xref: /linux/mm/percpu.c (revision 36239c6704b71da7fb8e2a9429e159a84d0c5a3e)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be eqaul to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 
71 #include <asm/cacheflush.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/io.h>
75 
76 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
78 
79 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
80 #ifndef __addr_to_pcpu_ptr
81 #define __addr_to_pcpu_ptr(addr)					\
82 	(void __percpu *)((unsigned long)(addr) -			\
83 			  (unsigned long)pcpu_base_addr	+		\
84 			  (unsigned long)__per_cpu_start)
85 #endif
86 #ifndef __pcpu_ptr_to_addr
87 #define __pcpu_ptr_to_addr(ptr)						\
88 	(void __force *)((unsigned long)(ptr) +				\
89 			 (unsigned long)pcpu_base_addr -		\
90 			 (unsigned long)__per_cpu_start)
91 #endif
92 
93 struct pcpu_chunk {
94 	struct list_head	list;		/* linked to pcpu_slot lists */
95 	int			free_size;	/* free bytes in the chunk */
96 	int			contig_hint;	/* max contiguous size hint */
97 	void			*base_addr;	/* base address of this chunk */
98 	int			map_used;	/* # of map entries used */
99 	int			map_alloc;	/* # of map entries allocated */
100 	int			*map;		/* allocation map */
101 	void			*data;		/* chunk data */
102 	bool			immutable;	/* no [de]population allowed */
103 	unsigned long		populated[];	/* populated bitmap */
104 };
105 
106 static int pcpu_unit_pages __read_mostly;
107 static int pcpu_unit_size __read_mostly;
108 static int pcpu_nr_units __read_mostly;
109 static int pcpu_atom_size __read_mostly;
110 static int pcpu_nr_slots __read_mostly;
111 static size_t pcpu_chunk_struct_size __read_mostly;
112 
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly;
115 static unsigned int pcpu_last_unit_cpu __read_mostly;
116 
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr);
120 
121 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123 
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly;
126 static const unsigned long *pcpu_group_offsets __read_mostly;
127 static const size_t *pcpu_group_sizes __read_mostly;
128 
129 /*
130  * The first chunk which always exists.  Note that unlike other
131  * chunks, this one can be allocated and mapped in several different
132  * ways and thus often doesn't live in the vmalloc area.
133  */
134 static struct pcpu_chunk *pcpu_first_chunk;
135 
136 /*
137  * Optional reserved chunk.  This chunk reserves part of the first
138  * chunk and serves it for reserved allocations.  The amount of
139  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
140  * area doesn't exist, the following variables contain NULL and 0
141  * respectively.
142  */
143 static struct pcpu_chunk *pcpu_reserved_chunk;
144 static int pcpu_reserved_chunk_limit;
145 
146 /*
147  * Synchronization rules.
148  *
149  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
150  * protects allocation/reclaim paths, chunks, populated bitmap and
151  * vmalloc mapping.  The latter is a spinlock and protects the index
152  * data structures - chunk slots, chunks and area maps in chunks.
153  *
154  * During allocation, pcpu_alloc_mutex is kept locked all the time and
155  * pcpu_lock is grabbed and released as necessary.  All actual memory
156  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
157  * general, percpu memory can't be allocated with irq off but
158  * irqsave/restore are still used in alloc path so that it can be used
159  * from early init path - sched_init() specifically.
160  *
161  * Free path accesses and alters only the index data structures, so it
162  * can be safely called from atomic context.  When memory needs to be
163  * returned to the system, free path schedules reclaim_work which
164  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
165  * reclaimed, release both locks and frees the chunks.  Note that it's
166  * necessary to grab both locks to remove a chunk from circulation as
167  * allocation path might be referencing the chunk with only
168  * pcpu_alloc_mutex locked.
169  */
170 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
171 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
172 
173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
174 
175 /* reclaim work to release fully free chunks, scheduled from free path */
176 static void pcpu_reclaim(struct work_struct *work);
177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
178 
179 static bool pcpu_addr_in_first_chunk(void *addr)
180 {
181 	void *first_start = pcpu_first_chunk->base_addr;
182 
183 	return addr >= first_start && addr < first_start + pcpu_unit_size;
184 }
185 
186 static bool pcpu_addr_in_reserved_chunk(void *addr)
187 {
188 	void *first_start = pcpu_first_chunk->base_addr;
189 
190 	return addr >= first_start &&
191 		addr < first_start + pcpu_reserved_chunk_limit;
192 }
193 
194 static int __pcpu_size_to_slot(int size)
195 {
196 	int highbit = fls(size);	/* size is in bytes */
197 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
198 }
199 
200 static int pcpu_size_to_slot(int size)
201 {
202 	if (size == pcpu_unit_size)
203 		return pcpu_nr_slots - 1;
204 	return __pcpu_size_to_slot(size);
205 }
206 
207 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
208 {
209 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
210 		return 0;
211 
212 	return pcpu_size_to_slot(chunk->free_size);
213 }
214 
215 /* set the pointer to a chunk in a page struct */
216 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
217 {
218 	page->index = (unsigned long)pcpu;
219 }
220 
221 /* obtain pointer to a chunk from a page struct */
222 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
223 {
224 	return (struct pcpu_chunk *)page->index;
225 }
226 
227 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
228 {
229 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
230 }
231 
232 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
233 				     unsigned int cpu, int page_idx)
234 {
235 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
236 		(page_idx << PAGE_SHIFT);
237 }
238 
239 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
240 					   int *rs, int *re, int end)
241 {
242 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
243 	*re = find_next_bit(chunk->populated, end, *rs + 1);
244 }
245 
246 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
247 					 int *rs, int *re, int end)
248 {
249 	*rs = find_next_bit(chunk->populated, end, *rs);
250 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
251 }
252 
253 /*
254  * (Un)populated page region iterators.  Iterate over (un)populated
255  * page regions betwen @start and @end in @chunk.  @rs and @re should
256  * be integer variables and will be set to start and end page index of
257  * the current region.
258  */
259 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
260 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
261 	     (rs) < (re);						    \
262 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
263 
264 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
265 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
266 	     (rs) < (re);						    \
267 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
268 
269 /**
270  * pcpu_mem_alloc - allocate memory
271  * @size: bytes to allocate
272  *
273  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
274  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
275  * memory is always zeroed.
276  *
277  * CONTEXT:
278  * Does GFP_KERNEL allocation.
279  *
280  * RETURNS:
281  * Pointer to the allocated area on success, NULL on failure.
282  */
283 static void *pcpu_mem_alloc(size_t size)
284 {
285 	if (size <= PAGE_SIZE)
286 		return kzalloc(size, GFP_KERNEL);
287 	else {
288 		void *ptr = vmalloc(size);
289 		if (ptr)
290 			memset(ptr, 0, size);
291 		return ptr;
292 	}
293 }
294 
295 /**
296  * pcpu_mem_free - free memory
297  * @ptr: memory to free
298  * @size: size of the area
299  *
300  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
301  */
302 static void pcpu_mem_free(void *ptr, size_t size)
303 {
304 	if (size <= PAGE_SIZE)
305 		kfree(ptr);
306 	else
307 		vfree(ptr);
308 }
309 
310 /**
311  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
312  * @chunk: chunk of interest
313  * @oslot: the previous slot it was on
314  *
315  * This function is called after an allocation or free changed @chunk.
316  * New slot according to the changed state is determined and @chunk is
317  * moved to the slot.  Note that the reserved chunk is never put on
318  * chunk slots.
319  *
320  * CONTEXT:
321  * pcpu_lock.
322  */
323 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
324 {
325 	int nslot = pcpu_chunk_slot(chunk);
326 
327 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
328 		if (oslot < nslot)
329 			list_move(&chunk->list, &pcpu_slot[nslot]);
330 		else
331 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
332 	}
333 }
334 
335 /**
336  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
337  * @chunk: chunk of interest
338  *
339  * Determine whether area map of @chunk needs to be extended to
340  * accomodate a new allocation.
341  *
342  * CONTEXT:
343  * pcpu_lock.
344  *
345  * RETURNS:
346  * New target map allocation length if extension is necessary, 0
347  * otherwise.
348  */
349 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
350 {
351 	int new_alloc;
352 
353 	if (chunk->map_alloc >= chunk->map_used + 2)
354 		return 0;
355 
356 	new_alloc = PCPU_DFL_MAP_ALLOC;
357 	while (new_alloc < chunk->map_used + 2)
358 		new_alloc *= 2;
359 
360 	return new_alloc;
361 }
362 
363 /**
364  * pcpu_extend_area_map - extend area map of a chunk
365  * @chunk: chunk of interest
366  * @new_alloc: new target allocation length of the area map
367  *
368  * Extend area map of @chunk to have @new_alloc entries.
369  *
370  * CONTEXT:
371  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
372  *
373  * RETURNS:
374  * 0 on success, -errno on failure.
375  */
376 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
377 {
378 	int *old = NULL, *new = NULL;
379 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
380 	unsigned long flags;
381 
382 	new = pcpu_mem_alloc(new_size);
383 	if (!new)
384 		return -ENOMEM;
385 
386 	/* acquire pcpu_lock and switch to new area map */
387 	spin_lock_irqsave(&pcpu_lock, flags);
388 
389 	if (new_alloc <= chunk->map_alloc)
390 		goto out_unlock;
391 
392 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
393 	memcpy(new, chunk->map, old_size);
394 
395 	/*
396 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
397 	 * one of the first chunks and still using static map.
398 	 */
399 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
400 		old = chunk->map;
401 
402 	chunk->map_alloc = new_alloc;
403 	chunk->map = new;
404 	new = NULL;
405 
406 out_unlock:
407 	spin_unlock_irqrestore(&pcpu_lock, flags);
408 
409 	/*
410 	 * pcpu_mem_free() might end up calling vfree() which uses
411 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
412 	 */
413 	pcpu_mem_free(old, old_size);
414 	pcpu_mem_free(new, new_size);
415 
416 	return 0;
417 }
418 
419 /**
420  * pcpu_split_block - split a map block
421  * @chunk: chunk of interest
422  * @i: index of map block to split
423  * @head: head size in bytes (can be 0)
424  * @tail: tail size in bytes (can be 0)
425  *
426  * Split the @i'th map block into two or three blocks.  If @head is
427  * non-zero, @head bytes block is inserted before block @i moving it
428  * to @i+1 and reducing its size by @head bytes.
429  *
430  * If @tail is non-zero, the target block, which can be @i or @i+1
431  * depending on @head, is reduced by @tail bytes and @tail byte block
432  * is inserted after the target block.
433  *
434  * @chunk->map must have enough free slots to accomodate the split.
435  *
436  * CONTEXT:
437  * pcpu_lock.
438  */
439 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
440 			     int head, int tail)
441 {
442 	int nr_extra = !!head + !!tail;
443 
444 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
445 
446 	/* insert new subblocks */
447 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
448 		sizeof(chunk->map[0]) * (chunk->map_used - i));
449 	chunk->map_used += nr_extra;
450 
451 	if (head) {
452 		chunk->map[i + 1] = chunk->map[i] - head;
453 		chunk->map[i++] = head;
454 	}
455 	if (tail) {
456 		chunk->map[i++] -= tail;
457 		chunk->map[i] = tail;
458 	}
459 }
460 
461 /**
462  * pcpu_alloc_area - allocate area from a pcpu_chunk
463  * @chunk: chunk of interest
464  * @size: wanted size in bytes
465  * @align: wanted align
466  *
467  * Try to allocate @size bytes area aligned at @align from @chunk.
468  * Note that this function only allocates the offset.  It doesn't
469  * populate or map the area.
470  *
471  * @chunk->map must have at least two free slots.
472  *
473  * CONTEXT:
474  * pcpu_lock.
475  *
476  * RETURNS:
477  * Allocated offset in @chunk on success, -1 if no matching area is
478  * found.
479  */
480 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
481 {
482 	int oslot = pcpu_chunk_slot(chunk);
483 	int max_contig = 0;
484 	int i, off;
485 
486 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
487 		bool is_last = i + 1 == chunk->map_used;
488 		int head, tail;
489 
490 		/* extra for alignment requirement */
491 		head = ALIGN(off, align) - off;
492 		BUG_ON(i == 0 && head != 0);
493 
494 		if (chunk->map[i] < 0)
495 			continue;
496 		if (chunk->map[i] < head + size) {
497 			max_contig = max(chunk->map[i], max_contig);
498 			continue;
499 		}
500 
501 		/*
502 		 * If head is small or the previous block is free,
503 		 * merge'em.  Note that 'small' is defined as smaller
504 		 * than sizeof(int), which is very small but isn't too
505 		 * uncommon for percpu allocations.
506 		 */
507 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
508 			if (chunk->map[i - 1] > 0)
509 				chunk->map[i - 1] += head;
510 			else {
511 				chunk->map[i - 1] -= head;
512 				chunk->free_size -= head;
513 			}
514 			chunk->map[i] -= head;
515 			off += head;
516 			head = 0;
517 		}
518 
519 		/* if tail is small, just keep it around */
520 		tail = chunk->map[i] - head - size;
521 		if (tail < sizeof(int))
522 			tail = 0;
523 
524 		/* split if warranted */
525 		if (head || tail) {
526 			pcpu_split_block(chunk, i, head, tail);
527 			if (head) {
528 				i++;
529 				off += head;
530 				max_contig = max(chunk->map[i - 1], max_contig);
531 			}
532 			if (tail)
533 				max_contig = max(chunk->map[i + 1], max_contig);
534 		}
535 
536 		/* update hint and mark allocated */
537 		if (is_last)
538 			chunk->contig_hint = max_contig; /* fully scanned */
539 		else
540 			chunk->contig_hint = max(chunk->contig_hint,
541 						 max_contig);
542 
543 		chunk->free_size -= chunk->map[i];
544 		chunk->map[i] = -chunk->map[i];
545 
546 		pcpu_chunk_relocate(chunk, oslot);
547 		return off;
548 	}
549 
550 	chunk->contig_hint = max_contig;	/* fully scanned */
551 	pcpu_chunk_relocate(chunk, oslot);
552 
553 	/* tell the upper layer that this chunk has no matching area */
554 	return -1;
555 }
556 
557 /**
558  * pcpu_free_area - free area to a pcpu_chunk
559  * @chunk: chunk of interest
560  * @freeme: offset of area to free
561  *
562  * Free area starting from @freeme to @chunk.  Note that this function
563  * only modifies the allocation map.  It doesn't depopulate or unmap
564  * the area.
565  *
566  * CONTEXT:
567  * pcpu_lock.
568  */
569 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
570 {
571 	int oslot = pcpu_chunk_slot(chunk);
572 	int i, off;
573 
574 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
575 		if (off == freeme)
576 			break;
577 	BUG_ON(off != freeme);
578 	BUG_ON(chunk->map[i] > 0);
579 
580 	chunk->map[i] = -chunk->map[i];
581 	chunk->free_size += chunk->map[i];
582 
583 	/* merge with previous? */
584 	if (i > 0 && chunk->map[i - 1] >= 0) {
585 		chunk->map[i - 1] += chunk->map[i];
586 		chunk->map_used--;
587 		memmove(&chunk->map[i], &chunk->map[i + 1],
588 			(chunk->map_used - i) * sizeof(chunk->map[0]));
589 		i--;
590 	}
591 	/* merge with next? */
592 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
593 		chunk->map[i] += chunk->map[i + 1];
594 		chunk->map_used--;
595 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
596 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
597 	}
598 
599 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
600 	pcpu_chunk_relocate(chunk, oslot);
601 }
602 
603 static struct pcpu_chunk *pcpu_alloc_chunk(void)
604 {
605 	struct pcpu_chunk *chunk;
606 
607 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
608 	if (!chunk)
609 		return NULL;
610 
611 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
612 	if (!chunk->map) {
613 		kfree(chunk);
614 		return NULL;
615 	}
616 
617 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
618 	chunk->map[chunk->map_used++] = pcpu_unit_size;
619 
620 	INIT_LIST_HEAD(&chunk->list);
621 	chunk->free_size = pcpu_unit_size;
622 	chunk->contig_hint = pcpu_unit_size;
623 
624 	return chunk;
625 }
626 
627 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
628 {
629 	if (!chunk)
630 		return;
631 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
632 	kfree(chunk);
633 }
634 
635 /*
636  * Chunk management implementation.
637  *
638  * To allow different implementations, chunk alloc/free and
639  * [de]population are implemented in a separate file which is pulled
640  * into this file and compiled together.  The following functions
641  * should be implemented.
642  *
643  * pcpu_populate_chunk		- populate the specified range of a chunk
644  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
645  * pcpu_create_chunk		- create a new chunk
646  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
647  * pcpu_addr_to_page		- translate address to physical address
648  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
649  */
650 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
651 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
652 static struct pcpu_chunk *pcpu_create_chunk(void);
653 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
654 static struct page *pcpu_addr_to_page(void *addr);
655 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
656 
657 #ifdef CONFIG_NEED_PER_CPU_KM
658 #include "percpu-km.c"
659 #else
660 #include "percpu-vm.c"
661 #endif
662 
663 /**
664  * pcpu_chunk_addr_search - determine chunk containing specified address
665  * @addr: address for which the chunk needs to be determined.
666  *
667  * RETURNS:
668  * The address of the found chunk.
669  */
670 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
671 {
672 	/* is it in the first chunk? */
673 	if (pcpu_addr_in_first_chunk(addr)) {
674 		/* is it in the reserved area? */
675 		if (pcpu_addr_in_reserved_chunk(addr))
676 			return pcpu_reserved_chunk;
677 		return pcpu_first_chunk;
678 	}
679 
680 	/*
681 	 * The address is relative to unit0 which might be unused and
682 	 * thus unmapped.  Offset the address to the unit space of the
683 	 * current processor before looking it up in the vmalloc
684 	 * space.  Note that any possible cpu id can be used here, so
685 	 * there's no need to worry about preemption or cpu hotplug.
686 	 */
687 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
688 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
689 }
690 
691 /**
692  * pcpu_alloc - the percpu allocator
693  * @size: size of area to allocate in bytes
694  * @align: alignment of area (max PAGE_SIZE)
695  * @reserved: allocate from the reserved chunk if available
696  *
697  * Allocate percpu area of @size bytes aligned at @align.
698  *
699  * CONTEXT:
700  * Does GFP_KERNEL allocation.
701  *
702  * RETURNS:
703  * Percpu pointer to the allocated area on success, NULL on failure.
704  */
705 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
706 {
707 	static int warn_limit = 10;
708 	struct pcpu_chunk *chunk;
709 	const char *err;
710 	int slot, off, new_alloc;
711 	unsigned long flags;
712 
713 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
714 		WARN(true, "illegal size (%zu) or align (%zu) for "
715 		     "percpu allocation\n", size, align);
716 		return NULL;
717 	}
718 
719 	mutex_lock(&pcpu_alloc_mutex);
720 	spin_lock_irqsave(&pcpu_lock, flags);
721 
722 	/* serve reserved allocations from the reserved chunk if available */
723 	if (reserved && pcpu_reserved_chunk) {
724 		chunk = pcpu_reserved_chunk;
725 
726 		if (size > chunk->contig_hint) {
727 			err = "alloc from reserved chunk failed";
728 			goto fail_unlock;
729 		}
730 
731 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
732 			spin_unlock_irqrestore(&pcpu_lock, flags);
733 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
734 				err = "failed to extend area map of reserved chunk";
735 				goto fail_unlock_mutex;
736 			}
737 			spin_lock_irqsave(&pcpu_lock, flags);
738 		}
739 
740 		off = pcpu_alloc_area(chunk, size, align);
741 		if (off >= 0)
742 			goto area_found;
743 
744 		err = "alloc from reserved chunk failed";
745 		goto fail_unlock;
746 	}
747 
748 restart:
749 	/* search through normal chunks */
750 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
751 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
752 			if (size > chunk->contig_hint)
753 				continue;
754 
755 			new_alloc = pcpu_need_to_extend(chunk);
756 			if (new_alloc) {
757 				spin_unlock_irqrestore(&pcpu_lock, flags);
758 				if (pcpu_extend_area_map(chunk,
759 							 new_alloc) < 0) {
760 					err = "failed to extend area map";
761 					goto fail_unlock_mutex;
762 				}
763 				spin_lock_irqsave(&pcpu_lock, flags);
764 				/*
765 				 * pcpu_lock has been dropped, need to
766 				 * restart cpu_slot list walking.
767 				 */
768 				goto restart;
769 			}
770 
771 			off = pcpu_alloc_area(chunk, size, align);
772 			if (off >= 0)
773 				goto area_found;
774 		}
775 	}
776 
777 	/* hmmm... no space left, create a new chunk */
778 	spin_unlock_irqrestore(&pcpu_lock, flags);
779 
780 	chunk = pcpu_create_chunk();
781 	if (!chunk) {
782 		err = "failed to allocate new chunk";
783 		goto fail_unlock_mutex;
784 	}
785 
786 	spin_lock_irqsave(&pcpu_lock, flags);
787 	pcpu_chunk_relocate(chunk, -1);
788 	goto restart;
789 
790 area_found:
791 	spin_unlock_irqrestore(&pcpu_lock, flags);
792 
793 	/* populate, map and clear the area */
794 	if (pcpu_populate_chunk(chunk, off, size)) {
795 		spin_lock_irqsave(&pcpu_lock, flags);
796 		pcpu_free_area(chunk, off);
797 		err = "failed to populate";
798 		goto fail_unlock;
799 	}
800 
801 	mutex_unlock(&pcpu_alloc_mutex);
802 
803 	/* return address relative to base address */
804 	return __addr_to_pcpu_ptr(chunk->base_addr + off);
805 
806 fail_unlock:
807 	spin_unlock_irqrestore(&pcpu_lock, flags);
808 fail_unlock_mutex:
809 	mutex_unlock(&pcpu_alloc_mutex);
810 	if (warn_limit) {
811 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
812 			   "%s\n", size, align, err);
813 		dump_stack();
814 		if (!--warn_limit)
815 			pr_info("PERCPU: limit reached, disable warning\n");
816 	}
817 	return NULL;
818 }
819 
820 /**
821  * __alloc_percpu - allocate dynamic percpu area
822  * @size: size of area to allocate in bytes
823  * @align: alignment of area (max PAGE_SIZE)
824  *
825  * Allocate percpu area of @size bytes aligned at @align.  Might
826  * sleep.  Might trigger writeouts.
827  *
828  * CONTEXT:
829  * Does GFP_KERNEL allocation.
830  *
831  * RETURNS:
832  * Percpu pointer to the allocated area on success, NULL on failure.
833  */
834 void __percpu *__alloc_percpu(size_t size, size_t align)
835 {
836 	return pcpu_alloc(size, align, false);
837 }
838 EXPORT_SYMBOL_GPL(__alloc_percpu);
839 
840 /**
841  * __alloc_reserved_percpu - allocate reserved percpu area
842  * @size: size of area to allocate in bytes
843  * @align: alignment of area (max PAGE_SIZE)
844  *
845  * Allocate percpu area of @size bytes aligned at @align from reserved
846  * percpu area if arch has set it up; otherwise, allocation is served
847  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
848  *
849  * CONTEXT:
850  * Does GFP_KERNEL allocation.
851  *
852  * RETURNS:
853  * Percpu pointer to the allocated area on success, NULL on failure.
854  */
855 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
856 {
857 	return pcpu_alloc(size, align, true);
858 }
859 
860 /**
861  * pcpu_reclaim - reclaim fully free chunks, workqueue function
862  * @work: unused
863  *
864  * Reclaim all fully free chunks except for the first one.
865  *
866  * CONTEXT:
867  * workqueue context.
868  */
869 static void pcpu_reclaim(struct work_struct *work)
870 {
871 	LIST_HEAD(todo);
872 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
873 	struct pcpu_chunk *chunk, *next;
874 
875 	mutex_lock(&pcpu_alloc_mutex);
876 	spin_lock_irq(&pcpu_lock);
877 
878 	list_for_each_entry_safe(chunk, next, head, list) {
879 		WARN_ON(chunk->immutable);
880 
881 		/* spare the first one */
882 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
883 			continue;
884 
885 		list_move(&chunk->list, &todo);
886 	}
887 
888 	spin_unlock_irq(&pcpu_lock);
889 
890 	list_for_each_entry_safe(chunk, next, &todo, list) {
891 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
892 		pcpu_destroy_chunk(chunk);
893 	}
894 
895 	mutex_unlock(&pcpu_alloc_mutex);
896 }
897 
898 /**
899  * free_percpu - free percpu area
900  * @ptr: pointer to area to free
901  *
902  * Free percpu area @ptr.
903  *
904  * CONTEXT:
905  * Can be called from atomic context.
906  */
907 void free_percpu(void __percpu *ptr)
908 {
909 	void *addr;
910 	struct pcpu_chunk *chunk;
911 	unsigned long flags;
912 	int off;
913 
914 	if (!ptr)
915 		return;
916 
917 	addr = __pcpu_ptr_to_addr(ptr);
918 
919 	spin_lock_irqsave(&pcpu_lock, flags);
920 
921 	chunk = pcpu_chunk_addr_search(addr);
922 	off = addr - chunk->base_addr;
923 
924 	pcpu_free_area(chunk, off);
925 
926 	/* if there are more than one fully free chunks, wake up grim reaper */
927 	if (chunk->free_size == pcpu_unit_size) {
928 		struct pcpu_chunk *pos;
929 
930 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
931 			if (pos != chunk) {
932 				schedule_work(&pcpu_reclaim_work);
933 				break;
934 			}
935 	}
936 
937 	spin_unlock_irqrestore(&pcpu_lock, flags);
938 }
939 EXPORT_SYMBOL_GPL(free_percpu);
940 
941 /**
942  * is_kernel_percpu_address - test whether address is from static percpu area
943  * @addr: address to test
944  *
945  * Test whether @addr belongs to in-kernel static percpu area.  Module
946  * static percpu areas are not considered.  For those, use
947  * is_module_percpu_address().
948  *
949  * RETURNS:
950  * %true if @addr is from in-kernel static percpu area, %false otherwise.
951  */
952 bool is_kernel_percpu_address(unsigned long addr)
953 {
954 	const size_t static_size = __per_cpu_end - __per_cpu_start;
955 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
956 	unsigned int cpu;
957 
958 	for_each_possible_cpu(cpu) {
959 		void *start = per_cpu_ptr(base, cpu);
960 
961 		if ((void *)addr >= start && (void *)addr < start + static_size)
962 			return true;
963         }
964 	return false;
965 }
966 
967 /**
968  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
969  * @addr: the address to be converted to physical address
970  *
971  * Given @addr which is dereferenceable address obtained via one of
972  * percpu access macros, this function translates it into its physical
973  * address.  The caller is responsible for ensuring @addr stays valid
974  * until this function finishes.
975  *
976  * RETURNS:
977  * The physical address for @addr.
978  */
979 phys_addr_t per_cpu_ptr_to_phys(void *addr)
980 {
981 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
982 	bool in_first_chunk = false;
983 	unsigned long first_start, first_end;
984 	unsigned int cpu;
985 
986 	/*
987 	 * The following test on first_start/end isn't strictly
988 	 * necessary but will speed up lookups of addresses which
989 	 * aren't in the first chunk.
990 	 */
991 	first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
992 	first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
993 				    pcpu_unit_pages);
994 	if ((unsigned long)addr >= first_start &&
995 	    (unsigned long)addr < first_end) {
996 		for_each_possible_cpu(cpu) {
997 			void *start = per_cpu_ptr(base, cpu);
998 
999 			if (addr >= start && addr < start + pcpu_unit_size) {
1000 				in_first_chunk = true;
1001 				break;
1002 			}
1003 		}
1004 	}
1005 
1006 	if (in_first_chunk) {
1007 		if ((unsigned long)addr < VMALLOC_START ||
1008 		    (unsigned long)addr >= VMALLOC_END)
1009 			return __pa(addr);
1010 		else
1011 			return page_to_phys(vmalloc_to_page(addr));
1012 	} else
1013 		return page_to_phys(pcpu_addr_to_page(addr));
1014 }
1015 
1016 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1017 					size_t reserved_size,
1018 					ssize_t *dyn_sizep)
1019 {
1020 	size_t size_sum;
1021 
1022 	size_sum = PFN_ALIGN(static_size + reserved_size +
1023 			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1024 	if (*dyn_sizep != 0)
1025 		*dyn_sizep = size_sum - static_size - reserved_size;
1026 
1027 	return size_sum;
1028 }
1029 
1030 /**
1031  * pcpu_alloc_alloc_info - allocate percpu allocation info
1032  * @nr_groups: the number of groups
1033  * @nr_units: the number of units
1034  *
1035  * Allocate ai which is large enough for @nr_groups groups containing
1036  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1037  * cpu_map array which is long enough for @nr_units and filled with
1038  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1039  * pointer of other groups.
1040  *
1041  * RETURNS:
1042  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1043  * failure.
1044  */
1045 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1046 						      int nr_units)
1047 {
1048 	struct pcpu_alloc_info *ai;
1049 	size_t base_size, ai_size;
1050 	void *ptr;
1051 	int unit;
1052 
1053 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1054 			  __alignof__(ai->groups[0].cpu_map[0]));
1055 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1056 
1057 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1058 	if (!ptr)
1059 		return NULL;
1060 	ai = ptr;
1061 	ptr += base_size;
1062 
1063 	ai->groups[0].cpu_map = ptr;
1064 
1065 	for (unit = 0; unit < nr_units; unit++)
1066 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1067 
1068 	ai->nr_groups = nr_groups;
1069 	ai->__ai_size = PFN_ALIGN(ai_size);
1070 
1071 	return ai;
1072 }
1073 
1074 /**
1075  * pcpu_free_alloc_info - free percpu allocation info
1076  * @ai: pcpu_alloc_info to free
1077  *
1078  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1079  */
1080 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1081 {
1082 	free_bootmem(__pa(ai), ai->__ai_size);
1083 }
1084 
1085 /**
1086  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1087  * @reserved_size: the size of reserved percpu area in bytes
1088  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1089  * @atom_size: allocation atom size
1090  * @cpu_distance_fn: callback to determine distance between cpus, optional
1091  *
1092  * This function determines grouping of units, their mappings to cpus
1093  * and other parameters considering needed percpu size, allocation
1094  * atom size and distances between CPUs.
1095  *
1096  * Groups are always mutliples of atom size and CPUs which are of
1097  * LOCAL_DISTANCE both ways are grouped together and share space for
1098  * units in the same group.  The returned configuration is guaranteed
1099  * to have CPUs on different nodes on different groups and >=75% usage
1100  * of allocated virtual address space.
1101  *
1102  * RETURNS:
1103  * On success, pointer to the new allocation_info is returned.  On
1104  * failure, ERR_PTR value is returned.
1105  */
1106 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1107 				size_t reserved_size, ssize_t dyn_size,
1108 				size_t atom_size,
1109 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1110 {
1111 	static int group_map[NR_CPUS] __initdata;
1112 	static int group_cnt[NR_CPUS] __initdata;
1113 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1114 	int nr_groups = 1, nr_units = 0;
1115 	size_t size_sum, min_unit_size, alloc_size;
1116 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1117 	int last_allocs, group, unit;
1118 	unsigned int cpu, tcpu;
1119 	struct pcpu_alloc_info *ai;
1120 	unsigned int *cpu_map;
1121 
1122 	/* this function may be called multiple times */
1123 	memset(group_map, 0, sizeof(group_map));
1124 	memset(group_cnt, 0, sizeof(group_cnt));
1125 
1126 	/*
1127 	 * Determine min_unit_size, alloc_size and max_upa such that
1128 	 * alloc_size is multiple of atom_size and is the smallest
1129 	 * which can accomodate 4k aligned segments which are equal to
1130 	 * or larger than min_unit_size.
1131 	 */
1132 	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1133 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1134 
1135 	alloc_size = roundup(min_unit_size, atom_size);
1136 	upa = alloc_size / min_unit_size;
1137 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1138 		upa--;
1139 	max_upa = upa;
1140 
1141 	/* group cpus according to their proximity */
1142 	for_each_possible_cpu(cpu) {
1143 		group = 0;
1144 	next_group:
1145 		for_each_possible_cpu(tcpu) {
1146 			if (cpu == tcpu)
1147 				break;
1148 			if (group_map[tcpu] == group && cpu_distance_fn &&
1149 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1150 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1151 				group++;
1152 				nr_groups = max(nr_groups, group + 1);
1153 				goto next_group;
1154 			}
1155 		}
1156 		group_map[cpu] = group;
1157 		group_cnt[group]++;
1158 	}
1159 
1160 	/*
1161 	 * Expand unit size until address space usage goes over 75%
1162 	 * and then as much as possible without using more address
1163 	 * space.
1164 	 */
1165 	last_allocs = INT_MAX;
1166 	for (upa = max_upa; upa; upa--) {
1167 		int allocs = 0, wasted = 0;
1168 
1169 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1170 			continue;
1171 
1172 		for (group = 0; group < nr_groups; group++) {
1173 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1174 			allocs += this_allocs;
1175 			wasted += this_allocs * upa - group_cnt[group];
1176 		}
1177 
1178 		/*
1179 		 * Don't accept if wastage is over 25%.  The
1180 		 * greater-than comparison ensures upa==1 always
1181 		 * passes the following check.
1182 		 */
1183 		if (wasted > num_possible_cpus() / 3)
1184 			continue;
1185 
1186 		/* and then don't consume more memory */
1187 		if (allocs > last_allocs)
1188 			break;
1189 		last_allocs = allocs;
1190 		best_upa = upa;
1191 	}
1192 	upa = best_upa;
1193 
1194 	/* allocate and fill alloc_info */
1195 	for (group = 0; group < nr_groups; group++)
1196 		nr_units += roundup(group_cnt[group], upa);
1197 
1198 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1199 	if (!ai)
1200 		return ERR_PTR(-ENOMEM);
1201 	cpu_map = ai->groups[0].cpu_map;
1202 
1203 	for (group = 0; group < nr_groups; group++) {
1204 		ai->groups[group].cpu_map = cpu_map;
1205 		cpu_map += roundup(group_cnt[group], upa);
1206 	}
1207 
1208 	ai->static_size = static_size;
1209 	ai->reserved_size = reserved_size;
1210 	ai->dyn_size = dyn_size;
1211 	ai->unit_size = alloc_size / upa;
1212 	ai->atom_size = atom_size;
1213 	ai->alloc_size = alloc_size;
1214 
1215 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1216 		struct pcpu_group_info *gi = &ai->groups[group];
1217 
1218 		/*
1219 		 * Initialize base_offset as if all groups are located
1220 		 * back-to-back.  The caller should update this to
1221 		 * reflect actual allocation.
1222 		 */
1223 		gi->base_offset = unit * ai->unit_size;
1224 
1225 		for_each_possible_cpu(cpu)
1226 			if (group_map[cpu] == group)
1227 				gi->cpu_map[gi->nr_units++] = cpu;
1228 		gi->nr_units = roundup(gi->nr_units, upa);
1229 		unit += gi->nr_units;
1230 	}
1231 	BUG_ON(unit != nr_units);
1232 
1233 	return ai;
1234 }
1235 
1236 /**
1237  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1238  * @lvl: loglevel
1239  * @ai: allocation info to dump
1240  *
1241  * Print out information about @ai using loglevel @lvl.
1242  */
1243 static void pcpu_dump_alloc_info(const char *lvl,
1244 				 const struct pcpu_alloc_info *ai)
1245 {
1246 	int group_width = 1, cpu_width = 1, width;
1247 	char empty_str[] = "--------";
1248 	int alloc = 0, alloc_end = 0;
1249 	int group, v;
1250 	int upa, apl;	/* units per alloc, allocs per line */
1251 
1252 	v = ai->nr_groups;
1253 	while (v /= 10)
1254 		group_width++;
1255 
1256 	v = num_possible_cpus();
1257 	while (v /= 10)
1258 		cpu_width++;
1259 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1260 
1261 	upa = ai->alloc_size / ai->unit_size;
1262 	width = upa * (cpu_width + 1) + group_width + 3;
1263 	apl = rounddown_pow_of_two(max(60 / width, 1));
1264 
1265 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1266 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1267 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1268 
1269 	for (group = 0; group < ai->nr_groups; group++) {
1270 		const struct pcpu_group_info *gi = &ai->groups[group];
1271 		int unit = 0, unit_end = 0;
1272 
1273 		BUG_ON(gi->nr_units % upa);
1274 		for (alloc_end += gi->nr_units / upa;
1275 		     alloc < alloc_end; alloc++) {
1276 			if (!(alloc % apl)) {
1277 				printk("\n");
1278 				printk("%spcpu-alloc: ", lvl);
1279 			}
1280 			printk("[%0*d] ", group_width, group);
1281 
1282 			for (unit_end += upa; unit < unit_end; unit++)
1283 				if (gi->cpu_map[unit] != NR_CPUS)
1284 					printk("%0*d ", cpu_width,
1285 					       gi->cpu_map[unit]);
1286 				else
1287 					printk("%s ", empty_str);
1288 		}
1289 	}
1290 	printk("\n");
1291 }
1292 
1293 /**
1294  * pcpu_setup_first_chunk - initialize the first percpu chunk
1295  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1296  * @base_addr: mapped address
1297  *
1298  * Initialize the first percpu chunk which contains the kernel static
1299  * perpcu area.  This function is to be called from arch percpu area
1300  * setup path.
1301  *
1302  * @ai contains all information necessary to initialize the first
1303  * chunk and prime the dynamic percpu allocator.
1304  *
1305  * @ai->static_size is the size of static percpu area.
1306  *
1307  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1308  * reserve after the static area in the first chunk.  This reserves
1309  * the first chunk such that it's available only through reserved
1310  * percpu allocation.  This is primarily used to serve module percpu
1311  * static areas on architectures where the addressing model has
1312  * limited offset range for symbol relocations to guarantee module
1313  * percpu symbols fall inside the relocatable range.
1314  *
1315  * @ai->dyn_size determines the number of bytes available for dynamic
1316  * allocation in the first chunk.  The area between @ai->static_size +
1317  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1318  *
1319  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1320  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1321  * @ai->dyn_size.
1322  *
1323  * @ai->atom_size is the allocation atom size and used as alignment
1324  * for vm areas.
1325  *
1326  * @ai->alloc_size is the allocation size and always multiple of
1327  * @ai->atom_size.  This is larger than @ai->atom_size if
1328  * @ai->unit_size is larger than @ai->atom_size.
1329  *
1330  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1331  * percpu areas.  Units which should be colocated are put into the
1332  * same group.  Dynamic VM areas will be allocated according to these
1333  * groupings.  If @ai->nr_groups is zero, a single group containing
1334  * all units is assumed.
1335  *
1336  * The caller should have mapped the first chunk at @base_addr and
1337  * copied static data to each unit.
1338  *
1339  * If the first chunk ends up with both reserved and dynamic areas, it
1340  * is served by two chunks - one to serve the core static and reserved
1341  * areas and the other for the dynamic area.  They share the same vm
1342  * and page map but uses different area allocation map to stay away
1343  * from each other.  The latter chunk is circulated in the chunk slots
1344  * and available for dynamic allocation like any other chunks.
1345  *
1346  * RETURNS:
1347  * 0 on success, -errno on failure.
1348  */
1349 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1350 				  void *base_addr)
1351 {
1352 	static char cpus_buf[4096] __initdata;
1353 	static int smap[2], dmap[2];
1354 	size_t dyn_size = ai->dyn_size;
1355 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1356 	struct pcpu_chunk *schunk, *dchunk = NULL;
1357 	unsigned long *group_offsets;
1358 	size_t *group_sizes;
1359 	unsigned long *unit_off;
1360 	unsigned int cpu;
1361 	int *unit_map;
1362 	int group, unit, i;
1363 
1364 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1365 
1366 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1367 	if (unlikely(cond)) {						\
1368 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1369 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1370 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1371 		BUG();							\
1372 	}								\
1373 } while (0)
1374 
1375 	/* sanity checks */
1376 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1377 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1378 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1379 	PCPU_SETUP_BUG_ON(!ai->static_size);
1380 	PCPU_SETUP_BUG_ON(!base_addr);
1381 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1382 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1383 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1384 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1385 
1386 	/* process group information and build config tables accordingly */
1387 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1388 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1389 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1390 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1391 
1392 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1393 		unit_map[cpu] = UINT_MAX;
1394 	pcpu_first_unit_cpu = NR_CPUS;
1395 
1396 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1397 		const struct pcpu_group_info *gi = &ai->groups[group];
1398 
1399 		group_offsets[group] = gi->base_offset;
1400 		group_sizes[group] = gi->nr_units * ai->unit_size;
1401 
1402 		for (i = 0; i < gi->nr_units; i++) {
1403 			cpu = gi->cpu_map[i];
1404 			if (cpu == NR_CPUS)
1405 				continue;
1406 
1407 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1408 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1409 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1410 
1411 			unit_map[cpu] = unit + i;
1412 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1413 
1414 			if (pcpu_first_unit_cpu == NR_CPUS)
1415 				pcpu_first_unit_cpu = cpu;
1416 		}
1417 	}
1418 	pcpu_last_unit_cpu = cpu;
1419 	pcpu_nr_units = unit;
1420 
1421 	for_each_possible_cpu(cpu)
1422 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1423 
1424 	/* we're done parsing the input, undefine BUG macro and dump config */
1425 #undef PCPU_SETUP_BUG_ON
1426 	pcpu_dump_alloc_info(KERN_INFO, ai);
1427 
1428 	pcpu_nr_groups = ai->nr_groups;
1429 	pcpu_group_offsets = group_offsets;
1430 	pcpu_group_sizes = group_sizes;
1431 	pcpu_unit_map = unit_map;
1432 	pcpu_unit_offsets = unit_off;
1433 
1434 	/* determine basic parameters */
1435 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1436 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1437 	pcpu_atom_size = ai->atom_size;
1438 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1439 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1440 
1441 	/*
1442 	 * Allocate chunk slots.  The additional last slot is for
1443 	 * empty chunks.
1444 	 */
1445 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1446 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1447 	for (i = 0; i < pcpu_nr_slots; i++)
1448 		INIT_LIST_HEAD(&pcpu_slot[i]);
1449 
1450 	/*
1451 	 * Initialize static chunk.  If reserved_size is zero, the
1452 	 * static chunk covers static area + dynamic allocation area
1453 	 * in the first chunk.  If reserved_size is not zero, it
1454 	 * covers static area + reserved area (mostly used for module
1455 	 * static percpu allocation).
1456 	 */
1457 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1458 	INIT_LIST_HEAD(&schunk->list);
1459 	schunk->base_addr = base_addr;
1460 	schunk->map = smap;
1461 	schunk->map_alloc = ARRAY_SIZE(smap);
1462 	schunk->immutable = true;
1463 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1464 
1465 	if (ai->reserved_size) {
1466 		schunk->free_size = ai->reserved_size;
1467 		pcpu_reserved_chunk = schunk;
1468 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1469 	} else {
1470 		schunk->free_size = dyn_size;
1471 		dyn_size = 0;			/* dynamic area covered */
1472 	}
1473 	schunk->contig_hint = schunk->free_size;
1474 
1475 	schunk->map[schunk->map_used++] = -ai->static_size;
1476 	if (schunk->free_size)
1477 		schunk->map[schunk->map_used++] = schunk->free_size;
1478 
1479 	/* init dynamic chunk if necessary */
1480 	if (dyn_size) {
1481 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1482 		INIT_LIST_HEAD(&dchunk->list);
1483 		dchunk->base_addr = base_addr;
1484 		dchunk->map = dmap;
1485 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1486 		dchunk->immutable = true;
1487 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1488 
1489 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1490 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1491 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1492 	}
1493 
1494 	/* link the first chunk in */
1495 	pcpu_first_chunk = dchunk ?: schunk;
1496 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1497 
1498 	/* we're done */
1499 	pcpu_base_addr = base_addr;
1500 	return 0;
1501 }
1502 
1503 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1504 	[PCPU_FC_AUTO]	= "auto",
1505 	[PCPU_FC_EMBED]	= "embed",
1506 	[PCPU_FC_PAGE]	= "page",
1507 };
1508 
1509 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1510 
1511 static int __init percpu_alloc_setup(char *str)
1512 {
1513 	if (0)
1514 		/* nada */;
1515 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1516 	else if (!strcmp(str, "embed"))
1517 		pcpu_chosen_fc = PCPU_FC_EMBED;
1518 #endif
1519 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1520 	else if (!strcmp(str, "page"))
1521 		pcpu_chosen_fc = PCPU_FC_PAGE;
1522 #endif
1523 	else
1524 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1525 
1526 	return 0;
1527 }
1528 early_param("percpu_alloc", percpu_alloc_setup);
1529 
1530 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1531 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1532 /**
1533  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1534  * @reserved_size: the size of reserved percpu area in bytes
1535  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1536  * @atom_size: allocation atom size
1537  * @cpu_distance_fn: callback to determine distance between cpus, optional
1538  * @alloc_fn: function to allocate percpu page
1539  * @free_fn: funtion to free percpu page
1540  *
1541  * This is a helper to ease setting up embedded first percpu chunk and
1542  * can be called where pcpu_setup_first_chunk() is expected.
1543  *
1544  * If this function is used to setup the first chunk, it is allocated
1545  * by calling @alloc_fn and used as-is without being mapped into
1546  * vmalloc area.  Allocations are always whole multiples of @atom_size
1547  * aligned to @atom_size.
1548  *
1549  * This enables the first chunk to piggy back on the linear physical
1550  * mapping which often uses larger page size.  Please note that this
1551  * can result in very sparse cpu->unit mapping on NUMA machines thus
1552  * requiring large vmalloc address space.  Don't use this allocator if
1553  * vmalloc space is not orders of magnitude larger than distances
1554  * between node memory addresses (ie. 32bit NUMA machines).
1555  *
1556  * When @dyn_size is positive, dynamic area might be larger than
1557  * specified to fill page alignment.  When @dyn_size is auto,
1558  * @dyn_size is just big enough to fill page alignment after static
1559  * and reserved areas.
1560  *
1561  * If the needed size is smaller than the minimum or specified unit
1562  * size, the leftover is returned using @free_fn.
1563  *
1564  * RETURNS:
1565  * 0 on success, -errno on failure.
1566  */
1567 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1568 				  size_t atom_size,
1569 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1570 				  pcpu_fc_alloc_fn_t alloc_fn,
1571 				  pcpu_fc_free_fn_t free_fn)
1572 {
1573 	void *base = (void *)ULONG_MAX;
1574 	void **areas = NULL;
1575 	struct pcpu_alloc_info *ai;
1576 	size_t size_sum, areas_size, max_distance;
1577 	int group, i, rc;
1578 
1579 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1580 				   cpu_distance_fn);
1581 	if (IS_ERR(ai))
1582 		return PTR_ERR(ai);
1583 
1584 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1585 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1586 
1587 	areas = alloc_bootmem_nopanic(areas_size);
1588 	if (!areas) {
1589 		rc = -ENOMEM;
1590 		goto out_free;
1591 	}
1592 
1593 	/* allocate, copy and determine base address */
1594 	for (group = 0; group < ai->nr_groups; group++) {
1595 		struct pcpu_group_info *gi = &ai->groups[group];
1596 		unsigned int cpu = NR_CPUS;
1597 		void *ptr;
1598 
1599 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1600 			cpu = gi->cpu_map[i];
1601 		BUG_ON(cpu == NR_CPUS);
1602 
1603 		/* allocate space for the whole group */
1604 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1605 		if (!ptr) {
1606 			rc = -ENOMEM;
1607 			goto out_free_areas;
1608 		}
1609 		areas[group] = ptr;
1610 
1611 		base = min(ptr, base);
1612 
1613 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1614 			if (gi->cpu_map[i] == NR_CPUS) {
1615 				/* unused unit, free whole */
1616 				free_fn(ptr, ai->unit_size);
1617 				continue;
1618 			}
1619 			/* copy and return the unused part */
1620 			memcpy(ptr, __per_cpu_load, ai->static_size);
1621 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1622 		}
1623 	}
1624 
1625 	/* base address is now known, determine group base offsets */
1626 	max_distance = 0;
1627 	for (group = 0; group < ai->nr_groups; group++) {
1628 		ai->groups[group].base_offset = areas[group] - base;
1629 		max_distance = max_t(size_t, max_distance,
1630 				     ai->groups[group].base_offset);
1631 	}
1632 	max_distance += ai->unit_size;
1633 
1634 	/* warn if maximum distance is further than 75% of vmalloc space */
1635 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1636 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1637 			   "space 0x%lx\n",
1638 			   max_distance, VMALLOC_END - VMALLOC_START);
1639 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1640 		/* and fail if we have fallback */
1641 		rc = -EINVAL;
1642 		goto out_free;
1643 #endif
1644 	}
1645 
1646 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1647 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1648 		ai->dyn_size, ai->unit_size);
1649 
1650 	rc = pcpu_setup_first_chunk(ai, base);
1651 	goto out_free;
1652 
1653 out_free_areas:
1654 	for (group = 0; group < ai->nr_groups; group++)
1655 		free_fn(areas[group],
1656 			ai->groups[group].nr_units * ai->unit_size);
1657 out_free:
1658 	pcpu_free_alloc_info(ai);
1659 	if (areas)
1660 		free_bootmem(__pa(areas), areas_size);
1661 	return rc;
1662 }
1663 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1664 	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1665 
1666 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1667 /**
1668  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1669  * @reserved_size: the size of reserved percpu area in bytes
1670  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1671  * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1672  * @populate_pte_fn: function to populate pte
1673  *
1674  * This is a helper to ease setting up page-remapped first percpu
1675  * chunk and can be called where pcpu_setup_first_chunk() is expected.
1676  *
1677  * This is the basic allocator.  Static percpu area is allocated
1678  * page-by-page into vmalloc area.
1679  *
1680  * RETURNS:
1681  * 0 on success, -errno on failure.
1682  */
1683 int __init pcpu_page_first_chunk(size_t reserved_size,
1684 				 pcpu_fc_alloc_fn_t alloc_fn,
1685 				 pcpu_fc_free_fn_t free_fn,
1686 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1687 {
1688 	static struct vm_struct vm;
1689 	struct pcpu_alloc_info *ai;
1690 	char psize_str[16];
1691 	int unit_pages;
1692 	size_t pages_size;
1693 	struct page **pages;
1694 	int unit, i, j, rc;
1695 
1696 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1697 
1698 	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1699 	if (IS_ERR(ai))
1700 		return PTR_ERR(ai);
1701 	BUG_ON(ai->nr_groups != 1);
1702 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1703 
1704 	unit_pages = ai->unit_size >> PAGE_SHIFT;
1705 
1706 	/* unaligned allocations can't be freed, round up to page size */
1707 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1708 			       sizeof(pages[0]));
1709 	pages = alloc_bootmem(pages_size);
1710 
1711 	/* allocate pages */
1712 	j = 0;
1713 	for (unit = 0; unit < num_possible_cpus(); unit++)
1714 		for (i = 0; i < unit_pages; i++) {
1715 			unsigned int cpu = ai->groups[0].cpu_map[unit];
1716 			void *ptr;
1717 
1718 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1719 			if (!ptr) {
1720 				pr_warning("PERCPU: failed to allocate %s page "
1721 					   "for cpu%u\n", psize_str, cpu);
1722 				goto enomem;
1723 			}
1724 			pages[j++] = virt_to_page(ptr);
1725 		}
1726 
1727 	/* allocate vm area, map the pages and copy static data */
1728 	vm.flags = VM_ALLOC;
1729 	vm.size = num_possible_cpus() * ai->unit_size;
1730 	vm_area_register_early(&vm, PAGE_SIZE);
1731 
1732 	for (unit = 0; unit < num_possible_cpus(); unit++) {
1733 		unsigned long unit_addr =
1734 			(unsigned long)vm.addr + unit * ai->unit_size;
1735 
1736 		for (i = 0; i < unit_pages; i++)
1737 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1738 
1739 		/* pte already populated, the following shouldn't fail */
1740 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1741 				      unit_pages);
1742 		if (rc < 0)
1743 			panic("failed to map percpu area, err=%d\n", rc);
1744 
1745 		/*
1746 		 * FIXME: Archs with virtual cache should flush local
1747 		 * cache for the linear mapping here - something
1748 		 * equivalent to flush_cache_vmap() on the local cpu.
1749 		 * flush_cache_vmap() can't be used as most supporting
1750 		 * data structures are not set up yet.
1751 		 */
1752 
1753 		/* copy static data */
1754 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1755 	}
1756 
1757 	/* we're ready, commit */
1758 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1759 		unit_pages, psize_str, vm.addr, ai->static_size,
1760 		ai->reserved_size, ai->dyn_size);
1761 
1762 	rc = pcpu_setup_first_chunk(ai, vm.addr);
1763 	goto out_free_ar;
1764 
1765 enomem:
1766 	while (--j >= 0)
1767 		free_fn(page_address(pages[j]), PAGE_SIZE);
1768 	rc = -ENOMEM;
1769 out_free_ar:
1770 	free_bootmem(__pa(pages), pages_size);
1771 	pcpu_free_alloc_info(ai);
1772 	return rc;
1773 }
1774 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1775 
1776 /*
1777  * Generic percpu area setup.
1778  *
1779  * The embedding helper is used because its behavior closely resembles
1780  * the original non-dynamic generic percpu area setup.  This is
1781  * important because many archs have addressing restrictions and might
1782  * fail if the percpu area is located far away from the previous
1783  * location.  As an added bonus, in non-NUMA cases, embedding is
1784  * generally a good idea TLB-wise because percpu area can piggy back
1785  * on the physical linear memory mapping which uses large page
1786  * mappings on applicable archs.
1787  */
1788 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1789 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1790 EXPORT_SYMBOL(__per_cpu_offset);
1791 
1792 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1793 				       size_t align)
1794 {
1795 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1796 }
1797 
1798 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1799 {
1800 	free_bootmem(__pa(ptr), size);
1801 }
1802 
1803 void __init setup_per_cpu_areas(void)
1804 {
1805 	unsigned long delta;
1806 	unsigned int cpu;
1807 	int rc;
1808 
1809 	/*
1810 	 * Always reserve area for module percpu variables.  That's
1811 	 * what the legacy allocator did.
1812 	 */
1813 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1814 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1815 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1816 	if (rc < 0)
1817 		panic("Failed to initialized percpu areas.");
1818 
1819 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1820 	for_each_possible_cpu(cpu)
1821 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1822 }
1823 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1824