpu_first_unit_cpu = NR_CPUS;
1732 
1733 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1734 		const struct pcpu_group_info *gi = &ai->groups[group];
1735 
1736 		group_offsets[group] = gi->base_offset;
1737 		group_sizes[group] = gi->nr_units * ai->unit_size;
1738 
1739 		for (i = 0; i < gi->nr_units; i++) {
1740 			cpu = gi->cpu_map[i];
1741 			if (cpu == NR_CPUS)
1742 				continue;
1743 
1744 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1745 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1746 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1747 
1748 			unit_map[cpu] = unit + i;
1749 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1750 
1751 			if (pcpu_first_unit_cpu == NR_CPUS)
1752 				pcpu_first_unit_cpu = cpu;
1753 		}
1754 	}
1755 	pcpu_last_unit_cpu = cpu;
1756 	pcpu_nr_units = unit;
1757 
1758 	for_each_possible_cpu(cpu)
1759 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1760 
1761 	/* we're done parsing the input, undefine BUG macro and dump config */
1762 #undef PCPU_SETUP_BUG_ON
1763 	pcpu_dump_alloc_info(KERN_INFO, ai);
1764 
1765 	pcpu_nr_groups = ai->nr_groups;
1766 	pcpu_group_offsets = group_offsets;
1767 	pcpu_group_sizes = group_sizes;
1768 	pcpu_unit_map = unit_map;
1769 	pcpu_unit_offsets = unit_off;
1770 
1771 	/* determine basic parameters */
1772 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1773 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1774 	pcpu_atom_size = ai->atom_size;
1775 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1776 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1777 
1778 	/*
1779 	 * Allocate chunk slots.  The additional last slot is for
1780 	 * empty chunks.
1781 	 */
1782 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1783 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1784 	for (i = 0; i < pcpu_nr_slots; i++)
1785 		INIT_LIST_HEAD(&pcpu_slot[i]);
1786 
1787 	/*
1788 	 * Initialize static chunk.  If reserved_size is zero, the
1789 	 * static chunk covers static area + dynamic allocation area
1790 	 * in the first chunk.  If reserved_size is not zero, it
1791 	 * covers static area + reserved area (mostly used for module
1792 	 * static percpu allocation).
1793 	 */
1794 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1795 	INIT_LIST_HEAD(&schunk->list);
1796 	schunk->base_addr = base_addr;
1797 	schunk->map = smap;
1798 	schunk->map_alloc = ARRAY_SIZE(smap);
1799 	schunk->immutable = true;
1800 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1801 
1802 	if (ai->reserved_size) {
1803 		schunk->free_size = ai->reserved_size;
1804 		pcpu_reserved_chunk = schunk;
1805 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1806 	} else {
1807 		schunk->free_size = dyn_size;
1808 		dyn_size = 0;			/* dynamic area covered */
1809 	}
1810 	schunk->contig_hint = schunk->free_size;
1811 
1812 	schunk->map[schunk->map_used++] = -ai->static_size;
1813 	if (schunk->free_size)
1814 		schunk->map[schunk->map_used++] = schunk->free_size;
1815 
1816 	/* init dynamic chunk if necessary */
1817 	if (dyn_size) {
1818 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1819 		INIT_LIST_HEAD(&dchunk->list);
1820 		dchunk->base_addr = base_addr;
1821 		dchunk->map = dmap;
1822 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1823 		dchunk->immutable = true;
1824 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1825 
1826 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1827 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1828 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1829 	}
1830 
1831 	/* link the first chunk in */
1832 	pcpu_first_chunk = dchunk ?: schunk;
1833 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1834 
1835 	/* we're done */
1836 	pcpu_base_addr = base_addr;
1837 	return 0;
1838 }
1839 
1840 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1841 	[PCPU_FC_AUTO]	= "auto",
1842 	[PCPU_FC_EMBED]	= "embed",
1843 	[PCPU_FC_PAGE]	= "page",
1844 };
1845 
1846 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1847 
1848 static int __init percpu_alloc_setup(char *str)
1849 {
1850 	if (0)
1851 		/* nada */;
1852 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1853 	else if (!strcmp(str, "embed"))
1854 		pcpu_chosen_fc = PCPU_FC_EMBED;
1855 #endif
1856 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1857 	else if (!strcmp(str, "page"))
1858 		pcpu_chosen_fc = PCPU_FC_PAGE;
1859 #endif
1860 	else
1861 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1862 
1863 	return 0;
1864 }
1865 early_param("percpu_alloc", percpu_alloc_setup);
1866 
1867 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1868 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1869 /**
1870  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1871  * @reserved_size: the size of reserved percpu area in bytes
1872  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1873  * @atom_size: allocation atom size
1874  * @cpu_distance_fn: callback to determine distance between cpus, optional
1875  * @alloc_fn: function to allocate percpu page
1876  * @free_fn: funtion to free percpu page
1877  *
1878  * This is a helper to ease setting up embedded first percpu chunk and
1879  * can be called where pcpu_setup_first_chunk() is expected.
1880  *
1881  * If this function is used to setup the first chunk, it is allocated
1882  * by calling @alloc_fn and used as-is without being mapped into
1883  * vmalloc area.  Allocations are always whole multiples of @atom_size
1884  * aligned to @atom_size.
1885  *
1886  * This enables the first chunk to piggy back on the linear physical
1887  * mapping which often uses larger page size.  Please note that this
1888  * can result in very sparse cpu->unit mapping on NUMA machines thus
1889  * requiring large vmalloc address space.  Don't use this allocator if
1890  * vmalloc space is not orders of magnitude larger than distances
1891  * between node memory addresses (ie. 32bit NUMA machines).
1892  *
1893  * When @dyn_size is positive, dynamic area might be larger than
1894  * specified to fill page alignment.  When @dyn_size is auto,
1895  * @dyn_size is just big enough to fill page alignment after static
1896  * and reserved areas.
1897  *
1898  * If the needed size is smaller than the minimum or specified unit
1899  * size, the leftover is returned using @free_fn.
1900  *
1901  * RETURNS:
1902  * 0 on success, -errno on failure.
1903  */
1904 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1905 				  size_t atom_size,
1906 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1907 				  pcpu_fc_alloc_fn_t alloc_fn,
1908 				  pcpu_fc_free_fn_t free_fn)
1909 {
1910 	void *base = (void *)ULONG_MAX;
1911 	void **areas = NULL;
1912 	struct pcpu_alloc_info *ai;
1913 	size_t size_sum, areas_size, max_distance;
1914 	int group, i, rc;
1915 
1916 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1917 				   cpu_distance_fn);
1918 	if (IS_ERR(ai))
1919 		return PTR_ERR(ai);
1920 
1921 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1922 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1923 
1924 	areas = alloc_bootmem_nopanic(areas_size);
1925 	if (!areas) {
1926 		rc = -ENOMEM;
1927 		goto out_free;
1928 	}
1929 
1930 	/* allocate, copy and determine base address */
1931 	for (group = 0; group < ai->nr_groups; group++) {
1932 		struct pcpu_group_info *gi = &ai->groups[group];
1933 		unsigned int cpu = NR_CPUS;
1934 		void *ptr;
1935 
1936 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1937 			cpu = gi->cpu_map[i];
1938 		BUG_ON(cpu == NR_CPUS);
1939 
1940 		/* allocate space for the whole group */
1941 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1942 		if (!ptr) {
1943 			rc = -ENOMEM;
1944 			goto out_free_areas;
1945 		}
1946 		areas[group] = ptr;
1947 
1948 		base = min(ptr, base);
1949 
1950 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1951 			if (gi->cpu_map[i] == NR_CPUS) {
1952 				/* unused unit, free whole */
1953 				free_fn(ptr, ai->unit_size);
1954 				continue;
1955 			}
1956 			/* copy and return the unused part */
1957 			memcpy(ptr, __per_cpu_load, ai->static_size);
1958 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1959 		}
1960 	}
1961 
1962 	/* base address is now known, determine group base offsets */
1963 	max_distance = 0;
1964 	for (group = 0; group < ai->nr_groups; group++) {
1965 		ai->groups[group].base_offset = areas[group] - base;
1966 		max_distance = max_t(size_t, max_distance,
1967 				     ai->groups[group].base_offset);
1968 	}
1969 	max_distance += ai->unit_size;
1970 
1971 	/* warn if maximum distance is further than 75% of vmalloc space */
1972 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1973 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1974 			   "space 0x%lx\n",
1975 			   max_distance, VMALLOC_END - VMALLOC_START);
1976 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1977 		/* and fail if we have fallback */
1978 		rc = -EINVAL;
1979 		goto out_free;
1980 #endif
1981 	}
1982 
1983 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1984 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1985 		ai->dyn_size, ai->unit_size);
1986 
1987 	rc = pcpu_setup_first_chunk(ai, base);
1988 	goto out_free;
1989 
1990 out_free_areas:
1991 	for (group = 0; group < ai->nr_groups; group++)
1992 		free_fn(areas[group],
1993 			ai->groups[group].nr_units * ai->unit_size);
1994 out_free:
1995 	pcpu_free_alloc_info(ai);
1996 	if (areas)
1997 		free_bootmem(__pa(areas), areas_size);
1998 	return rc;
1999 }
2000 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
2001 	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
2002 
2003 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2004 /**
2005  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2006  * @reserved_size: the size of reserved percpu area in bytes
2007  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2008  * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
2009  * @populate_pte_fn: function to populate pte
2010  *
2011  * This is a helper to ease setting up page-remapped first percpu
2012  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2013  *
2014  * This is the basic allocator.  Static percpu area is allocated
2015  * page-by-page into vmalloc area.
2016  *
2017  * RETURNS:
2018  * 0 on success, -errno on failure.
2019  */
2020 int __init pcpu_page_first_chunk(size_t reserved_size,
2021 				 pcpu_fc_alloc_fn_t alloc_fn,
2022 				 pcpu_fc_free_fn_t free_fn,
2023 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2024 {
2025 	static struct vm_struct vm;
2026 	struct pcpu_alloc_info *ai;
2027 	char psize_str[16];
2028 	int unit_pages;
2029 	size_t pages_size;
2030 	struct page **pages;
2031 	int unit, i, j, rc;
2032 
2033 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2034 
2035 	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
2036 	if (IS_ERR(ai))
2037 		return PTR_ERR(ai);
2038 	BUG_ON(ai->nr_groups != 1);
2039 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2040 
2041 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2042 
2043 	/* unaligned allocations can't be freed, round up to page size */
2044 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2045 			       sizeof(pages[0]));
2046 	pages = alloc_bootmem(pages_size);
2047 
2048 	/* allocate pages */
2049 	j = 0;
2050 	for (unit = 0; unit < num_possible_cpus(); unit++)
2051 		for (i = 0; i < unit_pages; i++) {
2052 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2053 			void *ptr;
2054 
2055 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2056 			if (!ptr) {
2057 				pr_warning("PERCPU: failed to allocate %s page "
2058 					   "for cpu%u\n", psize_str, cpu);
2059 				goto enomem;
2060 			}
2061 			pages[j++] = virt_to_page(ptr);
2062 		}
2063 
2064 	/* allocate vm area, map the pages and copy static data */
2065 	vm.flags = VM_ALLOC;
2066 	vm.size = num_possible_cpus() * ai->unit_size;
2067 	vm_area_register_early(&vm, PAGE_SIZE);
2068 
2069 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2070 		unsigned long unit_addr =
2071 			(unsigned long)vm.addr + unit * ai->unit_size;
2072 
2073 		for (i = 0; i < unit_pages; i++)
2074 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2075 
2076 		/* pte already populated, the following shouldn't fail */
2077 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2078 				      unit_pages);
2079 		if (rc < 0)
2080 			panic("failed to map percpu area, err=%d\n", rc);
2081 
2082 		/*
2083 		 * FIXME: Archs with virtual cache should flush local
2084 		 * cache for the linear mapping here - something
2085 		 * equivalent to flush_cache_vmap() on the local cpu.
2086 		 * flush_cache_vmap() can't be used as most supporting
2087 		 * data structures are not set up yet.
2088 		 */
2089 
2090 		/* copy static data */
2091 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2092 	}
2093 
2094 	/* we're ready, commit */
2095 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2096 		unit_pages, psize_str, vm.addr, ai->static_size,
2097 		ai->reserved_size, ai->dyn_size);
2098 
2099 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2100 	goto out_free_ar;
2101 
2102 enomem:
2103 	while (--j >= 0)
2104 		free_fn(page_address(pages[j]), PAGE_SIZE);
2105 	rc = -ENOMEM;
2106 out_free_ar:
2107 	free_bootmem(__pa(pages), pages_size);
2108 	pcpu_free_alloc_info(ai);
2109 	return rc;
2110 }
2111 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2112 
2113 /*
2114  * Generic percpu area setup.
2115  *
2116  * The embedding helper is used because its behavior closely resembles
2117  * the original non-dynamic generic percpu area setup.  This is
2118  * important because many archs have addressing restrictions and might
2119  * fail if the percpu area is located far away from the previous
2120  * location.  As an added bonus, in non-NUMA cases, embedding is
2121  * generally a good idea TLB-wise because percpu area can piggy back
2122  * on the physical linear memory mapping which uses large page
2123  * mappings on applicable archs.
2124  */
2125 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2126 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2127 EXPORT_SYMBOL(__per_cpu_offset);
2128 
2129 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2130 				       size_t align)
2131 {
2132 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2133 }
2134 
2135 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2136 {
2137 	free_bootmem(__pa(ptr), size);
2138 }
2139 
2140 void __init setup_per_cpu_areas(void)
2141 {
2142 	unsigned long delta;
2143 	unsigned int cpu;
2144 	int rc;
2145 
2146 	/*
2147 	 * Always reserve area for module percpu variables.  That's
2148 	 * what the legacy allocator did.
2149 	 */
2150 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2151 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2152 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2153 	if (rc < 0)
2154 		panic("Failed to initialized percpu areas.");
2155 
2156 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2157 	for_each_possible_cpu(cpu)
2158 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2159 }
2160 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2161