1 /* 2 * linux/mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each 11 * chunk is consisted of boot-time determined number of units and the 12 * first chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. ie. in 17 * vmalloc area 18 * 19 * c0 c1 c2 20 * ------------------- ------------------- ------------ 21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 22 * ------------------- ...... ------------------- .... ------------ 23 * 24 * Allocation is done in offset-size areas of single unit space. Ie, 25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 27 * cpus. On NUMA, the mapping can be non-linear and even sparse. 28 * Percpu access can be done by configuring percpu base registers 29 * according to cpu to unit mapping and pcpu_unit_size. 30 * 31 * There are usually many small percpu allocations many of them being 32 * as small as 4 bytes. The allocator organizes chunks into lists 33 * according to free size and tries to allocate from the fullest one. 34 * Each chunk keeps the maximum contiguous area size hint which is 35 * guaranteed to be eqaul to or larger than the maximum contiguous 36 * area in the chunk. This helps the allocator not to iterate the 37 * chunk maps unnecessarily. 38 * 39 * Allocation state in each chunk is kept using an array of integers 40 * on chunk->map. A positive value in the map represents a free 41 * region and negative allocated. Allocation inside a chunk is done 42 * by scanning this map sequentially and serving the first matching 43 * entry. This is mostly copied from the percpu_modalloc() allocator. 44 * Chunks can be determined from the address using the index field 45 * in the page struct. The index field contains a pointer to the chunk. 46 * 47 * To use this allocator, arch code should do the followings. 48 * 49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA 50 * 51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 52 * regular address to percpu pointer and back if they need to be 53 * different from the default 54 * 55 * - use pcpu_setup_first_chunk() during percpu area initialization to 56 * setup the first chunk containing the kernel static percpu area 57 */ 58 59 #include <linux/bitmap.h> 60 #include <linux/bootmem.h> 61 #include <linux/err.h> 62 #include <linux/list.h> 63 #include <linux/log2.h> 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/mutex.h> 67 #include <linux/percpu.h> 68 #include <linux/pfn.h> 69 #include <linux/slab.h> 70 #include <linux/spinlock.h> 71 #include <linux/vmalloc.h> 72 #include <linux/workqueue.h> 73 74 #include <asm/cacheflush.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 78 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 79 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 80 81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 82 #ifndef __addr_to_pcpu_ptr 83 #define __addr_to_pcpu_ptr(addr) \ 84 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \ 85 + (unsigned long)__per_cpu_start) 86 #endif 87 #ifndef __pcpu_ptr_to_addr 88 #define __pcpu_ptr_to_addr(ptr) \ 89 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \ 90 - (unsigned long)__per_cpu_start) 91 #endif 92 93 struct pcpu_chunk { 94 struct list_head list; /* linked to pcpu_slot lists */ 95 int free_size; /* free bytes in the chunk */ 96 int contig_hint; /* max contiguous size hint */ 97 void *base_addr; /* base address of this chunk */ 98 int map_used; /* # of map entries used */ 99 int map_alloc; /* # of map entries allocated */ 100 int *map; /* allocation map */ 101 struct vm_struct **vms; /* mapped vmalloc regions */ 102 bool immutable; /* no [de]population allowed */ 103 unsigned long populated[]; /* populated bitmap */ 104 }; 105 106 static int pcpu_unit_pages __read_mostly; 107 static int pcpu_unit_size __read_mostly; 108 static int pcpu_nr_units __read_mostly; 109 static int pcpu_atom_size __read_mostly; 110 static int pcpu_nr_slots __read_mostly; 111 static size_t pcpu_chunk_struct_size __read_mostly; 112 113 /* cpus with the lowest and highest unit numbers */ 114 static unsigned int pcpu_first_unit_cpu __read_mostly; 115 static unsigned int pcpu_last_unit_cpu __read_mostly; 116 117 /* the address of the first chunk which starts with the kernel static area */ 118 void *pcpu_base_addr __read_mostly; 119 EXPORT_SYMBOL_GPL(pcpu_base_addr); 120 121 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 122 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 123 124 /* group information, used for vm allocation */ 125 static int pcpu_nr_groups __read_mostly; 126 static const unsigned long *pcpu_group_offsets __read_mostly; 127 static const size_t *pcpu_group_sizes __read_mostly; 128 129 /* 130 * The first chunk which always exists. Note that unlike other 131 * chunks, this one can be allocated and mapped in several different 132 * ways and thus often doesn't live in the vmalloc area. 133 */ 134 static struct pcpu_chunk *pcpu_first_chunk; 135 136 /* 137 * Optional reserved chunk. This chunk reserves part of the first 138 * chunk and serves it for reserved allocations. The amount of 139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 140 * area doesn't exist, the following variables contain NULL and 0 141 * respectively. 142 */ 143 static struct pcpu_chunk *pcpu_reserved_chunk; 144 static int pcpu_reserved_chunk_limit; 145 146 /* 147 * Synchronization rules. 148 * 149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 150 * protects allocation/reclaim paths, chunks, populated bitmap and 151 * vmalloc mapping. The latter is a spinlock and protects the index 152 * data structures - chunk slots, chunks and area maps in chunks. 153 * 154 * During allocation, pcpu_alloc_mutex is kept locked all the time and 155 * pcpu_lock is grabbed and released as necessary. All actual memory 156 * allocations are done using GFP_KERNEL with pcpu_lock released. In 157 * general, percpu memory can't be allocated with irq off but 158 * irqsave/restore are still used in alloc path so that it can be used 159 * from early init path - sched_init() specifically. 160 * 161 * Free path accesses and alters only the index data structures, so it 162 * can be safely called from atomic context. When memory needs to be 163 * returned to the system, free path schedules reclaim_work which 164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 165 * reclaimed, release both locks and frees the chunks. Note that it's 166 * necessary to grab both locks to remove a chunk from circulation as 167 * allocation path might be referencing the chunk with only 168 * pcpu_alloc_mutex locked. 169 */ 170 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 171 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 172 173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 174 175 /* reclaim work to release fully free chunks, scheduled from free path */ 176 static void pcpu_reclaim(struct work_struct *work); 177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 178 179 static int __pcpu_size_to_slot(int size) 180 { 181 int highbit = fls(size); /* size is in bytes */ 182 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 183 } 184 185 static int pcpu_size_to_slot(int size) 186 { 187 if (size == pcpu_unit_size) 188 return pcpu_nr_slots - 1; 189 return __pcpu_size_to_slot(size); 190 } 191 192 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 193 { 194 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 195 return 0; 196 197 return pcpu_size_to_slot(chunk->free_size); 198 } 199 200 static int pcpu_page_idx(unsigned int cpu, int page_idx) 201 { 202 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 203 } 204 205 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 206 unsigned int cpu, int page_idx) 207 { 208 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 209 (page_idx << PAGE_SHIFT); 210 } 211 212 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, 213 unsigned int cpu, int page_idx) 214 { 215 /* must not be used on pre-mapped chunk */ 216 WARN_ON(chunk->immutable); 217 218 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); 219 } 220 221 /* set the pointer to a chunk in a page struct */ 222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 223 { 224 page->index = (unsigned long)pcpu; 225 } 226 227 /* obtain pointer to a chunk from a page struct */ 228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 229 { 230 return (struct pcpu_chunk *)page->index; 231 } 232 233 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) 234 { 235 *rs = find_next_zero_bit(chunk->populated, end, *rs); 236 *re = find_next_bit(chunk->populated, end, *rs + 1); 237 } 238 239 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) 240 { 241 *rs = find_next_bit(chunk->populated, end, *rs); 242 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 243 } 244 245 /* 246 * (Un)populated page region iterators. Iterate over (un)populated 247 * page regions betwen @start and @end in @chunk. @rs and @re should 248 * be integer variables and will be set to start and end page index of 249 * the current region. 250 */ 251 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 252 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 253 (rs) < (re); \ 254 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 255 256 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 257 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 258 (rs) < (re); \ 259 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 260 261 /** 262 * pcpu_mem_alloc - allocate memory 263 * @size: bytes to allocate 264 * 265 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 266 * kzalloc() is used; otherwise, vmalloc() is used. The returned 267 * memory is always zeroed. 268 * 269 * CONTEXT: 270 * Does GFP_KERNEL allocation. 271 * 272 * RETURNS: 273 * Pointer to the allocated area on success, NULL on failure. 274 */ 275 static void *pcpu_mem_alloc(size_t size) 276 { 277 if (size <= PAGE_SIZE) 278 return kzalloc(size, GFP_KERNEL); 279 else { 280 void *ptr = vmalloc(size); 281 if (ptr) 282 memset(ptr, 0, size); 283 return ptr; 284 } 285 } 286 287 /** 288 * pcpu_mem_free - free memory 289 * @ptr: memory to free 290 * @size: size of the area 291 * 292 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). 293 */ 294 static void pcpu_mem_free(void *ptr, size_t size) 295 { 296 if (size <= PAGE_SIZE) 297 kfree(ptr); 298 else 299 vfree(ptr); 300 } 301 302 /** 303 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 304 * @chunk: chunk of interest 305 * @oslot: the previous slot it was on 306 * 307 * This function is called after an allocation or free changed @chunk. 308 * New slot according to the changed state is determined and @chunk is 309 * moved to the slot. Note that the reserved chunk is never put on 310 * chunk slots. 311 * 312 * CONTEXT: 313 * pcpu_lock. 314 */ 315 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 316 { 317 int nslot = pcpu_chunk_slot(chunk); 318 319 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 320 if (oslot < nslot) 321 list_move(&chunk->list, &pcpu_slot[nslot]); 322 else 323 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 324 } 325 } 326 327 /** 328 * pcpu_chunk_addr_search - determine chunk containing specified address 329 * @addr: address for which the chunk needs to be determined. 330 * 331 * RETURNS: 332 * The address of the found chunk. 333 */ 334 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 335 { 336 void *first_start = pcpu_first_chunk->base_addr; 337 338 /* is it in the first chunk? */ 339 if (addr >= first_start && addr < first_start + pcpu_unit_size) { 340 /* is it in the reserved area? */ 341 if (addr < first_start + pcpu_reserved_chunk_limit) 342 return pcpu_reserved_chunk; 343 return pcpu_first_chunk; 344 } 345 346 /* 347 * The address is relative to unit0 which might be unused and 348 * thus unmapped. Offset the address to the unit space of the 349 * current processor before looking it up in the vmalloc 350 * space. Note that any possible cpu id can be used here, so 351 * there's no need to worry about preemption or cpu hotplug. 352 */ 353 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 354 return pcpu_get_page_chunk(vmalloc_to_page(addr)); 355 } 356 357 /** 358 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 359 * @chunk: chunk of interest 360 * 361 * Determine whether area map of @chunk needs to be extended to 362 * accomodate a new allocation. 363 * 364 * CONTEXT: 365 * pcpu_lock. 366 * 367 * RETURNS: 368 * New target map allocation length if extension is necessary, 0 369 * otherwise. 370 */ 371 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 372 { 373 int new_alloc; 374 375 if (chunk->map_alloc >= chunk->map_used + 2) 376 return 0; 377 378 new_alloc = PCPU_DFL_MAP_ALLOC; 379 while (new_alloc < chunk->map_used + 2) 380 new_alloc *= 2; 381 382 return new_alloc; 383 } 384 385 /** 386 * pcpu_extend_area_map - extend area map of a chunk 387 * @chunk: chunk of interest 388 * @new_alloc: new target allocation length of the area map 389 * 390 * Extend area map of @chunk to have @new_alloc entries. 391 * 392 * CONTEXT: 393 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 394 * 395 * RETURNS: 396 * 0 on success, -errno on failure. 397 */ 398 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 399 { 400 int *old = NULL, *new = NULL; 401 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 402 unsigned long flags; 403 404 new = pcpu_mem_alloc(new_size); 405 if (!new) 406 return -ENOMEM; 407 408 /* acquire pcpu_lock and switch to new area map */ 409 spin_lock_irqsave(&pcpu_lock, flags); 410 411 if (new_alloc <= chunk->map_alloc) 412 goto out_unlock; 413 414 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 415 memcpy(new, chunk->map, old_size); 416 417 /* 418 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is 419 * one of the first chunks and still using static map. 420 */ 421 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) 422 old = chunk->map; 423 424 chunk->map_alloc = new_alloc; 425 chunk->map = new; 426 new = NULL; 427 428 out_unlock: 429 spin_unlock_irqrestore(&pcpu_lock, flags); 430 431 /* 432 * pcpu_mem_free() might end up calling vfree() which uses 433 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 434 */ 435 pcpu_mem_free(old, old_size); 436 pcpu_mem_free(new, new_size); 437 438 return 0; 439 } 440 441 /** 442 * pcpu_split_block - split a map block 443 * @chunk: chunk of interest 444 * @i: index of map block to split 445 * @head: head size in bytes (can be 0) 446 * @tail: tail size in bytes (can be 0) 447 * 448 * Split the @i'th map block into two or three blocks. If @head is 449 * non-zero, @head bytes block is inserted before block @i moving it 450 * to @i+1 and reducing its size by @head bytes. 451 * 452 * If @tail is non-zero, the target block, which can be @i or @i+1 453 * depending on @head, is reduced by @tail bytes and @tail byte block 454 * is inserted after the target block. 455 * 456 * @chunk->map must have enough free slots to accomodate the split. 457 * 458 * CONTEXT: 459 * pcpu_lock. 460 */ 461 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 462 int head, int tail) 463 { 464 int nr_extra = !!head + !!tail; 465 466 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 467 468 /* insert new subblocks */ 469 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 470 sizeof(chunk->map[0]) * (chunk->map_used - i)); 471 chunk->map_used += nr_extra; 472 473 if (head) { 474 chunk->map[i + 1] = chunk->map[i] - head; 475 chunk->map[i++] = head; 476 } 477 if (tail) { 478 chunk->map[i++] -= tail; 479 chunk->map[i] = tail; 480 } 481 } 482 483 /** 484 * pcpu_alloc_area - allocate area from a pcpu_chunk 485 * @chunk: chunk of interest 486 * @size: wanted size in bytes 487 * @align: wanted align 488 * 489 * Try to allocate @size bytes area aligned at @align from @chunk. 490 * Note that this function only allocates the offset. It doesn't 491 * populate or map the area. 492 * 493 * @chunk->map must have at least two free slots. 494 * 495 * CONTEXT: 496 * pcpu_lock. 497 * 498 * RETURNS: 499 * Allocated offset in @chunk on success, -1 if no matching area is 500 * found. 501 */ 502 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 503 { 504 int oslot = pcpu_chunk_slot(chunk); 505 int max_contig = 0; 506 int i, off; 507 508 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 509 bool is_last = i + 1 == chunk->map_used; 510 int head, tail; 511 512 /* extra for alignment requirement */ 513 head = ALIGN(off, align) - off; 514 BUG_ON(i == 0 && head != 0); 515 516 if (chunk->map[i] < 0) 517 continue; 518 if (chunk->map[i] < head + size) { 519 max_contig = max(chunk->map[i], max_contig); 520 continue; 521 } 522 523 /* 524 * If head is small or the previous block is free, 525 * merge'em. Note that 'small' is defined as smaller 526 * than sizeof(int), which is very small but isn't too 527 * uncommon for percpu allocations. 528 */ 529 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 530 if (chunk->map[i - 1] > 0) 531 chunk->map[i - 1] += head; 532 else { 533 chunk->map[i - 1] -= head; 534 chunk->free_size -= head; 535 } 536 chunk->map[i] -= head; 537 off += head; 538 head = 0; 539 } 540 541 /* if tail is small, just keep it around */ 542 tail = chunk->map[i] - head - size; 543 if (tail < sizeof(int)) 544 tail = 0; 545 546 /* split if warranted */ 547 if (head || tail) { 548 pcpu_split_block(chunk, i, head, tail); 549 if (head) { 550 i++; 551 off += head; 552 max_contig = max(chunk->map[i - 1], max_contig); 553 } 554 if (tail) 555 max_contig = max(chunk->map[i + 1], max_contig); 556 } 557 558 /* update hint and mark allocated */ 559 if (is_last) 560 chunk->contig_hint = max_contig; /* fully scanned */ 561 else 562 chunk->contig_hint = max(chunk->contig_hint, 563 max_contig); 564 565 chunk->free_size -= chunk->map[i]; 566 chunk->map[i] = -chunk->map[i]; 567 568 pcpu_chunk_relocate(chunk, oslot); 569 return off; 570 } 571 572 chunk->contig_hint = max_contig; /* fully scanned */ 573 pcpu_chunk_relocate(chunk, oslot); 574 575 /* tell the upper layer that this chunk has no matching area */ 576 return -1; 577 } 578 579 /** 580 * pcpu_free_area - free area to a pcpu_chunk 581 * @chunk: chunk of interest 582 * @freeme: offset of area to free 583 * 584 * Free area starting from @freeme to @chunk. Note that this function 585 * only modifies the allocation map. It doesn't depopulate or unmap 586 * the area. 587 * 588 * CONTEXT: 589 * pcpu_lock. 590 */ 591 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 592 { 593 int oslot = pcpu_chunk_slot(chunk); 594 int i, off; 595 596 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 597 if (off == freeme) 598 break; 599 BUG_ON(off != freeme); 600 BUG_ON(chunk->map[i] > 0); 601 602 chunk->map[i] = -chunk->map[i]; 603 chunk->free_size += chunk->map[i]; 604 605 /* merge with previous? */ 606 if (i > 0 && chunk->map[i - 1] >= 0) { 607 chunk->map[i - 1] += chunk->map[i]; 608 chunk->map_used--; 609 memmove(&chunk->map[i], &chunk->map[i + 1], 610 (chunk->map_used - i) * sizeof(chunk->map[0])); 611 i--; 612 } 613 /* merge with next? */ 614 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 615 chunk->map[i] += chunk->map[i + 1]; 616 chunk->map_used--; 617 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 618 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 619 } 620 621 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 622 pcpu_chunk_relocate(chunk, oslot); 623 } 624 625 /** 626 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap 627 * @chunk: chunk of interest 628 * @bitmapp: output parameter for bitmap 629 * @may_alloc: may allocate the array 630 * 631 * Returns pointer to array of pointers to struct page and bitmap, 632 * both of which can be indexed with pcpu_page_idx(). The returned 633 * array is cleared to zero and *@bitmapp is copied from 634 * @chunk->populated. Note that there is only one array and bitmap 635 * and access exclusion is the caller's responsibility. 636 * 637 * CONTEXT: 638 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. 639 * Otherwise, don't care. 640 * 641 * RETURNS: 642 * Pointer to temp pages array on success, NULL on failure. 643 */ 644 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, 645 unsigned long **bitmapp, 646 bool may_alloc) 647 { 648 static struct page **pages; 649 static unsigned long *bitmap; 650 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); 651 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * 652 sizeof(unsigned long); 653 654 if (!pages || !bitmap) { 655 if (may_alloc && !pages) 656 pages = pcpu_mem_alloc(pages_size); 657 if (may_alloc && !bitmap) 658 bitmap = pcpu_mem_alloc(bitmap_size); 659 if (!pages || !bitmap) 660 return NULL; 661 } 662 663 memset(pages, 0, pages_size); 664 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); 665 666 *bitmapp = bitmap; 667 return pages; 668 } 669 670 /** 671 * pcpu_free_pages - free pages which were allocated for @chunk 672 * @chunk: chunk pages were allocated for 673 * @pages: array of pages to be freed, indexed by pcpu_page_idx() 674 * @populated: populated bitmap 675 * @page_start: page index of the first page to be freed 676 * @page_end: page index of the last page to be freed + 1 677 * 678 * Free pages [@page_start and @page_end) in @pages for all units. 679 * The pages were allocated for @chunk. 680 */ 681 static void pcpu_free_pages(struct pcpu_chunk *chunk, 682 struct page **pages, unsigned long *populated, 683 int page_start, int page_end) 684 { 685 unsigned int cpu; 686 int i; 687 688 for_each_possible_cpu(cpu) { 689 for (i = page_start; i < page_end; i++) { 690 struct page *page = pages[pcpu_page_idx(cpu, i)]; 691 692 if (page) 693 __free_page(page); 694 } 695 } 696 } 697 698 /** 699 * pcpu_alloc_pages - allocates pages for @chunk 700 * @chunk: target chunk 701 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() 702 * @populated: populated bitmap 703 * @page_start: page index of the first page to be allocated 704 * @page_end: page index of the last page to be allocated + 1 705 * 706 * Allocate pages [@page_start,@page_end) into @pages for all units. 707 * The allocation is for @chunk. Percpu core doesn't care about the 708 * content of @pages and will pass it verbatim to pcpu_map_pages(). 709 */ 710 static int pcpu_alloc_pages(struct pcpu_chunk *chunk, 711 struct page **pages, unsigned long *populated, 712 int page_start, int page_end) 713 { 714 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; 715 unsigned int cpu; 716 int i; 717 718 for_each_possible_cpu(cpu) { 719 for (i = page_start; i < page_end; i++) { 720 struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; 721 722 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); 723 if (!*pagep) { 724 pcpu_free_pages(chunk, pages, populated, 725 page_start, page_end); 726 return -ENOMEM; 727 } 728 } 729 } 730 return 0; 731 } 732 733 /** 734 * pcpu_pre_unmap_flush - flush cache prior to unmapping 735 * @chunk: chunk the regions to be flushed belongs to 736 * @page_start: page index of the first page to be flushed 737 * @page_end: page index of the last page to be flushed + 1 738 * 739 * Pages in [@page_start,@page_end) of @chunk are about to be 740 * unmapped. Flush cache. As each flushing trial can be very 741 * expensive, issue flush on the whole region at once rather than 742 * doing it for each cpu. This could be an overkill but is more 743 * scalable. 744 */ 745 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, 746 int page_start, int page_end) 747 { 748 flush_cache_vunmap( 749 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 750 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 751 } 752 753 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) 754 { 755 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); 756 } 757 758 /** 759 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk 760 * @chunk: chunk of interest 761 * @pages: pages array which can be used to pass information to free 762 * @populated: populated bitmap 763 * @page_start: page index of the first page to unmap 764 * @page_end: page index of the last page to unmap + 1 765 * 766 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. 767 * Corresponding elements in @pages were cleared by the caller and can 768 * be used to carry information to pcpu_free_pages() which will be 769 * called after all unmaps are finished. The caller should call 770 * proper pre/post flush functions. 771 */ 772 static void pcpu_unmap_pages(struct pcpu_chunk *chunk, 773 struct page **pages, unsigned long *populated, 774 int page_start, int page_end) 775 { 776 unsigned int cpu; 777 int i; 778 779 for_each_possible_cpu(cpu) { 780 for (i = page_start; i < page_end; i++) { 781 struct page *page; 782 783 page = pcpu_chunk_page(chunk, cpu, i); 784 WARN_ON(!page); 785 pages[pcpu_page_idx(cpu, i)] = page; 786 } 787 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), 788 page_end - page_start); 789 } 790 791 for (i = page_start; i < page_end; i++) 792 __clear_bit(i, populated); 793 } 794 795 /** 796 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping 797 * @chunk: pcpu_chunk the regions to be flushed belong to 798 * @page_start: page index of the first page to be flushed 799 * @page_end: page index of the last page to be flushed + 1 800 * 801 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush 802 * TLB for the regions. This can be skipped if the area is to be 803 * returned to vmalloc as vmalloc will handle TLB flushing lazily. 804 * 805 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once 806 * for the whole region. 807 */ 808 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, 809 int page_start, int page_end) 810 { 811 flush_tlb_kernel_range( 812 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 813 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 814 } 815 816 static int __pcpu_map_pages(unsigned long addr, struct page **pages, 817 int nr_pages) 818 { 819 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, 820 PAGE_KERNEL, pages); 821 } 822 823 /** 824 * pcpu_map_pages - map pages into a pcpu_chunk 825 * @chunk: chunk of interest 826 * @pages: pages array containing pages to be mapped 827 * @populated: populated bitmap 828 * @page_start: page index of the first page to map 829 * @page_end: page index of the last page to map + 1 830 * 831 * For each cpu, map pages [@page_start,@page_end) into @chunk. The 832 * caller is responsible for calling pcpu_post_map_flush() after all 833 * mappings are complete. 834 * 835 * This function is responsible for setting corresponding bits in 836 * @chunk->populated bitmap and whatever is necessary for reverse 837 * lookup (addr -> chunk). 838 */ 839 static int pcpu_map_pages(struct pcpu_chunk *chunk, 840 struct page **pages, unsigned long *populated, 841 int page_start, int page_end) 842 { 843 unsigned int cpu, tcpu; 844 int i, err; 845 846 for_each_possible_cpu(cpu) { 847 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), 848 &pages[pcpu_page_idx(cpu, page_start)], 849 page_end - page_start); 850 if (err < 0) 851 goto err; 852 } 853 854 /* mapping successful, link chunk and mark populated */ 855 for (i = page_start; i < page_end; i++) { 856 for_each_possible_cpu(cpu) 857 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], 858 chunk); 859 __set_bit(i, populated); 860 } 861 862 return 0; 863 864 err: 865 for_each_possible_cpu(tcpu) { 866 if (tcpu == cpu) 867 break; 868 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), 869 page_end - page_start); 870 } 871 return err; 872 } 873 874 /** 875 * pcpu_post_map_flush - flush cache after mapping 876 * @chunk: pcpu_chunk the regions to be flushed belong to 877 * @page_start: page index of the first page to be flushed 878 * @page_end: page index of the last page to be flushed + 1 879 * 880 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush 881 * cache. 882 * 883 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once 884 * for the whole region. 885 */ 886 static void pcpu_post_map_flush(struct pcpu_chunk *chunk, 887 int page_start, int page_end) 888 { 889 flush_cache_vmap( 890 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 891 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 892 } 893 894 /** 895 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk 896 * @chunk: chunk to depopulate 897 * @off: offset to the area to depopulate 898 * @size: size of the area to depopulate in bytes 899 * @flush: whether to flush cache and tlb or not 900 * 901 * For each cpu, depopulate and unmap pages [@page_start,@page_end) 902 * from @chunk. If @flush is true, vcache is flushed before unmapping 903 * and tlb after. 904 * 905 * CONTEXT: 906 * pcpu_alloc_mutex. 907 */ 908 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) 909 { 910 int page_start = PFN_DOWN(off); 911 int page_end = PFN_UP(off + size); 912 struct page **pages; 913 unsigned long *populated; 914 int rs, re; 915 916 /* quick path, check whether it's empty already */ 917 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 918 if (rs == page_start && re == page_end) 919 return; 920 break; 921 } 922 923 /* immutable chunks can't be depopulated */ 924 WARN_ON(chunk->immutable); 925 926 /* 927 * If control reaches here, there must have been at least one 928 * successful population attempt so the temp pages array must 929 * be available now. 930 */ 931 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); 932 BUG_ON(!pages); 933 934 /* unmap and free */ 935 pcpu_pre_unmap_flush(chunk, page_start, page_end); 936 937 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) 938 pcpu_unmap_pages(chunk, pages, populated, rs, re); 939 940 /* no need to flush tlb, vmalloc will handle it lazily */ 941 942 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) 943 pcpu_free_pages(chunk, pages, populated, rs, re); 944 945 /* commit new bitmap */ 946 bitmap_copy(chunk->populated, populated, pcpu_unit_pages); 947 } 948 949 /** 950 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk 951 * @chunk: chunk of interest 952 * @off: offset to the area to populate 953 * @size: size of the area to populate in bytes 954 * 955 * For each cpu, populate and map pages [@page_start,@page_end) into 956 * @chunk. The area is cleared on return. 957 * 958 * CONTEXT: 959 * pcpu_alloc_mutex, does GFP_KERNEL allocation. 960 */ 961 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) 962 { 963 int page_start = PFN_DOWN(off); 964 int page_end = PFN_UP(off + size); 965 int free_end = page_start, unmap_end = page_start; 966 struct page **pages; 967 unsigned long *populated; 968 unsigned int cpu; 969 int rs, re, rc; 970 971 /* quick path, check whether all pages are already there */ 972 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) { 973 if (rs == page_start && re == page_end) 974 goto clear; 975 break; 976 } 977 978 /* need to allocate and map pages, this chunk can't be immutable */ 979 WARN_ON(chunk->immutable); 980 981 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); 982 if (!pages) 983 return -ENOMEM; 984 985 /* alloc and map */ 986 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 987 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); 988 if (rc) 989 goto err_free; 990 free_end = re; 991 } 992 993 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 994 rc = pcpu_map_pages(chunk, pages, populated, rs, re); 995 if (rc) 996 goto err_unmap; 997 unmap_end = re; 998 } 999 pcpu_post_map_flush(chunk, page_start, page_end); 1000 1001 /* commit new bitmap */ 1002 bitmap_copy(chunk->populated, populated, pcpu_unit_pages); 1003 clear: 1004 for_each_possible_cpu(cpu) 1005 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1006 return 0; 1007 1008 err_unmap: 1009 pcpu_pre_unmap_flush(chunk, page_start, unmap_end); 1010 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) 1011 pcpu_unmap_pages(chunk, pages, populated, rs, re); 1012 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); 1013 err_free: 1014 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) 1015 pcpu_free_pages(chunk, pages, populated, rs, re); 1016 return rc; 1017 } 1018 1019 static void free_pcpu_chunk(struct pcpu_chunk *chunk) 1020 { 1021 if (!chunk) 1022 return; 1023 if (chunk->vms) 1024 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); 1025 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 1026 kfree(chunk); 1027 } 1028 1029 static struct pcpu_chunk *alloc_pcpu_chunk(void) 1030 { 1031 struct pcpu_chunk *chunk; 1032 1033 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); 1034 if (!chunk) 1035 return NULL; 1036 1037 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); 1038 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 1039 chunk->map[chunk->map_used++] = pcpu_unit_size; 1040 1041 chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, 1042 pcpu_nr_groups, pcpu_atom_size, 1043 GFP_KERNEL); 1044 if (!chunk->vms) { 1045 free_pcpu_chunk(chunk); 1046 return NULL; 1047 } 1048 1049 INIT_LIST_HEAD(&chunk->list); 1050 chunk->free_size = pcpu_unit_size; 1051 chunk->contig_hint = pcpu_unit_size; 1052 chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; 1053 1054 return chunk; 1055 } 1056 1057 /** 1058 * pcpu_alloc - the percpu allocator 1059 * @size: size of area to allocate in bytes 1060 * @align: alignment of area (max PAGE_SIZE) 1061 * @reserved: allocate from the reserved chunk if available 1062 * 1063 * Allocate percpu area of @size bytes aligned at @align. 1064 * 1065 * CONTEXT: 1066 * Does GFP_KERNEL allocation. 1067 * 1068 * RETURNS: 1069 * Percpu pointer to the allocated area on success, NULL on failure. 1070 */ 1071 static void *pcpu_alloc(size_t size, size_t align, bool reserved) 1072 { 1073 static int warn_limit = 10; 1074 struct pcpu_chunk *chunk; 1075 const char *err; 1076 int slot, off, new_alloc; 1077 unsigned long flags; 1078 1079 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 1080 WARN(true, "illegal size (%zu) or align (%zu) for " 1081 "percpu allocation\n", size, align); 1082 return NULL; 1083 } 1084 1085 mutex_lock(&pcpu_alloc_mutex); 1086 spin_lock_irqsave(&pcpu_lock, flags); 1087 1088 /* serve reserved allocations from the reserved chunk if available */ 1089 if (reserved && pcpu_reserved_chunk) { 1090 chunk = pcpu_reserved_chunk; 1091 1092 if (size > chunk->contig_hint) { 1093 err = "alloc from reserved chunk failed"; 1094 goto fail_unlock; 1095 } 1096 1097 while ((new_alloc = pcpu_need_to_extend(chunk))) { 1098 spin_unlock_irqrestore(&pcpu_lock, flags); 1099 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 1100 err = "failed to extend area map of reserved chunk"; 1101 goto fail_unlock_mutex; 1102 } 1103 spin_lock_irqsave(&pcpu_lock, flags); 1104 } 1105 1106 off = pcpu_alloc_area(chunk, size, align); 1107 if (off >= 0) 1108 goto area_found; 1109 1110 err = "alloc from reserved chunk failed"; 1111 goto fail_unlock; 1112 } 1113 1114 restart: 1115 /* search through normal chunks */ 1116 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1117 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1118 if (size > chunk->contig_hint) 1119 continue; 1120 1121 new_alloc = pcpu_need_to_extend(chunk); 1122 if (new_alloc) { 1123 spin_unlock_irqrestore(&pcpu_lock, flags); 1124 if (pcpu_extend_area_map(chunk, 1125 new_alloc) < 0) { 1126 err = "failed to extend area map"; 1127 goto fail_unlock_mutex; 1128 } 1129 spin_lock_irqsave(&pcpu_lock, flags); 1130 /* 1131 * pcpu_lock has been dropped, need to 1132 * restart cpu_slot list walking. 1133 */ 1134 goto restart; 1135 } 1136 1137 off = pcpu_alloc_area(chunk, size, align); 1138 if (off >= 0) 1139 goto area_found; 1140 } 1141 } 1142 1143 /* hmmm... no space left, create a new chunk */ 1144 spin_unlock_irqrestore(&pcpu_lock, flags); 1145 1146 chunk = alloc_pcpu_chunk(); 1147 if (!chunk) { 1148 err = "failed to allocate new chunk"; 1149 goto fail_unlock_mutex; 1150 } 1151 1152 spin_lock_irqsave(&pcpu_lock, flags); 1153 pcpu_chunk_relocate(chunk, -1); 1154 goto restart; 1155 1156 area_found: 1157 spin_unlock_irqrestore(&pcpu_lock, flags); 1158 1159 /* populate, map and clear the area */ 1160 if (pcpu_populate_chunk(chunk, off, size)) { 1161 spin_lock_irqsave(&pcpu_lock, flags); 1162 pcpu_free_area(chunk, off); 1163 err = "failed to populate"; 1164 goto fail_unlock; 1165 } 1166 1167 mutex_unlock(&pcpu_alloc_mutex); 1168 1169 /* return address relative to base address */ 1170 return __addr_to_pcpu_ptr(chunk->base_addr + off); 1171 1172 fail_unlock: 1173 spin_unlock_irqrestore(&pcpu_lock, flags); 1174 fail_unlock_mutex: 1175 mutex_unlock(&pcpu_alloc_mutex); 1176 if (warn_limit) { 1177 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 1178 "%s\n", size, align, err); 1179 dump_stack(); 1180 if (!--warn_limit) 1181 pr_info("PERCPU: limit reached, disable warning\n"); 1182 } 1183 return NULL; 1184 } 1185 1186 /** 1187 * __alloc_percpu - allocate dynamic percpu area 1188 * @size: size of area to allocate in bytes 1189 * @align: alignment of area (max PAGE_SIZE) 1190 * 1191 * Allocate percpu area of @size bytes aligned at @align. Might 1192 * sleep. Might trigger writeouts. 1193 * 1194 * CONTEXT: 1195 * Does GFP_KERNEL allocation. 1196 * 1197 * RETURNS: 1198 * Percpu pointer to the allocated area on success, NULL on failure. 1199 */ 1200 void *__alloc_percpu(size_t size, size_t align) 1201 { 1202 return pcpu_alloc(size, align, false); 1203 } 1204 EXPORT_SYMBOL_GPL(__alloc_percpu); 1205 1206 /** 1207 * __alloc_reserved_percpu - allocate reserved percpu area 1208 * @size: size of area to allocate in bytes 1209 * @align: alignment of area (max PAGE_SIZE) 1210 * 1211 * Allocate percpu area of @size bytes aligned at @align from reserved 1212 * percpu area if arch has set it up; otherwise, allocation is served 1213 * from the same dynamic area. Might sleep. Might trigger writeouts. 1214 * 1215 * CONTEXT: 1216 * Does GFP_KERNEL allocation. 1217 * 1218 * RETURNS: 1219 * Percpu pointer to the allocated area on success, NULL on failure. 1220 */ 1221 void *__alloc_reserved_percpu(size_t size, size_t align) 1222 { 1223 return pcpu_alloc(size, align, true); 1224 } 1225 1226 /** 1227 * pcpu_reclaim - reclaim fully free chunks, workqueue function 1228 * @work: unused 1229 * 1230 * Reclaim all fully free chunks except for the first one. 1231 * 1232 * CONTEXT: 1233 * workqueue context. 1234 */ 1235 static void pcpu_reclaim(struct work_struct *work) 1236 { 1237 LIST_HEAD(todo); 1238 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 1239 struct pcpu_chunk *chunk, *next; 1240 1241 mutex_lock(&pcpu_alloc_mutex); 1242 spin_lock_irq(&pcpu_lock); 1243 1244 list_for_each_entry_safe(chunk, next, head, list) { 1245 WARN_ON(chunk->immutable); 1246 1247 /* spare the first one */ 1248 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 1249 continue; 1250 1251 list_move(&chunk->list, &todo); 1252 } 1253 1254 spin_unlock_irq(&pcpu_lock); 1255 1256 list_for_each_entry_safe(chunk, next, &todo, list) { 1257 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 1258 free_pcpu_chunk(chunk); 1259 } 1260 1261 mutex_unlock(&pcpu_alloc_mutex); 1262 } 1263 1264 /** 1265 * free_percpu - free percpu area 1266 * @ptr: pointer to area to free 1267 * 1268 * Free percpu area @ptr. 1269 * 1270 * CONTEXT: 1271 * Can be called from atomic context. 1272 */ 1273 void free_percpu(void *ptr) 1274 { 1275 void *addr = __pcpu_ptr_to_addr(ptr); 1276 struct pcpu_chunk *chunk; 1277 unsigned long flags; 1278 int off; 1279 1280 if (!ptr) 1281 return; 1282 1283 spin_lock_irqsave(&pcpu_lock, flags); 1284 1285 chunk = pcpu_chunk_addr_search(addr); 1286 off = addr - chunk->base_addr; 1287 1288 pcpu_free_area(chunk, off); 1289 1290 /* if there are more than one fully free chunks, wake up grim reaper */ 1291 if (chunk->free_size == pcpu_unit_size) { 1292 struct pcpu_chunk *pos; 1293 1294 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1295 if (pos != chunk) { 1296 schedule_work(&pcpu_reclaim_work); 1297 break; 1298 } 1299 } 1300 1301 spin_unlock_irqrestore(&pcpu_lock, flags); 1302 } 1303 EXPORT_SYMBOL_GPL(free_percpu); 1304 1305 static inline size_t pcpu_calc_fc_sizes(size_t static_size, 1306 size_t reserved_size, 1307 ssize_t *dyn_sizep) 1308 { 1309 size_t size_sum; 1310 1311 size_sum = PFN_ALIGN(static_size + reserved_size + 1312 (*dyn_sizep >= 0 ? *dyn_sizep : 0)); 1313 if (*dyn_sizep != 0) 1314 *dyn_sizep = size_sum - static_size - reserved_size; 1315 1316 return size_sum; 1317 } 1318 1319 /** 1320 * pcpu_alloc_alloc_info - allocate percpu allocation info 1321 * @nr_groups: the number of groups 1322 * @nr_units: the number of units 1323 * 1324 * Allocate ai which is large enough for @nr_groups groups containing 1325 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1326 * cpu_map array which is long enough for @nr_units and filled with 1327 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1328 * pointer of other groups. 1329 * 1330 * RETURNS: 1331 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1332 * failure. 1333 */ 1334 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1335 int nr_units) 1336 { 1337 struct pcpu_alloc_info *ai; 1338 size_t base_size, ai_size; 1339 void *ptr; 1340 int unit; 1341 1342 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1343 __alignof__(ai->groups[0].cpu_map[0])); 1344 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1345 1346 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1347 if (!ptr) 1348 return NULL; 1349 ai = ptr; 1350 ptr += base_size; 1351 1352 ai->groups[0].cpu_map = ptr; 1353 1354 for (unit = 0; unit < nr_units; unit++) 1355 ai->groups[0].cpu_map[unit] = NR_CPUS; 1356 1357 ai->nr_groups = nr_groups; 1358 ai->__ai_size = PFN_ALIGN(ai_size); 1359 1360 return ai; 1361 } 1362 1363 /** 1364 * pcpu_free_alloc_info - free percpu allocation info 1365 * @ai: pcpu_alloc_info to free 1366 * 1367 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1368 */ 1369 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1370 { 1371 free_bootmem(__pa(ai), ai->__ai_size); 1372 } 1373 1374 /** 1375 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1376 * @reserved_size: the size of reserved percpu area in bytes 1377 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1378 * @atom_size: allocation atom size 1379 * @cpu_distance_fn: callback to determine distance between cpus, optional 1380 * 1381 * This function determines grouping of units, their mappings to cpus 1382 * and other parameters considering needed percpu size, allocation 1383 * atom size and distances between CPUs. 1384 * 1385 * Groups are always mutliples of atom size and CPUs which are of 1386 * LOCAL_DISTANCE both ways are grouped together and share space for 1387 * units in the same group. The returned configuration is guaranteed 1388 * to have CPUs on different nodes on different groups and >=75% usage 1389 * of allocated virtual address space. 1390 * 1391 * RETURNS: 1392 * On success, pointer to the new allocation_info is returned. On 1393 * failure, ERR_PTR value is returned. 1394 */ 1395 struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1396 size_t reserved_size, ssize_t dyn_size, 1397 size_t atom_size, 1398 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1399 { 1400 static int group_map[NR_CPUS] __initdata; 1401 static int group_cnt[NR_CPUS] __initdata; 1402 const size_t static_size = __per_cpu_end - __per_cpu_start; 1403 int group_cnt_max = 0, nr_groups = 1, nr_units = 0; 1404 size_t size_sum, min_unit_size, alloc_size; 1405 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1406 int last_allocs, group, unit; 1407 unsigned int cpu, tcpu; 1408 struct pcpu_alloc_info *ai; 1409 unsigned int *cpu_map; 1410 1411 /* this function may be called multiple times */ 1412 memset(group_map, 0, sizeof(group_map)); 1413 memset(group_cnt, 0, sizeof(group_map)); 1414 1415 /* 1416 * Determine min_unit_size, alloc_size and max_upa such that 1417 * alloc_size is multiple of atom_size and is the smallest 1418 * which can accomodate 4k aligned segments which are equal to 1419 * or larger than min_unit_size. 1420 */ 1421 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); 1422 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1423 1424 alloc_size = roundup(min_unit_size, atom_size); 1425 upa = alloc_size / min_unit_size; 1426 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1427 upa--; 1428 max_upa = upa; 1429 1430 /* group cpus according to their proximity */ 1431 for_each_possible_cpu(cpu) { 1432 group = 0; 1433 next_group: 1434 for_each_possible_cpu(tcpu) { 1435 if (cpu == tcpu) 1436 break; 1437 if (group_map[tcpu] == group && cpu_distance_fn && 1438 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1439 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1440 group++; 1441 nr_groups = max(nr_groups, group + 1); 1442 goto next_group; 1443 } 1444 } 1445 group_map[cpu] = group; 1446 group_cnt[group]++; 1447 group_cnt_max = max(group_cnt_max, group_cnt[group]); 1448 } 1449 1450 /* 1451 * Expand unit size until address space usage goes over 75% 1452 * and then as much as possible without using more address 1453 * space. 1454 */ 1455 last_allocs = INT_MAX; 1456 for (upa = max_upa; upa; upa--) { 1457 int allocs = 0, wasted = 0; 1458 1459 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1460 continue; 1461 1462 for (group = 0; group < nr_groups; group++) { 1463 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1464 allocs += this_allocs; 1465 wasted += this_allocs * upa - group_cnt[group]; 1466 } 1467 1468 /* 1469 * Don't accept if wastage is over 25%. The 1470 * greater-than comparison ensures upa==1 always 1471 * passes the following check. 1472 */ 1473 if (wasted > num_possible_cpus() / 3) 1474 continue; 1475 1476 /* and then don't consume more memory */ 1477 if (allocs > last_allocs) 1478 break; 1479 last_allocs = allocs; 1480 best_upa = upa; 1481 } 1482 upa = best_upa; 1483 1484 /* allocate and fill alloc_info */ 1485 for (group = 0; group < nr_groups; group++) 1486 nr_units += roundup(group_cnt[group], upa); 1487 1488 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1489 if (!ai) 1490 return ERR_PTR(-ENOMEM); 1491 cpu_map = ai->groups[0].cpu_map; 1492 1493 for (group = 0; group < nr_groups; group++) { 1494 ai->groups[group].cpu_map = cpu_map; 1495 cpu_map += roundup(group_cnt[group], upa); 1496 } 1497 1498 ai->static_size = static_size; 1499 ai->reserved_size = reserved_size; 1500 ai->dyn_size = dyn_size; 1501 ai->unit_size = alloc_size / upa; 1502 ai->atom_size = atom_size; 1503 ai->alloc_size = alloc_size; 1504 1505 for (group = 0, unit = 0; group_cnt[group]; group++) { 1506 struct pcpu_group_info *gi = &ai->groups[group]; 1507 1508 /* 1509 * Initialize base_offset as if all groups are located 1510 * back-to-back. The caller should update this to 1511 * reflect actual allocation. 1512 */ 1513 gi->base_offset = unit * ai->unit_size; 1514 1515 for_each_possible_cpu(cpu) 1516 if (group_map[cpu] == group) 1517 gi->cpu_map[gi->nr_units++] = cpu; 1518 gi->nr_units = roundup(gi->nr_units, upa); 1519 unit += gi->nr_units; 1520 } 1521 BUG_ON(unit != nr_units); 1522 1523 return ai; 1524 } 1525 1526 /** 1527 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1528 * @lvl: loglevel 1529 * @ai: allocation info to dump 1530 * 1531 * Print out information about @ai using loglevel @lvl. 1532 */ 1533 static void pcpu_dump_alloc_info(const char *lvl, 1534 const struct pcpu_alloc_info *ai) 1535 { 1536 int group_width = 1, cpu_width = 1, width; 1537 char empty_str[] = "--------"; 1538 int alloc = 0, alloc_end = 0; 1539 int group, v; 1540 int upa, apl; /* units per alloc, allocs per line */ 1541 1542 v = ai->nr_groups; 1543 while (v /= 10) 1544 group_width++; 1545 1546 v = num_possible_cpus(); 1547 while (v /= 10) 1548 cpu_width++; 1549 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1550 1551 upa = ai->alloc_size / ai->unit_size; 1552 width = upa * (cpu_width + 1) + group_width + 3; 1553 apl = rounddown_pow_of_two(max(60 / width, 1)); 1554 1555 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1556 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1557 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1558 1559 for (group = 0; group < ai->nr_groups; group++) { 1560 const struct pcpu_group_info *gi = &ai->groups[group]; 1561 int unit = 0, unit_end = 0; 1562 1563 BUG_ON(gi->nr_units % upa); 1564 for (alloc_end += gi->nr_units / upa; 1565 alloc < alloc_end; alloc++) { 1566 if (!(alloc % apl)) { 1567 printk("\n"); 1568 printk("%spcpu-alloc: ", lvl); 1569 } 1570 printk("[%0*d] ", group_width, group); 1571 1572 for (unit_end += upa; unit < unit_end; unit++) 1573 if (gi->cpu_map[unit] != NR_CPUS) 1574 printk("%0*d ", cpu_width, 1575 gi->cpu_map[unit]); 1576 else 1577 printk("%s ", empty_str); 1578 } 1579 } 1580 printk("\n"); 1581 } 1582 1583 /** 1584 * pcpu_setup_first_chunk - initialize the first percpu chunk 1585 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1586 * @base_addr: mapped address 1587 * 1588 * Initialize the first percpu chunk which contains the kernel static 1589 * perpcu area. This function is to be called from arch percpu area 1590 * setup path. 1591 * 1592 * @ai contains all information necessary to initialize the first 1593 * chunk and prime the dynamic percpu allocator. 1594 * 1595 * @ai->static_size is the size of static percpu area. 1596 * 1597 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1598 * reserve after the static area in the first chunk. This reserves 1599 * the first chunk such that it's available only through reserved 1600 * percpu allocation. This is primarily used to serve module percpu 1601 * static areas on architectures where the addressing model has 1602 * limited offset range for symbol relocations to guarantee module 1603 * percpu symbols fall inside the relocatable range. 1604 * 1605 * @ai->dyn_size determines the number of bytes available for dynamic 1606 * allocation in the first chunk. The area between @ai->static_size + 1607 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1608 * 1609 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1610 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1611 * @ai->dyn_size. 1612 * 1613 * @ai->atom_size is the allocation atom size and used as alignment 1614 * for vm areas. 1615 * 1616 * @ai->alloc_size is the allocation size and always multiple of 1617 * @ai->atom_size. This is larger than @ai->atom_size if 1618 * @ai->unit_size is larger than @ai->atom_size. 1619 * 1620 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1621 * percpu areas. Units which should be colocated are put into the 1622 * same group. Dynamic VM areas will be allocated according to these 1623 * groupings. If @ai->nr_groups is zero, a single group containing 1624 * all units is assumed. 1625 * 1626 * The caller should have mapped the first chunk at @base_addr and 1627 * copied static data to each unit. 1628 * 1629 * If the first chunk ends up with both reserved and dynamic areas, it 1630 * is served by two chunks - one to serve the core static and reserved 1631 * areas and the other for the dynamic area. They share the same vm 1632 * and page map but uses different area allocation map to stay away 1633 * from each other. The latter chunk is circulated in the chunk slots 1634 * and available for dynamic allocation like any other chunks. 1635 * 1636 * RETURNS: 1637 * 0 on success, -errno on failure. 1638 */ 1639 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1640 void *base_addr) 1641 { 1642 static char cpus_buf[4096] __initdata; 1643 static int smap[2], dmap[2]; 1644 size_t dyn_size = ai->dyn_size; 1645 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1646 struct pcpu_chunk *schunk, *dchunk = NULL; 1647 unsigned long *group_offsets; 1648 size_t *group_sizes; 1649 unsigned long *unit_off; 1650 unsigned int cpu; 1651 int *unit_map; 1652 int group, unit, i; 1653 1654 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1655 1656 #define PCPU_SETUP_BUG_ON(cond) do { \ 1657 if (unlikely(cond)) { \ 1658 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1659 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1660 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1661 BUG(); \ 1662 } \ 1663 } while (0) 1664 1665 /* sanity checks */ 1666 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || 1667 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); 1668 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1669 PCPU_SETUP_BUG_ON(!ai->static_size); 1670 PCPU_SETUP_BUG_ON(!base_addr); 1671 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1672 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1673 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1674 1675 /* process group information and build config tables accordingly */ 1676 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1677 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1678 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1679 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1680 1681 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1682 unit_map[cpu] = UINT_MAX; 1683 pcpu_first_unit_cpu = NR_CPUS; 1684 1685 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1686 const struct pcpu_group_info *gi = &ai->groups[group]; 1687 1688 group_offsets[group] = gi->base_offset; 1689 group_sizes[group] = gi->nr_units * ai->unit_size; 1690 1691 for (i = 0; i < gi->nr_units; i++) { 1692 cpu = gi->cpu_map[i]; 1693 if (cpu == NR_CPUS) 1694 continue; 1695 1696 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1697 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1698 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1699 1700 unit_map[cpu] = unit + i; 1701 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1702 1703 if (pcpu_first_unit_cpu == NR_CPUS) 1704 pcpu_first_unit_cpu = cpu; 1705 } 1706 } 1707 pcpu_last_unit_cpu = cpu; 1708 pcpu_nr_units = unit; 1709 1710 for_each_possible_cpu(cpu) 1711 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1712 1713 /* we're done parsing the input, undefine BUG macro and dump config */ 1714 #undef PCPU_SETUP_BUG_ON 1715 pcpu_dump_alloc_info(KERN_INFO, ai); 1716 1717 pcpu_nr_groups = ai->nr_groups; 1718 pcpu_group_offsets = group_offsets; 1719 pcpu_group_sizes = group_sizes; 1720 pcpu_unit_map = unit_map; 1721 pcpu_unit_offsets = unit_off; 1722 1723 /* determine basic parameters */ 1724 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1725 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1726 pcpu_atom_size = ai->atom_size; 1727 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1728 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1729 1730 /* 1731 * Allocate chunk slots. The additional last slot is for 1732 * empty chunks. 1733 */ 1734 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1735 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1736 for (i = 0; i < pcpu_nr_slots; i++) 1737 INIT_LIST_HEAD(&pcpu_slot[i]); 1738 1739 /* 1740 * Initialize static chunk. If reserved_size is zero, the 1741 * static chunk covers static area + dynamic allocation area 1742 * in the first chunk. If reserved_size is not zero, it 1743 * covers static area + reserved area (mostly used for module 1744 * static percpu allocation). 1745 */ 1746 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1747 INIT_LIST_HEAD(&schunk->list); 1748 schunk->base_addr = base_addr; 1749 schunk->map = smap; 1750 schunk->map_alloc = ARRAY_SIZE(smap); 1751 schunk->immutable = true; 1752 bitmap_fill(schunk->populated, pcpu_unit_pages); 1753 1754 if (ai->reserved_size) { 1755 schunk->free_size = ai->reserved_size; 1756 pcpu_reserved_chunk = schunk; 1757 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1758 } else { 1759 schunk->free_size = dyn_size; 1760 dyn_size = 0; /* dynamic area covered */ 1761 } 1762 schunk->contig_hint = schunk->free_size; 1763 1764 schunk->map[schunk->map_used++] = -ai->static_size; 1765 if (schunk->free_size) 1766 schunk->map[schunk->map_used++] = schunk->free_size; 1767 1768 /* init dynamic chunk if necessary */ 1769 if (dyn_size) { 1770 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1771 INIT_LIST_HEAD(&dchunk->list); 1772 dchunk->base_addr = base_addr; 1773 dchunk->map = dmap; 1774 dchunk->map_alloc = ARRAY_SIZE(dmap); 1775 dchunk->immutable = true; 1776 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1777 1778 dchunk->contig_hint = dchunk->free_size = dyn_size; 1779 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1780 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1781 } 1782 1783 /* link the first chunk in */ 1784 pcpu_first_chunk = dchunk ?: schunk; 1785 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1786 1787 /* we're done */ 1788 pcpu_base_addr = base_addr; 1789 return 0; 1790 } 1791 1792 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1793 [PCPU_FC_AUTO] = "auto", 1794 [PCPU_FC_EMBED] = "embed", 1795 [PCPU_FC_PAGE] = "page", 1796 }; 1797 1798 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1799 1800 static int __init percpu_alloc_setup(char *str) 1801 { 1802 if (0) 1803 /* nada */; 1804 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1805 else if (!strcmp(str, "embed")) 1806 pcpu_chosen_fc = PCPU_FC_EMBED; 1807 #endif 1808 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1809 else if (!strcmp(str, "page")) 1810 pcpu_chosen_fc = PCPU_FC_PAGE; 1811 #endif 1812 else 1813 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1814 1815 return 0; 1816 } 1817 early_param("percpu_alloc", percpu_alloc_setup); 1818 1819 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1820 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1821 /** 1822 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1823 * @reserved_size: the size of reserved percpu area in bytes 1824 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1825 * @atom_size: allocation atom size 1826 * @cpu_distance_fn: callback to determine distance between cpus, optional 1827 * @alloc_fn: function to allocate percpu page 1828 * @free_fn: funtion to free percpu page 1829 * 1830 * This is a helper to ease setting up embedded first percpu chunk and 1831 * can be called where pcpu_setup_first_chunk() is expected. 1832 * 1833 * If this function is used to setup the first chunk, it is allocated 1834 * by calling @alloc_fn and used as-is without being mapped into 1835 * vmalloc area. Allocations are always whole multiples of @atom_size 1836 * aligned to @atom_size. 1837 * 1838 * This enables the first chunk to piggy back on the linear physical 1839 * mapping which often uses larger page size. Please note that this 1840 * can result in very sparse cpu->unit mapping on NUMA machines thus 1841 * requiring large vmalloc address space. Don't use this allocator if 1842 * vmalloc space is not orders of magnitude larger than distances 1843 * between node memory addresses (ie. 32bit NUMA machines). 1844 * 1845 * When @dyn_size is positive, dynamic area might be larger than 1846 * specified to fill page alignment. When @dyn_size is auto, 1847 * @dyn_size is just big enough to fill page alignment after static 1848 * and reserved areas. 1849 * 1850 * If the needed size is smaller than the minimum or specified unit 1851 * size, the leftover is returned using @free_fn. 1852 * 1853 * RETURNS: 1854 * 0 on success, -errno on failure. 1855 */ 1856 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 1857 size_t atom_size, 1858 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1859 pcpu_fc_alloc_fn_t alloc_fn, 1860 pcpu_fc_free_fn_t free_fn) 1861 { 1862 void *base = (void *)ULONG_MAX; 1863 void **areas = NULL; 1864 struct pcpu_alloc_info *ai; 1865 size_t size_sum, areas_size, max_distance; 1866 int group, i, rc; 1867 1868 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1869 cpu_distance_fn); 1870 if (IS_ERR(ai)) 1871 return PTR_ERR(ai); 1872 1873 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1874 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1875 1876 areas = alloc_bootmem_nopanic(areas_size); 1877 if (!areas) { 1878 rc = -ENOMEM; 1879 goto out_free; 1880 } 1881 1882 /* allocate, copy and determine base address */ 1883 for (group = 0; group < ai->nr_groups; group++) { 1884 struct pcpu_group_info *gi = &ai->groups[group]; 1885 unsigned int cpu = NR_CPUS; 1886 void *ptr; 1887 1888 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1889 cpu = gi->cpu_map[i]; 1890 BUG_ON(cpu == NR_CPUS); 1891 1892 /* allocate space for the whole group */ 1893 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1894 if (!ptr) { 1895 rc = -ENOMEM; 1896 goto out_free_areas; 1897 } 1898 areas[group] = ptr; 1899 1900 base = min(ptr, base); 1901 1902 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1903 if (gi->cpu_map[i] == NR_CPUS) { 1904 /* unused unit, free whole */ 1905 free_fn(ptr, ai->unit_size); 1906 continue; 1907 } 1908 /* copy and return the unused part */ 1909 memcpy(ptr, __per_cpu_load, ai->static_size); 1910 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1911 } 1912 } 1913 1914 /* base address is now known, determine group base offsets */ 1915 max_distance = 0; 1916 for (group = 0; group < ai->nr_groups; group++) { 1917 ai->groups[group].base_offset = areas[group] - base; 1918 max_distance = max_t(size_t, max_distance, 1919 ai->groups[group].base_offset); 1920 } 1921 max_distance += ai->unit_size; 1922 1923 /* warn if maximum distance is further than 75% of vmalloc space */ 1924 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1925 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1926 "space 0x%lx\n", 1927 max_distance, VMALLOC_END - VMALLOC_START); 1928 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1929 /* and fail if we have fallback */ 1930 rc = -EINVAL; 1931 goto out_free; 1932 #endif 1933 } 1934 1935 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1936 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1937 ai->dyn_size, ai->unit_size); 1938 1939 rc = pcpu_setup_first_chunk(ai, base); 1940 goto out_free; 1941 1942 out_free_areas: 1943 for (group = 0; group < ai->nr_groups; group++) 1944 free_fn(areas[group], 1945 ai->groups[group].nr_units * ai->unit_size); 1946 out_free: 1947 pcpu_free_alloc_info(ai); 1948 if (areas) 1949 free_bootmem(__pa(areas), areas_size); 1950 return rc; 1951 } 1952 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || 1953 !CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1954 1955 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1956 /** 1957 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1958 * @reserved_size: the size of reserved percpu area in bytes 1959 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1960 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE 1961 * @populate_pte_fn: function to populate pte 1962 * 1963 * This is a helper to ease setting up page-remapped first percpu 1964 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1965 * 1966 * This is the basic allocator. Static percpu area is allocated 1967 * page-by-page into vmalloc area. 1968 * 1969 * RETURNS: 1970 * 0 on success, -errno on failure. 1971 */ 1972 int __init pcpu_page_first_chunk(size_t reserved_size, 1973 pcpu_fc_alloc_fn_t alloc_fn, 1974 pcpu_fc_free_fn_t free_fn, 1975 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1976 { 1977 static struct vm_struct vm; 1978 struct pcpu_alloc_info *ai; 1979 char psize_str[16]; 1980 int unit_pages; 1981 size_t pages_size; 1982 struct page **pages; 1983 int unit, i, j, rc; 1984 1985 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1986 1987 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); 1988 if (IS_ERR(ai)) 1989 return PTR_ERR(ai); 1990 BUG_ON(ai->nr_groups != 1); 1991 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1992 1993 unit_pages = ai->unit_size >> PAGE_SHIFT; 1994 1995 /* unaligned allocations can't be freed, round up to page size */ 1996 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1997 sizeof(pages[0])); 1998 pages = alloc_bootmem(pages_size); 1999 2000 /* allocate pages */ 2001 j = 0; 2002 for (unit = 0; unit < num_possible_cpus(); unit++) 2003 for (i = 0; i < unit_pages; i++) { 2004 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2005 void *ptr; 2006 2007 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2008 if (!ptr) { 2009 pr_warning("PERCPU: failed to allocate %s page " 2010 "for cpu%u\n", psize_str, cpu); 2011 goto enomem; 2012 } 2013 pages[j++] = virt_to_page(ptr); 2014 } 2015 2016 /* allocate vm area, map the pages and copy static data */ 2017 vm.flags = VM_ALLOC; 2018 vm.size = num_possible_cpus() * ai->unit_size; 2019 vm_area_register_early(&vm, PAGE_SIZE); 2020 2021 for (unit = 0; unit < num_possible_cpus(); unit++) { 2022 unsigned long unit_addr = 2023 (unsigned long)vm.addr + unit * ai->unit_size; 2024 2025 for (i = 0; i < unit_pages; i++) 2026 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2027 2028 /* pte already populated, the following shouldn't fail */ 2029 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2030 unit_pages); 2031 if (rc < 0) 2032 panic("failed to map percpu area, err=%d\n", rc); 2033 2034 /* 2035 * FIXME: Archs with virtual cache should flush local 2036 * cache for the linear mapping here - something 2037 * equivalent to flush_cache_vmap() on the local cpu. 2038 * flush_cache_vmap() can't be used as most supporting 2039 * data structures are not set up yet. 2040 */ 2041 2042 /* copy static data */ 2043 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2044 } 2045 2046 /* we're ready, commit */ 2047 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 2048 unit_pages, psize_str, vm.addr, ai->static_size, 2049 ai->reserved_size, ai->dyn_size); 2050 2051 rc = pcpu_setup_first_chunk(ai, vm.addr); 2052 goto out_free_ar; 2053 2054 enomem: 2055 while (--j >= 0) 2056 free_fn(page_address(pages[j]), PAGE_SIZE); 2057 rc = -ENOMEM; 2058 out_free_ar: 2059 free_bootmem(__pa(pages), pages_size); 2060 pcpu_free_alloc_info(ai); 2061 return rc; 2062 } 2063 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ 2064 2065 /* 2066 * Generic percpu area setup. 2067 * 2068 * The embedding helper is used because its behavior closely resembles 2069 * the original non-dynamic generic percpu area setup. This is 2070 * important because many archs have addressing restrictions and might 2071 * fail if the percpu area is located far away from the previous 2072 * location. As an added bonus, in non-NUMA cases, embedding is 2073 * generally a good idea TLB-wise because percpu area can piggy back 2074 * on the physical linear memory mapping which uses large page 2075 * mappings on applicable archs. 2076 */ 2077 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2078 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2079 EXPORT_SYMBOL(__per_cpu_offset); 2080 2081 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2082 size_t align) 2083 { 2084 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 2085 } 2086 2087 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2088 { 2089 free_bootmem(__pa(ptr), size); 2090 } 2091 2092 void __init setup_per_cpu_areas(void) 2093 { 2094 unsigned long delta; 2095 unsigned int cpu; 2096 int rc; 2097 2098 /* 2099 * Always reserve area for module percpu variables. That's 2100 * what the legacy allocator did. 2101 */ 2102 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2103 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2104 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2105 if (rc < 0) 2106 panic("Failed to initialized percpu areas."); 2107 2108 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2109 for_each_possible_cpu(cpu) 2110 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2111 } 2112 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2113