1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 #include <linux/kmemleak.h> 71 72 #include <asm/cacheflush.h> 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/io.h> 76 77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 79 80 #ifdef CONFIG_SMP 81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 82 #ifndef __addr_to_pcpu_ptr 83 #define __addr_to_pcpu_ptr(addr) \ 84 (void __percpu *)((unsigned long)(addr) - \ 85 (unsigned long)pcpu_base_addr + \ 86 (unsigned long)__per_cpu_start) 87 #endif 88 #ifndef __pcpu_ptr_to_addr 89 #define __pcpu_ptr_to_addr(ptr) \ 90 (void __force *)((unsigned long)(ptr) + \ 91 (unsigned long)pcpu_base_addr - \ 92 (unsigned long)__per_cpu_start) 93 #endif 94 #else /* CONFIG_SMP */ 95 /* on UP, it's always identity mapped */ 96 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 97 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 98 #endif /* CONFIG_SMP */ 99 100 struct pcpu_chunk { 101 struct list_head list; /* linked to pcpu_slot lists */ 102 int free_size; /* free bytes in the chunk */ 103 int contig_hint; /* max contiguous size hint */ 104 void *base_addr; /* base address of this chunk */ 105 int map_used; /* # of map entries used */ 106 int map_alloc; /* # of map entries allocated */ 107 int *map; /* allocation map */ 108 void *data; /* chunk data */ 109 bool immutable; /* no [de]population allowed */ 110 unsigned long populated[]; /* populated bitmap */ 111 }; 112 113 static int pcpu_unit_pages __read_mostly; 114 static int pcpu_unit_size __read_mostly; 115 static int pcpu_nr_units __read_mostly; 116 static int pcpu_atom_size __read_mostly; 117 static int pcpu_nr_slots __read_mostly; 118 static size_t pcpu_chunk_struct_size __read_mostly; 119 120 /* cpus with the lowest and highest unit addresses */ 121 static unsigned int pcpu_low_unit_cpu __read_mostly; 122 static unsigned int pcpu_high_unit_cpu __read_mostly; 123 124 /* the address of the first chunk which starts with the kernel static area */ 125 void *pcpu_base_addr __read_mostly; 126 EXPORT_SYMBOL_GPL(pcpu_base_addr); 127 128 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 129 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 130 131 /* group information, used for vm allocation */ 132 static int pcpu_nr_groups __read_mostly; 133 static const unsigned long *pcpu_group_offsets __read_mostly; 134 static const size_t *pcpu_group_sizes __read_mostly; 135 136 /* 137 * The first chunk which always exists. Note that unlike other 138 * chunks, this one can be allocated and mapped in several different 139 * ways and thus often doesn't live in the vmalloc area. 140 */ 141 static struct pcpu_chunk *pcpu_first_chunk; 142 143 /* 144 * Optional reserved chunk. This chunk reserves part of the first 145 * chunk and serves it for reserved allocations. The amount of 146 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 147 * area doesn't exist, the following variables contain NULL and 0 148 * respectively. 149 */ 150 static struct pcpu_chunk *pcpu_reserved_chunk; 151 static int pcpu_reserved_chunk_limit; 152 153 /* 154 * Synchronization rules. 155 * 156 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 157 * protects allocation/reclaim paths, chunks, populated bitmap and 158 * vmalloc mapping. The latter is a spinlock and protects the index 159 * data structures - chunk slots, chunks and area maps in chunks. 160 * 161 * During allocation, pcpu_alloc_mutex is kept locked all the time and 162 * pcpu_lock is grabbed and released as necessary. All actual memory 163 * allocations are done using GFP_KERNEL with pcpu_lock released. In 164 * general, percpu memory can't be allocated with irq off but 165 * irqsave/restore are still used in alloc path so that it can be used 166 * from early init path - sched_init() specifically. 167 * 168 * Free path accesses and alters only the index data structures, so it 169 * can be safely called from atomic context. When memory needs to be 170 * returned to the system, free path schedules reclaim_work which 171 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 172 * reclaimed, release both locks and frees the chunks. Note that it's 173 * necessary to grab both locks to remove a chunk from circulation as 174 * allocation path might be referencing the chunk with only 175 * pcpu_alloc_mutex locked. 176 */ 177 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 178 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 179 180 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 181 182 /* reclaim work to release fully free chunks, scheduled from free path */ 183 static void pcpu_reclaim(struct work_struct *work); 184 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 185 186 static bool pcpu_addr_in_first_chunk(void *addr) 187 { 188 void *first_start = pcpu_first_chunk->base_addr; 189 190 return addr >= first_start && addr < first_start + pcpu_unit_size; 191 } 192 193 static bool pcpu_addr_in_reserved_chunk(void *addr) 194 { 195 void *first_start = pcpu_first_chunk->base_addr; 196 197 return addr >= first_start && 198 addr < first_start + pcpu_reserved_chunk_limit; 199 } 200 201 static int __pcpu_size_to_slot(int size) 202 { 203 int highbit = fls(size); /* size is in bytes */ 204 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 205 } 206 207 static int pcpu_size_to_slot(int size) 208 { 209 if (size == pcpu_unit_size) 210 return pcpu_nr_slots - 1; 211 return __pcpu_size_to_slot(size); 212 } 213 214 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 215 { 216 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 217 return 0; 218 219 return pcpu_size_to_slot(chunk->free_size); 220 } 221 222 /* set the pointer to a chunk in a page struct */ 223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 224 { 225 page->index = (unsigned long)pcpu; 226 } 227 228 /* obtain pointer to a chunk from a page struct */ 229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 230 { 231 return (struct pcpu_chunk *)page->index; 232 } 233 234 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 235 { 236 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 237 } 238 239 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 240 unsigned int cpu, int page_idx) 241 { 242 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 243 (page_idx << PAGE_SHIFT); 244 } 245 246 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 247 int *rs, int *re, int end) 248 { 249 *rs = find_next_zero_bit(chunk->populated, end, *rs); 250 *re = find_next_bit(chunk->populated, end, *rs + 1); 251 } 252 253 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 254 int *rs, int *re, int end) 255 { 256 *rs = find_next_bit(chunk->populated, end, *rs); 257 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 258 } 259 260 /* 261 * (Un)populated page region iterators. Iterate over (un)populated 262 * page regions between @start and @end in @chunk. @rs and @re should 263 * be integer variables and will be set to start and end page index of 264 * the current region. 265 */ 266 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 267 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 268 (rs) < (re); \ 269 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 270 271 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 272 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 273 (rs) < (re); \ 274 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 275 276 /** 277 * pcpu_mem_zalloc - allocate memory 278 * @size: bytes to allocate 279 * 280 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 281 * kzalloc() is used; otherwise, vzalloc() is used. The returned 282 * memory is always zeroed. 283 * 284 * CONTEXT: 285 * Does GFP_KERNEL allocation. 286 * 287 * RETURNS: 288 * Pointer to the allocated area on success, NULL on failure. 289 */ 290 static void *pcpu_mem_zalloc(size_t size) 291 { 292 if (WARN_ON_ONCE(!slab_is_available())) 293 return NULL; 294 295 if (size <= PAGE_SIZE) 296 return kzalloc(size, GFP_KERNEL); 297 else 298 return vzalloc(size); 299 } 300 301 /** 302 * pcpu_mem_free - free memory 303 * @ptr: memory to free 304 * @size: size of the area 305 * 306 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 307 */ 308 static void pcpu_mem_free(void *ptr, size_t size) 309 { 310 if (size <= PAGE_SIZE) 311 kfree(ptr); 312 else 313 vfree(ptr); 314 } 315 316 /** 317 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 318 * @chunk: chunk of interest 319 * @oslot: the previous slot it was on 320 * 321 * This function is called after an allocation or free changed @chunk. 322 * New slot according to the changed state is determined and @chunk is 323 * moved to the slot. Note that the reserved chunk is never put on 324 * chunk slots. 325 * 326 * CONTEXT: 327 * pcpu_lock. 328 */ 329 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 330 { 331 int nslot = pcpu_chunk_slot(chunk); 332 333 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 334 if (oslot < nslot) 335 list_move(&chunk->list, &pcpu_slot[nslot]); 336 else 337 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 338 } 339 } 340 341 /** 342 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 343 * @chunk: chunk of interest 344 * 345 * Determine whether area map of @chunk needs to be extended to 346 * accommodate a new allocation. 347 * 348 * CONTEXT: 349 * pcpu_lock. 350 * 351 * RETURNS: 352 * New target map allocation length if extension is necessary, 0 353 * otherwise. 354 */ 355 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 356 { 357 int new_alloc; 358 359 if (chunk->map_alloc >= chunk->map_used + 2) 360 return 0; 361 362 new_alloc = PCPU_DFL_MAP_ALLOC; 363 while (new_alloc < chunk->map_used + 2) 364 new_alloc *= 2; 365 366 return new_alloc; 367 } 368 369 /** 370 * pcpu_extend_area_map - extend area map of a chunk 371 * @chunk: chunk of interest 372 * @new_alloc: new target allocation length of the area map 373 * 374 * Extend area map of @chunk to have @new_alloc entries. 375 * 376 * CONTEXT: 377 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 378 * 379 * RETURNS: 380 * 0 on success, -errno on failure. 381 */ 382 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 383 { 384 int *old = NULL, *new = NULL; 385 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 386 unsigned long flags; 387 388 new = pcpu_mem_zalloc(new_size); 389 if (!new) 390 return -ENOMEM; 391 392 /* acquire pcpu_lock and switch to new area map */ 393 spin_lock_irqsave(&pcpu_lock, flags); 394 395 if (new_alloc <= chunk->map_alloc) 396 goto out_unlock; 397 398 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 399 old = chunk->map; 400 401 memcpy(new, old, old_size); 402 403 chunk->map_alloc = new_alloc; 404 chunk->map = new; 405 new = NULL; 406 407 out_unlock: 408 spin_unlock_irqrestore(&pcpu_lock, flags); 409 410 /* 411 * pcpu_mem_free() might end up calling vfree() which uses 412 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 413 */ 414 pcpu_mem_free(old, old_size); 415 pcpu_mem_free(new, new_size); 416 417 return 0; 418 } 419 420 /** 421 * pcpu_split_block - split a map block 422 * @chunk: chunk of interest 423 * @i: index of map block to split 424 * @head: head size in bytes (can be 0) 425 * @tail: tail size in bytes (can be 0) 426 * 427 * Split the @i'th map block into two or three blocks. If @head is 428 * non-zero, @head bytes block is inserted before block @i moving it 429 * to @i+1 and reducing its size by @head bytes. 430 * 431 * If @tail is non-zero, the target block, which can be @i or @i+1 432 * depending on @head, is reduced by @tail bytes and @tail byte block 433 * is inserted after the target block. 434 * 435 * @chunk->map must have enough free slots to accommodate the split. 436 * 437 * CONTEXT: 438 * pcpu_lock. 439 */ 440 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 441 int head, int tail) 442 { 443 int nr_extra = !!head + !!tail; 444 445 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 446 447 /* insert new subblocks */ 448 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 449 sizeof(chunk->map[0]) * (chunk->map_used - i)); 450 chunk->map_used += nr_extra; 451 452 if (head) { 453 chunk->map[i + 1] = chunk->map[i] - head; 454 chunk->map[i++] = head; 455 } 456 if (tail) { 457 chunk->map[i++] -= tail; 458 chunk->map[i] = tail; 459 } 460 } 461 462 /** 463 * pcpu_alloc_area - allocate area from a pcpu_chunk 464 * @chunk: chunk of interest 465 * @size: wanted size in bytes 466 * @align: wanted align 467 * 468 * Try to allocate @size bytes area aligned at @align from @chunk. 469 * Note that this function only allocates the offset. It doesn't 470 * populate or map the area. 471 * 472 * @chunk->map must have at least two free slots. 473 * 474 * CONTEXT: 475 * pcpu_lock. 476 * 477 * RETURNS: 478 * Allocated offset in @chunk on success, -1 if no matching area is 479 * found. 480 */ 481 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 482 { 483 int oslot = pcpu_chunk_slot(chunk); 484 int max_contig = 0; 485 int i, off; 486 487 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 488 bool is_last = i + 1 == chunk->map_used; 489 int head, tail; 490 491 /* extra for alignment requirement */ 492 head = ALIGN(off, align) - off; 493 BUG_ON(i == 0 && head != 0); 494 495 if (chunk->map[i] < 0) 496 continue; 497 if (chunk->map[i] < head + size) { 498 max_contig = max(chunk->map[i], max_contig); 499 continue; 500 } 501 502 /* 503 * If head is small or the previous block is free, 504 * merge'em. Note that 'small' is defined as smaller 505 * than sizeof(int), which is very small but isn't too 506 * uncommon for percpu allocations. 507 */ 508 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 509 if (chunk->map[i - 1] > 0) 510 chunk->map[i - 1] += head; 511 else { 512 chunk->map[i - 1] -= head; 513 chunk->free_size -= head; 514 } 515 chunk->map[i] -= head; 516 off += head; 517 head = 0; 518 } 519 520 /* if tail is small, just keep it around */ 521 tail = chunk->map[i] - head - size; 522 if (tail < sizeof(int)) 523 tail = 0; 524 525 /* split if warranted */ 526 if (head || tail) { 527 pcpu_split_block(chunk, i, head, tail); 528 if (head) { 529 i++; 530 off += head; 531 max_contig = max(chunk->map[i - 1], max_contig); 532 } 533 if (tail) 534 max_contig = max(chunk->map[i + 1], max_contig); 535 } 536 537 /* update hint and mark allocated */ 538 if (is_last) 539 chunk->contig_hint = max_contig; /* fully scanned */ 540 else 541 chunk->contig_hint = max(chunk->contig_hint, 542 max_contig); 543 544 chunk->free_size -= chunk->map[i]; 545 chunk->map[i] = -chunk->map[i]; 546 547 pcpu_chunk_relocate(chunk, oslot); 548 return off; 549 } 550 551 chunk->contig_hint = max_contig; /* fully scanned */ 552 pcpu_chunk_relocate(chunk, oslot); 553 554 /* tell the upper layer that this chunk has no matching area */ 555 return -1; 556 } 557 558 /** 559 * pcpu_free_area - free area to a pcpu_chunk 560 * @chunk: chunk of interest 561 * @freeme: offset of area to free 562 * 563 * Free area starting from @freeme to @chunk. Note that this function 564 * only modifies the allocation map. It doesn't depopulate or unmap 565 * the area. 566 * 567 * CONTEXT: 568 * pcpu_lock. 569 */ 570 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 571 { 572 int oslot = pcpu_chunk_slot(chunk); 573 int i, off; 574 575 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 576 if (off == freeme) 577 break; 578 BUG_ON(off != freeme); 579 BUG_ON(chunk->map[i] > 0); 580 581 chunk->map[i] = -chunk->map[i]; 582 chunk->free_size += chunk->map[i]; 583 584 /* merge with previous? */ 585 if (i > 0 && chunk->map[i - 1] >= 0) { 586 chunk->map[i - 1] += chunk->map[i]; 587 chunk->map_used--; 588 memmove(&chunk->map[i], &chunk->map[i + 1], 589 (chunk->map_used - i) * sizeof(chunk->map[0])); 590 i--; 591 } 592 /* merge with next? */ 593 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 594 chunk->map[i] += chunk->map[i + 1]; 595 chunk->map_used--; 596 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 597 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 598 } 599 600 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 601 pcpu_chunk_relocate(chunk, oslot); 602 } 603 604 static struct pcpu_chunk *pcpu_alloc_chunk(void) 605 { 606 struct pcpu_chunk *chunk; 607 608 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 609 if (!chunk) 610 return NULL; 611 612 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 613 sizeof(chunk->map[0])); 614 if (!chunk->map) { 615 kfree(chunk); 616 return NULL; 617 } 618 619 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 620 chunk->map[chunk->map_used++] = pcpu_unit_size; 621 622 INIT_LIST_HEAD(&chunk->list); 623 chunk->free_size = pcpu_unit_size; 624 chunk->contig_hint = pcpu_unit_size; 625 626 return chunk; 627 } 628 629 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 630 { 631 if (!chunk) 632 return; 633 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 634 kfree(chunk); 635 } 636 637 /* 638 * Chunk management implementation. 639 * 640 * To allow different implementations, chunk alloc/free and 641 * [de]population are implemented in a separate file which is pulled 642 * into this file and compiled together. The following functions 643 * should be implemented. 644 * 645 * pcpu_populate_chunk - populate the specified range of a chunk 646 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 647 * pcpu_create_chunk - create a new chunk 648 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 649 * pcpu_addr_to_page - translate address to physical address 650 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 651 */ 652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 654 static struct pcpu_chunk *pcpu_create_chunk(void); 655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 656 static struct page *pcpu_addr_to_page(void *addr); 657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 658 659 #ifdef CONFIG_NEED_PER_CPU_KM 660 #include "percpu-km.c" 661 #else 662 #include "percpu-vm.c" 663 #endif 664 665 /** 666 * pcpu_chunk_addr_search - determine chunk containing specified address 667 * @addr: address for which the chunk needs to be determined. 668 * 669 * RETURNS: 670 * The address of the found chunk. 671 */ 672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 673 { 674 /* is it in the first chunk? */ 675 if (pcpu_addr_in_first_chunk(addr)) { 676 /* is it in the reserved area? */ 677 if (pcpu_addr_in_reserved_chunk(addr)) 678 return pcpu_reserved_chunk; 679 return pcpu_first_chunk; 680 } 681 682 /* 683 * The address is relative to unit0 which might be unused and 684 * thus unmapped. Offset the address to the unit space of the 685 * current processor before looking it up in the vmalloc 686 * space. Note that any possible cpu id can be used here, so 687 * there's no need to worry about preemption or cpu hotplug. 688 */ 689 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 690 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 691 } 692 693 /** 694 * pcpu_alloc - the percpu allocator 695 * @size: size of area to allocate in bytes 696 * @align: alignment of area (max PAGE_SIZE) 697 * @reserved: allocate from the reserved chunk if available 698 * 699 * Allocate percpu area of @size bytes aligned at @align. 700 * 701 * CONTEXT: 702 * Does GFP_KERNEL allocation. 703 * 704 * RETURNS: 705 * Percpu pointer to the allocated area on success, NULL on failure. 706 */ 707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 708 { 709 static int warn_limit = 10; 710 struct pcpu_chunk *chunk; 711 const char *err; 712 int slot, off, new_alloc; 713 unsigned long flags; 714 void __percpu *ptr; 715 716 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 717 WARN(true, "illegal size (%zu) or align (%zu) for " 718 "percpu allocation\n", size, align); 719 return NULL; 720 } 721 722 mutex_lock(&pcpu_alloc_mutex); 723 spin_lock_irqsave(&pcpu_lock, flags); 724 725 /* serve reserved allocations from the reserved chunk if available */ 726 if (reserved && pcpu_reserved_chunk) { 727 chunk = pcpu_reserved_chunk; 728 729 if (size > chunk->contig_hint) { 730 err = "alloc from reserved chunk failed"; 731 goto fail_unlock; 732 } 733 734 while ((new_alloc = pcpu_need_to_extend(chunk))) { 735 spin_unlock_irqrestore(&pcpu_lock, flags); 736 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 737 err = "failed to extend area map of reserved chunk"; 738 goto fail_unlock_mutex; 739 } 740 spin_lock_irqsave(&pcpu_lock, flags); 741 } 742 743 off = pcpu_alloc_area(chunk, size, align); 744 if (off >= 0) 745 goto area_found; 746 747 err = "alloc from reserved chunk failed"; 748 goto fail_unlock; 749 } 750 751 restart: 752 /* search through normal chunks */ 753 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 754 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 755 if (size > chunk->contig_hint) 756 continue; 757 758 new_alloc = pcpu_need_to_extend(chunk); 759 if (new_alloc) { 760 spin_unlock_irqrestore(&pcpu_lock, flags); 761 if (pcpu_extend_area_map(chunk, 762 new_alloc) < 0) { 763 err = "failed to extend area map"; 764 goto fail_unlock_mutex; 765 } 766 spin_lock_irqsave(&pcpu_lock, flags); 767 /* 768 * pcpu_lock has been dropped, need to 769 * restart cpu_slot list walking. 770 */ 771 goto restart; 772 } 773 774 off = pcpu_alloc_area(chunk, size, align); 775 if (off >= 0) 776 goto area_found; 777 } 778 } 779 780 /* hmmm... no space left, create a new chunk */ 781 spin_unlock_irqrestore(&pcpu_lock, flags); 782 783 chunk = pcpu_create_chunk(); 784 if (!chunk) { 785 err = "failed to allocate new chunk"; 786 goto fail_unlock_mutex; 787 } 788 789 spin_lock_irqsave(&pcpu_lock, flags); 790 pcpu_chunk_relocate(chunk, -1); 791 goto restart; 792 793 area_found: 794 spin_unlock_irqrestore(&pcpu_lock, flags); 795 796 /* populate, map and clear the area */ 797 if (pcpu_populate_chunk(chunk, off, size)) { 798 spin_lock_irqsave(&pcpu_lock, flags); 799 pcpu_free_area(chunk, off); 800 err = "failed to populate"; 801 goto fail_unlock; 802 } 803 804 mutex_unlock(&pcpu_alloc_mutex); 805 806 /* return address relative to base address */ 807 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 808 kmemleak_alloc_percpu(ptr, size); 809 return ptr; 810 811 fail_unlock: 812 spin_unlock_irqrestore(&pcpu_lock, flags); 813 fail_unlock_mutex: 814 mutex_unlock(&pcpu_alloc_mutex); 815 if (warn_limit) { 816 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 817 "%s\n", size, align, err); 818 dump_stack(); 819 if (!--warn_limit) 820 pr_info("PERCPU: limit reached, disable warning\n"); 821 } 822 return NULL; 823 } 824 825 /** 826 * __alloc_percpu - allocate dynamic percpu area 827 * @size: size of area to allocate in bytes 828 * @align: alignment of area (max PAGE_SIZE) 829 * 830 * Allocate zero-filled percpu area of @size bytes aligned at @align. 831 * Might sleep. Might trigger writeouts. 832 * 833 * CONTEXT: 834 * Does GFP_KERNEL allocation. 835 * 836 * RETURNS: 837 * Percpu pointer to the allocated area on success, NULL on failure. 838 */ 839 void __percpu *__alloc_percpu(size_t size, size_t align) 840 { 841 return pcpu_alloc(size, align, false); 842 } 843 EXPORT_SYMBOL_GPL(__alloc_percpu); 844 845 /** 846 * __alloc_reserved_percpu - allocate reserved percpu area 847 * @size: size of area to allocate in bytes 848 * @align: alignment of area (max PAGE_SIZE) 849 * 850 * Allocate zero-filled percpu area of @size bytes aligned at @align 851 * from reserved percpu area if arch has set it up; otherwise, 852 * allocation is served from the same dynamic area. Might sleep. 853 * Might trigger writeouts. 854 * 855 * CONTEXT: 856 * Does GFP_KERNEL allocation. 857 * 858 * RETURNS: 859 * Percpu pointer to the allocated area on success, NULL on failure. 860 */ 861 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 862 { 863 return pcpu_alloc(size, align, true); 864 } 865 866 /** 867 * pcpu_reclaim - reclaim fully free chunks, workqueue function 868 * @work: unused 869 * 870 * Reclaim all fully free chunks except for the first one. 871 * 872 * CONTEXT: 873 * workqueue context. 874 */ 875 static void pcpu_reclaim(struct work_struct *work) 876 { 877 LIST_HEAD(todo); 878 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 879 struct pcpu_chunk *chunk, *next; 880 881 mutex_lock(&pcpu_alloc_mutex); 882 spin_lock_irq(&pcpu_lock); 883 884 list_for_each_entry_safe(chunk, next, head, list) { 885 WARN_ON(chunk->immutable); 886 887 /* spare the first one */ 888 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 889 continue; 890 891 list_move(&chunk->list, &todo); 892 } 893 894 spin_unlock_irq(&pcpu_lock); 895 896 list_for_each_entry_safe(chunk, next, &todo, list) { 897 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 898 pcpu_destroy_chunk(chunk); 899 } 900 901 mutex_unlock(&pcpu_alloc_mutex); 902 } 903 904 /** 905 * free_percpu - free percpu area 906 * @ptr: pointer to area to free 907 * 908 * Free percpu area @ptr. 909 * 910 * CONTEXT: 911 * Can be called from atomic context. 912 */ 913 void free_percpu(void __percpu *ptr) 914 { 915 void *addr; 916 struct pcpu_chunk *chunk; 917 unsigned long flags; 918 int off; 919 920 if (!ptr) 921 return; 922 923 kmemleak_free_percpu(ptr); 924 925 addr = __pcpu_ptr_to_addr(ptr); 926 927 spin_lock_irqsave(&pcpu_lock, flags); 928 929 chunk = pcpu_chunk_addr_search(addr); 930 off = addr - chunk->base_addr; 931 932 pcpu_free_area(chunk, off); 933 934 /* if there are more than one fully free chunks, wake up grim reaper */ 935 if (chunk->free_size == pcpu_unit_size) { 936 struct pcpu_chunk *pos; 937 938 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 939 if (pos != chunk) { 940 schedule_work(&pcpu_reclaim_work); 941 break; 942 } 943 } 944 945 spin_unlock_irqrestore(&pcpu_lock, flags); 946 } 947 EXPORT_SYMBOL_GPL(free_percpu); 948 949 /** 950 * is_kernel_percpu_address - test whether address is from static percpu area 951 * @addr: address to test 952 * 953 * Test whether @addr belongs to in-kernel static percpu area. Module 954 * static percpu areas are not considered. For those, use 955 * is_module_percpu_address(). 956 * 957 * RETURNS: 958 * %true if @addr is from in-kernel static percpu area, %false otherwise. 959 */ 960 bool is_kernel_percpu_address(unsigned long addr) 961 { 962 #ifdef CONFIG_SMP 963 const size_t static_size = __per_cpu_end - __per_cpu_start; 964 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 965 unsigned int cpu; 966 967 for_each_possible_cpu(cpu) { 968 void *start = per_cpu_ptr(base, cpu); 969 970 if ((void *)addr >= start && (void *)addr < start + static_size) 971 return true; 972 } 973 #endif 974 /* on UP, can't distinguish from other static vars, always false */ 975 return false; 976 } 977 978 /** 979 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 980 * @addr: the address to be converted to physical address 981 * 982 * Given @addr which is dereferenceable address obtained via one of 983 * percpu access macros, this function translates it into its physical 984 * address. The caller is responsible for ensuring @addr stays valid 985 * until this function finishes. 986 * 987 * percpu allocator has special setup for the first chunk, which currently 988 * supports either embedding in linear address space or vmalloc mapping, 989 * and, from the second one, the backing allocator (currently either vm or 990 * km) provides translation. 991 * 992 * The addr can be tranlated simply without checking if it falls into the 993 * first chunk. But the current code reflects better how percpu allocator 994 * actually works, and the verification can discover both bugs in percpu 995 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 996 * code. 997 * 998 * RETURNS: 999 * The physical address for @addr. 1000 */ 1001 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1002 { 1003 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1004 bool in_first_chunk = false; 1005 unsigned long first_low, first_high; 1006 unsigned int cpu; 1007 1008 /* 1009 * The following test on unit_low/high isn't strictly 1010 * necessary but will speed up lookups of addresses which 1011 * aren't in the first chunk. 1012 */ 1013 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1014 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1015 pcpu_unit_pages); 1016 if ((unsigned long)addr >= first_low && 1017 (unsigned long)addr < first_high) { 1018 for_each_possible_cpu(cpu) { 1019 void *start = per_cpu_ptr(base, cpu); 1020 1021 if (addr >= start && addr < start + pcpu_unit_size) { 1022 in_first_chunk = true; 1023 break; 1024 } 1025 } 1026 } 1027 1028 if (in_first_chunk) { 1029 if (!is_vmalloc_addr(addr)) 1030 return __pa(addr); 1031 else 1032 return page_to_phys(vmalloc_to_page(addr)) + 1033 offset_in_page(addr); 1034 } else 1035 return page_to_phys(pcpu_addr_to_page(addr)) + 1036 offset_in_page(addr); 1037 } 1038 1039 /** 1040 * pcpu_alloc_alloc_info - allocate percpu allocation info 1041 * @nr_groups: the number of groups 1042 * @nr_units: the number of units 1043 * 1044 * Allocate ai which is large enough for @nr_groups groups containing 1045 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1046 * cpu_map array which is long enough for @nr_units and filled with 1047 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1048 * pointer of other groups. 1049 * 1050 * RETURNS: 1051 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1052 * failure. 1053 */ 1054 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1055 int nr_units) 1056 { 1057 struct pcpu_alloc_info *ai; 1058 size_t base_size, ai_size; 1059 void *ptr; 1060 int unit; 1061 1062 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1063 __alignof__(ai->groups[0].cpu_map[0])); 1064 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1065 1066 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1067 if (!ptr) 1068 return NULL; 1069 ai = ptr; 1070 ptr += base_size; 1071 1072 ai->groups[0].cpu_map = ptr; 1073 1074 for (unit = 0; unit < nr_units; unit++) 1075 ai->groups[0].cpu_map[unit] = NR_CPUS; 1076 1077 ai->nr_groups = nr_groups; 1078 ai->__ai_size = PFN_ALIGN(ai_size); 1079 1080 return ai; 1081 } 1082 1083 /** 1084 * pcpu_free_alloc_info - free percpu allocation info 1085 * @ai: pcpu_alloc_info to free 1086 * 1087 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1088 */ 1089 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1090 { 1091 free_bootmem(__pa(ai), ai->__ai_size); 1092 } 1093 1094 /** 1095 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1096 * @lvl: loglevel 1097 * @ai: allocation info to dump 1098 * 1099 * Print out information about @ai using loglevel @lvl. 1100 */ 1101 static void pcpu_dump_alloc_info(const char *lvl, 1102 const struct pcpu_alloc_info *ai) 1103 { 1104 int group_width = 1, cpu_width = 1, width; 1105 char empty_str[] = "--------"; 1106 int alloc = 0, alloc_end = 0; 1107 int group, v; 1108 int upa, apl; /* units per alloc, allocs per line */ 1109 1110 v = ai->nr_groups; 1111 while (v /= 10) 1112 group_width++; 1113 1114 v = num_possible_cpus(); 1115 while (v /= 10) 1116 cpu_width++; 1117 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1118 1119 upa = ai->alloc_size / ai->unit_size; 1120 width = upa * (cpu_width + 1) + group_width + 3; 1121 apl = rounddown_pow_of_two(max(60 / width, 1)); 1122 1123 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1124 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1125 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1126 1127 for (group = 0; group < ai->nr_groups; group++) { 1128 const struct pcpu_group_info *gi = &ai->groups[group]; 1129 int unit = 0, unit_end = 0; 1130 1131 BUG_ON(gi->nr_units % upa); 1132 for (alloc_end += gi->nr_units / upa; 1133 alloc < alloc_end; alloc++) { 1134 if (!(alloc % apl)) { 1135 printk(KERN_CONT "\n"); 1136 printk("%spcpu-alloc: ", lvl); 1137 } 1138 printk(KERN_CONT "[%0*d] ", group_width, group); 1139 1140 for (unit_end += upa; unit < unit_end; unit++) 1141 if (gi->cpu_map[unit] != NR_CPUS) 1142 printk(KERN_CONT "%0*d ", cpu_width, 1143 gi->cpu_map[unit]); 1144 else 1145 printk(KERN_CONT "%s ", empty_str); 1146 } 1147 } 1148 printk(KERN_CONT "\n"); 1149 } 1150 1151 /** 1152 * pcpu_setup_first_chunk - initialize the first percpu chunk 1153 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1154 * @base_addr: mapped address 1155 * 1156 * Initialize the first percpu chunk which contains the kernel static 1157 * perpcu area. This function is to be called from arch percpu area 1158 * setup path. 1159 * 1160 * @ai contains all information necessary to initialize the first 1161 * chunk and prime the dynamic percpu allocator. 1162 * 1163 * @ai->static_size is the size of static percpu area. 1164 * 1165 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1166 * reserve after the static area in the first chunk. This reserves 1167 * the first chunk such that it's available only through reserved 1168 * percpu allocation. This is primarily used to serve module percpu 1169 * static areas on architectures where the addressing model has 1170 * limited offset range for symbol relocations to guarantee module 1171 * percpu symbols fall inside the relocatable range. 1172 * 1173 * @ai->dyn_size determines the number of bytes available for dynamic 1174 * allocation in the first chunk. The area between @ai->static_size + 1175 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1176 * 1177 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1178 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1179 * @ai->dyn_size. 1180 * 1181 * @ai->atom_size is the allocation atom size and used as alignment 1182 * for vm areas. 1183 * 1184 * @ai->alloc_size is the allocation size and always multiple of 1185 * @ai->atom_size. This is larger than @ai->atom_size if 1186 * @ai->unit_size is larger than @ai->atom_size. 1187 * 1188 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1189 * percpu areas. Units which should be colocated are put into the 1190 * same group. Dynamic VM areas will be allocated according to these 1191 * groupings. If @ai->nr_groups is zero, a single group containing 1192 * all units is assumed. 1193 * 1194 * The caller should have mapped the first chunk at @base_addr and 1195 * copied static data to each unit. 1196 * 1197 * If the first chunk ends up with both reserved and dynamic areas, it 1198 * is served by two chunks - one to serve the core static and reserved 1199 * areas and the other for the dynamic area. They share the same vm 1200 * and page map but uses different area allocation map to stay away 1201 * from each other. The latter chunk is circulated in the chunk slots 1202 * and available for dynamic allocation like any other chunks. 1203 * 1204 * RETURNS: 1205 * 0 on success, -errno on failure. 1206 */ 1207 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1208 void *base_addr) 1209 { 1210 static char cpus_buf[4096] __initdata; 1211 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1212 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1213 size_t dyn_size = ai->dyn_size; 1214 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1215 struct pcpu_chunk *schunk, *dchunk = NULL; 1216 unsigned long *group_offsets; 1217 size_t *group_sizes; 1218 unsigned long *unit_off; 1219 unsigned int cpu; 1220 int *unit_map; 1221 int group, unit, i; 1222 1223 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1224 1225 #define PCPU_SETUP_BUG_ON(cond) do { \ 1226 if (unlikely(cond)) { \ 1227 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1228 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1229 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1230 BUG(); \ 1231 } \ 1232 } while (0) 1233 1234 /* sanity checks */ 1235 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1236 #ifdef CONFIG_SMP 1237 PCPU_SETUP_BUG_ON(!ai->static_size); 1238 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); 1239 #endif 1240 PCPU_SETUP_BUG_ON(!base_addr); 1241 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); 1242 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1243 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1244 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1245 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1246 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1247 1248 /* process group information and build config tables accordingly */ 1249 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1250 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1251 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1252 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1253 1254 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1255 unit_map[cpu] = UINT_MAX; 1256 1257 pcpu_low_unit_cpu = NR_CPUS; 1258 pcpu_high_unit_cpu = NR_CPUS; 1259 1260 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1261 const struct pcpu_group_info *gi = &ai->groups[group]; 1262 1263 group_offsets[group] = gi->base_offset; 1264 group_sizes[group] = gi->nr_units * ai->unit_size; 1265 1266 for (i = 0; i < gi->nr_units; i++) { 1267 cpu = gi->cpu_map[i]; 1268 if (cpu == NR_CPUS) 1269 continue; 1270 1271 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1272 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1273 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1274 1275 unit_map[cpu] = unit + i; 1276 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1277 1278 /* determine low/high unit_cpu */ 1279 if (pcpu_low_unit_cpu == NR_CPUS || 1280 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1281 pcpu_low_unit_cpu = cpu; 1282 if (pcpu_high_unit_cpu == NR_CPUS || 1283 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1284 pcpu_high_unit_cpu = cpu; 1285 } 1286 } 1287 pcpu_nr_units = unit; 1288 1289 for_each_possible_cpu(cpu) 1290 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1291 1292 /* we're done parsing the input, undefine BUG macro and dump config */ 1293 #undef PCPU_SETUP_BUG_ON 1294 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1295 1296 pcpu_nr_groups = ai->nr_groups; 1297 pcpu_group_offsets = group_offsets; 1298 pcpu_group_sizes = group_sizes; 1299 pcpu_unit_map = unit_map; 1300 pcpu_unit_offsets = unit_off; 1301 1302 /* determine basic parameters */ 1303 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1304 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1305 pcpu_atom_size = ai->atom_size; 1306 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1307 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1308 1309 /* 1310 * Allocate chunk slots. The additional last slot is for 1311 * empty chunks. 1312 */ 1313 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1314 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1315 for (i = 0; i < pcpu_nr_slots; i++) 1316 INIT_LIST_HEAD(&pcpu_slot[i]); 1317 1318 /* 1319 * Initialize static chunk. If reserved_size is zero, the 1320 * static chunk covers static area + dynamic allocation area 1321 * in the first chunk. If reserved_size is not zero, it 1322 * covers static area + reserved area (mostly used for module 1323 * static percpu allocation). 1324 */ 1325 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1326 INIT_LIST_HEAD(&schunk->list); 1327 schunk->base_addr = base_addr; 1328 schunk->map = smap; 1329 schunk->map_alloc = ARRAY_SIZE(smap); 1330 schunk->immutable = true; 1331 bitmap_fill(schunk->populated, pcpu_unit_pages); 1332 1333 if (ai->reserved_size) { 1334 schunk->free_size = ai->reserved_size; 1335 pcpu_reserved_chunk = schunk; 1336 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1337 } else { 1338 schunk->free_size = dyn_size; 1339 dyn_size = 0; /* dynamic area covered */ 1340 } 1341 schunk->contig_hint = schunk->free_size; 1342 1343 schunk->map[schunk->map_used++] = -ai->static_size; 1344 if (schunk->free_size) 1345 schunk->map[schunk->map_used++] = schunk->free_size; 1346 1347 /* init dynamic chunk if necessary */ 1348 if (dyn_size) { 1349 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1350 INIT_LIST_HEAD(&dchunk->list); 1351 dchunk->base_addr = base_addr; 1352 dchunk->map = dmap; 1353 dchunk->map_alloc = ARRAY_SIZE(dmap); 1354 dchunk->immutable = true; 1355 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1356 1357 dchunk->contig_hint = dchunk->free_size = dyn_size; 1358 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1359 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1360 } 1361 1362 /* link the first chunk in */ 1363 pcpu_first_chunk = dchunk ?: schunk; 1364 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1365 1366 /* we're done */ 1367 pcpu_base_addr = base_addr; 1368 return 0; 1369 } 1370 1371 #ifdef CONFIG_SMP 1372 1373 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1374 [PCPU_FC_AUTO] = "auto", 1375 [PCPU_FC_EMBED] = "embed", 1376 [PCPU_FC_PAGE] = "page", 1377 }; 1378 1379 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1380 1381 static int __init percpu_alloc_setup(char *str) 1382 { 1383 if (0) 1384 /* nada */; 1385 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1386 else if (!strcmp(str, "embed")) 1387 pcpu_chosen_fc = PCPU_FC_EMBED; 1388 #endif 1389 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1390 else if (!strcmp(str, "page")) 1391 pcpu_chosen_fc = PCPU_FC_PAGE; 1392 #endif 1393 else 1394 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1395 1396 return 0; 1397 } 1398 early_param("percpu_alloc", percpu_alloc_setup); 1399 1400 /* 1401 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1402 * Build it if needed by the arch config or the generic setup is going 1403 * to be used. 1404 */ 1405 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1406 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1407 #define BUILD_EMBED_FIRST_CHUNK 1408 #endif 1409 1410 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1411 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1412 #define BUILD_PAGE_FIRST_CHUNK 1413 #endif 1414 1415 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1416 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1417 /** 1418 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1419 * @reserved_size: the size of reserved percpu area in bytes 1420 * @dyn_size: minimum free size for dynamic allocation in bytes 1421 * @atom_size: allocation atom size 1422 * @cpu_distance_fn: callback to determine distance between cpus, optional 1423 * 1424 * This function determines grouping of units, their mappings to cpus 1425 * and other parameters considering needed percpu size, allocation 1426 * atom size and distances between CPUs. 1427 * 1428 * Groups are always mutliples of atom size and CPUs which are of 1429 * LOCAL_DISTANCE both ways are grouped together and share space for 1430 * units in the same group. The returned configuration is guaranteed 1431 * to have CPUs on different nodes on different groups and >=75% usage 1432 * of allocated virtual address space. 1433 * 1434 * RETURNS: 1435 * On success, pointer to the new allocation_info is returned. On 1436 * failure, ERR_PTR value is returned. 1437 */ 1438 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1439 size_t reserved_size, size_t dyn_size, 1440 size_t atom_size, 1441 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1442 { 1443 static int group_map[NR_CPUS] __initdata; 1444 static int group_cnt[NR_CPUS] __initdata; 1445 const size_t static_size = __per_cpu_end - __per_cpu_start; 1446 int nr_groups = 1, nr_units = 0; 1447 size_t size_sum, min_unit_size, alloc_size; 1448 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1449 int last_allocs, group, unit; 1450 unsigned int cpu, tcpu; 1451 struct pcpu_alloc_info *ai; 1452 unsigned int *cpu_map; 1453 1454 /* this function may be called multiple times */ 1455 memset(group_map, 0, sizeof(group_map)); 1456 memset(group_cnt, 0, sizeof(group_cnt)); 1457 1458 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1459 size_sum = PFN_ALIGN(static_size + reserved_size + 1460 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1461 dyn_size = size_sum - static_size - reserved_size; 1462 1463 /* 1464 * Determine min_unit_size, alloc_size and max_upa such that 1465 * alloc_size is multiple of atom_size and is the smallest 1466 * which can accommodate 4k aligned segments which are equal to 1467 * or larger than min_unit_size. 1468 */ 1469 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1470 1471 alloc_size = roundup(min_unit_size, atom_size); 1472 upa = alloc_size / min_unit_size; 1473 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1474 upa--; 1475 max_upa = upa; 1476 1477 /* group cpus according to their proximity */ 1478 for_each_possible_cpu(cpu) { 1479 group = 0; 1480 next_group: 1481 for_each_possible_cpu(tcpu) { 1482 if (cpu == tcpu) 1483 break; 1484 if (group_map[tcpu] == group && cpu_distance_fn && 1485 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1486 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1487 group++; 1488 nr_groups = max(nr_groups, group + 1); 1489 goto next_group; 1490 } 1491 } 1492 group_map[cpu] = group; 1493 group_cnt[group]++; 1494 } 1495 1496 /* 1497 * Expand unit size until address space usage goes over 75% 1498 * and then as much as possible without using more address 1499 * space. 1500 */ 1501 last_allocs = INT_MAX; 1502 for (upa = max_upa; upa; upa--) { 1503 int allocs = 0, wasted = 0; 1504 1505 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1506 continue; 1507 1508 for (group = 0; group < nr_groups; group++) { 1509 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1510 allocs += this_allocs; 1511 wasted += this_allocs * upa - group_cnt[group]; 1512 } 1513 1514 /* 1515 * Don't accept if wastage is over 1/3. The 1516 * greater-than comparison ensures upa==1 always 1517 * passes the following check. 1518 */ 1519 if (wasted > num_possible_cpus() / 3) 1520 continue; 1521 1522 /* and then don't consume more memory */ 1523 if (allocs > last_allocs) 1524 break; 1525 last_allocs = allocs; 1526 best_upa = upa; 1527 } 1528 upa = best_upa; 1529 1530 /* allocate and fill alloc_info */ 1531 for (group = 0; group < nr_groups; group++) 1532 nr_units += roundup(group_cnt[group], upa); 1533 1534 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1535 if (!ai) 1536 return ERR_PTR(-ENOMEM); 1537 cpu_map = ai->groups[0].cpu_map; 1538 1539 for (group = 0; group < nr_groups; group++) { 1540 ai->groups[group].cpu_map = cpu_map; 1541 cpu_map += roundup(group_cnt[group], upa); 1542 } 1543 1544 ai->static_size = static_size; 1545 ai->reserved_size = reserved_size; 1546 ai->dyn_size = dyn_size; 1547 ai->unit_size = alloc_size / upa; 1548 ai->atom_size = atom_size; 1549 ai->alloc_size = alloc_size; 1550 1551 for (group = 0, unit = 0; group_cnt[group]; group++) { 1552 struct pcpu_group_info *gi = &ai->groups[group]; 1553 1554 /* 1555 * Initialize base_offset as if all groups are located 1556 * back-to-back. The caller should update this to 1557 * reflect actual allocation. 1558 */ 1559 gi->base_offset = unit * ai->unit_size; 1560 1561 for_each_possible_cpu(cpu) 1562 if (group_map[cpu] == group) 1563 gi->cpu_map[gi->nr_units++] = cpu; 1564 gi->nr_units = roundup(gi->nr_units, upa); 1565 unit += gi->nr_units; 1566 } 1567 BUG_ON(unit != nr_units); 1568 1569 return ai; 1570 } 1571 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1572 1573 #if defined(BUILD_EMBED_FIRST_CHUNK) 1574 /** 1575 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1576 * @reserved_size: the size of reserved percpu area in bytes 1577 * @dyn_size: minimum free size for dynamic allocation in bytes 1578 * @atom_size: allocation atom size 1579 * @cpu_distance_fn: callback to determine distance between cpus, optional 1580 * @alloc_fn: function to allocate percpu page 1581 * @free_fn: function to free percpu page 1582 * 1583 * This is a helper to ease setting up embedded first percpu chunk and 1584 * can be called where pcpu_setup_first_chunk() is expected. 1585 * 1586 * If this function is used to setup the first chunk, it is allocated 1587 * by calling @alloc_fn and used as-is without being mapped into 1588 * vmalloc area. Allocations are always whole multiples of @atom_size 1589 * aligned to @atom_size. 1590 * 1591 * This enables the first chunk to piggy back on the linear physical 1592 * mapping which often uses larger page size. Please note that this 1593 * can result in very sparse cpu->unit mapping on NUMA machines thus 1594 * requiring large vmalloc address space. Don't use this allocator if 1595 * vmalloc space is not orders of magnitude larger than distances 1596 * between node memory addresses (ie. 32bit NUMA machines). 1597 * 1598 * @dyn_size specifies the minimum dynamic area size. 1599 * 1600 * If the needed size is smaller than the minimum or specified unit 1601 * size, the leftover is returned using @free_fn. 1602 * 1603 * RETURNS: 1604 * 0 on success, -errno on failure. 1605 */ 1606 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1607 size_t atom_size, 1608 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1609 pcpu_fc_alloc_fn_t alloc_fn, 1610 pcpu_fc_free_fn_t free_fn) 1611 { 1612 void *base = (void *)ULONG_MAX; 1613 void **areas = NULL; 1614 struct pcpu_alloc_info *ai; 1615 size_t size_sum, areas_size, max_distance; 1616 int group, i, rc; 1617 1618 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1619 cpu_distance_fn); 1620 if (IS_ERR(ai)) 1621 return PTR_ERR(ai); 1622 1623 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1624 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1625 1626 areas = alloc_bootmem_nopanic(areas_size); 1627 if (!areas) { 1628 rc = -ENOMEM; 1629 goto out_free; 1630 } 1631 1632 /* allocate, copy and determine base address */ 1633 for (group = 0; group < ai->nr_groups; group++) { 1634 struct pcpu_group_info *gi = &ai->groups[group]; 1635 unsigned int cpu = NR_CPUS; 1636 void *ptr; 1637 1638 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1639 cpu = gi->cpu_map[i]; 1640 BUG_ON(cpu == NR_CPUS); 1641 1642 /* allocate space for the whole group */ 1643 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1644 if (!ptr) { 1645 rc = -ENOMEM; 1646 goto out_free_areas; 1647 } 1648 /* kmemleak tracks the percpu allocations separately */ 1649 kmemleak_free(ptr); 1650 areas[group] = ptr; 1651 1652 base = min(ptr, base); 1653 1654 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1655 if (gi->cpu_map[i] == NR_CPUS) { 1656 /* unused unit, free whole */ 1657 free_fn(ptr, ai->unit_size); 1658 continue; 1659 } 1660 /* copy and return the unused part */ 1661 memcpy(ptr, __per_cpu_load, ai->static_size); 1662 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1663 } 1664 } 1665 1666 /* base address is now known, determine group base offsets */ 1667 max_distance = 0; 1668 for (group = 0; group < ai->nr_groups; group++) { 1669 ai->groups[group].base_offset = areas[group] - base; 1670 max_distance = max_t(size_t, max_distance, 1671 ai->groups[group].base_offset); 1672 } 1673 max_distance += ai->unit_size; 1674 1675 /* warn if maximum distance is further than 75% of vmalloc space */ 1676 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1677 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1678 "space 0x%lx\n", max_distance, 1679 (unsigned long)(VMALLOC_END - VMALLOC_START)); 1680 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1681 /* and fail if we have fallback */ 1682 rc = -EINVAL; 1683 goto out_free; 1684 #endif 1685 } 1686 1687 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1688 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1689 ai->dyn_size, ai->unit_size); 1690 1691 rc = pcpu_setup_first_chunk(ai, base); 1692 goto out_free; 1693 1694 out_free_areas: 1695 for (group = 0; group < ai->nr_groups; group++) 1696 free_fn(areas[group], 1697 ai->groups[group].nr_units * ai->unit_size); 1698 out_free: 1699 pcpu_free_alloc_info(ai); 1700 if (areas) 1701 free_bootmem(__pa(areas), areas_size); 1702 return rc; 1703 } 1704 #endif /* BUILD_EMBED_FIRST_CHUNK */ 1705 1706 #ifdef BUILD_PAGE_FIRST_CHUNK 1707 /** 1708 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1709 * @reserved_size: the size of reserved percpu area in bytes 1710 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1711 * @free_fn: function to free percpu page, always called with PAGE_SIZE 1712 * @populate_pte_fn: function to populate pte 1713 * 1714 * This is a helper to ease setting up page-remapped first percpu 1715 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1716 * 1717 * This is the basic allocator. Static percpu area is allocated 1718 * page-by-page into vmalloc area. 1719 * 1720 * RETURNS: 1721 * 0 on success, -errno on failure. 1722 */ 1723 int __init pcpu_page_first_chunk(size_t reserved_size, 1724 pcpu_fc_alloc_fn_t alloc_fn, 1725 pcpu_fc_free_fn_t free_fn, 1726 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1727 { 1728 static struct vm_struct vm; 1729 struct pcpu_alloc_info *ai; 1730 char psize_str[16]; 1731 int unit_pages; 1732 size_t pages_size; 1733 struct page **pages; 1734 int unit, i, j, rc; 1735 1736 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1737 1738 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 1739 if (IS_ERR(ai)) 1740 return PTR_ERR(ai); 1741 BUG_ON(ai->nr_groups != 1); 1742 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1743 1744 unit_pages = ai->unit_size >> PAGE_SHIFT; 1745 1746 /* unaligned allocations can't be freed, round up to page size */ 1747 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1748 sizeof(pages[0])); 1749 pages = alloc_bootmem(pages_size); 1750 1751 /* allocate pages */ 1752 j = 0; 1753 for (unit = 0; unit < num_possible_cpus(); unit++) 1754 for (i = 0; i < unit_pages; i++) { 1755 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1756 void *ptr; 1757 1758 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1759 if (!ptr) { 1760 pr_warning("PERCPU: failed to allocate %s page " 1761 "for cpu%u\n", psize_str, cpu); 1762 goto enomem; 1763 } 1764 /* kmemleak tracks the percpu allocations separately */ 1765 kmemleak_free(ptr); 1766 pages[j++] = virt_to_page(ptr); 1767 } 1768 1769 /* allocate vm area, map the pages and copy static data */ 1770 vm.flags = VM_ALLOC; 1771 vm.size = num_possible_cpus() * ai->unit_size; 1772 vm_area_register_early(&vm, PAGE_SIZE); 1773 1774 for (unit = 0; unit < num_possible_cpus(); unit++) { 1775 unsigned long unit_addr = 1776 (unsigned long)vm.addr + unit * ai->unit_size; 1777 1778 for (i = 0; i < unit_pages; i++) 1779 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1780 1781 /* pte already populated, the following shouldn't fail */ 1782 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1783 unit_pages); 1784 if (rc < 0) 1785 panic("failed to map percpu area, err=%d\n", rc); 1786 1787 /* 1788 * FIXME: Archs with virtual cache should flush local 1789 * cache for the linear mapping here - something 1790 * equivalent to flush_cache_vmap() on the local cpu. 1791 * flush_cache_vmap() can't be used as most supporting 1792 * data structures are not set up yet. 1793 */ 1794 1795 /* copy static data */ 1796 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1797 } 1798 1799 /* we're ready, commit */ 1800 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1801 unit_pages, psize_str, vm.addr, ai->static_size, 1802 ai->reserved_size, ai->dyn_size); 1803 1804 rc = pcpu_setup_first_chunk(ai, vm.addr); 1805 goto out_free_ar; 1806 1807 enomem: 1808 while (--j >= 0) 1809 free_fn(page_address(pages[j]), PAGE_SIZE); 1810 rc = -ENOMEM; 1811 out_free_ar: 1812 free_bootmem(__pa(pages), pages_size); 1813 pcpu_free_alloc_info(ai); 1814 return rc; 1815 } 1816 #endif /* BUILD_PAGE_FIRST_CHUNK */ 1817 1818 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1819 /* 1820 * Generic SMP percpu area setup. 1821 * 1822 * The embedding helper is used because its behavior closely resembles 1823 * the original non-dynamic generic percpu area setup. This is 1824 * important because many archs have addressing restrictions and might 1825 * fail if the percpu area is located far away from the previous 1826 * location. As an added bonus, in non-NUMA cases, embedding is 1827 * generally a good idea TLB-wise because percpu area can piggy back 1828 * on the physical linear memory mapping which uses large page 1829 * mappings on applicable archs. 1830 */ 1831 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1832 EXPORT_SYMBOL(__per_cpu_offset); 1833 1834 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1835 size_t align) 1836 { 1837 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 1838 } 1839 1840 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1841 { 1842 free_bootmem(__pa(ptr), size); 1843 } 1844 1845 void __init setup_per_cpu_areas(void) 1846 { 1847 unsigned long delta; 1848 unsigned int cpu; 1849 int rc; 1850 1851 /* 1852 * Always reserve area for module percpu variables. That's 1853 * what the legacy allocator did. 1854 */ 1855 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1856 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1857 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1858 if (rc < 0) 1859 panic("Failed to initialize percpu areas."); 1860 1861 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1862 for_each_possible_cpu(cpu) 1863 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1864 } 1865 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1866 1867 #else /* CONFIG_SMP */ 1868 1869 /* 1870 * UP percpu area setup. 1871 * 1872 * UP always uses km-based percpu allocator with identity mapping. 1873 * Static percpu variables are indistinguishable from the usual static 1874 * variables and don't require any special preparation. 1875 */ 1876 void __init setup_per_cpu_areas(void) 1877 { 1878 const size_t unit_size = 1879 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 1880 PERCPU_DYNAMIC_RESERVE)); 1881 struct pcpu_alloc_info *ai; 1882 void *fc; 1883 1884 ai = pcpu_alloc_alloc_info(1, 1); 1885 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 1886 if (!ai || !fc) 1887 panic("Failed to allocate memory for percpu areas."); 1888 1889 ai->dyn_size = unit_size; 1890 ai->unit_size = unit_size; 1891 ai->atom_size = unit_size; 1892 ai->alloc_size = unit_size; 1893 ai->groups[0].nr_units = 1; 1894 ai->groups[0].cpu_map[0] = 0; 1895 1896 if (pcpu_setup_first_chunk(ai, fc) < 0) 1897 panic("Failed to initialize percpu areas."); 1898 } 1899 1900 #endif /* CONFIG_SMP */ 1901 1902 /* 1903 * First and reserved chunks are initialized with temporary allocation 1904 * map in initdata so that they can be used before slab is online. 1905 * This function is called after slab is brought up and replaces those 1906 * with properly allocated maps. 1907 */ 1908 void __init percpu_init_late(void) 1909 { 1910 struct pcpu_chunk *target_chunks[] = 1911 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 1912 struct pcpu_chunk *chunk; 1913 unsigned long flags; 1914 int i; 1915 1916 for (i = 0; (chunk = target_chunks[i]); i++) { 1917 int *map; 1918 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 1919 1920 BUILD_BUG_ON(size > PAGE_SIZE); 1921 1922 map = pcpu_mem_zalloc(size); 1923 BUG_ON(!map); 1924 1925 spin_lock_irqsave(&pcpu_lock, flags); 1926 memcpy(map, chunk->map, size); 1927 chunk->map = map; 1928 spin_unlock_irqrestore(&pcpu_lock, flags); 1929 } 1930 } 1931