1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * tries to allocate from the fullest chunk first. Each chunk is managed 41 * by a bitmap with metadata blocks. The allocation map is updated on 42 * every allocation and free to reflect the current state while the boundary 43 * map is only updated on allocation. Each metadata block contains 44 * information to help mitigate the need to iterate over large portions 45 * of the bitmap. The reverse mapping from page to chunk is stored in 46 * the page's index. Lastly, units are lazily backed and grow in unison. 47 * 48 * There is a unique conversion that goes on here between bytes and bits. 49 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 50 * tracks the number of pages it is responsible for in nr_pages. Helper 51 * functions are used to convert from between the bytes, bits, and blocks. 52 * All hints are managed in bits unless explicitly stated. 53 * 54 * To use this allocator, arch code should do the following: 55 * 56 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 57 * regular address to percpu pointer and back if they need to be 58 * different from the default 59 * 60 * - use pcpu_setup_first_chunk() during percpu area initialization to 61 * setup the first chunk containing the kernel static percpu area 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/bitmap.h> 67 #include <linux/memblock.h> 68 #include <linux/err.h> 69 #include <linux/lcm.h> 70 #include <linux/list.h> 71 #include <linux/log2.h> 72 #include <linux/mm.h> 73 #include <linux/module.h> 74 #include <linux/mutex.h> 75 #include <linux/percpu.h> 76 #include <linux/pfn.h> 77 #include <linux/slab.h> 78 #include <linux/spinlock.h> 79 #include <linux/vmalloc.h> 80 #include <linux/workqueue.h> 81 #include <linux/kmemleak.h> 82 #include <linux/sched.h> 83 #include <linux/sched/mm.h> 84 85 #include <asm/cacheflush.h> 86 #include <asm/sections.h> 87 #include <asm/tlbflush.h> 88 #include <asm/io.h> 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/percpu.h> 92 93 #include "percpu-internal.h" 94 95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 96 #define PCPU_SLOT_BASE_SHIFT 5 97 /* chunks in slots below this are subject to being sidelined on failed alloc */ 98 #define PCPU_SLOT_FAIL_THRESHOLD 3 99 100 #define PCPU_EMPTY_POP_PAGES_LOW 2 101 #define PCPU_EMPTY_POP_PAGES_HIGH 4 102 103 #ifdef CONFIG_SMP 104 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 105 #ifndef __addr_to_pcpu_ptr 106 #define __addr_to_pcpu_ptr(addr) \ 107 (void __percpu *)((unsigned long)(addr) - \ 108 (unsigned long)pcpu_base_addr + \ 109 (unsigned long)__per_cpu_start) 110 #endif 111 #ifndef __pcpu_ptr_to_addr 112 #define __pcpu_ptr_to_addr(ptr) \ 113 (void __force *)((unsigned long)(ptr) + \ 114 (unsigned long)pcpu_base_addr - \ 115 (unsigned long)__per_cpu_start) 116 #endif 117 #else /* CONFIG_SMP */ 118 /* on UP, it's always identity mapped */ 119 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 120 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 121 #endif /* CONFIG_SMP */ 122 123 static int pcpu_unit_pages __ro_after_init; 124 static int pcpu_unit_size __ro_after_init; 125 static int pcpu_nr_units __ro_after_init; 126 static int pcpu_atom_size __ro_after_init; 127 int pcpu_nr_slots __ro_after_init; 128 static size_t pcpu_chunk_struct_size __ro_after_init; 129 130 /* cpus with the lowest and highest unit addresses */ 131 static unsigned int pcpu_low_unit_cpu __ro_after_init; 132 static unsigned int pcpu_high_unit_cpu __ro_after_init; 133 134 /* the address of the first chunk which starts with the kernel static area */ 135 void *pcpu_base_addr __ro_after_init; 136 EXPORT_SYMBOL_GPL(pcpu_base_addr); 137 138 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 139 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 140 141 /* group information, used for vm allocation */ 142 static int pcpu_nr_groups __ro_after_init; 143 static const unsigned long *pcpu_group_offsets __ro_after_init; 144 static const size_t *pcpu_group_sizes __ro_after_init; 145 146 /* 147 * The first chunk which always exists. Note that unlike other 148 * chunks, this one can be allocated and mapped in several different 149 * ways and thus often doesn't live in the vmalloc area. 150 */ 151 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 152 153 /* 154 * Optional reserved chunk. This chunk reserves part of the first 155 * chunk and serves it for reserved allocations. When the reserved 156 * region doesn't exist, the following variable is NULL. 157 */ 158 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 159 160 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 161 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 162 163 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 164 165 /* chunks which need their map areas extended, protected by pcpu_lock */ 166 static LIST_HEAD(pcpu_map_extend_chunks); 167 168 /* 169 * The number of empty populated pages, protected by pcpu_lock. The 170 * reserved chunk doesn't contribute to the count. 171 */ 172 int pcpu_nr_empty_pop_pages; 173 174 /* 175 * The number of populated pages in use by the allocator, protected by 176 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 177 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 178 * and increments/decrements this count by 1). 179 */ 180 static unsigned long pcpu_nr_populated; 181 182 /* 183 * Balance work is used to populate or destroy chunks asynchronously. We 184 * try to keep the number of populated free pages between 185 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 186 * empty chunk. 187 */ 188 static void pcpu_balance_workfn(struct work_struct *work); 189 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 190 static bool pcpu_async_enabled __read_mostly; 191 static bool pcpu_atomic_alloc_failed; 192 193 static void pcpu_schedule_balance_work(void) 194 { 195 if (pcpu_async_enabled) 196 schedule_work(&pcpu_balance_work); 197 } 198 199 /** 200 * pcpu_addr_in_chunk - check if the address is served from this chunk 201 * @chunk: chunk of interest 202 * @addr: percpu address 203 * 204 * RETURNS: 205 * True if the address is served from this chunk. 206 */ 207 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 208 { 209 void *start_addr, *end_addr; 210 211 if (!chunk) 212 return false; 213 214 start_addr = chunk->base_addr + chunk->start_offset; 215 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 216 chunk->end_offset; 217 218 return addr >= start_addr && addr < end_addr; 219 } 220 221 static int __pcpu_size_to_slot(int size) 222 { 223 int highbit = fls(size); /* size is in bytes */ 224 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 225 } 226 227 static int pcpu_size_to_slot(int size) 228 { 229 if (size == pcpu_unit_size) 230 return pcpu_nr_slots - 1; 231 return __pcpu_size_to_slot(size); 232 } 233 234 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 235 { 236 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 237 238 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 239 chunk_md->contig_hint == 0) 240 return 0; 241 242 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 243 } 244 245 /* set the pointer to a chunk in a page struct */ 246 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 247 { 248 page->index = (unsigned long)pcpu; 249 } 250 251 /* obtain pointer to a chunk from a page struct */ 252 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 253 { 254 return (struct pcpu_chunk *)page->index; 255 } 256 257 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 258 { 259 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 260 } 261 262 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 263 { 264 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 265 } 266 267 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 268 unsigned int cpu, int page_idx) 269 { 270 return (unsigned long)chunk->base_addr + 271 pcpu_unit_page_offset(cpu, page_idx); 272 } 273 274 /* 275 * The following are helper functions to help access bitmaps and convert 276 * between bitmap offsets to address offsets. 277 */ 278 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 279 { 280 return chunk->alloc_map + 281 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 282 } 283 284 static unsigned long pcpu_off_to_block_index(int off) 285 { 286 return off / PCPU_BITMAP_BLOCK_BITS; 287 } 288 289 static unsigned long pcpu_off_to_block_off(int off) 290 { 291 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 292 } 293 294 static unsigned long pcpu_block_off_to_off(int index, int off) 295 { 296 return index * PCPU_BITMAP_BLOCK_BITS + off; 297 } 298 299 /* 300 * pcpu_next_hint - determine which hint to use 301 * @block: block of interest 302 * @alloc_bits: size of allocation 303 * 304 * This determines if we should scan based on the scan_hint or first_free. 305 * In general, we want to scan from first_free to fulfill allocations by 306 * first fit. However, if we know a scan_hint at position scan_hint_start 307 * cannot fulfill an allocation, we can begin scanning from there knowing 308 * the contig_hint will be our fallback. 309 */ 310 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 311 { 312 /* 313 * The three conditions below determine if we can skip past the 314 * scan_hint. First, does the scan hint exist. Second, is the 315 * contig_hint after the scan_hint (possibly not true iff 316 * contig_hint == scan_hint). Third, is the allocation request 317 * larger than the scan_hint. 318 */ 319 if (block->scan_hint && 320 block->contig_hint_start > block->scan_hint_start && 321 alloc_bits > block->scan_hint) 322 return block->scan_hint_start + block->scan_hint; 323 324 return block->first_free; 325 } 326 327 /** 328 * pcpu_next_md_free_region - finds the next hint free area 329 * @chunk: chunk of interest 330 * @bit_off: chunk offset 331 * @bits: size of free area 332 * 333 * Helper function for pcpu_for_each_md_free_region. It checks 334 * block->contig_hint and performs aggregation across blocks to find the 335 * next hint. It modifies bit_off and bits in-place to be consumed in the 336 * loop. 337 */ 338 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 339 int *bits) 340 { 341 int i = pcpu_off_to_block_index(*bit_off); 342 int block_off = pcpu_off_to_block_off(*bit_off); 343 struct pcpu_block_md *block; 344 345 *bits = 0; 346 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 347 block++, i++) { 348 /* handles contig area across blocks */ 349 if (*bits) { 350 *bits += block->left_free; 351 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 352 continue; 353 return; 354 } 355 356 /* 357 * This checks three things. First is there a contig_hint to 358 * check. Second, have we checked this hint before by 359 * comparing the block_off. Third, is this the same as the 360 * right contig hint. In the last case, it spills over into 361 * the next block and should be handled by the contig area 362 * across blocks code. 363 */ 364 *bits = block->contig_hint; 365 if (*bits && block->contig_hint_start >= block_off && 366 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 367 *bit_off = pcpu_block_off_to_off(i, 368 block->contig_hint_start); 369 return; 370 } 371 /* reset to satisfy the second predicate above */ 372 block_off = 0; 373 374 *bits = block->right_free; 375 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 376 } 377 } 378 379 /** 380 * pcpu_next_fit_region - finds fit areas for a given allocation request 381 * @chunk: chunk of interest 382 * @alloc_bits: size of allocation 383 * @align: alignment of area (max PAGE_SIZE) 384 * @bit_off: chunk offset 385 * @bits: size of free area 386 * 387 * Finds the next free region that is viable for use with a given size and 388 * alignment. This only returns if there is a valid area to be used for this 389 * allocation. block->first_free is returned if the allocation request fits 390 * within the block to see if the request can be fulfilled prior to the contig 391 * hint. 392 */ 393 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 394 int align, int *bit_off, int *bits) 395 { 396 int i = pcpu_off_to_block_index(*bit_off); 397 int block_off = pcpu_off_to_block_off(*bit_off); 398 struct pcpu_block_md *block; 399 400 *bits = 0; 401 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 402 block++, i++) { 403 /* handles contig area across blocks */ 404 if (*bits) { 405 *bits += block->left_free; 406 if (*bits >= alloc_bits) 407 return; 408 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 409 continue; 410 } 411 412 /* check block->contig_hint */ 413 *bits = ALIGN(block->contig_hint_start, align) - 414 block->contig_hint_start; 415 /* 416 * This uses the block offset to determine if this has been 417 * checked in the prior iteration. 418 */ 419 if (block->contig_hint && 420 block->contig_hint_start >= block_off && 421 block->contig_hint >= *bits + alloc_bits) { 422 int start = pcpu_next_hint(block, alloc_bits); 423 424 *bits += alloc_bits + block->contig_hint_start - 425 start; 426 *bit_off = pcpu_block_off_to_off(i, start); 427 return; 428 } 429 /* reset to satisfy the second predicate above */ 430 block_off = 0; 431 432 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 433 align); 434 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 435 *bit_off = pcpu_block_off_to_off(i, *bit_off); 436 if (*bits >= alloc_bits) 437 return; 438 } 439 440 /* no valid offsets were found - fail condition */ 441 *bit_off = pcpu_chunk_map_bits(chunk); 442 } 443 444 /* 445 * Metadata free area iterators. These perform aggregation of free areas 446 * based on the metadata blocks and return the offset @bit_off and size in 447 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 448 * a fit is found for the allocation request. 449 */ 450 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 451 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 452 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 453 (bit_off) += (bits) + 1, \ 454 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 455 456 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 457 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 458 &(bits)); \ 459 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 460 (bit_off) += (bits), \ 461 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 462 &(bits))) 463 464 /** 465 * pcpu_mem_zalloc - allocate memory 466 * @size: bytes to allocate 467 * @gfp: allocation flags 468 * 469 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 470 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 471 * This is to facilitate passing through whitelisted flags. The 472 * returned memory is always zeroed. 473 * 474 * RETURNS: 475 * Pointer to the allocated area on success, NULL on failure. 476 */ 477 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 478 { 479 if (WARN_ON_ONCE(!slab_is_available())) 480 return NULL; 481 482 if (size <= PAGE_SIZE) 483 return kzalloc(size, gfp); 484 else 485 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL); 486 } 487 488 /** 489 * pcpu_mem_free - free memory 490 * @ptr: memory to free 491 * 492 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 493 */ 494 static void pcpu_mem_free(void *ptr) 495 { 496 kvfree(ptr); 497 } 498 499 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 500 bool move_front) 501 { 502 if (chunk != pcpu_reserved_chunk) { 503 if (move_front) 504 list_move(&chunk->list, &pcpu_slot[slot]); 505 else 506 list_move_tail(&chunk->list, &pcpu_slot[slot]); 507 } 508 } 509 510 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 511 { 512 __pcpu_chunk_move(chunk, slot, true); 513 } 514 515 /** 516 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 517 * @chunk: chunk of interest 518 * @oslot: the previous slot it was on 519 * 520 * This function is called after an allocation or free changed @chunk. 521 * New slot according to the changed state is determined and @chunk is 522 * moved to the slot. Note that the reserved chunk is never put on 523 * chunk slots. 524 * 525 * CONTEXT: 526 * pcpu_lock. 527 */ 528 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 529 { 530 int nslot = pcpu_chunk_slot(chunk); 531 532 if (oslot != nslot) 533 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 534 } 535 536 /* 537 * pcpu_update_empty_pages - update empty page counters 538 * @chunk: chunk of interest 539 * @nr: nr of empty pages 540 * 541 * This is used to keep track of the empty pages now based on the premise 542 * a md_block covers a page. The hint update functions recognize if a block 543 * is made full or broken to calculate deltas for keeping track of free pages. 544 */ 545 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 546 { 547 chunk->nr_empty_pop_pages += nr; 548 if (chunk != pcpu_reserved_chunk) 549 pcpu_nr_empty_pop_pages += nr; 550 } 551 552 /* 553 * pcpu_region_overlap - determines if two regions overlap 554 * @a: start of first region, inclusive 555 * @b: end of first region, exclusive 556 * @x: start of second region, inclusive 557 * @y: end of second region, exclusive 558 * 559 * This is used to determine if the hint region [a, b) overlaps with the 560 * allocated region [x, y). 561 */ 562 static inline bool pcpu_region_overlap(int a, int b, int x, int y) 563 { 564 return (a < y) && (x < b); 565 } 566 567 /** 568 * pcpu_block_update - updates a block given a free area 569 * @block: block of interest 570 * @start: start offset in block 571 * @end: end offset in block 572 * 573 * Updates a block given a known free area. The region [start, end) is 574 * expected to be the entirety of the free area within a block. Chooses 575 * the best starting offset if the contig hints are equal. 576 */ 577 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 578 { 579 int contig = end - start; 580 581 block->first_free = min(block->first_free, start); 582 if (start == 0) 583 block->left_free = contig; 584 585 if (end == block->nr_bits) 586 block->right_free = contig; 587 588 if (contig > block->contig_hint) { 589 /* promote the old contig_hint to be the new scan_hint */ 590 if (start > block->contig_hint_start) { 591 if (block->contig_hint > block->scan_hint) { 592 block->scan_hint_start = 593 block->contig_hint_start; 594 block->scan_hint = block->contig_hint; 595 } else if (start < block->scan_hint_start) { 596 /* 597 * The old contig_hint == scan_hint. But, the 598 * new contig is larger so hold the invariant 599 * scan_hint_start < contig_hint_start. 600 */ 601 block->scan_hint = 0; 602 } 603 } else { 604 block->scan_hint = 0; 605 } 606 block->contig_hint_start = start; 607 block->contig_hint = contig; 608 } else if (contig == block->contig_hint) { 609 if (block->contig_hint_start && 610 (!start || 611 __ffs(start) > __ffs(block->contig_hint_start))) { 612 /* start has a better alignment so use it */ 613 block->contig_hint_start = start; 614 if (start < block->scan_hint_start && 615 block->contig_hint > block->scan_hint) 616 block->scan_hint = 0; 617 } else if (start > block->scan_hint_start || 618 block->contig_hint > block->scan_hint) { 619 /* 620 * Knowing contig == contig_hint, update the scan_hint 621 * if it is farther than or larger than the current 622 * scan_hint. 623 */ 624 block->scan_hint_start = start; 625 block->scan_hint = contig; 626 } 627 } else { 628 /* 629 * The region is smaller than the contig_hint. So only update 630 * the scan_hint if it is larger than or equal and farther than 631 * the current scan_hint. 632 */ 633 if ((start < block->contig_hint_start && 634 (contig > block->scan_hint || 635 (contig == block->scan_hint && 636 start > block->scan_hint_start)))) { 637 block->scan_hint_start = start; 638 block->scan_hint = contig; 639 } 640 } 641 } 642 643 /* 644 * pcpu_block_update_scan - update a block given a free area from a scan 645 * @chunk: chunk of interest 646 * @bit_off: chunk offset 647 * @bits: size of free area 648 * 649 * Finding the final allocation spot first goes through pcpu_find_block_fit() 650 * to find a block that can hold the allocation and then pcpu_alloc_area() 651 * where a scan is used. When allocations require specific alignments, 652 * we can inadvertently create holes which will not be seen in the alloc 653 * or free paths. 654 * 655 * This takes a given free area hole and updates a block as it may change the 656 * scan_hint. We need to scan backwards to ensure we don't miss free bits 657 * from alignment. 658 */ 659 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 660 int bits) 661 { 662 int s_off = pcpu_off_to_block_off(bit_off); 663 int e_off = s_off + bits; 664 int s_index, l_bit; 665 struct pcpu_block_md *block; 666 667 if (e_off > PCPU_BITMAP_BLOCK_BITS) 668 return; 669 670 s_index = pcpu_off_to_block_index(bit_off); 671 block = chunk->md_blocks + s_index; 672 673 /* scan backwards in case of alignment skipping free bits */ 674 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 675 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 676 677 pcpu_block_update(block, s_off, e_off); 678 } 679 680 /** 681 * pcpu_chunk_refresh_hint - updates metadata about a chunk 682 * @chunk: chunk of interest 683 * @full_scan: if we should scan from the beginning 684 * 685 * Iterates over the metadata blocks to find the largest contig area. 686 * A full scan can be avoided on the allocation path as this is triggered 687 * if we broke the contig_hint. In doing so, the scan_hint will be before 688 * the contig_hint or after if the scan_hint == contig_hint. This cannot 689 * be prevented on freeing as we want to find the largest area possibly 690 * spanning blocks. 691 */ 692 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 693 { 694 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 695 int bit_off, bits; 696 697 /* promote scan_hint to contig_hint */ 698 if (!full_scan && chunk_md->scan_hint) { 699 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 700 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 701 chunk_md->contig_hint = chunk_md->scan_hint; 702 chunk_md->scan_hint = 0; 703 } else { 704 bit_off = chunk_md->first_free; 705 chunk_md->contig_hint = 0; 706 } 707 708 bits = 0; 709 pcpu_for_each_md_free_region(chunk, bit_off, bits) 710 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 711 } 712 713 /** 714 * pcpu_block_refresh_hint 715 * @chunk: chunk of interest 716 * @index: index of the metadata block 717 * 718 * Scans over the block beginning at first_free and updates the block 719 * metadata accordingly. 720 */ 721 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 722 { 723 struct pcpu_block_md *block = chunk->md_blocks + index; 724 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 725 unsigned int rs, re, start; /* region start, region end */ 726 727 /* promote scan_hint to contig_hint */ 728 if (block->scan_hint) { 729 start = block->scan_hint_start + block->scan_hint; 730 block->contig_hint_start = block->scan_hint_start; 731 block->contig_hint = block->scan_hint; 732 block->scan_hint = 0; 733 } else { 734 start = block->first_free; 735 block->contig_hint = 0; 736 } 737 738 block->right_free = 0; 739 740 /* iterate over free areas and update the contig hints */ 741 bitmap_for_each_clear_region(alloc_map, rs, re, start, 742 PCPU_BITMAP_BLOCK_BITS) 743 pcpu_block_update(block, rs, re); 744 } 745 746 /** 747 * pcpu_block_update_hint_alloc - update hint on allocation path 748 * @chunk: chunk of interest 749 * @bit_off: chunk offset 750 * @bits: size of request 751 * 752 * Updates metadata for the allocation path. The metadata only has to be 753 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 754 * scans are required if the block's contig hint is broken. 755 */ 756 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 757 int bits) 758 { 759 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 760 int nr_empty_pages = 0; 761 struct pcpu_block_md *s_block, *e_block, *block; 762 int s_index, e_index; /* block indexes of the freed allocation */ 763 int s_off, e_off; /* block offsets of the freed allocation */ 764 765 /* 766 * Calculate per block offsets. 767 * The calculation uses an inclusive range, but the resulting offsets 768 * are [start, end). e_index always points to the last block in the 769 * range. 770 */ 771 s_index = pcpu_off_to_block_index(bit_off); 772 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 773 s_off = pcpu_off_to_block_off(bit_off); 774 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 775 776 s_block = chunk->md_blocks + s_index; 777 e_block = chunk->md_blocks + e_index; 778 779 /* 780 * Update s_block. 781 * block->first_free must be updated if the allocation takes its place. 782 * If the allocation breaks the contig_hint, a scan is required to 783 * restore this hint. 784 */ 785 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 786 nr_empty_pages++; 787 788 if (s_off == s_block->first_free) 789 s_block->first_free = find_next_zero_bit( 790 pcpu_index_alloc_map(chunk, s_index), 791 PCPU_BITMAP_BLOCK_BITS, 792 s_off + bits); 793 794 if (pcpu_region_overlap(s_block->scan_hint_start, 795 s_block->scan_hint_start + s_block->scan_hint, 796 s_off, 797 s_off + bits)) 798 s_block->scan_hint = 0; 799 800 if (pcpu_region_overlap(s_block->contig_hint_start, 801 s_block->contig_hint_start + 802 s_block->contig_hint, 803 s_off, 804 s_off + bits)) { 805 /* block contig hint is broken - scan to fix it */ 806 if (!s_off) 807 s_block->left_free = 0; 808 pcpu_block_refresh_hint(chunk, s_index); 809 } else { 810 /* update left and right contig manually */ 811 s_block->left_free = min(s_block->left_free, s_off); 812 if (s_index == e_index) 813 s_block->right_free = min_t(int, s_block->right_free, 814 PCPU_BITMAP_BLOCK_BITS - e_off); 815 else 816 s_block->right_free = 0; 817 } 818 819 /* 820 * Update e_block. 821 */ 822 if (s_index != e_index) { 823 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 824 nr_empty_pages++; 825 826 /* 827 * When the allocation is across blocks, the end is along 828 * the left part of the e_block. 829 */ 830 e_block->first_free = find_next_zero_bit( 831 pcpu_index_alloc_map(chunk, e_index), 832 PCPU_BITMAP_BLOCK_BITS, e_off); 833 834 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 835 /* reset the block */ 836 e_block++; 837 } else { 838 if (e_off > e_block->scan_hint_start) 839 e_block->scan_hint = 0; 840 841 e_block->left_free = 0; 842 if (e_off > e_block->contig_hint_start) { 843 /* contig hint is broken - scan to fix it */ 844 pcpu_block_refresh_hint(chunk, e_index); 845 } else { 846 e_block->right_free = 847 min_t(int, e_block->right_free, 848 PCPU_BITMAP_BLOCK_BITS - e_off); 849 } 850 } 851 852 /* update in-between md_blocks */ 853 nr_empty_pages += (e_index - s_index - 1); 854 for (block = s_block + 1; block < e_block; block++) { 855 block->scan_hint = 0; 856 block->contig_hint = 0; 857 block->left_free = 0; 858 block->right_free = 0; 859 } 860 } 861 862 if (nr_empty_pages) 863 pcpu_update_empty_pages(chunk, -nr_empty_pages); 864 865 if (pcpu_region_overlap(chunk_md->scan_hint_start, 866 chunk_md->scan_hint_start + 867 chunk_md->scan_hint, 868 bit_off, 869 bit_off + bits)) 870 chunk_md->scan_hint = 0; 871 872 /* 873 * The only time a full chunk scan is required is if the chunk 874 * contig hint is broken. Otherwise, it means a smaller space 875 * was used and therefore the chunk contig hint is still correct. 876 */ 877 if (pcpu_region_overlap(chunk_md->contig_hint_start, 878 chunk_md->contig_hint_start + 879 chunk_md->contig_hint, 880 bit_off, 881 bit_off + bits)) 882 pcpu_chunk_refresh_hint(chunk, false); 883 } 884 885 /** 886 * pcpu_block_update_hint_free - updates the block hints on the free path 887 * @chunk: chunk of interest 888 * @bit_off: chunk offset 889 * @bits: size of request 890 * 891 * Updates metadata for the allocation path. This avoids a blind block 892 * refresh by making use of the block contig hints. If this fails, it scans 893 * forward and backward to determine the extent of the free area. This is 894 * capped at the boundary of blocks. 895 * 896 * A chunk update is triggered if a page becomes free, a block becomes free, 897 * or the free spans across blocks. This tradeoff is to minimize iterating 898 * over the block metadata to update chunk_md->contig_hint. 899 * chunk_md->contig_hint may be off by up to a page, but it will never be more 900 * than the available space. If the contig hint is contained in one block, it 901 * will be accurate. 902 */ 903 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 904 int bits) 905 { 906 int nr_empty_pages = 0; 907 struct pcpu_block_md *s_block, *e_block, *block; 908 int s_index, e_index; /* block indexes of the freed allocation */ 909 int s_off, e_off; /* block offsets of the freed allocation */ 910 int start, end; /* start and end of the whole free area */ 911 912 /* 913 * Calculate per block offsets. 914 * The calculation uses an inclusive range, but the resulting offsets 915 * are [start, end). e_index always points to the last block in the 916 * range. 917 */ 918 s_index = pcpu_off_to_block_index(bit_off); 919 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 920 s_off = pcpu_off_to_block_off(bit_off); 921 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 922 923 s_block = chunk->md_blocks + s_index; 924 e_block = chunk->md_blocks + e_index; 925 926 /* 927 * Check if the freed area aligns with the block->contig_hint. 928 * If it does, then the scan to find the beginning/end of the 929 * larger free area can be avoided. 930 * 931 * start and end refer to beginning and end of the free area 932 * within each their respective blocks. This is not necessarily 933 * the entire free area as it may span blocks past the beginning 934 * or end of the block. 935 */ 936 start = s_off; 937 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 938 start = s_block->contig_hint_start; 939 } else { 940 /* 941 * Scan backwards to find the extent of the free area. 942 * find_last_bit returns the starting bit, so if the start bit 943 * is returned, that means there was no last bit and the 944 * remainder of the chunk is free. 945 */ 946 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 947 start); 948 start = (start == l_bit) ? 0 : l_bit + 1; 949 } 950 951 end = e_off; 952 if (e_off == e_block->contig_hint_start) 953 end = e_block->contig_hint_start + e_block->contig_hint; 954 else 955 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 956 PCPU_BITMAP_BLOCK_BITS, end); 957 958 /* update s_block */ 959 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 960 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 961 nr_empty_pages++; 962 pcpu_block_update(s_block, start, e_off); 963 964 /* freeing in the same block */ 965 if (s_index != e_index) { 966 /* update e_block */ 967 if (end == PCPU_BITMAP_BLOCK_BITS) 968 nr_empty_pages++; 969 pcpu_block_update(e_block, 0, end); 970 971 /* reset md_blocks in the middle */ 972 nr_empty_pages += (e_index - s_index - 1); 973 for (block = s_block + 1; block < e_block; block++) { 974 block->first_free = 0; 975 block->scan_hint = 0; 976 block->contig_hint_start = 0; 977 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 978 block->left_free = PCPU_BITMAP_BLOCK_BITS; 979 block->right_free = PCPU_BITMAP_BLOCK_BITS; 980 } 981 } 982 983 if (nr_empty_pages) 984 pcpu_update_empty_pages(chunk, nr_empty_pages); 985 986 /* 987 * Refresh chunk metadata when the free makes a block free or spans 988 * across blocks. The contig_hint may be off by up to a page, but if 989 * the contig_hint is contained in a block, it will be accurate with 990 * the else condition below. 991 */ 992 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 993 pcpu_chunk_refresh_hint(chunk, true); 994 else 995 pcpu_block_update(&chunk->chunk_md, 996 pcpu_block_off_to_off(s_index, start), 997 end); 998 } 999 1000 /** 1001 * pcpu_is_populated - determines if the region is populated 1002 * @chunk: chunk of interest 1003 * @bit_off: chunk offset 1004 * @bits: size of area 1005 * @next_off: return value for the next offset to start searching 1006 * 1007 * For atomic allocations, check if the backing pages are populated. 1008 * 1009 * RETURNS: 1010 * Bool if the backing pages are populated. 1011 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1012 */ 1013 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1014 int *next_off) 1015 { 1016 unsigned int page_start, page_end, rs, re; 1017 1018 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1019 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1020 1021 rs = page_start; 1022 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end); 1023 if (rs >= page_end) 1024 return true; 1025 1026 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1027 return false; 1028 } 1029 1030 /** 1031 * pcpu_find_block_fit - finds the block index to start searching 1032 * @chunk: chunk of interest 1033 * @alloc_bits: size of request in allocation units 1034 * @align: alignment of area (max PAGE_SIZE bytes) 1035 * @pop_only: use populated regions only 1036 * 1037 * Given a chunk and an allocation spec, find the offset to begin searching 1038 * for a free region. This iterates over the bitmap metadata blocks to 1039 * find an offset that will be guaranteed to fit the requirements. It is 1040 * not quite first fit as if the allocation does not fit in the contig hint 1041 * of a block or chunk, it is skipped. This errs on the side of caution 1042 * to prevent excess iteration. Poor alignment can cause the allocator to 1043 * skip over blocks and chunks that have valid free areas. 1044 * 1045 * RETURNS: 1046 * The offset in the bitmap to begin searching. 1047 * -1 if no offset is found. 1048 */ 1049 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1050 size_t align, bool pop_only) 1051 { 1052 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1053 int bit_off, bits, next_off; 1054 1055 /* 1056 * Check to see if the allocation can fit in the chunk's contig hint. 1057 * This is an optimization to prevent scanning by assuming if it 1058 * cannot fit in the global hint, there is memory pressure and creating 1059 * a new chunk would happen soon. 1060 */ 1061 bit_off = ALIGN(chunk_md->contig_hint_start, align) - 1062 chunk_md->contig_hint_start; 1063 if (bit_off + alloc_bits > chunk_md->contig_hint) 1064 return -1; 1065 1066 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1067 bits = 0; 1068 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1069 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1070 &next_off)) 1071 break; 1072 1073 bit_off = next_off; 1074 bits = 0; 1075 } 1076 1077 if (bit_off == pcpu_chunk_map_bits(chunk)) 1078 return -1; 1079 1080 return bit_off; 1081 } 1082 1083 /* 1084 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1085 * @map: the address to base the search on 1086 * @size: the bitmap size in bits 1087 * @start: the bitnumber to start searching at 1088 * @nr: the number of zeroed bits we're looking for 1089 * @align_mask: alignment mask for zero area 1090 * @largest_off: offset of the largest area skipped 1091 * @largest_bits: size of the largest area skipped 1092 * 1093 * The @align_mask should be one less than a power of 2. 1094 * 1095 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1096 * the largest area that was skipped. This is imperfect, but in general is 1097 * good enough. The largest remembered region is the largest failed region 1098 * seen. This does not include anything we possibly skipped due to alignment. 1099 * pcpu_block_update_scan() does scan backwards to try and recover what was 1100 * lost to alignment. While this can cause scanning to miss earlier possible 1101 * free areas, smaller allocations will eventually fill those holes. 1102 */ 1103 static unsigned long pcpu_find_zero_area(unsigned long *map, 1104 unsigned long size, 1105 unsigned long start, 1106 unsigned long nr, 1107 unsigned long align_mask, 1108 unsigned long *largest_off, 1109 unsigned long *largest_bits) 1110 { 1111 unsigned long index, end, i, area_off, area_bits; 1112 again: 1113 index = find_next_zero_bit(map, size, start); 1114 1115 /* Align allocation */ 1116 index = __ALIGN_MASK(index, align_mask); 1117 area_off = index; 1118 1119 end = index + nr; 1120 if (end > size) 1121 return end; 1122 i = find_next_bit(map, end, index); 1123 if (i < end) { 1124 area_bits = i - area_off; 1125 /* remember largest unused area with best alignment */ 1126 if (area_bits > *largest_bits || 1127 (area_bits == *largest_bits && *largest_off && 1128 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1129 *largest_off = area_off; 1130 *largest_bits = area_bits; 1131 } 1132 1133 start = i + 1; 1134 goto again; 1135 } 1136 return index; 1137 } 1138 1139 /** 1140 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1141 * @chunk: chunk of interest 1142 * @alloc_bits: size of request in allocation units 1143 * @align: alignment of area (max PAGE_SIZE) 1144 * @start: bit_off to start searching 1145 * 1146 * This function takes in a @start offset to begin searching to fit an 1147 * allocation of @alloc_bits with alignment @align. It needs to scan 1148 * the allocation map because if it fits within the block's contig hint, 1149 * @start will be block->first_free. This is an attempt to fill the 1150 * allocation prior to breaking the contig hint. The allocation and 1151 * boundary maps are updated accordingly if it confirms a valid 1152 * free area. 1153 * 1154 * RETURNS: 1155 * Allocated addr offset in @chunk on success. 1156 * -1 if no matching area is found. 1157 */ 1158 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1159 size_t align, int start) 1160 { 1161 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1162 size_t align_mask = (align) ? (align - 1) : 0; 1163 unsigned long area_off = 0, area_bits = 0; 1164 int bit_off, end, oslot; 1165 1166 lockdep_assert_held(&pcpu_lock); 1167 1168 oslot = pcpu_chunk_slot(chunk); 1169 1170 /* 1171 * Search to find a fit. 1172 */ 1173 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1174 pcpu_chunk_map_bits(chunk)); 1175 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1176 align_mask, &area_off, &area_bits); 1177 if (bit_off >= end) 1178 return -1; 1179 1180 if (area_bits) 1181 pcpu_block_update_scan(chunk, area_off, area_bits); 1182 1183 /* update alloc map */ 1184 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1185 1186 /* update boundary map */ 1187 set_bit(bit_off, chunk->bound_map); 1188 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1189 set_bit(bit_off + alloc_bits, chunk->bound_map); 1190 1191 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1192 1193 /* update first free bit */ 1194 if (bit_off == chunk_md->first_free) 1195 chunk_md->first_free = find_next_zero_bit( 1196 chunk->alloc_map, 1197 pcpu_chunk_map_bits(chunk), 1198 bit_off + alloc_bits); 1199 1200 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1201 1202 pcpu_chunk_relocate(chunk, oslot); 1203 1204 return bit_off * PCPU_MIN_ALLOC_SIZE; 1205 } 1206 1207 /** 1208 * pcpu_free_area - frees the corresponding offset 1209 * @chunk: chunk of interest 1210 * @off: addr offset into chunk 1211 * 1212 * This function determines the size of an allocation to free using 1213 * the boundary bitmap and clears the allocation map. 1214 */ 1215 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1216 { 1217 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1218 int bit_off, bits, end, oslot; 1219 1220 lockdep_assert_held(&pcpu_lock); 1221 pcpu_stats_area_dealloc(chunk); 1222 1223 oslot = pcpu_chunk_slot(chunk); 1224 1225 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1226 1227 /* find end index */ 1228 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1229 bit_off + 1); 1230 bits = end - bit_off; 1231 bitmap_clear(chunk->alloc_map, bit_off, bits); 1232 1233 /* update metadata */ 1234 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1235 1236 /* update first free bit */ 1237 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1238 1239 pcpu_block_update_hint_free(chunk, bit_off, bits); 1240 1241 pcpu_chunk_relocate(chunk, oslot); 1242 } 1243 1244 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1245 { 1246 block->scan_hint = 0; 1247 block->contig_hint = nr_bits; 1248 block->left_free = nr_bits; 1249 block->right_free = nr_bits; 1250 block->first_free = 0; 1251 block->nr_bits = nr_bits; 1252 } 1253 1254 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1255 { 1256 struct pcpu_block_md *md_block; 1257 1258 /* init the chunk's block */ 1259 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1260 1261 for (md_block = chunk->md_blocks; 1262 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1263 md_block++) 1264 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1265 } 1266 1267 /** 1268 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1269 * @tmp_addr: the start of the region served 1270 * @map_size: size of the region served 1271 * 1272 * This is responsible for creating the chunks that serve the first chunk. The 1273 * base_addr is page aligned down of @tmp_addr while the region end is page 1274 * aligned up. Offsets are kept track of to determine the region served. All 1275 * this is done to appease the bitmap allocator in avoiding partial blocks. 1276 * 1277 * RETURNS: 1278 * Chunk serving the region at @tmp_addr of @map_size. 1279 */ 1280 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1281 int map_size) 1282 { 1283 struct pcpu_chunk *chunk; 1284 unsigned long aligned_addr, lcm_align; 1285 int start_offset, offset_bits, region_size, region_bits; 1286 size_t alloc_size; 1287 1288 /* region calculations */ 1289 aligned_addr = tmp_addr & PAGE_MASK; 1290 1291 start_offset = tmp_addr - aligned_addr; 1292 1293 /* 1294 * Align the end of the region with the LCM of PAGE_SIZE and 1295 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1296 * the other. 1297 */ 1298 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1299 region_size = ALIGN(start_offset + map_size, lcm_align); 1300 1301 /* allocate chunk */ 1302 alloc_size = sizeof(struct pcpu_chunk) + 1303 BITS_TO_LONGS(region_size >> PAGE_SHIFT); 1304 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1305 if (!chunk) 1306 panic("%s: Failed to allocate %zu bytes\n", __func__, 1307 alloc_size); 1308 1309 INIT_LIST_HEAD(&chunk->list); 1310 1311 chunk->base_addr = (void *)aligned_addr; 1312 chunk->start_offset = start_offset; 1313 chunk->end_offset = region_size - chunk->start_offset - map_size; 1314 1315 chunk->nr_pages = region_size >> PAGE_SHIFT; 1316 region_bits = pcpu_chunk_map_bits(chunk); 1317 1318 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1319 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1320 if (!chunk->alloc_map) 1321 panic("%s: Failed to allocate %zu bytes\n", __func__, 1322 alloc_size); 1323 1324 alloc_size = 1325 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1326 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1327 if (!chunk->bound_map) 1328 panic("%s: Failed to allocate %zu bytes\n", __func__, 1329 alloc_size); 1330 1331 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1332 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1333 if (!chunk->md_blocks) 1334 panic("%s: Failed to allocate %zu bytes\n", __func__, 1335 alloc_size); 1336 1337 pcpu_init_md_blocks(chunk); 1338 1339 /* manage populated page bitmap */ 1340 chunk->immutable = true; 1341 bitmap_fill(chunk->populated, chunk->nr_pages); 1342 chunk->nr_populated = chunk->nr_pages; 1343 chunk->nr_empty_pop_pages = chunk->nr_pages; 1344 1345 chunk->free_bytes = map_size; 1346 1347 if (chunk->start_offset) { 1348 /* hide the beginning of the bitmap */ 1349 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1350 bitmap_set(chunk->alloc_map, 0, offset_bits); 1351 set_bit(0, chunk->bound_map); 1352 set_bit(offset_bits, chunk->bound_map); 1353 1354 chunk->chunk_md.first_free = offset_bits; 1355 1356 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1357 } 1358 1359 if (chunk->end_offset) { 1360 /* hide the end of the bitmap */ 1361 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1362 bitmap_set(chunk->alloc_map, 1363 pcpu_chunk_map_bits(chunk) - offset_bits, 1364 offset_bits); 1365 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1366 chunk->bound_map); 1367 set_bit(region_bits, chunk->bound_map); 1368 1369 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1370 - offset_bits, offset_bits); 1371 } 1372 1373 return chunk; 1374 } 1375 1376 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1377 { 1378 struct pcpu_chunk *chunk; 1379 int region_bits; 1380 1381 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1382 if (!chunk) 1383 return NULL; 1384 1385 INIT_LIST_HEAD(&chunk->list); 1386 chunk->nr_pages = pcpu_unit_pages; 1387 region_bits = pcpu_chunk_map_bits(chunk); 1388 1389 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1390 sizeof(chunk->alloc_map[0]), gfp); 1391 if (!chunk->alloc_map) 1392 goto alloc_map_fail; 1393 1394 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1395 sizeof(chunk->bound_map[0]), gfp); 1396 if (!chunk->bound_map) 1397 goto bound_map_fail; 1398 1399 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1400 sizeof(chunk->md_blocks[0]), gfp); 1401 if (!chunk->md_blocks) 1402 goto md_blocks_fail; 1403 1404 pcpu_init_md_blocks(chunk); 1405 1406 /* init metadata */ 1407 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1408 1409 return chunk; 1410 1411 md_blocks_fail: 1412 pcpu_mem_free(chunk->bound_map); 1413 bound_map_fail: 1414 pcpu_mem_free(chunk->alloc_map); 1415 alloc_map_fail: 1416 pcpu_mem_free(chunk); 1417 1418 return NULL; 1419 } 1420 1421 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1422 { 1423 if (!chunk) 1424 return; 1425 pcpu_mem_free(chunk->md_blocks); 1426 pcpu_mem_free(chunk->bound_map); 1427 pcpu_mem_free(chunk->alloc_map); 1428 pcpu_mem_free(chunk); 1429 } 1430 1431 /** 1432 * pcpu_chunk_populated - post-population bookkeeping 1433 * @chunk: pcpu_chunk which got populated 1434 * @page_start: the start page 1435 * @page_end: the end page 1436 * 1437 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1438 * the bookkeeping information accordingly. Must be called after each 1439 * successful population. 1440 * 1441 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1442 * is to serve an allocation in that area. 1443 */ 1444 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1445 int page_end) 1446 { 1447 int nr = page_end - page_start; 1448 1449 lockdep_assert_held(&pcpu_lock); 1450 1451 bitmap_set(chunk->populated, page_start, nr); 1452 chunk->nr_populated += nr; 1453 pcpu_nr_populated += nr; 1454 1455 pcpu_update_empty_pages(chunk, nr); 1456 } 1457 1458 /** 1459 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1460 * @chunk: pcpu_chunk which got depopulated 1461 * @page_start: the start page 1462 * @page_end: the end page 1463 * 1464 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1465 * Update the bookkeeping information accordingly. Must be called after 1466 * each successful depopulation. 1467 */ 1468 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1469 int page_start, int page_end) 1470 { 1471 int nr = page_end - page_start; 1472 1473 lockdep_assert_held(&pcpu_lock); 1474 1475 bitmap_clear(chunk->populated, page_start, nr); 1476 chunk->nr_populated -= nr; 1477 pcpu_nr_populated -= nr; 1478 1479 pcpu_update_empty_pages(chunk, -nr); 1480 } 1481 1482 /* 1483 * Chunk management implementation. 1484 * 1485 * To allow different implementations, chunk alloc/free and 1486 * [de]population are implemented in a separate file which is pulled 1487 * into this file and compiled together. The following functions 1488 * should be implemented. 1489 * 1490 * pcpu_populate_chunk - populate the specified range of a chunk 1491 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1492 * pcpu_create_chunk - create a new chunk 1493 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1494 * pcpu_addr_to_page - translate address to physical address 1495 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1496 */ 1497 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1498 int page_start, int page_end, gfp_t gfp); 1499 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1500 int page_start, int page_end); 1501 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1502 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1503 static struct page *pcpu_addr_to_page(void *addr); 1504 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1505 1506 #ifdef CONFIG_NEED_PER_CPU_KM 1507 #include "percpu-km.c" 1508 #else 1509 #include "percpu-vm.c" 1510 #endif 1511 1512 /** 1513 * pcpu_chunk_addr_search - determine chunk containing specified address 1514 * @addr: address for which the chunk needs to be determined. 1515 * 1516 * This is an internal function that handles all but static allocations. 1517 * Static percpu address values should never be passed into the allocator. 1518 * 1519 * RETURNS: 1520 * The address of the found chunk. 1521 */ 1522 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1523 { 1524 /* is it in the dynamic region (first chunk)? */ 1525 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1526 return pcpu_first_chunk; 1527 1528 /* is it in the reserved region? */ 1529 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1530 return pcpu_reserved_chunk; 1531 1532 /* 1533 * The address is relative to unit0 which might be unused and 1534 * thus unmapped. Offset the address to the unit space of the 1535 * current processor before looking it up in the vmalloc 1536 * space. Note that any possible cpu id can be used here, so 1537 * there's no need to worry about preemption or cpu hotplug. 1538 */ 1539 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1540 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1541 } 1542 1543 /** 1544 * pcpu_alloc - the percpu allocator 1545 * @size: size of area to allocate in bytes 1546 * @align: alignment of area (max PAGE_SIZE) 1547 * @reserved: allocate from the reserved chunk if available 1548 * @gfp: allocation flags 1549 * 1550 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1551 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1552 * then no warning will be triggered on invalid or failed allocation 1553 * requests. 1554 * 1555 * RETURNS: 1556 * Percpu pointer to the allocated area on success, NULL on failure. 1557 */ 1558 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1559 gfp_t gfp) 1560 { 1561 gfp_t pcpu_gfp; 1562 bool is_atomic; 1563 bool do_warn; 1564 static int warn_limit = 10; 1565 struct pcpu_chunk *chunk, *next; 1566 const char *err; 1567 int slot, off, cpu, ret; 1568 unsigned long flags; 1569 void __percpu *ptr; 1570 size_t bits, bit_align; 1571 1572 gfp = current_gfp_context(gfp); 1573 /* whitelisted flags that can be passed to the backing allocators */ 1574 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1575 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1576 do_warn = !(gfp & __GFP_NOWARN); 1577 1578 /* 1579 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1580 * therefore alignment must be a minimum of that many bytes. 1581 * An allocation may have internal fragmentation from rounding up 1582 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1583 */ 1584 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1585 align = PCPU_MIN_ALLOC_SIZE; 1586 1587 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1588 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1589 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1590 1591 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1592 !is_power_of_2(align))) { 1593 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1594 size, align); 1595 return NULL; 1596 } 1597 1598 if (!is_atomic) { 1599 /* 1600 * pcpu_balance_workfn() allocates memory under this mutex, 1601 * and it may wait for memory reclaim. Allow current task 1602 * to become OOM victim, in case of memory pressure. 1603 */ 1604 if (gfp & __GFP_NOFAIL) 1605 mutex_lock(&pcpu_alloc_mutex); 1606 else if (mutex_lock_killable(&pcpu_alloc_mutex)) 1607 return NULL; 1608 } 1609 1610 spin_lock_irqsave(&pcpu_lock, flags); 1611 1612 /* serve reserved allocations from the reserved chunk if available */ 1613 if (reserved && pcpu_reserved_chunk) { 1614 chunk = pcpu_reserved_chunk; 1615 1616 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1617 if (off < 0) { 1618 err = "alloc from reserved chunk failed"; 1619 goto fail_unlock; 1620 } 1621 1622 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1623 if (off >= 0) 1624 goto area_found; 1625 1626 err = "alloc from reserved chunk failed"; 1627 goto fail_unlock; 1628 } 1629 1630 restart: 1631 /* search through normal chunks */ 1632 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1633 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) { 1634 off = pcpu_find_block_fit(chunk, bits, bit_align, 1635 is_atomic); 1636 if (off < 0) { 1637 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1638 pcpu_chunk_move(chunk, 0); 1639 continue; 1640 } 1641 1642 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1643 if (off >= 0) 1644 goto area_found; 1645 1646 } 1647 } 1648 1649 spin_unlock_irqrestore(&pcpu_lock, flags); 1650 1651 /* 1652 * No space left. Create a new chunk. We don't want multiple 1653 * tasks to create chunks simultaneously. Serialize and create iff 1654 * there's still no empty chunk after grabbing the mutex. 1655 */ 1656 if (is_atomic) { 1657 err = "atomic alloc failed, no space left"; 1658 goto fail; 1659 } 1660 1661 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1662 chunk = pcpu_create_chunk(pcpu_gfp); 1663 if (!chunk) { 1664 err = "failed to allocate new chunk"; 1665 goto fail; 1666 } 1667 1668 spin_lock_irqsave(&pcpu_lock, flags); 1669 pcpu_chunk_relocate(chunk, -1); 1670 } else { 1671 spin_lock_irqsave(&pcpu_lock, flags); 1672 } 1673 1674 goto restart; 1675 1676 area_found: 1677 pcpu_stats_area_alloc(chunk, size); 1678 spin_unlock_irqrestore(&pcpu_lock, flags); 1679 1680 /* populate if not all pages are already there */ 1681 if (!is_atomic) { 1682 unsigned int page_start, page_end, rs, re; 1683 1684 page_start = PFN_DOWN(off); 1685 page_end = PFN_UP(off + size); 1686 1687 bitmap_for_each_clear_region(chunk->populated, rs, re, 1688 page_start, page_end) { 1689 WARN_ON(chunk->immutable); 1690 1691 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1692 1693 spin_lock_irqsave(&pcpu_lock, flags); 1694 if (ret) { 1695 pcpu_free_area(chunk, off); 1696 err = "failed to populate"; 1697 goto fail_unlock; 1698 } 1699 pcpu_chunk_populated(chunk, rs, re); 1700 spin_unlock_irqrestore(&pcpu_lock, flags); 1701 } 1702 1703 mutex_unlock(&pcpu_alloc_mutex); 1704 } 1705 1706 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1707 pcpu_schedule_balance_work(); 1708 1709 /* clear the areas and return address relative to base address */ 1710 for_each_possible_cpu(cpu) 1711 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1712 1713 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1714 kmemleak_alloc_percpu(ptr, size, gfp); 1715 1716 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1717 chunk->base_addr, off, ptr); 1718 1719 return ptr; 1720 1721 fail_unlock: 1722 spin_unlock_irqrestore(&pcpu_lock, flags); 1723 fail: 1724 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1725 1726 if (!is_atomic && do_warn && warn_limit) { 1727 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1728 size, align, is_atomic, err); 1729 dump_stack(); 1730 if (!--warn_limit) 1731 pr_info("limit reached, disable warning\n"); 1732 } 1733 if (is_atomic) { 1734 /* see the flag handling in pcpu_blance_workfn() */ 1735 pcpu_atomic_alloc_failed = true; 1736 pcpu_schedule_balance_work(); 1737 } else { 1738 mutex_unlock(&pcpu_alloc_mutex); 1739 } 1740 return NULL; 1741 } 1742 1743 /** 1744 * __alloc_percpu_gfp - allocate dynamic percpu area 1745 * @size: size of area to allocate in bytes 1746 * @align: alignment of area (max PAGE_SIZE) 1747 * @gfp: allocation flags 1748 * 1749 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1750 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1751 * be called from any context but is a lot more likely to fail. If @gfp 1752 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1753 * allocation requests. 1754 * 1755 * RETURNS: 1756 * Percpu pointer to the allocated area on success, NULL on failure. 1757 */ 1758 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1759 { 1760 return pcpu_alloc(size, align, false, gfp); 1761 } 1762 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1763 1764 /** 1765 * __alloc_percpu - allocate dynamic percpu area 1766 * @size: size of area to allocate in bytes 1767 * @align: alignment of area (max PAGE_SIZE) 1768 * 1769 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1770 */ 1771 void __percpu *__alloc_percpu(size_t size, size_t align) 1772 { 1773 return pcpu_alloc(size, align, false, GFP_KERNEL); 1774 } 1775 EXPORT_SYMBOL_GPL(__alloc_percpu); 1776 1777 /** 1778 * __alloc_reserved_percpu - allocate reserved percpu area 1779 * @size: size of area to allocate in bytes 1780 * @align: alignment of area (max PAGE_SIZE) 1781 * 1782 * Allocate zero-filled percpu area of @size bytes aligned at @align 1783 * from reserved percpu area if arch has set it up; otherwise, 1784 * allocation is served from the same dynamic area. Might sleep. 1785 * Might trigger writeouts. 1786 * 1787 * CONTEXT: 1788 * Does GFP_KERNEL allocation. 1789 * 1790 * RETURNS: 1791 * Percpu pointer to the allocated area on success, NULL on failure. 1792 */ 1793 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1794 { 1795 return pcpu_alloc(size, align, true, GFP_KERNEL); 1796 } 1797 1798 /** 1799 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1800 * @work: unused 1801 * 1802 * Reclaim all fully free chunks except for the first one. This is also 1803 * responsible for maintaining the pool of empty populated pages. However, 1804 * it is possible that this is called when physical memory is scarce causing 1805 * OOM killer to be triggered. We should avoid doing so until an actual 1806 * allocation causes the failure as it is possible that requests can be 1807 * serviced from already backed regions. 1808 */ 1809 static void pcpu_balance_workfn(struct work_struct *work) 1810 { 1811 /* gfp flags passed to underlying allocators */ 1812 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1813 LIST_HEAD(to_free); 1814 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1815 struct pcpu_chunk *chunk, *next; 1816 int slot, nr_to_pop, ret; 1817 1818 /* 1819 * There's no reason to keep around multiple unused chunks and VM 1820 * areas can be scarce. Destroy all free chunks except for one. 1821 */ 1822 mutex_lock(&pcpu_alloc_mutex); 1823 spin_lock_irq(&pcpu_lock); 1824 1825 list_for_each_entry_safe(chunk, next, free_head, list) { 1826 WARN_ON(chunk->immutable); 1827 1828 /* spare the first one */ 1829 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1830 continue; 1831 1832 list_move(&chunk->list, &to_free); 1833 } 1834 1835 spin_unlock_irq(&pcpu_lock); 1836 1837 list_for_each_entry_safe(chunk, next, &to_free, list) { 1838 unsigned int rs, re; 1839 1840 bitmap_for_each_set_region(chunk->populated, rs, re, 0, 1841 chunk->nr_pages) { 1842 pcpu_depopulate_chunk(chunk, rs, re); 1843 spin_lock_irq(&pcpu_lock); 1844 pcpu_chunk_depopulated(chunk, rs, re); 1845 spin_unlock_irq(&pcpu_lock); 1846 } 1847 pcpu_destroy_chunk(chunk); 1848 cond_resched(); 1849 } 1850 1851 /* 1852 * Ensure there are certain number of free populated pages for 1853 * atomic allocs. Fill up from the most packed so that atomic 1854 * allocs don't increase fragmentation. If atomic allocation 1855 * failed previously, always populate the maximum amount. This 1856 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1857 * failing indefinitely; however, large atomic allocs are not 1858 * something we support properly and can be highly unreliable and 1859 * inefficient. 1860 */ 1861 retry_pop: 1862 if (pcpu_atomic_alloc_failed) { 1863 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1864 /* best effort anyway, don't worry about synchronization */ 1865 pcpu_atomic_alloc_failed = false; 1866 } else { 1867 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1868 pcpu_nr_empty_pop_pages, 1869 0, PCPU_EMPTY_POP_PAGES_HIGH); 1870 } 1871 1872 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1873 unsigned int nr_unpop = 0, rs, re; 1874 1875 if (!nr_to_pop) 1876 break; 1877 1878 spin_lock_irq(&pcpu_lock); 1879 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1880 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1881 if (nr_unpop) 1882 break; 1883 } 1884 spin_unlock_irq(&pcpu_lock); 1885 1886 if (!nr_unpop) 1887 continue; 1888 1889 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1890 bitmap_for_each_clear_region(chunk->populated, rs, re, 0, 1891 chunk->nr_pages) { 1892 int nr = min_t(int, re - rs, nr_to_pop); 1893 1894 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 1895 if (!ret) { 1896 nr_to_pop -= nr; 1897 spin_lock_irq(&pcpu_lock); 1898 pcpu_chunk_populated(chunk, rs, rs + nr); 1899 spin_unlock_irq(&pcpu_lock); 1900 } else { 1901 nr_to_pop = 0; 1902 } 1903 1904 if (!nr_to_pop) 1905 break; 1906 } 1907 } 1908 1909 if (nr_to_pop) { 1910 /* ran out of chunks to populate, create a new one and retry */ 1911 chunk = pcpu_create_chunk(gfp); 1912 if (chunk) { 1913 spin_lock_irq(&pcpu_lock); 1914 pcpu_chunk_relocate(chunk, -1); 1915 spin_unlock_irq(&pcpu_lock); 1916 goto retry_pop; 1917 } 1918 } 1919 1920 mutex_unlock(&pcpu_alloc_mutex); 1921 } 1922 1923 /** 1924 * free_percpu - free percpu area 1925 * @ptr: pointer to area to free 1926 * 1927 * Free percpu area @ptr. 1928 * 1929 * CONTEXT: 1930 * Can be called from atomic context. 1931 */ 1932 void free_percpu(void __percpu *ptr) 1933 { 1934 void *addr; 1935 struct pcpu_chunk *chunk; 1936 unsigned long flags; 1937 int off; 1938 bool need_balance = false; 1939 1940 if (!ptr) 1941 return; 1942 1943 kmemleak_free_percpu(ptr); 1944 1945 addr = __pcpu_ptr_to_addr(ptr); 1946 1947 spin_lock_irqsave(&pcpu_lock, flags); 1948 1949 chunk = pcpu_chunk_addr_search(addr); 1950 off = addr - chunk->base_addr; 1951 1952 pcpu_free_area(chunk, off); 1953 1954 /* if there are more than one fully free chunks, wake up grim reaper */ 1955 if (chunk->free_bytes == pcpu_unit_size) { 1956 struct pcpu_chunk *pos; 1957 1958 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1959 if (pos != chunk) { 1960 need_balance = true; 1961 break; 1962 } 1963 } 1964 1965 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1966 1967 spin_unlock_irqrestore(&pcpu_lock, flags); 1968 1969 if (need_balance) 1970 pcpu_schedule_balance_work(); 1971 } 1972 EXPORT_SYMBOL_GPL(free_percpu); 1973 1974 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1975 { 1976 #ifdef CONFIG_SMP 1977 const size_t static_size = __per_cpu_end - __per_cpu_start; 1978 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1979 unsigned int cpu; 1980 1981 for_each_possible_cpu(cpu) { 1982 void *start = per_cpu_ptr(base, cpu); 1983 void *va = (void *)addr; 1984 1985 if (va >= start && va < start + static_size) { 1986 if (can_addr) { 1987 *can_addr = (unsigned long) (va - start); 1988 *can_addr += (unsigned long) 1989 per_cpu_ptr(base, get_boot_cpu_id()); 1990 } 1991 return true; 1992 } 1993 } 1994 #endif 1995 /* on UP, can't distinguish from other static vars, always false */ 1996 return false; 1997 } 1998 1999 /** 2000 * is_kernel_percpu_address - test whether address is from static percpu area 2001 * @addr: address to test 2002 * 2003 * Test whether @addr belongs to in-kernel static percpu area. Module 2004 * static percpu areas are not considered. For those, use 2005 * is_module_percpu_address(). 2006 * 2007 * RETURNS: 2008 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2009 */ 2010 bool is_kernel_percpu_address(unsigned long addr) 2011 { 2012 return __is_kernel_percpu_address(addr, NULL); 2013 } 2014 2015 /** 2016 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2017 * @addr: the address to be converted to physical address 2018 * 2019 * Given @addr which is dereferenceable address obtained via one of 2020 * percpu access macros, this function translates it into its physical 2021 * address. The caller is responsible for ensuring @addr stays valid 2022 * until this function finishes. 2023 * 2024 * percpu allocator has special setup for the first chunk, which currently 2025 * supports either embedding in linear address space or vmalloc mapping, 2026 * and, from the second one, the backing allocator (currently either vm or 2027 * km) provides translation. 2028 * 2029 * The addr can be translated simply without checking if it falls into the 2030 * first chunk. But the current code reflects better how percpu allocator 2031 * actually works, and the verification can discover both bugs in percpu 2032 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2033 * code. 2034 * 2035 * RETURNS: 2036 * The physical address for @addr. 2037 */ 2038 phys_addr_t per_cpu_ptr_to_phys(void *addr) 2039 { 2040 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2041 bool in_first_chunk = false; 2042 unsigned long first_low, first_high; 2043 unsigned int cpu; 2044 2045 /* 2046 * The following test on unit_low/high isn't strictly 2047 * necessary but will speed up lookups of addresses which 2048 * aren't in the first chunk. 2049 * 2050 * The address check is against full chunk sizes. pcpu_base_addr 2051 * points to the beginning of the first chunk including the 2052 * static region. Assumes good intent as the first chunk may 2053 * not be full (ie. < pcpu_unit_pages in size). 2054 */ 2055 first_low = (unsigned long)pcpu_base_addr + 2056 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2057 first_high = (unsigned long)pcpu_base_addr + 2058 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2059 if ((unsigned long)addr >= first_low && 2060 (unsigned long)addr < first_high) { 2061 for_each_possible_cpu(cpu) { 2062 void *start = per_cpu_ptr(base, cpu); 2063 2064 if (addr >= start && addr < start + pcpu_unit_size) { 2065 in_first_chunk = true; 2066 break; 2067 } 2068 } 2069 } 2070 2071 if (in_first_chunk) { 2072 if (!is_vmalloc_addr(addr)) 2073 return __pa(addr); 2074 else 2075 return page_to_phys(vmalloc_to_page(addr)) + 2076 offset_in_page(addr); 2077 } else 2078 return page_to_phys(pcpu_addr_to_page(addr)) + 2079 offset_in_page(addr); 2080 } 2081 2082 /** 2083 * pcpu_alloc_alloc_info - allocate percpu allocation info 2084 * @nr_groups: the number of groups 2085 * @nr_units: the number of units 2086 * 2087 * Allocate ai which is large enough for @nr_groups groups containing 2088 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2089 * cpu_map array which is long enough for @nr_units and filled with 2090 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2091 * pointer of other groups. 2092 * 2093 * RETURNS: 2094 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2095 * failure. 2096 */ 2097 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2098 int nr_units) 2099 { 2100 struct pcpu_alloc_info *ai; 2101 size_t base_size, ai_size; 2102 void *ptr; 2103 int unit; 2104 2105 base_size = ALIGN(struct_size(ai, groups, nr_groups), 2106 __alignof__(ai->groups[0].cpu_map[0])); 2107 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2108 2109 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2110 if (!ptr) 2111 return NULL; 2112 ai = ptr; 2113 ptr += base_size; 2114 2115 ai->groups[0].cpu_map = ptr; 2116 2117 for (unit = 0; unit < nr_units; unit++) 2118 ai->groups[0].cpu_map[unit] = NR_CPUS; 2119 2120 ai->nr_groups = nr_groups; 2121 ai->__ai_size = PFN_ALIGN(ai_size); 2122 2123 return ai; 2124 } 2125 2126 /** 2127 * pcpu_free_alloc_info - free percpu allocation info 2128 * @ai: pcpu_alloc_info to free 2129 * 2130 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2131 */ 2132 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2133 { 2134 memblock_free_early(__pa(ai), ai->__ai_size); 2135 } 2136 2137 /** 2138 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2139 * @lvl: loglevel 2140 * @ai: allocation info to dump 2141 * 2142 * Print out information about @ai using loglevel @lvl. 2143 */ 2144 static void pcpu_dump_alloc_info(const char *lvl, 2145 const struct pcpu_alloc_info *ai) 2146 { 2147 int group_width = 1, cpu_width = 1, width; 2148 char empty_str[] = "--------"; 2149 int alloc = 0, alloc_end = 0; 2150 int group, v; 2151 int upa, apl; /* units per alloc, allocs per line */ 2152 2153 v = ai->nr_groups; 2154 while (v /= 10) 2155 group_width++; 2156 2157 v = num_possible_cpus(); 2158 while (v /= 10) 2159 cpu_width++; 2160 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2161 2162 upa = ai->alloc_size / ai->unit_size; 2163 width = upa * (cpu_width + 1) + group_width + 3; 2164 apl = rounddown_pow_of_two(max(60 / width, 1)); 2165 2166 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2167 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2168 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2169 2170 for (group = 0; group < ai->nr_groups; group++) { 2171 const struct pcpu_group_info *gi = &ai->groups[group]; 2172 int unit = 0, unit_end = 0; 2173 2174 BUG_ON(gi->nr_units % upa); 2175 for (alloc_end += gi->nr_units / upa; 2176 alloc < alloc_end; alloc++) { 2177 if (!(alloc % apl)) { 2178 pr_cont("\n"); 2179 printk("%spcpu-alloc: ", lvl); 2180 } 2181 pr_cont("[%0*d] ", group_width, group); 2182 2183 for (unit_end += upa; unit < unit_end; unit++) 2184 if (gi->cpu_map[unit] != NR_CPUS) 2185 pr_cont("%0*d ", 2186 cpu_width, gi->cpu_map[unit]); 2187 else 2188 pr_cont("%s ", empty_str); 2189 } 2190 } 2191 pr_cont("\n"); 2192 } 2193 2194 /** 2195 * pcpu_setup_first_chunk - initialize the first percpu chunk 2196 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2197 * @base_addr: mapped address 2198 * 2199 * Initialize the first percpu chunk which contains the kernel static 2200 * percpu area. This function is to be called from arch percpu area 2201 * setup path. 2202 * 2203 * @ai contains all information necessary to initialize the first 2204 * chunk and prime the dynamic percpu allocator. 2205 * 2206 * @ai->static_size is the size of static percpu area. 2207 * 2208 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2209 * reserve after the static area in the first chunk. This reserves 2210 * the first chunk such that it's available only through reserved 2211 * percpu allocation. This is primarily used to serve module percpu 2212 * static areas on architectures where the addressing model has 2213 * limited offset range for symbol relocations to guarantee module 2214 * percpu symbols fall inside the relocatable range. 2215 * 2216 * @ai->dyn_size determines the number of bytes available for dynamic 2217 * allocation in the first chunk. The area between @ai->static_size + 2218 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2219 * 2220 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2221 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2222 * @ai->dyn_size. 2223 * 2224 * @ai->atom_size is the allocation atom size and used as alignment 2225 * for vm areas. 2226 * 2227 * @ai->alloc_size is the allocation size and always multiple of 2228 * @ai->atom_size. This is larger than @ai->atom_size if 2229 * @ai->unit_size is larger than @ai->atom_size. 2230 * 2231 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2232 * percpu areas. Units which should be colocated are put into the 2233 * same group. Dynamic VM areas will be allocated according to these 2234 * groupings. If @ai->nr_groups is zero, a single group containing 2235 * all units is assumed. 2236 * 2237 * The caller should have mapped the first chunk at @base_addr and 2238 * copied static data to each unit. 2239 * 2240 * The first chunk will always contain a static and a dynamic region. 2241 * However, the static region is not managed by any chunk. If the first 2242 * chunk also contains a reserved region, it is served by two chunks - 2243 * one for the reserved region and one for the dynamic region. They 2244 * share the same vm, but use offset regions in the area allocation map. 2245 * The chunk serving the dynamic region is circulated in the chunk slots 2246 * and available for dynamic allocation like any other chunk. 2247 */ 2248 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2249 void *base_addr) 2250 { 2251 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2252 size_t static_size, dyn_size; 2253 struct pcpu_chunk *chunk; 2254 unsigned long *group_offsets; 2255 size_t *group_sizes; 2256 unsigned long *unit_off; 2257 unsigned int cpu; 2258 int *unit_map; 2259 int group, unit, i; 2260 int map_size; 2261 unsigned long tmp_addr; 2262 size_t alloc_size; 2263 2264 #define PCPU_SETUP_BUG_ON(cond) do { \ 2265 if (unlikely(cond)) { \ 2266 pr_emerg("failed to initialize, %s\n", #cond); \ 2267 pr_emerg("cpu_possible_mask=%*pb\n", \ 2268 cpumask_pr_args(cpu_possible_mask)); \ 2269 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2270 BUG(); \ 2271 } \ 2272 } while (0) 2273 2274 /* sanity checks */ 2275 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2276 #ifdef CONFIG_SMP 2277 PCPU_SETUP_BUG_ON(!ai->static_size); 2278 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2279 #endif 2280 PCPU_SETUP_BUG_ON(!base_addr); 2281 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2282 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2283 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2284 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2285 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2286 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2287 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2288 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2289 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2290 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2291 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2292 2293 /* process group information and build config tables accordingly */ 2294 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2295 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2296 if (!group_offsets) 2297 panic("%s: Failed to allocate %zu bytes\n", __func__, 2298 alloc_size); 2299 2300 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2301 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2302 if (!group_sizes) 2303 panic("%s: Failed to allocate %zu bytes\n", __func__, 2304 alloc_size); 2305 2306 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2307 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2308 if (!unit_map) 2309 panic("%s: Failed to allocate %zu bytes\n", __func__, 2310 alloc_size); 2311 2312 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2313 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2314 if (!unit_off) 2315 panic("%s: Failed to allocate %zu bytes\n", __func__, 2316 alloc_size); 2317 2318 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2319 unit_map[cpu] = UINT_MAX; 2320 2321 pcpu_low_unit_cpu = NR_CPUS; 2322 pcpu_high_unit_cpu = NR_CPUS; 2323 2324 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2325 const struct pcpu_group_info *gi = &ai->groups[group]; 2326 2327 group_offsets[group] = gi->base_offset; 2328 group_sizes[group] = gi->nr_units * ai->unit_size; 2329 2330 for (i = 0; i < gi->nr_units; i++) { 2331 cpu = gi->cpu_map[i]; 2332 if (cpu == NR_CPUS) 2333 continue; 2334 2335 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2336 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2337 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2338 2339 unit_map[cpu] = unit + i; 2340 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2341 2342 /* determine low/high unit_cpu */ 2343 if (pcpu_low_unit_cpu == NR_CPUS || 2344 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2345 pcpu_low_unit_cpu = cpu; 2346 if (pcpu_high_unit_cpu == NR_CPUS || 2347 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2348 pcpu_high_unit_cpu = cpu; 2349 } 2350 } 2351 pcpu_nr_units = unit; 2352 2353 for_each_possible_cpu(cpu) 2354 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2355 2356 /* we're done parsing the input, undefine BUG macro and dump config */ 2357 #undef PCPU_SETUP_BUG_ON 2358 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2359 2360 pcpu_nr_groups = ai->nr_groups; 2361 pcpu_group_offsets = group_offsets; 2362 pcpu_group_sizes = group_sizes; 2363 pcpu_unit_map = unit_map; 2364 pcpu_unit_offsets = unit_off; 2365 2366 /* determine basic parameters */ 2367 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2368 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2369 pcpu_atom_size = ai->atom_size; 2370 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2371 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2372 2373 pcpu_stats_save_ai(ai); 2374 2375 /* 2376 * Allocate chunk slots. The additional last slot is for 2377 * empty chunks. 2378 */ 2379 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2380 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]), 2381 SMP_CACHE_BYTES); 2382 if (!pcpu_slot) 2383 panic("%s: Failed to allocate %zu bytes\n", __func__, 2384 pcpu_nr_slots * sizeof(pcpu_slot[0])); 2385 for (i = 0; i < pcpu_nr_slots; i++) 2386 INIT_LIST_HEAD(&pcpu_slot[i]); 2387 2388 /* 2389 * The end of the static region needs to be aligned with the 2390 * minimum allocation size as this offsets the reserved and 2391 * dynamic region. The first chunk ends page aligned by 2392 * expanding the dynamic region, therefore the dynamic region 2393 * can be shrunk to compensate while still staying above the 2394 * configured sizes. 2395 */ 2396 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2397 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2398 2399 /* 2400 * Initialize first chunk. 2401 * If the reserved_size is non-zero, this initializes the reserved 2402 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2403 * and the dynamic region is initialized here. The first chunk, 2404 * pcpu_first_chunk, will always point to the chunk that serves 2405 * the dynamic region. 2406 */ 2407 tmp_addr = (unsigned long)base_addr + static_size; 2408 map_size = ai->reserved_size ?: dyn_size; 2409 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2410 2411 /* init dynamic chunk if necessary */ 2412 if (ai->reserved_size) { 2413 pcpu_reserved_chunk = chunk; 2414 2415 tmp_addr = (unsigned long)base_addr + static_size + 2416 ai->reserved_size; 2417 map_size = dyn_size; 2418 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2419 } 2420 2421 /* link the first chunk in */ 2422 pcpu_first_chunk = chunk; 2423 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2424 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2425 2426 /* include all regions of the first chunk */ 2427 pcpu_nr_populated += PFN_DOWN(size_sum); 2428 2429 pcpu_stats_chunk_alloc(); 2430 trace_percpu_create_chunk(base_addr); 2431 2432 /* we're done */ 2433 pcpu_base_addr = base_addr; 2434 } 2435 2436 #ifdef CONFIG_SMP 2437 2438 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2439 [PCPU_FC_AUTO] = "auto", 2440 [PCPU_FC_EMBED] = "embed", 2441 [PCPU_FC_PAGE] = "page", 2442 }; 2443 2444 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2445 2446 static int __init percpu_alloc_setup(char *str) 2447 { 2448 if (!str) 2449 return -EINVAL; 2450 2451 if (0) 2452 /* nada */; 2453 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2454 else if (!strcmp(str, "embed")) 2455 pcpu_chosen_fc = PCPU_FC_EMBED; 2456 #endif 2457 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2458 else if (!strcmp(str, "page")) 2459 pcpu_chosen_fc = PCPU_FC_PAGE; 2460 #endif 2461 else 2462 pr_warn("unknown allocator %s specified\n", str); 2463 2464 return 0; 2465 } 2466 early_param("percpu_alloc", percpu_alloc_setup); 2467 2468 /* 2469 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2470 * Build it if needed by the arch config or the generic setup is going 2471 * to be used. 2472 */ 2473 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2474 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2475 #define BUILD_EMBED_FIRST_CHUNK 2476 #endif 2477 2478 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2479 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2480 #define BUILD_PAGE_FIRST_CHUNK 2481 #endif 2482 2483 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2484 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2485 /** 2486 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2487 * @reserved_size: the size of reserved percpu area in bytes 2488 * @dyn_size: minimum free size for dynamic allocation in bytes 2489 * @atom_size: allocation atom size 2490 * @cpu_distance_fn: callback to determine distance between cpus, optional 2491 * 2492 * This function determines grouping of units, their mappings to cpus 2493 * and other parameters considering needed percpu size, allocation 2494 * atom size and distances between CPUs. 2495 * 2496 * Groups are always multiples of atom size and CPUs which are of 2497 * LOCAL_DISTANCE both ways are grouped together and share space for 2498 * units in the same group. The returned configuration is guaranteed 2499 * to have CPUs on different nodes on different groups and >=75% usage 2500 * of allocated virtual address space. 2501 * 2502 * RETURNS: 2503 * On success, pointer to the new allocation_info is returned. On 2504 * failure, ERR_PTR value is returned. 2505 */ 2506 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2507 size_t reserved_size, size_t dyn_size, 2508 size_t atom_size, 2509 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2510 { 2511 static int group_map[NR_CPUS] __initdata; 2512 static int group_cnt[NR_CPUS] __initdata; 2513 const size_t static_size = __per_cpu_end - __per_cpu_start; 2514 int nr_groups = 1, nr_units = 0; 2515 size_t size_sum, min_unit_size, alloc_size; 2516 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2517 int last_allocs, group, unit; 2518 unsigned int cpu, tcpu; 2519 struct pcpu_alloc_info *ai; 2520 unsigned int *cpu_map; 2521 2522 /* this function may be called multiple times */ 2523 memset(group_map, 0, sizeof(group_map)); 2524 memset(group_cnt, 0, sizeof(group_cnt)); 2525 2526 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2527 size_sum = PFN_ALIGN(static_size + reserved_size + 2528 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2529 dyn_size = size_sum - static_size - reserved_size; 2530 2531 /* 2532 * Determine min_unit_size, alloc_size and max_upa such that 2533 * alloc_size is multiple of atom_size and is the smallest 2534 * which can accommodate 4k aligned segments which are equal to 2535 * or larger than min_unit_size. 2536 */ 2537 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2538 2539 /* determine the maximum # of units that can fit in an allocation */ 2540 alloc_size = roundup(min_unit_size, atom_size); 2541 upa = alloc_size / min_unit_size; 2542 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2543 upa--; 2544 max_upa = upa; 2545 2546 /* group cpus according to their proximity */ 2547 for_each_possible_cpu(cpu) { 2548 group = 0; 2549 next_group: 2550 for_each_possible_cpu(tcpu) { 2551 if (cpu == tcpu) 2552 break; 2553 if (group_map[tcpu] == group && cpu_distance_fn && 2554 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2555 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2556 group++; 2557 nr_groups = max(nr_groups, group + 1); 2558 goto next_group; 2559 } 2560 } 2561 group_map[cpu] = group; 2562 group_cnt[group]++; 2563 } 2564 2565 /* 2566 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2567 * Expand the unit_size until we use >= 75% of the units allocated. 2568 * Related to atom_size, which could be much larger than the unit_size. 2569 */ 2570 last_allocs = INT_MAX; 2571 for (upa = max_upa; upa; upa--) { 2572 int allocs = 0, wasted = 0; 2573 2574 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2575 continue; 2576 2577 for (group = 0; group < nr_groups; group++) { 2578 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2579 allocs += this_allocs; 2580 wasted += this_allocs * upa - group_cnt[group]; 2581 } 2582 2583 /* 2584 * Don't accept if wastage is over 1/3. The 2585 * greater-than comparison ensures upa==1 always 2586 * passes the following check. 2587 */ 2588 if (wasted > num_possible_cpus() / 3) 2589 continue; 2590 2591 /* and then don't consume more memory */ 2592 if (allocs > last_allocs) 2593 break; 2594 last_allocs = allocs; 2595 best_upa = upa; 2596 } 2597 upa = best_upa; 2598 2599 /* allocate and fill alloc_info */ 2600 for (group = 0; group < nr_groups; group++) 2601 nr_units += roundup(group_cnt[group], upa); 2602 2603 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2604 if (!ai) 2605 return ERR_PTR(-ENOMEM); 2606 cpu_map = ai->groups[0].cpu_map; 2607 2608 for (group = 0; group < nr_groups; group++) { 2609 ai->groups[group].cpu_map = cpu_map; 2610 cpu_map += roundup(group_cnt[group], upa); 2611 } 2612 2613 ai->static_size = static_size; 2614 ai->reserved_size = reserved_size; 2615 ai->dyn_size = dyn_size; 2616 ai->unit_size = alloc_size / upa; 2617 ai->atom_size = atom_size; 2618 ai->alloc_size = alloc_size; 2619 2620 for (group = 0, unit = 0; group < nr_groups; group++) { 2621 struct pcpu_group_info *gi = &ai->groups[group]; 2622 2623 /* 2624 * Initialize base_offset as if all groups are located 2625 * back-to-back. The caller should update this to 2626 * reflect actual allocation. 2627 */ 2628 gi->base_offset = unit * ai->unit_size; 2629 2630 for_each_possible_cpu(cpu) 2631 if (group_map[cpu] == group) 2632 gi->cpu_map[gi->nr_units++] = cpu; 2633 gi->nr_units = roundup(gi->nr_units, upa); 2634 unit += gi->nr_units; 2635 } 2636 BUG_ON(unit != nr_units); 2637 2638 return ai; 2639 } 2640 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2641 2642 #if defined(BUILD_EMBED_FIRST_CHUNK) 2643 /** 2644 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2645 * @reserved_size: the size of reserved percpu area in bytes 2646 * @dyn_size: minimum free size for dynamic allocation in bytes 2647 * @atom_size: allocation atom size 2648 * @cpu_distance_fn: callback to determine distance between cpus, optional 2649 * @alloc_fn: function to allocate percpu page 2650 * @free_fn: function to free percpu page 2651 * 2652 * This is a helper to ease setting up embedded first percpu chunk and 2653 * can be called where pcpu_setup_first_chunk() is expected. 2654 * 2655 * If this function is used to setup the first chunk, it is allocated 2656 * by calling @alloc_fn and used as-is without being mapped into 2657 * vmalloc area. Allocations are always whole multiples of @atom_size 2658 * aligned to @atom_size. 2659 * 2660 * This enables the first chunk to piggy back on the linear physical 2661 * mapping which often uses larger page size. Please note that this 2662 * can result in very sparse cpu->unit mapping on NUMA machines thus 2663 * requiring large vmalloc address space. Don't use this allocator if 2664 * vmalloc space is not orders of magnitude larger than distances 2665 * between node memory addresses (ie. 32bit NUMA machines). 2666 * 2667 * @dyn_size specifies the minimum dynamic area size. 2668 * 2669 * If the needed size is smaller than the minimum or specified unit 2670 * size, the leftover is returned using @free_fn. 2671 * 2672 * RETURNS: 2673 * 0 on success, -errno on failure. 2674 */ 2675 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2676 size_t atom_size, 2677 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2678 pcpu_fc_alloc_fn_t alloc_fn, 2679 pcpu_fc_free_fn_t free_fn) 2680 { 2681 void *base = (void *)ULONG_MAX; 2682 void **areas = NULL; 2683 struct pcpu_alloc_info *ai; 2684 size_t size_sum, areas_size; 2685 unsigned long max_distance; 2686 int group, i, highest_group, rc = 0; 2687 2688 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2689 cpu_distance_fn); 2690 if (IS_ERR(ai)) 2691 return PTR_ERR(ai); 2692 2693 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2694 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2695 2696 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 2697 if (!areas) { 2698 rc = -ENOMEM; 2699 goto out_free; 2700 } 2701 2702 /* allocate, copy and determine base address & max_distance */ 2703 highest_group = 0; 2704 for (group = 0; group < ai->nr_groups; group++) { 2705 struct pcpu_group_info *gi = &ai->groups[group]; 2706 unsigned int cpu = NR_CPUS; 2707 void *ptr; 2708 2709 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2710 cpu = gi->cpu_map[i]; 2711 BUG_ON(cpu == NR_CPUS); 2712 2713 /* allocate space for the whole group */ 2714 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2715 if (!ptr) { 2716 rc = -ENOMEM; 2717 goto out_free_areas; 2718 } 2719 /* kmemleak tracks the percpu allocations separately */ 2720 kmemleak_free(ptr); 2721 areas[group] = ptr; 2722 2723 base = min(ptr, base); 2724 if (ptr > areas[highest_group]) 2725 highest_group = group; 2726 } 2727 max_distance = areas[highest_group] - base; 2728 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2729 2730 /* warn if maximum distance is further than 75% of vmalloc space */ 2731 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2732 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2733 max_distance, VMALLOC_TOTAL); 2734 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2735 /* and fail if we have fallback */ 2736 rc = -EINVAL; 2737 goto out_free_areas; 2738 #endif 2739 } 2740 2741 /* 2742 * Copy data and free unused parts. This should happen after all 2743 * allocations are complete; otherwise, we may end up with 2744 * overlapping groups. 2745 */ 2746 for (group = 0; group < ai->nr_groups; group++) { 2747 struct pcpu_group_info *gi = &ai->groups[group]; 2748 void *ptr = areas[group]; 2749 2750 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2751 if (gi->cpu_map[i] == NR_CPUS) { 2752 /* unused unit, free whole */ 2753 free_fn(ptr, ai->unit_size); 2754 continue; 2755 } 2756 /* copy and return the unused part */ 2757 memcpy(ptr, __per_cpu_load, ai->static_size); 2758 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2759 } 2760 } 2761 2762 /* base address is now known, determine group base offsets */ 2763 for (group = 0; group < ai->nr_groups; group++) { 2764 ai->groups[group].base_offset = areas[group] - base; 2765 } 2766 2767 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 2768 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 2769 ai->dyn_size, ai->unit_size); 2770 2771 pcpu_setup_first_chunk(ai, base); 2772 goto out_free; 2773 2774 out_free_areas: 2775 for (group = 0; group < ai->nr_groups; group++) 2776 if (areas[group]) 2777 free_fn(areas[group], 2778 ai->groups[group].nr_units * ai->unit_size); 2779 out_free: 2780 pcpu_free_alloc_info(ai); 2781 if (areas) 2782 memblock_free_early(__pa(areas), areas_size); 2783 return rc; 2784 } 2785 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2786 2787 #ifdef BUILD_PAGE_FIRST_CHUNK 2788 /** 2789 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2790 * @reserved_size: the size of reserved percpu area in bytes 2791 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2792 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2793 * @populate_pte_fn: function to populate pte 2794 * 2795 * This is a helper to ease setting up page-remapped first percpu 2796 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2797 * 2798 * This is the basic allocator. Static percpu area is allocated 2799 * page-by-page into vmalloc area. 2800 * 2801 * RETURNS: 2802 * 0 on success, -errno on failure. 2803 */ 2804 int __init pcpu_page_first_chunk(size_t reserved_size, 2805 pcpu_fc_alloc_fn_t alloc_fn, 2806 pcpu_fc_free_fn_t free_fn, 2807 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2808 { 2809 static struct vm_struct vm; 2810 struct pcpu_alloc_info *ai; 2811 char psize_str[16]; 2812 int unit_pages; 2813 size_t pages_size; 2814 struct page **pages; 2815 int unit, i, j, rc = 0; 2816 int upa; 2817 int nr_g0_units; 2818 2819 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2820 2821 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2822 if (IS_ERR(ai)) 2823 return PTR_ERR(ai); 2824 BUG_ON(ai->nr_groups != 1); 2825 upa = ai->alloc_size/ai->unit_size; 2826 nr_g0_units = roundup(num_possible_cpus(), upa); 2827 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 2828 pcpu_free_alloc_info(ai); 2829 return -EINVAL; 2830 } 2831 2832 unit_pages = ai->unit_size >> PAGE_SHIFT; 2833 2834 /* unaligned allocations can't be freed, round up to page size */ 2835 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2836 sizeof(pages[0])); 2837 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 2838 if (!pages) 2839 panic("%s: Failed to allocate %zu bytes\n", __func__, 2840 pages_size); 2841 2842 /* allocate pages */ 2843 j = 0; 2844 for (unit = 0; unit < num_possible_cpus(); unit++) { 2845 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2846 for (i = 0; i < unit_pages; i++) { 2847 void *ptr; 2848 2849 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2850 if (!ptr) { 2851 pr_warn("failed to allocate %s page for cpu%u\n", 2852 psize_str, cpu); 2853 goto enomem; 2854 } 2855 /* kmemleak tracks the percpu allocations separately */ 2856 kmemleak_free(ptr); 2857 pages[j++] = virt_to_page(ptr); 2858 } 2859 } 2860 2861 /* allocate vm area, map the pages and copy static data */ 2862 vm.flags = VM_ALLOC; 2863 vm.size = num_possible_cpus() * ai->unit_size; 2864 vm_area_register_early(&vm, PAGE_SIZE); 2865 2866 for (unit = 0; unit < num_possible_cpus(); unit++) { 2867 unsigned long unit_addr = 2868 (unsigned long)vm.addr + unit * ai->unit_size; 2869 2870 for (i = 0; i < unit_pages; i++) 2871 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2872 2873 /* pte already populated, the following shouldn't fail */ 2874 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2875 unit_pages); 2876 if (rc < 0) 2877 panic("failed to map percpu area, err=%d\n", rc); 2878 2879 /* 2880 * FIXME: Archs with virtual cache should flush local 2881 * cache for the linear mapping here - something 2882 * equivalent to flush_cache_vmap() on the local cpu. 2883 * flush_cache_vmap() can't be used as most supporting 2884 * data structures are not set up yet. 2885 */ 2886 2887 /* copy static data */ 2888 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2889 } 2890 2891 /* we're ready, commit */ 2892 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 2893 unit_pages, psize_str, ai->static_size, 2894 ai->reserved_size, ai->dyn_size); 2895 2896 pcpu_setup_first_chunk(ai, vm.addr); 2897 goto out_free_ar; 2898 2899 enomem: 2900 while (--j >= 0) 2901 free_fn(page_address(pages[j]), PAGE_SIZE); 2902 rc = -ENOMEM; 2903 out_free_ar: 2904 memblock_free_early(__pa(pages), pages_size); 2905 pcpu_free_alloc_info(ai); 2906 return rc; 2907 } 2908 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2909 2910 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2911 /* 2912 * Generic SMP percpu area setup. 2913 * 2914 * The embedding helper is used because its behavior closely resembles 2915 * the original non-dynamic generic percpu area setup. This is 2916 * important because many archs have addressing restrictions and might 2917 * fail if the percpu area is located far away from the previous 2918 * location. As an added bonus, in non-NUMA cases, embedding is 2919 * generally a good idea TLB-wise because percpu area can piggy back 2920 * on the physical linear memory mapping which uses large page 2921 * mappings on applicable archs. 2922 */ 2923 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2924 EXPORT_SYMBOL(__per_cpu_offset); 2925 2926 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2927 size_t align) 2928 { 2929 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); 2930 } 2931 2932 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2933 { 2934 memblock_free_early(__pa(ptr), size); 2935 } 2936 2937 void __init setup_per_cpu_areas(void) 2938 { 2939 unsigned long delta; 2940 unsigned int cpu; 2941 int rc; 2942 2943 /* 2944 * Always reserve area for module percpu variables. That's 2945 * what the legacy allocator did. 2946 */ 2947 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2948 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2949 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2950 if (rc < 0) 2951 panic("Failed to initialize percpu areas."); 2952 2953 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2954 for_each_possible_cpu(cpu) 2955 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2956 } 2957 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2958 2959 #else /* CONFIG_SMP */ 2960 2961 /* 2962 * UP percpu area setup. 2963 * 2964 * UP always uses km-based percpu allocator with identity mapping. 2965 * Static percpu variables are indistinguishable from the usual static 2966 * variables and don't require any special preparation. 2967 */ 2968 void __init setup_per_cpu_areas(void) 2969 { 2970 const size_t unit_size = 2971 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2972 PERCPU_DYNAMIC_RESERVE)); 2973 struct pcpu_alloc_info *ai; 2974 void *fc; 2975 2976 ai = pcpu_alloc_alloc_info(1, 1); 2977 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 2978 if (!ai || !fc) 2979 panic("Failed to allocate memory for percpu areas."); 2980 /* kmemleak tracks the percpu allocations separately */ 2981 kmemleak_free(fc); 2982 2983 ai->dyn_size = unit_size; 2984 ai->unit_size = unit_size; 2985 ai->atom_size = unit_size; 2986 ai->alloc_size = unit_size; 2987 ai->groups[0].nr_units = 1; 2988 ai->groups[0].cpu_map[0] = 0; 2989 2990 pcpu_setup_first_chunk(ai, fc); 2991 pcpu_free_alloc_info(ai); 2992 } 2993 2994 #endif /* CONFIG_SMP */ 2995 2996 /* 2997 * pcpu_nr_pages - calculate total number of populated backing pages 2998 * 2999 * This reflects the number of pages populated to back chunks. Metadata is 3000 * excluded in the number exposed in meminfo as the number of backing pages 3001 * scales with the number of cpus and can quickly outweigh the memory used for 3002 * metadata. It also keeps this calculation nice and simple. 3003 * 3004 * RETURNS: 3005 * Total number of populated backing pages in use by the allocator. 3006 */ 3007 unsigned long pcpu_nr_pages(void) 3008 { 3009 return pcpu_nr_populated * pcpu_nr_units; 3010 } 3011 3012 /* 3013 * Percpu allocator is initialized early during boot when neither slab or 3014 * workqueue is available. Plug async management until everything is up 3015 * and running. 3016 */ 3017 static int __init percpu_enable_async(void) 3018 { 3019 pcpu_async_enabled = true; 3020 return 0; 3021 } 3022 subsys_initcall(percpu_enable_async); 3023