1 /* 2 * linux/mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each 11 * chunk is consisted of boot-time determined number of units and the 12 * first chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. ie. in 17 * vmalloc area 18 * 19 * c0 c1 c2 20 * ------------------- ------------------- ------------ 21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 22 * ------------------- ...... ------------------- .... ------------ 23 * 24 * Allocation is done in offset-size areas of single unit space. Ie, 25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 27 * cpus. On NUMA, the mapping can be non-linear and even sparse. 28 * Percpu access can be done by configuring percpu base registers 29 * according to cpu to unit mapping and pcpu_unit_size. 30 * 31 * There are usually many small percpu allocations many of them being 32 * as small as 4 bytes. The allocator organizes chunks into lists 33 * according to free size and tries to allocate from the fullest one. 34 * Each chunk keeps the maximum contiguous area size hint which is 35 * guaranteed to be eqaul to or larger than the maximum contiguous 36 * area in the chunk. This helps the allocator not to iterate the 37 * chunk maps unnecessarily. 38 * 39 * Allocation state in each chunk is kept using an array of integers 40 * on chunk->map. A positive value in the map represents a free 41 * region and negative allocated. Allocation inside a chunk is done 42 * by scanning this map sequentially and serving the first matching 43 * entry. This is mostly copied from the percpu_modalloc() allocator. 44 * Chunks can be determined from the address using the index field 45 * in the page struct. The index field contains a pointer to the chunk. 46 * 47 * To use this allocator, arch code should do the followings. 48 * 49 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 50 * regular address to percpu pointer and back if they need to be 51 * different from the default 52 * 53 * - use pcpu_setup_first_chunk() during percpu area initialization to 54 * setup the first chunk containing the kernel static percpu area 55 */ 56 57 #include <linux/bitmap.h> 58 #include <linux/bootmem.h> 59 #include <linux/err.h> 60 #include <linux/list.h> 61 #include <linux/log2.h> 62 #include <linux/mm.h> 63 #include <linux/module.h> 64 #include <linux/mutex.h> 65 #include <linux/percpu.h> 66 #include <linux/pfn.h> 67 #include <linux/slab.h> 68 #include <linux/spinlock.h> 69 #include <linux/vmalloc.h> 70 #include <linux/workqueue.h> 71 72 #include <asm/cacheflush.h> 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/io.h> 76 77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 79 80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 81 #ifndef __addr_to_pcpu_ptr 82 #define __addr_to_pcpu_ptr(addr) \ 83 (void __percpu *)((unsigned long)(addr) - \ 84 (unsigned long)pcpu_base_addr + \ 85 (unsigned long)__per_cpu_start) 86 #endif 87 #ifndef __pcpu_ptr_to_addr 88 #define __pcpu_ptr_to_addr(ptr) \ 89 (void __force *)((unsigned long)(ptr) + \ 90 (unsigned long)pcpu_base_addr - \ 91 (unsigned long)__per_cpu_start) 92 #endif 93 94 struct pcpu_chunk { 95 struct list_head list; /* linked to pcpu_slot lists */ 96 int free_size; /* free bytes in the chunk */ 97 int contig_hint; /* max contiguous size hint */ 98 void *base_addr; /* base address of this chunk */ 99 int map_used; /* # of map entries used */ 100 int map_alloc; /* # of map entries allocated */ 101 int *map; /* allocation map */ 102 struct vm_struct **vms; /* mapped vmalloc regions */ 103 bool immutable; /* no [de]population allowed */ 104 unsigned long populated[]; /* populated bitmap */ 105 }; 106 107 static int pcpu_unit_pages __read_mostly; 108 static int pcpu_unit_size __read_mostly; 109 static int pcpu_nr_units __read_mostly; 110 static int pcpu_atom_size __read_mostly; 111 static int pcpu_nr_slots __read_mostly; 112 static size_t pcpu_chunk_struct_size __read_mostly; 113 114 /* cpus with the lowest and highest unit numbers */ 115 static unsigned int pcpu_first_unit_cpu __read_mostly; 116 static unsigned int pcpu_last_unit_cpu __read_mostly; 117 118 /* the address of the first chunk which starts with the kernel static area */ 119 void *pcpu_base_addr __read_mostly; 120 EXPORT_SYMBOL_GPL(pcpu_base_addr); 121 122 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 123 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 124 125 /* group information, used for vm allocation */ 126 static int pcpu_nr_groups __read_mostly; 127 static const unsigned long *pcpu_group_offsets __read_mostly; 128 static const size_t *pcpu_group_sizes __read_mostly; 129 130 /* 131 * The first chunk which always exists. Note that unlike other 132 * chunks, this one can be allocated and mapped in several different 133 * ways and thus often doesn't live in the vmalloc area. 134 */ 135 static struct pcpu_chunk *pcpu_first_chunk; 136 137 /* 138 * Optional reserved chunk. This chunk reserves part of the first 139 * chunk and serves it for reserved allocations. The amount of 140 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 141 * area doesn't exist, the following variables contain NULL and 0 142 * respectively. 143 */ 144 static struct pcpu_chunk *pcpu_reserved_chunk; 145 static int pcpu_reserved_chunk_limit; 146 147 /* 148 * Synchronization rules. 149 * 150 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 151 * protects allocation/reclaim paths, chunks, populated bitmap and 152 * vmalloc mapping. The latter is a spinlock and protects the index 153 * data structures - chunk slots, chunks and area maps in chunks. 154 * 155 * During allocation, pcpu_alloc_mutex is kept locked all the time and 156 * pcpu_lock is grabbed and released as necessary. All actual memory 157 * allocations are done using GFP_KERNEL with pcpu_lock released. In 158 * general, percpu memory can't be allocated with irq off but 159 * irqsave/restore are still used in alloc path so that it can be used 160 * from early init path - sched_init() specifically. 161 * 162 * Free path accesses and alters only the index data structures, so it 163 * can be safely called from atomic context. When memory needs to be 164 * returned to the system, free path schedules reclaim_work which 165 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 166 * reclaimed, release both locks and frees the chunks. Note that it's 167 * necessary to grab both locks to remove a chunk from circulation as 168 * allocation path might be referencing the chunk with only 169 * pcpu_alloc_mutex locked. 170 */ 171 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 172 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 173 174 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 175 176 /* reclaim work to release fully free chunks, scheduled from free path */ 177 static void pcpu_reclaim(struct work_struct *work); 178 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 179 180 static int __pcpu_size_to_slot(int size) 181 { 182 int highbit = fls(size); /* size is in bytes */ 183 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 184 } 185 186 static int pcpu_size_to_slot(int size) 187 { 188 if (size == pcpu_unit_size) 189 return pcpu_nr_slots - 1; 190 return __pcpu_size_to_slot(size); 191 } 192 193 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 194 { 195 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 196 return 0; 197 198 return pcpu_size_to_slot(chunk->free_size); 199 } 200 201 static int pcpu_page_idx(unsigned int cpu, int page_idx) 202 { 203 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 204 } 205 206 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 207 unsigned int cpu, int page_idx) 208 { 209 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 210 (page_idx << PAGE_SHIFT); 211 } 212 213 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, 214 unsigned int cpu, int page_idx) 215 { 216 /* must not be used on pre-mapped chunk */ 217 WARN_ON(chunk->immutable); 218 219 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); 220 } 221 222 /* set the pointer to a chunk in a page struct */ 223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 224 { 225 page->index = (unsigned long)pcpu; 226 } 227 228 /* obtain pointer to a chunk from a page struct */ 229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 230 { 231 return (struct pcpu_chunk *)page->index; 232 } 233 234 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) 235 { 236 *rs = find_next_zero_bit(chunk->populated, end, *rs); 237 *re = find_next_bit(chunk->populated, end, *rs + 1); 238 } 239 240 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) 241 { 242 *rs = find_next_bit(chunk->populated, end, *rs); 243 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 244 } 245 246 /* 247 * (Un)populated page region iterators. Iterate over (un)populated 248 * page regions betwen @start and @end in @chunk. @rs and @re should 249 * be integer variables and will be set to start and end page index of 250 * the current region. 251 */ 252 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 253 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 254 (rs) < (re); \ 255 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 256 257 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 258 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 259 (rs) < (re); \ 260 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 261 262 /** 263 * pcpu_mem_alloc - allocate memory 264 * @size: bytes to allocate 265 * 266 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 267 * kzalloc() is used; otherwise, vmalloc() is used. The returned 268 * memory is always zeroed. 269 * 270 * CONTEXT: 271 * Does GFP_KERNEL allocation. 272 * 273 * RETURNS: 274 * Pointer to the allocated area on success, NULL on failure. 275 */ 276 static void *pcpu_mem_alloc(size_t size) 277 { 278 if (size <= PAGE_SIZE) 279 return kzalloc(size, GFP_KERNEL); 280 else { 281 void *ptr = vmalloc(size); 282 if (ptr) 283 memset(ptr, 0, size); 284 return ptr; 285 } 286 } 287 288 /** 289 * pcpu_mem_free - free memory 290 * @ptr: memory to free 291 * @size: size of the area 292 * 293 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). 294 */ 295 static void pcpu_mem_free(void *ptr, size_t size) 296 { 297 if (size <= PAGE_SIZE) 298 kfree(ptr); 299 else 300 vfree(ptr); 301 } 302 303 /** 304 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 305 * @chunk: chunk of interest 306 * @oslot: the previous slot it was on 307 * 308 * This function is called after an allocation or free changed @chunk. 309 * New slot according to the changed state is determined and @chunk is 310 * moved to the slot. Note that the reserved chunk is never put on 311 * chunk slots. 312 * 313 * CONTEXT: 314 * pcpu_lock. 315 */ 316 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 317 { 318 int nslot = pcpu_chunk_slot(chunk); 319 320 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 321 if (oslot < nslot) 322 list_move(&chunk->list, &pcpu_slot[nslot]); 323 else 324 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 325 } 326 } 327 328 /** 329 * pcpu_chunk_addr_search - determine chunk containing specified address 330 * @addr: address for which the chunk needs to be determined. 331 * 332 * RETURNS: 333 * The address of the found chunk. 334 */ 335 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 336 { 337 void *first_start = pcpu_first_chunk->base_addr; 338 339 /* is it in the first chunk? */ 340 if (addr >= first_start && addr < first_start + pcpu_unit_size) { 341 /* is it in the reserved area? */ 342 if (addr < first_start + pcpu_reserved_chunk_limit) 343 return pcpu_reserved_chunk; 344 return pcpu_first_chunk; 345 } 346 347 /* 348 * The address is relative to unit0 which might be unused and 349 * thus unmapped. Offset the address to the unit space of the 350 * current processor before looking it up in the vmalloc 351 * space. Note that any possible cpu id can be used here, so 352 * there's no need to worry about preemption or cpu hotplug. 353 */ 354 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 355 return pcpu_get_page_chunk(vmalloc_to_page(addr)); 356 } 357 358 /** 359 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 360 * @chunk: chunk of interest 361 * 362 * Determine whether area map of @chunk needs to be extended to 363 * accomodate a new allocation. 364 * 365 * CONTEXT: 366 * pcpu_lock. 367 * 368 * RETURNS: 369 * New target map allocation length if extension is necessary, 0 370 * otherwise. 371 */ 372 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 373 { 374 int new_alloc; 375 376 if (chunk->map_alloc >= chunk->map_used + 2) 377 return 0; 378 379 new_alloc = PCPU_DFL_MAP_ALLOC; 380 while (new_alloc < chunk->map_used + 2) 381 new_alloc *= 2; 382 383 return new_alloc; 384 } 385 386 /** 387 * pcpu_extend_area_map - extend area map of a chunk 388 * @chunk: chunk of interest 389 * @new_alloc: new target allocation length of the area map 390 * 391 * Extend area map of @chunk to have @new_alloc entries. 392 * 393 * CONTEXT: 394 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 395 * 396 * RETURNS: 397 * 0 on success, -errno on failure. 398 */ 399 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 400 { 401 int *old = NULL, *new = NULL; 402 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 403 unsigned long flags; 404 405 new = pcpu_mem_alloc(new_size); 406 if (!new) 407 return -ENOMEM; 408 409 /* acquire pcpu_lock and switch to new area map */ 410 spin_lock_irqsave(&pcpu_lock, flags); 411 412 if (new_alloc <= chunk->map_alloc) 413 goto out_unlock; 414 415 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 416 memcpy(new, chunk->map, old_size); 417 418 /* 419 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is 420 * one of the first chunks and still using static map. 421 */ 422 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) 423 old = chunk->map; 424 425 chunk->map_alloc = new_alloc; 426 chunk->map = new; 427 new = NULL; 428 429 out_unlock: 430 spin_unlock_irqrestore(&pcpu_lock, flags); 431 432 /* 433 * pcpu_mem_free() might end up calling vfree() which uses 434 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 435 */ 436 pcpu_mem_free(old, old_size); 437 pcpu_mem_free(new, new_size); 438 439 return 0; 440 } 441 442 /** 443 * pcpu_split_block - split a map block 444 * @chunk: chunk of interest 445 * @i: index of map block to split 446 * @head: head size in bytes (can be 0) 447 * @tail: tail size in bytes (can be 0) 448 * 449 * Split the @i'th map block into two or three blocks. If @head is 450 * non-zero, @head bytes block is inserted before block @i moving it 451 * to @i+1 and reducing its size by @head bytes. 452 * 453 * If @tail is non-zero, the target block, which can be @i or @i+1 454 * depending on @head, is reduced by @tail bytes and @tail byte block 455 * is inserted after the target block. 456 * 457 * @chunk->map must have enough free slots to accomodate the split. 458 * 459 * CONTEXT: 460 * pcpu_lock. 461 */ 462 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 463 int head, int tail) 464 { 465 int nr_extra = !!head + !!tail; 466 467 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 468 469 /* insert new subblocks */ 470 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 471 sizeof(chunk->map[0]) * (chunk->map_used - i)); 472 chunk->map_used += nr_extra; 473 474 if (head) { 475 chunk->map[i + 1] = chunk->map[i] - head; 476 chunk->map[i++] = head; 477 } 478 if (tail) { 479 chunk->map[i++] -= tail; 480 chunk->map[i] = tail; 481 } 482 } 483 484 /** 485 * pcpu_alloc_area - allocate area from a pcpu_chunk 486 * @chunk: chunk of interest 487 * @size: wanted size in bytes 488 * @align: wanted align 489 * 490 * Try to allocate @size bytes area aligned at @align from @chunk. 491 * Note that this function only allocates the offset. It doesn't 492 * populate or map the area. 493 * 494 * @chunk->map must have at least two free slots. 495 * 496 * CONTEXT: 497 * pcpu_lock. 498 * 499 * RETURNS: 500 * Allocated offset in @chunk on success, -1 if no matching area is 501 * found. 502 */ 503 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 504 { 505 int oslot = pcpu_chunk_slot(chunk); 506 int max_contig = 0; 507 int i, off; 508 509 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 510 bool is_last = i + 1 == chunk->map_used; 511 int head, tail; 512 513 /* extra for alignment requirement */ 514 head = ALIGN(off, align) - off; 515 BUG_ON(i == 0 && head != 0); 516 517 if (chunk->map[i] < 0) 518 continue; 519 if (chunk->map[i] < head + size) { 520 max_contig = max(chunk->map[i], max_contig); 521 continue; 522 } 523 524 /* 525 * If head is small or the previous block is free, 526 * merge'em. Note that 'small' is defined as smaller 527 * than sizeof(int), which is very small but isn't too 528 * uncommon for percpu allocations. 529 */ 530 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 531 if (chunk->map[i - 1] > 0) 532 chunk->map[i - 1] += head; 533 else { 534 chunk->map[i - 1] -= head; 535 chunk->free_size -= head; 536 } 537 chunk->map[i] -= head; 538 off += head; 539 head = 0; 540 } 541 542 /* if tail is small, just keep it around */ 543 tail = chunk->map[i] - head - size; 544 if (tail < sizeof(int)) 545 tail = 0; 546 547 /* split if warranted */ 548 if (head || tail) { 549 pcpu_split_block(chunk, i, head, tail); 550 if (head) { 551 i++; 552 off += head; 553 max_contig = max(chunk->map[i - 1], max_contig); 554 } 555 if (tail) 556 max_contig = max(chunk->map[i + 1], max_contig); 557 } 558 559 /* update hint and mark allocated */ 560 if (is_last) 561 chunk->contig_hint = max_contig; /* fully scanned */ 562 else 563 chunk->contig_hint = max(chunk->contig_hint, 564 max_contig); 565 566 chunk->free_size -= chunk->map[i]; 567 chunk->map[i] = -chunk->map[i]; 568 569 pcpu_chunk_relocate(chunk, oslot); 570 return off; 571 } 572 573 chunk->contig_hint = max_contig; /* fully scanned */ 574 pcpu_chunk_relocate(chunk, oslot); 575 576 /* tell the upper layer that this chunk has no matching area */ 577 return -1; 578 } 579 580 /** 581 * pcpu_free_area - free area to a pcpu_chunk 582 * @chunk: chunk of interest 583 * @freeme: offset of area to free 584 * 585 * Free area starting from @freeme to @chunk. Note that this function 586 * only modifies the allocation map. It doesn't depopulate or unmap 587 * the area. 588 * 589 * CONTEXT: 590 * pcpu_lock. 591 */ 592 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 593 { 594 int oslot = pcpu_chunk_slot(chunk); 595 int i, off; 596 597 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 598 if (off == freeme) 599 break; 600 BUG_ON(off != freeme); 601 BUG_ON(chunk->map[i] > 0); 602 603 chunk->map[i] = -chunk->map[i]; 604 chunk->free_size += chunk->map[i]; 605 606 /* merge with previous? */ 607 if (i > 0 && chunk->map[i - 1] >= 0) { 608 chunk->map[i - 1] += chunk->map[i]; 609 chunk->map_used--; 610 memmove(&chunk->map[i], &chunk->map[i + 1], 611 (chunk->map_used - i) * sizeof(chunk->map[0])); 612 i--; 613 } 614 /* merge with next? */ 615 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 616 chunk->map[i] += chunk->map[i + 1]; 617 chunk->map_used--; 618 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 619 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 620 } 621 622 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 623 pcpu_chunk_relocate(chunk, oslot); 624 } 625 626 /** 627 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap 628 * @chunk: chunk of interest 629 * @bitmapp: output parameter for bitmap 630 * @may_alloc: may allocate the array 631 * 632 * Returns pointer to array of pointers to struct page and bitmap, 633 * both of which can be indexed with pcpu_page_idx(). The returned 634 * array is cleared to zero and *@bitmapp is copied from 635 * @chunk->populated. Note that there is only one array and bitmap 636 * and access exclusion is the caller's responsibility. 637 * 638 * CONTEXT: 639 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. 640 * Otherwise, don't care. 641 * 642 * RETURNS: 643 * Pointer to temp pages array on success, NULL on failure. 644 */ 645 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, 646 unsigned long **bitmapp, 647 bool may_alloc) 648 { 649 static struct page **pages; 650 static unsigned long *bitmap; 651 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); 652 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * 653 sizeof(unsigned long); 654 655 if (!pages || !bitmap) { 656 if (may_alloc && !pages) 657 pages = pcpu_mem_alloc(pages_size); 658 if (may_alloc && !bitmap) 659 bitmap = pcpu_mem_alloc(bitmap_size); 660 if (!pages || !bitmap) 661 return NULL; 662 } 663 664 memset(pages, 0, pages_size); 665 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); 666 667 *bitmapp = bitmap; 668 return pages; 669 } 670 671 /** 672 * pcpu_free_pages - free pages which were allocated for @chunk 673 * @chunk: chunk pages were allocated for 674 * @pages: array of pages to be freed, indexed by pcpu_page_idx() 675 * @populated: populated bitmap 676 * @page_start: page index of the first page to be freed 677 * @page_end: page index of the last page to be freed + 1 678 * 679 * Free pages [@page_start and @page_end) in @pages for all units. 680 * The pages were allocated for @chunk. 681 */ 682 static void pcpu_free_pages(struct pcpu_chunk *chunk, 683 struct page **pages, unsigned long *populated, 684 int page_start, int page_end) 685 { 686 unsigned int cpu; 687 int i; 688 689 for_each_possible_cpu(cpu) { 690 for (i = page_start; i < page_end; i++) { 691 struct page *page = pages[pcpu_page_idx(cpu, i)]; 692 693 if (page) 694 __free_page(page); 695 } 696 } 697 } 698 699 /** 700 * pcpu_alloc_pages - allocates pages for @chunk 701 * @chunk: target chunk 702 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() 703 * @populated: populated bitmap 704 * @page_start: page index of the first page to be allocated 705 * @page_end: page index of the last page to be allocated + 1 706 * 707 * Allocate pages [@page_start,@page_end) into @pages for all units. 708 * The allocation is for @chunk. Percpu core doesn't care about the 709 * content of @pages and will pass it verbatim to pcpu_map_pages(). 710 */ 711 static int pcpu_alloc_pages(struct pcpu_chunk *chunk, 712 struct page **pages, unsigned long *populated, 713 int page_start, int page_end) 714 { 715 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; 716 unsigned int cpu; 717 int i; 718 719 for_each_possible_cpu(cpu) { 720 for (i = page_start; i < page_end; i++) { 721 struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; 722 723 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); 724 if (!*pagep) { 725 pcpu_free_pages(chunk, pages, populated, 726 page_start, page_end); 727 return -ENOMEM; 728 } 729 } 730 } 731 return 0; 732 } 733 734 /** 735 * pcpu_pre_unmap_flush - flush cache prior to unmapping 736 * @chunk: chunk the regions to be flushed belongs to 737 * @page_start: page index of the first page to be flushed 738 * @page_end: page index of the last page to be flushed + 1 739 * 740 * Pages in [@page_start,@page_end) of @chunk are about to be 741 * unmapped. Flush cache. As each flushing trial can be very 742 * expensive, issue flush on the whole region at once rather than 743 * doing it for each cpu. This could be an overkill but is more 744 * scalable. 745 */ 746 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, 747 int page_start, int page_end) 748 { 749 flush_cache_vunmap( 750 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 751 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 752 } 753 754 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) 755 { 756 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); 757 } 758 759 /** 760 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk 761 * @chunk: chunk of interest 762 * @pages: pages array which can be used to pass information to free 763 * @populated: populated bitmap 764 * @page_start: page index of the first page to unmap 765 * @page_end: page index of the last page to unmap + 1 766 * 767 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. 768 * Corresponding elements in @pages were cleared by the caller and can 769 * be used to carry information to pcpu_free_pages() which will be 770 * called after all unmaps are finished. The caller should call 771 * proper pre/post flush functions. 772 */ 773 static void pcpu_unmap_pages(struct pcpu_chunk *chunk, 774 struct page **pages, unsigned long *populated, 775 int page_start, int page_end) 776 { 777 unsigned int cpu; 778 int i; 779 780 for_each_possible_cpu(cpu) { 781 for (i = page_start; i < page_end; i++) { 782 struct page *page; 783 784 page = pcpu_chunk_page(chunk, cpu, i); 785 WARN_ON(!page); 786 pages[pcpu_page_idx(cpu, i)] = page; 787 } 788 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), 789 page_end - page_start); 790 } 791 792 for (i = page_start; i < page_end; i++) 793 __clear_bit(i, populated); 794 } 795 796 /** 797 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping 798 * @chunk: pcpu_chunk the regions to be flushed belong to 799 * @page_start: page index of the first page to be flushed 800 * @page_end: page index of the last page to be flushed + 1 801 * 802 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush 803 * TLB for the regions. This can be skipped if the area is to be 804 * returned to vmalloc as vmalloc will handle TLB flushing lazily. 805 * 806 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once 807 * for the whole region. 808 */ 809 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, 810 int page_start, int page_end) 811 { 812 flush_tlb_kernel_range( 813 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 814 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 815 } 816 817 static int __pcpu_map_pages(unsigned long addr, struct page **pages, 818 int nr_pages) 819 { 820 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, 821 PAGE_KERNEL, pages); 822 } 823 824 /** 825 * pcpu_map_pages - map pages into a pcpu_chunk 826 * @chunk: chunk of interest 827 * @pages: pages array containing pages to be mapped 828 * @populated: populated bitmap 829 * @page_start: page index of the first page to map 830 * @page_end: page index of the last page to map + 1 831 * 832 * For each cpu, map pages [@page_start,@page_end) into @chunk. The 833 * caller is responsible for calling pcpu_post_map_flush() after all 834 * mappings are complete. 835 * 836 * This function is responsible for setting corresponding bits in 837 * @chunk->populated bitmap and whatever is necessary for reverse 838 * lookup (addr -> chunk). 839 */ 840 static int pcpu_map_pages(struct pcpu_chunk *chunk, 841 struct page **pages, unsigned long *populated, 842 int page_start, int page_end) 843 { 844 unsigned int cpu, tcpu; 845 int i, err; 846 847 for_each_possible_cpu(cpu) { 848 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), 849 &pages[pcpu_page_idx(cpu, page_start)], 850 page_end - page_start); 851 if (err < 0) 852 goto err; 853 } 854 855 /* mapping successful, link chunk and mark populated */ 856 for (i = page_start; i < page_end; i++) { 857 for_each_possible_cpu(cpu) 858 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], 859 chunk); 860 __set_bit(i, populated); 861 } 862 863 return 0; 864 865 err: 866 for_each_possible_cpu(tcpu) { 867 if (tcpu == cpu) 868 break; 869 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), 870 page_end - page_start); 871 } 872 return err; 873 } 874 875 /** 876 * pcpu_post_map_flush - flush cache after mapping 877 * @chunk: pcpu_chunk the regions to be flushed belong to 878 * @page_start: page index of the first page to be flushed 879 * @page_end: page index of the last page to be flushed + 1 880 * 881 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush 882 * cache. 883 * 884 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once 885 * for the whole region. 886 */ 887 static void pcpu_post_map_flush(struct pcpu_chunk *chunk, 888 int page_start, int page_end) 889 { 890 flush_cache_vmap( 891 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 892 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 893 } 894 895 /** 896 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk 897 * @chunk: chunk to depopulate 898 * @off: offset to the area to depopulate 899 * @size: size of the area to depopulate in bytes 900 * @flush: whether to flush cache and tlb or not 901 * 902 * For each cpu, depopulate and unmap pages [@page_start,@page_end) 903 * from @chunk. If @flush is true, vcache is flushed before unmapping 904 * and tlb after. 905 * 906 * CONTEXT: 907 * pcpu_alloc_mutex. 908 */ 909 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) 910 { 911 int page_start = PFN_DOWN(off); 912 int page_end = PFN_UP(off + size); 913 struct page **pages; 914 unsigned long *populated; 915 int rs, re; 916 917 /* quick path, check whether it's empty already */ 918 rs = page_start; 919 pcpu_next_unpop(chunk, &rs, &re, page_end); 920 if (rs == page_start && re == page_end) 921 return; 922 923 /* immutable chunks can't be depopulated */ 924 WARN_ON(chunk->immutable); 925 926 /* 927 * If control reaches here, there must have been at least one 928 * successful population attempt so the temp pages array must 929 * be available now. 930 */ 931 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); 932 BUG_ON(!pages); 933 934 /* unmap and free */ 935 pcpu_pre_unmap_flush(chunk, page_start, page_end); 936 937 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) 938 pcpu_unmap_pages(chunk, pages, populated, rs, re); 939 940 /* no need to flush tlb, vmalloc will handle it lazily */ 941 942 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) 943 pcpu_free_pages(chunk, pages, populated, rs, re); 944 945 /* commit new bitmap */ 946 bitmap_copy(chunk->populated, populated, pcpu_unit_pages); 947 } 948 949 /** 950 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk 951 * @chunk: chunk of interest 952 * @off: offset to the area to populate 953 * @size: size of the area to populate in bytes 954 * 955 * For each cpu, populate and map pages [@page_start,@page_end) into 956 * @chunk. The area is cleared on return. 957 * 958 * CONTEXT: 959 * pcpu_alloc_mutex, does GFP_KERNEL allocation. 960 */ 961 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) 962 { 963 int page_start = PFN_DOWN(off); 964 int page_end = PFN_UP(off + size); 965 int free_end = page_start, unmap_end = page_start; 966 struct page **pages; 967 unsigned long *populated; 968 unsigned int cpu; 969 int rs, re, rc; 970 971 /* quick path, check whether all pages are already there */ 972 rs = page_start; 973 pcpu_next_pop(chunk, &rs, &re, page_end); 974 if (rs == page_start && re == page_end) 975 goto clear; 976 977 /* need to allocate and map pages, this chunk can't be immutable */ 978 WARN_ON(chunk->immutable); 979 980 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); 981 if (!pages) 982 return -ENOMEM; 983 984 /* alloc and map */ 985 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 986 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); 987 if (rc) 988 goto err_free; 989 free_end = re; 990 } 991 992 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 993 rc = pcpu_map_pages(chunk, pages, populated, rs, re); 994 if (rc) 995 goto err_unmap; 996 unmap_end = re; 997 } 998 pcpu_post_map_flush(chunk, page_start, page_end); 999 1000 /* commit new bitmap */ 1001 bitmap_copy(chunk->populated, populated, pcpu_unit_pages); 1002 clear: 1003 for_each_possible_cpu(cpu) 1004 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1005 return 0; 1006 1007 err_unmap: 1008 pcpu_pre_unmap_flush(chunk, page_start, unmap_end); 1009 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) 1010 pcpu_unmap_pages(chunk, pages, populated, rs, re); 1011 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); 1012 err_free: 1013 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) 1014 pcpu_free_pages(chunk, pages, populated, rs, re); 1015 return rc; 1016 } 1017 1018 static void free_pcpu_chunk(struct pcpu_chunk *chunk) 1019 { 1020 if (!chunk) 1021 return; 1022 if (chunk->vms) 1023 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); 1024 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 1025 kfree(chunk); 1026 } 1027 1028 static struct pcpu_chunk *alloc_pcpu_chunk(void) 1029 { 1030 struct pcpu_chunk *chunk; 1031 1032 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); 1033 if (!chunk) 1034 return NULL; 1035 1036 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); 1037 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 1038 chunk->map[chunk->map_used++] = pcpu_unit_size; 1039 1040 chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, 1041 pcpu_nr_groups, pcpu_atom_size, 1042 GFP_KERNEL); 1043 if (!chunk->vms) { 1044 free_pcpu_chunk(chunk); 1045 return NULL; 1046 } 1047 1048 INIT_LIST_HEAD(&chunk->list); 1049 chunk->free_size = pcpu_unit_size; 1050 chunk->contig_hint = pcpu_unit_size; 1051 chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; 1052 1053 return chunk; 1054 } 1055 1056 /** 1057 * pcpu_alloc - the percpu allocator 1058 * @size: size of area to allocate in bytes 1059 * @align: alignment of area (max PAGE_SIZE) 1060 * @reserved: allocate from the reserved chunk if available 1061 * 1062 * Allocate percpu area of @size bytes aligned at @align. 1063 * 1064 * CONTEXT: 1065 * Does GFP_KERNEL allocation. 1066 * 1067 * RETURNS: 1068 * Percpu pointer to the allocated area on success, NULL on failure. 1069 */ 1070 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 1071 { 1072 static int warn_limit = 10; 1073 struct pcpu_chunk *chunk; 1074 const char *err; 1075 int slot, off, new_alloc; 1076 unsigned long flags; 1077 1078 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 1079 WARN(true, "illegal size (%zu) or align (%zu) for " 1080 "percpu allocation\n", size, align); 1081 return NULL; 1082 } 1083 1084 mutex_lock(&pcpu_alloc_mutex); 1085 spin_lock_irqsave(&pcpu_lock, flags); 1086 1087 /* serve reserved allocations from the reserved chunk if available */ 1088 if (reserved && pcpu_reserved_chunk) { 1089 chunk = pcpu_reserved_chunk; 1090 1091 if (size > chunk->contig_hint) { 1092 err = "alloc from reserved chunk failed"; 1093 goto fail_unlock; 1094 } 1095 1096 while ((new_alloc = pcpu_need_to_extend(chunk))) { 1097 spin_unlock_irqrestore(&pcpu_lock, flags); 1098 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 1099 err = "failed to extend area map of reserved chunk"; 1100 goto fail_unlock_mutex; 1101 } 1102 spin_lock_irqsave(&pcpu_lock, flags); 1103 } 1104 1105 off = pcpu_alloc_area(chunk, size, align); 1106 if (off >= 0) 1107 goto area_found; 1108 1109 err = "alloc from reserved chunk failed"; 1110 goto fail_unlock; 1111 } 1112 1113 restart: 1114 /* search through normal chunks */ 1115 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1116 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1117 if (size > chunk->contig_hint) 1118 continue; 1119 1120 new_alloc = pcpu_need_to_extend(chunk); 1121 if (new_alloc) { 1122 spin_unlock_irqrestore(&pcpu_lock, flags); 1123 if (pcpu_extend_area_map(chunk, 1124 new_alloc) < 0) { 1125 err = "failed to extend area map"; 1126 goto fail_unlock_mutex; 1127 } 1128 spin_lock_irqsave(&pcpu_lock, flags); 1129 /* 1130 * pcpu_lock has been dropped, need to 1131 * restart cpu_slot list walking. 1132 */ 1133 goto restart; 1134 } 1135 1136 off = pcpu_alloc_area(chunk, size, align); 1137 if (off >= 0) 1138 goto area_found; 1139 } 1140 } 1141 1142 /* hmmm... no space left, create a new chunk */ 1143 spin_unlock_irqrestore(&pcpu_lock, flags); 1144 1145 chunk = alloc_pcpu_chunk(); 1146 if (!chunk) { 1147 err = "failed to allocate new chunk"; 1148 goto fail_unlock_mutex; 1149 } 1150 1151 spin_lock_irqsave(&pcpu_lock, flags); 1152 pcpu_chunk_relocate(chunk, -1); 1153 goto restart; 1154 1155 area_found: 1156 spin_unlock_irqrestore(&pcpu_lock, flags); 1157 1158 /* populate, map and clear the area */ 1159 if (pcpu_populate_chunk(chunk, off, size)) { 1160 spin_lock_irqsave(&pcpu_lock, flags); 1161 pcpu_free_area(chunk, off); 1162 err = "failed to populate"; 1163 goto fail_unlock; 1164 } 1165 1166 mutex_unlock(&pcpu_alloc_mutex); 1167 1168 /* return address relative to base address */ 1169 return __addr_to_pcpu_ptr(chunk->base_addr + off); 1170 1171 fail_unlock: 1172 spin_unlock_irqrestore(&pcpu_lock, flags); 1173 fail_unlock_mutex: 1174 mutex_unlock(&pcpu_alloc_mutex); 1175 if (warn_limit) { 1176 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 1177 "%s\n", size, align, err); 1178 dump_stack(); 1179 if (!--warn_limit) 1180 pr_info("PERCPU: limit reached, disable warning\n"); 1181 } 1182 return NULL; 1183 } 1184 1185 /** 1186 * __alloc_percpu - allocate dynamic percpu area 1187 * @size: size of area to allocate in bytes 1188 * @align: alignment of area (max PAGE_SIZE) 1189 * 1190 * Allocate percpu area of @size bytes aligned at @align. Might 1191 * sleep. Might trigger writeouts. 1192 * 1193 * CONTEXT: 1194 * Does GFP_KERNEL allocation. 1195 * 1196 * RETURNS: 1197 * Percpu pointer to the allocated area on success, NULL on failure. 1198 */ 1199 void __percpu *__alloc_percpu(size_t size, size_t align) 1200 { 1201 return pcpu_alloc(size, align, false); 1202 } 1203 EXPORT_SYMBOL_GPL(__alloc_percpu); 1204 1205 /** 1206 * __alloc_reserved_percpu - allocate reserved percpu area 1207 * @size: size of area to allocate in bytes 1208 * @align: alignment of area (max PAGE_SIZE) 1209 * 1210 * Allocate percpu area of @size bytes aligned at @align from reserved 1211 * percpu area if arch has set it up; otherwise, allocation is served 1212 * from the same dynamic area. Might sleep. Might trigger writeouts. 1213 * 1214 * CONTEXT: 1215 * Does GFP_KERNEL allocation. 1216 * 1217 * RETURNS: 1218 * Percpu pointer to the allocated area on success, NULL on failure. 1219 */ 1220 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1221 { 1222 return pcpu_alloc(size, align, true); 1223 } 1224 1225 /** 1226 * pcpu_reclaim - reclaim fully free chunks, workqueue function 1227 * @work: unused 1228 * 1229 * Reclaim all fully free chunks except for the first one. 1230 * 1231 * CONTEXT: 1232 * workqueue context. 1233 */ 1234 static void pcpu_reclaim(struct work_struct *work) 1235 { 1236 LIST_HEAD(todo); 1237 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 1238 struct pcpu_chunk *chunk, *next; 1239 1240 mutex_lock(&pcpu_alloc_mutex); 1241 spin_lock_irq(&pcpu_lock); 1242 1243 list_for_each_entry_safe(chunk, next, head, list) { 1244 WARN_ON(chunk->immutable); 1245 1246 /* spare the first one */ 1247 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 1248 continue; 1249 1250 list_move(&chunk->list, &todo); 1251 } 1252 1253 spin_unlock_irq(&pcpu_lock); 1254 1255 list_for_each_entry_safe(chunk, next, &todo, list) { 1256 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 1257 free_pcpu_chunk(chunk); 1258 } 1259 1260 mutex_unlock(&pcpu_alloc_mutex); 1261 } 1262 1263 /** 1264 * free_percpu - free percpu area 1265 * @ptr: pointer to area to free 1266 * 1267 * Free percpu area @ptr. 1268 * 1269 * CONTEXT: 1270 * Can be called from atomic context. 1271 */ 1272 void free_percpu(void __percpu *ptr) 1273 { 1274 void *addr; 1275 struct pcpu_chunk *chunk; 1276 unsigned long flags; 1277 int off; 1278 1279 if (!ptr) 1280 return; 1281 1282 addr = __pcpu_ptr_to_addr(ptr); 1283 1284 spin_lock_irqsave(&pcpu_lock, flags); 1285 1286 chunk = pcpu_chunk_addr_search(addr); 1287 off = addr - chunk->base_addr; 1288 1289 pcpu_free_area(chunk, off); 1290 1291 /* if there are more than one fully free chunks, wake up grim reaper */ 1292 if (chunk->free_size == pcpu_unit_size) { 1293 struct pcpu_chunk *pos; 1294 1295 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1296 if (pos != chunk) { 1297 schedule_work(&pcpu_reclaim_work); 1298 break; 1299 } 1300 } 1301 1302 spin_unlock_irqrestore(&pcpu_lock, flags); 1303 } 1304 EXPORT_SYMBOL_GPL(free_percpu); 1305 1306 /** 1307 * is_kernel_percpu_address - test whether address is from static percpu area 1308 * @addr: address to test 1309 * 1310 * Test whether @addr belongs to in-kernel static percpu area. Module 1311 * static percpu areas are not considered. For those, use 1312 * is_module_percpu_address(). 1313 * 1314 * RETURNS: 1315 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1316 */ 1317 bool is_kernel_percpu_address(unsigned long addr) 1318 { 1319 const size_t static_size = __per_cpu_end - __per_cpu_start; 1320 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1321 unsigned int cpu; 1322 1323 for_each_possible_cpu(cpu) { 1324 void *start = per_cpu_ptr(base, cpu); 1325 1326 if ((void *)addr >= start && (void *)addr < start + static_size) 1327 return true; 1328 } 1329 return false; 1330 } 1331 1332 /** 1333 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1334 * @addr: the address to be converted to physical address 1335 * 1336 * Given @addr which is dereferenceable address obtained via one of 1337 * percpu access macros, this function translates it into its physical 1338 * address. The caller is responsible for ensuring @addr stays valid 1339 * until this function finishes. 1340 * 1341 * RETURNS: 1342 * The physical address for @addr. 1343 */ 1344 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1345 { 1346 if ((unsigned long)addr < VMALLOC_START || 1347 (unsigned long)addr >= VMALLOC_END) 1348 return __pa(addr); 1349 else 1350 return page_to_phys(vmalloc_to_page(addr)); 1351 } 1352 1353 static inline size_t pcpu_calc_fc_sizes(size_t static_size, 1354 size_t reserved_size, 1355 ssize_t *dyn_sizep) 1356 { 1357 size_t size_sum; 1358 1359 size_sum = PFN_ALIGN(static_size + reserved_size + 1360 (*dyn_sizep >= 0 ? *dyn_sizep : 0)); 1361 if (*dyn_sizep != 0) 1362 *dyn_sizep = size_sum - static_size - reserved_size; 1363 1364 return size_sum; 1365 } 1366 1367 /** 1368 * pcpu_alloc_alloc_info - allocate percpu allocation info 1369 * @nr_groups: the number of groups 1370 * @nr_units: the number of units 1371 * 1372 * Allocate ai which is large enough for @nr_groups groups containing 1373 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1374 * cpu_map array which is long enough for @nr_units and filled with 1375 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1376 * pointer of other groups. 1377 * 1378 * RETURNS: 1379 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1380 * failure. 1381 */ 1382 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1383 int nr_units) 1384 { 1385 struct pcpu_alloc_info *ai; 1386 size_t base_size, ai_size; 1387 void *ptr; 1388 int unit; 1389 1390 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1391 __alignof__(ai->groups[0].cpu_map[0])); 1392 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1393 1394 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1395 if (!ptr) 1396 return NULL; 1397 ai = ptr; 1398 ptr += base_size; 1399 1400 ai->groups[0].cpu_map = ptr; 1401 1402 for (unit = 0; unit < nr_units; unit++) 1403 ai->groups[0].cpu_map[unit] = NR_CPUS; 1404 1405 ai->nr_groups = nr_groups; 1406 ai->__ai_size = PFN_ALIGN(ai_size); 1407 1408 return ai; 1409 } 1410 1411 /** 1412 * pcpu_free_alloc_info - free percpu allocation info 1413 * @ai: pcpu_alloc_info to free 1414 * 1415 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1416 */ 1417 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1418 { 1419 free_bootmem(__pa(ai), ai->__ai_size); 1420 } 1421 1422 /** 1423 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1424 * @reserved_size: the size of reserved percpu area in bytes 1425 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1426 * @atom_size: allocation atom size 1427 * @cpu_distance_fn: callback to determine distance between cpus, optional 1428 * 1429 * This function determines grouping of units, their mappings to cpus 1430 * and other parameters considering needed percpu size, allocation 1431 * atom size and distances between CPUs. 1432 * 1433 * Groups are always mutliples of atom size and CPUs which are of 1434 * LOCAL_DISTANCE both ways are grouped together and share space for 1435 * units in the same group. The returned configuration is guaranteed 1436 * to have CPUs on different nodes on different groups and >=75% usage 1437 * of allocated virtual address space. 1438 * 1439 * RETURNS: 1440 * On success, pointer to the new allocation_info is returned. On 1441 * failure, ERR_PTR value is returned. 1442 */ 1443 struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1444 size_t reserved_size, ssize_t dyn_size, 1445 size_t atom_size, 1446 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1447 { 1448 static int group_map[NR_CPUS] __initdata; 1449 static int group_cnt[NR_CPUS] __initdata; 1450 const size_t static_size = __per_cpu_end - __per_cpu_start; 1451 int group_cnt_max = 0, nr_groups = 1, nr_units = 0; 1452 size_t size_sum, min_unit_size, alloc_size; 1453 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1454 int last_allocs, group, unit; 1455 unsigned int cpu, tcpu; 1456 struct pcpu_alloc_info *ai; 1457 unsigned int *cpu_map; 1458 1459 /* this function may be called multiple times */ 1460 memset(group_map, 0, sizeof(group_map)); 1461 memset(group_cnt, 0, sizeof(group_map)); 1462 1463 /* 1464 * Determine min_unit_size, alloc_size and max_upa such that 1465 * alloc_size is multiple of atom_size and is the smallest 1466 * which can accomodate 4k aligned segments which are equal to 1467 * or larger than min_unit_size. 1468 */ 1469 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); 1470 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1471 1472 alloc_size = roundup(min_unit_size, atom_size); 1473 upa = alloc_size / min_unit_size; 1474 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1475 upa--; 1476 max_upa = upa; 1477 1478 /* group cpus according to their proximity */ 1479 for_each_possible_cpu(cpu) { 1480 group = 0; 1481 next_group: 1482 for_each_possible_cpu(tcpu) { 1483 if (cpu == tcpu) 1484 break; 1485 if (group_map[tcpu] == group && cpu_distance_fn && 1486 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1487 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1488 group++; 1489 nr_groups = max(nr_groups, group + 1); 1490 goto next_group; 1491 } 1492 } 1493 group_map[cpu] = group; 1494 group_cnt[group]++; 1495 group_cnt_max = max(group_cnt_max, group_cnt[group]); 1496 } 1497 1498 /* 1499 * Expand unit size until address space usage goes over 75% 1500 * and then as much as possible without using more address 1501 * space. 1502 */ 1503 last_allocs = INT_MAX; 1504 for (upa = max_upa; upa; upa--) { 1505 int allocs = 0, wasted = 0; 1506 1507 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1508 continue; 1509 1510 for (group = 0; group < nr_groups; group++) { 1511 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1512 allocs += this_allocs; 1513 wasted += this_allocs * upa - group_cnt[group]; 1514 } 1515 1516 /* 1517 * Don't accept if wastage is over 25%. The 1518 * greater-than comparison ensures upa==1 always 1519 * passes the following check. 1520 */ 1521 if (wasted > num_possible_cpus() / 3) 1522 continue; 1523 1524 /* and then don't consume more memory */ 1525 if (allocs > last_allocs) 1526 break; 1527 last_allocs = allocs; 1528 best_upa = upa; 1529 } 1530 upa = best_upa; 1531 1532 /* allocate and fill alloc_info */ 1533 for (group = 0; group < nr_groups; group++) 1534 nr_units += roundup(group_cnt[group], upa); 1535 1536 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1537 if (!ai) 1538 return ERR_PTR(-ENOMEM); 1539 cpu_map = ai->groups[0].cpu_map; 1540 1541 for (group = 0; group < nr_groups; group++) { 1542 ai->groups[group].cpu_map = cpu_map; 1543 cpu_map += roundup(group_cnt[group], upa); 1544 } 1545 1546 ai->static_size = static_size; 1547 ai->reserved_size = reserved_size; 1548 ai->dyn_size = dyn_size; 1549 ai->unit_size = alloc_size / upa; 1550 ai->atom_size = atom_size; 1551 ai->alloc_size = alloc_size; 1552 1553 for (group = 0, unit = 0; group_cnt[group]; group++) { 1554 struct pcpu_group_info *gi = &ai->groups[group]; 1555 1556 /* 1557 * Initialize base_offset as if all groups are located 1558 * back-to-back. The caller should update this to 1559 * reflect actual allocation. 1560 */ 1561 gi->base_offset = unit * ai->unit_size; 1562 1563 for_each_possible_cpu(cpu) 1564 if (group_map[cpu] == group) 1565 gi->cpu_map[gi->nr_units++] = cpu; 1566 gi->nr_units = roundup(gi->nr_units, upa); 1567 unit += gi->nr_units; 1568 } 1569 BUG_ON(unit != nr_units); 1570 1571 return ai; 1572 } 1573 1574 /** 1575 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1576 * @lvl: loglevel 1577 * @ai: allocation info to dump 1578 * 1579 * Print out information about @ai using loglevel @lvl. 1580 */ 1581 static void pcpu_dump_alloc_info(const char *lvl, 1582 const struct pcpu_alloc_info *ai) 1583 { 1584 int group_width = 1, cpu_width = 1, width; 1585 char empty_str[] = "--------"; 1586 int alloc = 0, alloc_end = 0; 1587 int group, v; 1588 int upa, apl; /* units per alloc, allocs per line */ 1589 1590 v = ai->nr_groups; 1591 while (v /= 10) 1592 group_width++; 1593 1594 v = num_possible_cpus(); 1595 while (v /= 10) 1596 cpu_width++; 1597 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1598 1599 upa = ai->alloc_size / ai->unit_size; 1600 width = upa * (cpu_width + 1) + group_width + 3; 1601 apl = rounddown_pow_of_two(max(60 / width, 1)); 1602 1603 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1604 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1605 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1606 1607 for (group = 0; group < ai->nr_groups; group++) { 1608 const struct pcpu_group_info *gi = &ai->groups[group]; 1609 int unit = 0, unit_end = 0; 1610 1611 BUG_ON(gi->nr_units % upa); 1612 for (alloc_end += gi->nr_units / upa; 1613 alloc < alloc_end; alloc++) { 1614 if (!(alloc % apl)) { 1615 printk("\n"); 1616 printk("%spcpu-alloc: ", lvl); 1617 } 1618 printk("[%0*d] ", group_width, group); 1619 1620 for (unit_end += upa; unit < unit_end; unit++) 1621 if (gi->cpu_map[unit] != NR_CPUS) 1622 printk("%0*d ", cpu_width, 1623 gi->cpu_map[unit]); 1624 else 1625 printk("%s ", empty_str); 1626 } 1627 } 1628 printk("\n"); 1629 } 1630 1631 /** 1632 * pcpu_setup_first_chunk - initialize the first percpu chunk 1633 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1634 * @base_addr: mapped address 1635 * 1636 * Initialize the first percpu chunk which contains the kernel static 1637 * perpcu area. This function is to be called from arch percpu area 1638 * setup path. 1639 * 1640 * @ai contains all information necessary to initialize the first 1641 * chunk and prime the dynamic percpu allocator. 1642 * 1643 * @ai->static_size is the size of static percpu area. 1644 * 1645 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1646 * reserve after the static area in the first chunk. This reserves 1647 * the first chunk such that it's available only through reserved 1648 * percpu allocation. This is primarily used to serve module percpu 1649 * static areas on architectures where the addressing model has 1650 * limited offset range for symbol relocations to guarantee module 1651 * percpu symbols fall inside the relocatable range. 1652 * 1653 * @ai->dyn_size determines the number of bytes available for dynamic 1654 * allocation in the first chunk. The area between @ai->static_size + 1655 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1656 * 1657 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1658 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1659 * @ai->dyn_size. 1660 * 1661 * @ai->atom_size is the allocation atom size and used as alignment 1662 * for vm areas. 1663 * 1664 * @ai->alloc_size is the allocation size and always multiple of 1665 * @ai->atom_size. This is larger than @ai->atom_size if 1666 * @ai->unit_size is larger than @ai->atom_size. 1667 * 1668 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1669 * percpu areas. Units which should be colocated are put into the 1670 * same group. Dynamic VM areas will be allocated according to these 1671 * groupings. If @ai->nr_groups is zero, a single group containing 1672 * all units is assumed. 1673 * 1674 * The caller should have mapped the first chunk at @base_addr and 1675 * copied static data to each unit. 1676 * 1677 * If the first chunk ends up with both reserved and dynamic areas, it 1678 * is served by two chunks - one to serve the core static and reserved 1679 * areas and the other for the dynamic area. They share the same vm 1680 * and page map but uses different area allocation map to stay away 1681 * from each other. The latter chunk is circulated in the chunk slots 1682 * and available for dynamic allocation like any other chunks. 1683 * 1684 * RETURNS: 1685 * 0 on success, -errno on failure. 1686 */ 1687 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1688 void *base_addr) 1689 { 1690 static char cpus_buf[4096] __initdata; 1691 static int smap[2], dmap[2]; 1692 size_t dyn_size = ai->dyn_size; 1693 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1694 struct pcpu_chunk *schunk, *dchunk = NULL; 1695 unsigned long *group_offsets; 1696 size_t *group_sizes; 1697 unsigned long *unit_off; 1698 unsigned int cpu; 1699 int *unit_map; 1700 int group, unit, i; 1701 1702 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1703 1704 #define PCPU_SETUP_BUG_ON(cond) do { \ 1705 if (unlikely(cond)) { \ 1706 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1707 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1708 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1709 BUG(); \ 1710 } \ 1711 } while (0) 1712 1713 /* sanity checks */ 1714 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || 1715 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); 1716 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1717 PCPU_SETUP_BUG_ON(!ai->static_size); 1718 PCPU_SETUP_BUG_ON(!base_addr); 1719 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1720 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1721 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1722 1723 /* process group information and build config tables accordingly */ 1724 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1725 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1726 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1727 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1728 1729 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1730 unit_map[cpu] = UINT_MAX; 1731 pcpu_first_unit_cpu = NR_CPUS; 1732 1733 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1734 const struct pcpu_group_info *gi = &ai->groups[group]; 1735 1736 group_offsets[group] = gi->base_offset; 1737 group_sizes[group] = gi->nr_units * ai->unit_size; 1738 1739 for (i = 0; i < gi->nr_units; i++) { 1740 cpu = gi->cpu_map[i]; 1741 if (cpu == NR_CPUS) 1742 continue; 1743 1744 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1745 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1746 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1747 1748 unit_map[cpu] = unit + i; 1749 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1750 1751 if (pcpu_first_unit_cpu == NR_CPUS) 1752 pcpu_first_unit_cpu = cpu; 1753 } 1754 } 1755 pcpu_last_unit_cpu = cpu; 1756 pcpu_nr_units = unit; 1757 1758 for_each_possible_cpu(cpu) 1759 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1760 1761 /* we're done parsing the input, undefine BUG macro and dump config */ 1762 #undef PCPU_SETUP_BUG_ON 1763 pcpu_dump_alloc_info(KERN_INFO, ai); 1764 1765 pcpu_nr_groups = ai->nr_groups; 1766 pcpu_group_offsets = group_offsets; 1767 pcpu_group_sizes = group_sizes; 1768 pcpu_unit_map = unit_map; 1769 pcpu_unit_offsets = unit_off; 1770 1771 /* determine basic parameters */ 1772 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1773 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1774 pcpu_atom_size = ai->atom_size; 1775 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1776 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1777 1778 /* 1779 * Allocate chunk slots. The additional last slot is for 1780 * empty chunks. 1781 */ 1782 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1783 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1784 for (i = 0; i < pcpu_nr_slots; i++) 1785 INIT_LIST_HEAD(&pcpu_slot[i]); 1786 1787 /* 1788 * Initialize static chunk. If reserved_size is zero, the 1789 * static chunk covers static area + dynamic allocation area 1790 * in the first chunk. If reserved_size is not zero, it 1791 * covers static area + reserved area (mostly used for module 1792 * static percpu allocation). 1793 */ 1794 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1795 INIT_LIST_HEAD(&schunk->list); 1796 schunk->base_addr = base_addr; 1797 schunk->map = smap; 1798 schunk->map_alloc = ARRAY_SIZE(smap); 1799 schunk->immutable = true; 1800 bitmap_fill(schunk->populated, pcpu_unit_pages); 1801 1802 if (ai->reserved_size) { 1803 schunk->free_size = ai->reserved_size; 1804 pcpu_reserved_chunk = schunk; 1805 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1806 } else { 1807 schunk->free_size = dyn_size; 1808 dyn_size = 0; /* dynamic area covered */ 1809 } 1810 schunk->contig_hint = schunk->free_size; 1811 1812 schunk->map[schunk->map_used++] = -ai->static_size; 1813 if (schunk->free_size) 1814 schunk->map[schunk->map_used++] = schunk->free_size; 1815 1816 /* init dynamic chunk if necessary */ 1817 if (dyn_size) { 1818 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1819 INIT_LIST_HEAD(&dchunk->list); 1820 dchunk->base_addr = base_addr; 1821 dchunk->map = dmap; 1822 dchunk->map_alloc = ARRAY_SIZE(dmap); 1823 dchunk->immutable = true; 1824 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1825 1826 dchunk->contig_hint = dchunk->free_size = dyn_size; 1827 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1828 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1829 } 1830 1831 /* link the first chunk in */ 1832 pcpu_first_chunk = dchunk ?: schunk; 1833 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1834 1835 /* we're done */ 1836 pcpu_base_addr = base_addr; 1837 return 0; 1838 } 1839 1840 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1841 [PCPU_FC_AUTO] = "auto", 1842 [PCPU_FC_EMBED] = "embed", 1843 [PCPU_FC_PAGE] = "page", 1844 }; 1845 1846 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1847 1848 static int __init percpu_alloc_setup(char *str) 1849 { 1850 if (0) 1851 /* nada */; 1852 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1853 else if (!strcmp(str, "embed")) 1854 pcpu_chosen_fc = PCPU_FC_EMBED; 1855 #endif 1856 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1857 else if (!strcmp(str, "page")) 1858 pcpu_chosen_fc = PCPU_FC_PAGE; 1859 #endif 1860 else 1861 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1862 1863 return 0; 1864 } 1865 early_param("percpu_alloc", percpu_alloc_setup); 1866 1867 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1868 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1869 /** 1870 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1871 * @reserved_size: the size of reserved percpu area in bytes 1872 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1873 * @atom_size: allocation atom size 1874 * @cpu_distance_fn: callback to determine distance between cpus, optional 1875 * @alloc_fn: function to allocate percpu page 1876 * @free_fn: funtion to free percpu page 1877 * 1878 * This is a helper to ease setting up embedded first percpu chunk and 1879 * can be called where pcpu_setup_first_chunk() is expected. 1880 * 1881 * If this function is used to setup the first chunk, it is allocated 1882 * by calling @alloc_fn and used as-is without being mapped into 1883 * vmalloc area. Allocations are always whole multiples of @atom_size 1884 * aligned to @atom_size. 1885 * 1886 * This enables the first chunk to piggy back on the linear physical 1887 * mapping which often uses larger page size. Please note that this 1888 * can result in very sparse cpu->unit mapping on NUMA machines thus 1889 * requiring large vmalloc address space. Don't use this allocator if 1890 * vmalloc space is not orders of magnitude larger than distances 1891 * between node memory addresses (ie. 32bit NUMA machines). 1892 * 1893 * When @dyn_size is positive, dynamic area might be larger than 1894 * specified to fill page alignment. When @dyn_size is auto, 1895 * @dyn_size is just big enough to fill page alignment after static 1896 * and reserved areas. 1897 * 1898 * If the needed size is smaller than the minimum or specified unit 1899 * size, the leftover is returned using @free_fn. 1900 * 1901 * RETURNS: 1902 * 0 on success, -errno on failure. 1903 */ 1904 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 1905 size_t atom_size, 1906 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1907 pcpu_fc_alloc_fn_t alloc_fn, 1908 pcpu_fc_free_fn_t free_fn) 1909 { 1910 void *base = (void *)ULONG_MAX; 1911 void **areas = NULL; 1912 struct pcpu_alloc_info *ai; 1913 size_t size_sum, areas_size, max_distance; 1914 int group, i, rc; 1915 1916 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1917 cpu_distance_fn); 1918 if (IS_ERR(ai)) 1919 return PTR_ERR(ai); 1920 1921 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1922 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1923 1924 areas = alloc_bootmem_nopanic(areas_size); 1925 if (!areas) { 1926 rc = -ENOMEM; 1927 goto out_free; 1928 } 1929 1930 /* allocate, copy and determine base address */ 1931 for (group = 0; group < ai->nr_groups; group++) { 1932 struct pcpu_group_info *gi = &ai->groups[group]; 1933 unsigned int cpu = NR_CPUS; 1934 void *ptr; 1935 1936 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1937 cpu = gi->cpu_map[i]; 1938 BUG_ON(cpu == NR_CPUS); 1939 1940 /* allocate space for the whole group */ 1941 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1942 if (!ptr) { 1943 rc = -ENOMEM; 1944 goto out_free_areas; 1945 } 1946 areas[group] = ptr; 1947 1948 base = min(ptr, base); 1949 1950 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1951 if (gi->cpu_map[i] == NR_CPUS) { 1952 /* unused unit, free whole */ 1953 free_fn(ptr, ai->unit_size); 1954 continue; 1955 } 1956 /* copy and return the unused part */ 1957 memcpy(ptr, __per_cpu_load, ai->static_size); 1958 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1959 } 1960 } 1961 1962 /* base address is now known, determine group base offsets */ 1963 max_distance = 0; 1964 for (group = 0; group < ai->nr_groups; group++) { 1965 ai->groups[group].base_offset = areas[group] - base; 1966 max_distance = max_t(size_t, max_distance, 1967 ai->groups[group].base_offset); 1968 } 1969 max_distance += ai->unit_size; 1970 1971 /* warn if maximum distance is further than 75% of vmalloc space */ 1972 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1973 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1974 "space 0x%lx\n", 1975 max_distance, VMALLOC_END - VMALLOC_START); 1976 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1977 /* and fail if we have fallback */ 1978 rc = -EINVAL; 1979 goto out_free; 1980 #endif 1981 } 1982 1983 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1984 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1985 ai->dyn_size, ai->unit_size); 1986 1987 rc = pcpu_setup_first_chunk(ai, base); 1988 goto out_free; 1989 1990 out_free_areas: 1991 for (group = 0; group < ai->nr_groups; group++) 1992 free_fn(areas[group], 1993 ai->groups[group].nr_units * ai->unit_size); 1994 out_free: 1995 pcpu_free_alloc_info(ai); 1996 if (areas) 1997 free_bootmem(__pa(areas), areas_size); 1998 return rc; 1999 } 2000 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || 2001 !CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2002 2003 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2004 /** 2005 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2006 * @reserved_size: the size of reserved percpu area in bytes 2007 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2008 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE 2009 * @populate_pte_fn: function to populate pte 2010 * 2011 * This is a helper to ease setting up page-remapped first percpu 2012 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2013 * 2014 * This is the basic allocator. Static percpu area is allocated 2015 * page-by-page into vmalloc area. 2016 * 2017 * RETURNS: 2018 * 0 on success, -errno on failure. 2019 */ 2020 int __init pcpu_page_first_chunk(size_t reserved_size, 2021 pcpu_fc_alloc_fn_t alloc_fn, 2022 pcpu_fc_free_fn_t free_fn, 2023 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2024 { 2025 static struct vm_struct vm; 2026 struct pcpu_alloc_info *ai; 2027 char psize_str[16]; 2028 int unit_pages; 2029 size_t pages_size; 2030 struct page **pages; 2031 int unit, i, j, rc; 2032 2033 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2034 2035 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); 2036 if (IS_ERR(ai)) 2037 return PTR_ERR(ai); 2038 BUG_ON(ai->nr_groups != 1); 2039 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 2040 2041 unit_pages = ai->unit_size >> PAGE_SHIFT; 2042 2043 /* unaligned allocations can't be freed, round up to page size */ 2044 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2045 sizeof(pages[0])); 2046 pages = alloc_bootmem(pages_size); 2047 2048 /* allocate pages */ 2049 j = 0; 2050 for (unit = 0; unit < num_possible_cpus(); unit++) 2051 for (i = 0; i < unit_pages; i++) { 2052 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2053 void *ptr; 2054 2055 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2056 if (!ptr) { 2057 pr_warning("PERCPU: failed to allocate %s page " 2058 "for cpu%u\n", psize_str, cpu); 2059 goto enomem; 2060 } 2061 pages[j++] = virt_to_page(ptr); 2062 } 2063 2064 /* allocate vm area, map the pages and copy static data */ 2065 vm.flags = VM_ALLOC; 2066 vm.size = num_possible_cpus() * ai->unit_size; 2067 vm_area_register_early(&vm, PAGE_SIZE); 2068 2069 for (unit = 0; unit < num_possible_cpus(); unit++) { 2070 unsigned long unit_addr = 2071 (unsigned long)vm.addr + unit * ai->unit_size; 2072 2073 for (i = 0; i < unit_pages; i++) 2074 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2075 2076 /* pte already populated, the following shouldn't fail */ 2077 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2078 unit_pages); 2079 if (rc < 0) 2080 panic("failed to map percpu area, err=%d\n", rc); 2081 2082 /* 2083 * FIXME: Archs with virtual cache should flush local 2084 * cache for the linear mapping here - something 2085 * equivalent to flush_cache_vmap() on the local cpu. 2086 * flush_cache_vmap() can't be used as most supporting 2087 * data structures are not set up yet. 2088 */ 2089 2090 /* copy static data */ 2091 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2092 } 2093 2094 /* we're ready, commit */ 2095 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 2096 unit_pages, psize_str, vm.addr, ai->static_size, 2097 ai->reserved_size, ai->dyn_size); 2098 2099 rc = pcpu_setup_first_chunk(ai, vm.addr); 2100 goto out_free_ar; 2101 2102 enomem: 2103 while (--j >= 0) 2104 free_fn(page_address(pages[j]), PAGE_SIZE); 2105 rc = -ENOMEM; 2106 out_free_ar: 2107 free_bootmem(__pa(pages), pages_size); 2108 pcpu_free_alloc_info(ai); 2109 return rc; 2110 } 2111 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ 2112 2113 /* 2114 * Generic percpu area setup. 2115 * 2116 * The embedding helper is used because its behavior closely resembles 2117 * the original non-dynamic generic percpu area setup. This is 2118 * important because many archs have addressing restrictions and might 2119 * fail if the percpu area is located far away from the previous 2120 * location. As an added bonus, in non-NUMA cases, embedding is 2121 * generally a good idea TLB-wise because percpu area can piggy back 2122 * on the physical linear memory mapping which uses large page 2123 * mappings on applicable archs. 2124 */ 2125 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2126 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2127 EXPORT_SYMBOL(__per_cpu_offset); 2128 2129 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2130 size_t align) 2131 { 2132 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 2133 } 2134 2135 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2136 { 2137 free_bootmem(__pa(ptr), size); 2138 } 2139 2140 void __init setup_per_cpu_areas(void) 2141 { 2142 unsigned long delta; 2143 unsigned int cpu; 2144 int rc; 2145 2146 /* 2147 * Always reserve area for module percpu variables. That's 2148 * what the legacy allocator did. 2149 */ 2150 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2151 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2152 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2153 if (rc < 0) 2154 panic("Failed to initialized percpu areas."); 2155 2156 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2157 for_each_possible_cpu(cpu) 2158 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2159 } 2160 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2161