xref: /linux/mm/percpu.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * linux/mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11  * chunk is consisted of boot-time determined number of units and the
12  * first chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.  ie. in
17  * vmalloc area
18  *
19  *  c0                           c1                         c2
20  *  -------------------          -------------------        ------------
21  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22  *  -------------------  ......  -------------------  ....  ------------
23  *
24  * Allocation is done in offset-size areas of single unit space.  Ie,
25  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
27  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
28  * Percpu access can be done by configuring percpu base registers
29  * according to cpu to unit mapping and pcpu_unit_size.
30  *
31  * There are usually many small percpu allocations many of them being
32  * as small as 4 bytes.  The allocator organizes chunks into lists
33  * according to free size and tries to allocate from the fullest one.
34  * Each chunk keeps the maximum contiguous area size hint which is
35  * guaranteed to be eqaul to or larger than the maximum contiguous
36  * area in the chunk.  This helps the allocator not to iterate the
37  * chunk maps unnecessarily.
38  *
39  * Allocation state in each chunk is kept using an array of integers
40  * on chunk->map.  A positive value in the map represents a free
41  * region and negative allocated.  Allocation inside a chunk is done
42  * by scanning this map sequentially and serving the first matching
43  * entry.  This is mostly copied from the percpu_modalloc() allocator.
44  * Chunks can be determined from the address using the index field
45  * in the page struct. The index field contains a pointer to the chunk.
46  *
47  * To use this allocator, arch code should do the followings.
48  *
49  * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50  *
51  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52  *   regular address to percpu pointer and back if they need to be
53  *   different from the default
54  *
55  * - use pcpu_setup_first_chunk() during percpu area initialization to
56  *   setup the first chunk containing the kernel static percpu area
57  */
58 
59 #include <linux/bitmap.h>
60 #include <linux/bootmem.h>
61 #include <linux/err.h>
62 #include <linux/list.h>
63 #include <linux/log2.h>
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/mutex.h>
67 #include <linux/percpu.h>
68 #include <linux/pfn.h>
69 #include <linux/slab.h>
70 #include <linux/spinlock.h>
71 #include <linux/vmalloc.h>
72 #include <linux/workqueue.h>
73 
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 
78 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
79 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
80 
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr)					\
84 	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
85 		 + (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr)						\
89 	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
90 		 - (unsigned long)__per_cpu_start)
91 #endif
92 
93 struct pcpu_chunk {
94 	struct list_head	list;		/* linked to pcpu_slot lists */
95 	int			free_size;	/* free bytes in the chunk */
96 	int			contig_hint;	/* max contiguous size hint */
97 	void			*base_addr;	/* base address of this chunk */
98 	int			map_used;	/* # of map entries used */
99 	int			map_alloc;	/* # of map entries allocated */
100 	int			*map;		/* allocation map */
101 	struct vm_struct	**vms;		/* mapped vmalloc regions */
102 	bool			immutable;	/* no [de]population allowed */
103 	unsigned long		populated[];	/* populated bitmap */
104 };
105 
106 static int pcpu_unit_pages __read_mostly;
107 static int pcpu_unit_size __read_mostly;
108 static int pcpu_nr_units __read_mostly;
109 static int pcpu_atom_size __read_mostly;
110 static int pcpu_nr_slots __read_mostly;
111 static size_t pcpu_chunk_struct_size __read_mostly;
112 
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly;
115 static unsigned int pcpu_last_unit_cpu __read_mostly;
116 
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr);
120 
121 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123 
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly;
126 static const unsigned long *pcpu_group_offsets __read_mostly;
127 static const size_t *pcpu_group_sizes __read_mostly;
128 
129 /*
130  * The first chunk which always exists.  Note that unlike other
131  * chunks, this one can be allocated and mapped in several different
132  * ways and thus often doesn't live in the vmalloc area.
133  */
134 static struct pcpu_chunk *pcpu_first_chunk;
135 
136 /*
137  * Optional reserved chunk.  This chunk reserves part of the first
138  * chunk and serves it for reserved allocations.  The amount of
139  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
140  * area doesn't exist, the following variables contain NULL and 0
141  * respectively.
142  */
143 static struct pcpu_chunk *pcpu_reserved_chunk;
144 static int pcpu_reserved_chunk_limit;
145 
146 /*
147  * Synchronization rules.
148  *
149  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
150  * protects allocation/reclaim paths, chunks, populated bitmap and
151  * vmalloc mapping.  The latter is a spinlock and protects the index
152  * data structures - chunk slots, chunks and area maps in chunks.
153  *
154  * During allocation, pcpu_alloc_mutex is kept locked all the time and
155  * pcpu_lock is grabbed and released as necessary.  All actual memory
156  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
157  * general, percpu memory can't be allocated with irq off but
158  * irqsave/restore are still used in alloc path so that it can be used
159  * from early init path - sched_init() specifically.
160  *
161  * Free path accesses and alters only the index data structures, so it
162  * can be safely called from atomic context.  When memory needs to be
163  * returned to the system, free path schedules reclaim_work which
164  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
165  * reclaimed, release both locks and frees the chunks.  Note that it's
166  * necessary to grab both locks to remove a chunk from circulation as
167  * allocation path might be referencing the chunk with only
168  * pcpu_alloc_mutex locked.
169  */
170 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
171 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
172 
173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
174 
175 /* reclaim work to release fully free chunks, scheduled from free path */
176 static void pcpu_reclaim(struct work_struct *work);
177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
178 
179 static int __pcpu_size_to_slot(int size)
180 {
181 	int highbit = fls(size);	/* size is in bytes */
182 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
183 }
184 
185 static int pcpu_size_to_slot(int size)
186 {
187 	if (size == pcpu_unit_size)
188 		return pcpu_nr_slots - 1;
189 	return __pcpu_size_to_slot(size);
190 }
191 
192 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
193 {
194 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
195 		return 0;
196 
197 	return pcpu_size_to_slot(chunk->free_size);
198 }
199 
200 static int pcpu_page_idx(unsigned int cpu, int page_idx)
201 {
202 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
203 }
204 
205 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
206 				     unsigned int cpu, int page_idx)
207 {
208 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
209 		(page_idx << PAGE_SHIFT);
210 }
211 
212 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
213 				    unsigned int cpu, int page_idx)
214 {
215 	/* must not be used on pre-mapped chunk */
216 	WARN_ON(chunk->immutable);
217 
218 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
219 }
220 
221 /* set the pointer to a chunk in a page struct */
222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
223 {
224 	page->index = (unsigned long)pcpu;
225 }
226 
227 /* obtain pointer to a chunk from a page struct */
228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
229 {
230 	return (struct pcpu_chunk *)page->index;
231 }
232 
233 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
234 {
235 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
236 	*re = find_next_bit(chunk->populated, end, *rs + 1);
237 }
238 
239 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
240 {
241 	*rs = find_next_bit(chunk->populated, end, *rs);
242 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
243 }
244 
245 /*
246  * (Un)populated page region iterators.  Iterate over (un)populated
247  * page regions betwen @start and @end in @chunk.  @rs and @re should
248  * be integer variables and will be set to start and end page index of
249  * the current region.
250  */
251 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
252 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
253 	     (rs) < (re);						    \
254 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
255 
256 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
257 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
258 	     (rs) < (re);						    \
259 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
260 
261 /**
262  * pcpu_mem_alloc - allocate memory
263  * @size: bytes to allocate
264  *
265  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
266  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
267  * memory is always zeroed.
268  *
269  * CONTEXT:
270  * Does GFP_KERNEL allocation.
271  *
272  * RETURNS:
273  * Pointer to the allocated area on success, NULL on failure.
274  */
275 static void *pcpu_mem_alloc(size_t size)
276 {
277 	if (size <= PAGE_SIZE)
278 		return kzalloc(size, GFP_KERNEL);
279 	else {
280 		void *ptr = vmalloc(size);
281 		if (ptr)
282 			memset(ptr, 0, size);
283 		return ptr;
284 	}
285 }
286 
287 /**
288  * pcpu_mem_free - free memory
289  * @ptr: memory to free
290  * @size: size of the area
291  *
292  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
293  */
294 static void pcpu_mem_free(void *ptr, size_t size)
295 {
296 	if (size <= PAGE_SIZE)
297 		kfree(ptr);
298 	else
299 		vfree(ptr);
300 }
301 
302 /**
303  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
304  * @chunk: chunk of interest
305  * @oslot: the previous slot it was on
306  *
307  * This function is called after an allocation or free changed @chunk.
308  * New slot according to the changed state is determined and @chunk is
309  * moved to the slot.  Note that the reserved chunk is never put on
310  * chunk slots.
311  *
312  * CONTEXT:
313  * pcpu_lock.
314  */
315 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
316 {
317 	int nslot = pcpu_chunk_slot(chunk);
318 
319 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
320 		if (oslot < nslot)
321 			list_move(&chunk->list, &pcpu_slot[nslot]);
322 		else
323 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
324 	}
325 }
326 
327 /**
328  * pcpu_chunk_addr_search - determine chunk containing specified address
329  * @addr: address for which the chunk needs to be determined.
330  *
331  * RETURNS:
332  * The address of the found chunk.
333  */
334 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
335 {
336 	void *first_start = pcpu_first_chunk->base_addr;
337 
338 	/* is it in the first chunk? */
339 	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
340 		/* is it in the reserved area? */
341 		if (addr < first_start + pcpu_reserved_chunk_limit)
342 			return pcpu_reserved_chunk;
343 		return pcpu_first_chunk;
344 	}
345 
346 	/*
347 	 * The address is relative to unit0 which might be unused and
348 	 * thus unmapped.  Offset the address to the unit space of the
349 	 * current processor before looking it up in the vmalloc
350 	 * space.  Note that any possible cpu id can be used here, so
351 	 * there's no need to worry about preemption or cpu hotplug.
352 	 */
353 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
354 	return pcpu_get_page_chunk(vmalloc_to_page(addr));
355 }
356 
357 /**
358  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
359  * @chunk: chunk of interest
360  *
361  * Determine whether area map of @chunk needs to be extended to
362  * accomodate a new allocation.
363  *
364  * CONTEXT:
365  * pcpu_lock.
366  *
367  * RETURNS:
368  * New target map allocation length if extension is necessary, 0
369  * otherwise.
370  */
371 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
372 {
373 	int new_alloc;
374 
375 	if (chunk->map_alloc >= chunk->map_used + 2)
376 		return 0;
377 
378 	new_alloc = PCPU_DFL_MAP_ALLOC;
379 	while (new_alloc < chunk->map_used + 2)
380 		new_alloc *= 2;
381 
382 	return new_alloc;
383 }
384 
385 /**
386  * pcpu_extend_area_map - extend area map of a chunk
387  * @chunk: chunk of interest
388  * @new_alloc: new target allocation length of the area map
389  *
390  * Extend area map of @chunk to have @new_alloc entries.
391  *
392  * CONTEXT:
393  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
394  *
395  * RETURNS:
396  * 0 on success, -errno on failure.
397  */
398 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
399 {
400 	int *old = NULL, *new = NULL;
401 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
402 	unsigned long flags;
403 
404 	new = pcpu_mem_alloc(new_size);
405 	if (!new)
406 		return -ENOMEM;
407 
408 	/* acquire pcpu_lock and switch to new area map */
409 	spin_lock_irqsave(&pcpu_lock, flags);
410 
411 	if (new_alloc <= chunk->map_alloc)
412 		goto out_unlock;
413 
414 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
415 	memcpy(new, chunk->map, old_size);
416 
417 	/*
418 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
419 	 * one of the first chunks and still using static map.
420 	 */
421 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
422 		old = chunk->map;
423 
424 	chunk->map_alloc = new_alloc;
425 	chunk->map = new;
426 	new = NULL;
427 
428 out_unlock:
429 	spin_unlock_irqrestore(&pcpu_lock, flags);
430 
431 	/*
432 	 * pcpu_mem_free() might end up calling vfree() which uses
433 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
434 	 */
435 	pcpu_mem_free(old, old_size);
436 	pcpu_mem_free(new, new_size);
437 
438 	return 0;
439 }
440 
441 /**
442  * pcpu_split_block - split a map block
443  * @chunk: chunk of interest
444  * @i: index of map block to split
445  * @head: head size in bytes (can be 0)
446  * @tail: tail size in bytes (can be 0)
447  *
448  * Split the @i'th map block into two or three blocks.  If @head is
449  * non-zero, @head bytes block is inserted before block @i moving it
450  * to @i+1 and reducing its size by @head bytes.
451  *
452  * If @tail is non-zero, the target block, which can be @i or @i+1
453  * depending on @head, is reduced by @tail bytes and @tail byte block
454  * is inserted after the target block.
455  *
456  * @chunk->map must have enough free slots to accomodate the split.
457  *
458  * CONTEXT:
459  * pcpu_lock.
460  */
461 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
462 			     int head, int tail)
463 {
464 	int nr_extra = !!head + !!tail;
465 
466 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
467 
468 	/* insert new subblocks */
469 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
470 		sizeof(chunk->map[0]) * (chunk->map_used - i));
471 	chunk->map_used += nr_extra;
472 
473 	if (head) {
474 		chunk->map[i + 1] = chunk->map[i] - head;
475 		chunk->map[i++] = head;
476 	}
477 	if (tail) {
478 		chunk->map[i++] -= tail;
479 		chunk->map[i] = tail;
480 	}
481 }
482 
483 /**
484  * pcpu_alloc_area - allocate area from a pcpu_chunk
485  * @chunk: chunk of interest
486  * @size: wanted size in bytes
487  * @align: wanted align
488  *
489  * Try to allocate @size bytes area aligned at @align from @chunk.
490  * Note that this function only allocates the offset.  It doesn't
491  * populate or map the area.
492  *
493  * @chunk->map must have at least two free slots.
494  *
495  * CONTEXT:
496  * pcpu_lock.
497  *
498  * RETURNS:
499  * Allocated offset in @chunk on success, -1 if no matching area is
500  * found.
501  */
502 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
503 {
504 	int oslot = pcpu_chunk_slot(chunk);
505 	int max_contig = 0;
506 	int i, off;
507 
508 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
509 		bool is_last = i + 1 == chunk->map_used;
510 		int head, tail;
511 
512 		/* extra for alignment requirement */
513 		head = ALIGN(off, align) - off;
514 		BUG_ON(i == 0 && head != 0);
515 
516 		if (chunk->map[i] < 0)
517 			continue;
518 		if (chunk->map[i] < head + size) {
519 			max_contig = max(chunk->map[i], max_contig);
520 			continue;
521 		}
522 
523 		/*
524 		 * If head is small or the previous block is free,
525 		 * merge'em.  Note that 'small' is defined as smaller
526 		 * than sizeof(int), which is very small but isn't too
527 		 * uncommon for percpu allocations.
528 		 */
529 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
530 			if (chunk->map[i - 1] > 0)
531 				chunk->map[i - 1] += head;
532 			else {
533 				chunk->map[i - 1] -= head;
534 				chunk->free_size -= head;
535 			}
536 			chunk->map[i] -= head;
537 			off += head;
538 			head = 0;
539 		}
540 
541 		/* if tail is small, just keep it around */
542 		tail = chunk->map[i] - head - size;
543 		if (tail < sizeof(int))
544 			tail = 0;
545 
546 		/* split if warranted */
547 		if (head || tail) {
548 			pcpu_split_block(chunk, i, head, tail);
549 			if (head) {
550 				i++;
551 				off += head;
552 				max_contig = max(chunk->map[i - 1], max_contig);
553 			}
554 			if (tail)
555 				max_contig = max(chunk->map[i + 1], max_contig);
556 		}
557 
558 		/* update hint and mark allocated */
559 		if (is_last)
560 			chunk->contig_hint = max_contig; /* fully scanned */
561 		else
562 			chunk->contig_hint = max(chunk->contig_hint,
563 						 max_contig);
564 
565 		chunk->free_size -= chunk->map[i];
566 		chunk->map[i] = -chunk->map[i];
567 
568 		pcpu_chunk_relocate(chunk, oslot);
569 		return off;
570 	}
571 
572 	chunk->contig_hint = max_contig;	/* fully scanned */
573 	pcpu_chunk_relocate(chunk, oslot);
574 
575 	/* tell the upper layer that this chunk has no matching area */
576 	return -1;
577 }
578 
579 /**
580  * pcpu_free_area - free area to a pcpu_chunk
581  * @chunk: chunk of interest
582  * @freeme: offset of area to free
583  *
584  * Free area starting from @freeme to @chunk.  Note that this function
585  * only modifies the allocation map.  It doesn't depopulate or unmap
586  * the area.
587  *
588  * CONTEXT:
589  * pcpu_lock.
590  */
591 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
592 {
593 	int oslot = pcpu_chunk_slot(chunk);
594 	int i, off;
595 
596 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
597 		if (off == freeme)
598 			break;
599 	BUG_ON(off != freeme);
600 	BUG_ON(chunk->map[i] > 0);
601 
602 	chunk->map[i] = -chunk->map[i];
603 	chunk->free_size += chunk->map[i];
604 
605 	/* merge with previous? */
606 	if (i > 0 && chunk->map[i - 1] >= 0) {
607 		chunk->map[i - 1] += chunk->map[i];
608 		chunk->map_used--;
609 		memmove(&chunk->map[i], &chunk->map[i + 1],
610 			(chunk->map_used - i) * sizeof(chunk->map[0]));
611 		i--;
612 	}
613 	/* merge with next? */
614 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
615 		chunk->map[i] += chunk->map[i + 1];
616 		chunk->map_used--;
617 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
618 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
619 	}
620 
621 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
622 	pcpu_chunk_relocate(chunk, oslot);
623 }
624 
625 /**
626  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
627  * @chunk: chunk of interest
628  * @bitmapp: output parameter for bitmap
629  * @may_alloc: may allocate the array
630  *
631  * Returns pointer to array of pointers to struct page and bitmap,
632  * both of which can be indexed with pcpu_page_idx().  The returned
633  * array is cleared to zero and *@bitmapp is copied from
634  * @chunk->populated.  Note that there is only one array and bitmap
635  * and access exclusion is the caller's responsibility.
636  *
637  * CONTEXT:
638  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
639  * Otherwise, don't care.
640  *
641  * RETURNS:
642  * Pointer to temp pages array on success, NULL on failure.
643  */
644 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
645 					       unsigned long **bitmapp,
646 					       bool may_alloc)
647 {
648 	static struct page **pages;
649 	static unsigned long *bitmap;
650 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
651 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
652 			     sizeof(unsigned long);
653 
654 	if (!pages || !bitmap) {
655 		if (may_alloc && !pages)
656 			pages = pcpu_mem_alloc(pages_size);
657 		if (may_alloc && !bitmap)
658 			bitmap = pcpu_mem_alloc(bitmap_size);
659 		if (!pages || !bitmap)
660 			return NULL;
661 	}
662 
663 	memset(pages, 0, pages_size);
664 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
665 
666 	*bitmapp = bitmap;
667 	return pages;
668 }
669 
670 /**
671  * pcpu_free_pages - free pages which were allocated for @chunk
672  * @chunk: chunk pages were allocated for
673  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
674  * @populated: populated bitmap
675  * @page_start: page index of the first page to be freed
676  * @page_end: page index of the last page to be freed + 1
677  *
678  * Free pages [@page_start and @page_end) in @pages for all units.
679  * The pages were allocated for @chunk.
680  */
681 static void pcpu_free_pages(struct pcpu_chunk *chunk,
682 			    struct page **pages, unsigned long *populated,
683 			    int page_start, int page_end)
684 {
685 	unsigned int cpu;
686 	int i;
687 
688 	for_each_possible_cpu(cpu) {
689 		for (i = page_start; i < page_end; i++) {
690 			struct page *page = pages[pcpu_page_idx(cpu, i)];
691 
692 			if (page)
693 				__free_page(page);
694 		}
695 	}
696 }
697 
698 /**
699  * pcpu_alloc_pages - allocates pages for @chunk
700  * @chunk: target chunk
701  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
702  * @populated: populated bitmap
703  * @page_start: page index of the first page to be allocated
704  * @page_end: page index of the last page to be allocated + 1
705  *
706  * Allocate pages [@page_start,@page_end) into @pages for all units.
707  * The allocation is for @chunk.  Percpu core doesn't care about the
708  * content of @pages and will pass it verbatim to pcpu_map_pages().
709  */
710 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
711 			    struct page **pages, unsigned long *populated,
712 			    int page_start, int page_end)
713 {
714 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
715 	unsigned int cpu;
716 	int i;
717 
718 	for_each_possible_cpu(cpu) {
719 		for (i = page_start; i < page_end; i++) {
720 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
721 
722 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
723 			if (!*pagep) {
724 				pcpu_free_pages(chunk, pages, populated,
725 						page_start, page_end);
726 				return -ENOMEM;
727 			}
728 		}
729 	}
730 	return 0;
731 }
732 
733 /**
734  * pcpu_pre_unmap_flush - flush cache prior to unmapping
735  * @chunk: chunk the regions to be flushed belongs to
736  * @page_start: page index of the first page to be flushed
737  * @page_end: page index of the last page to be flushed + 1
738  *
739  * Pages in [@page_start,@page_end) of @chunk are about to be
740  * unmapped.  Flush cache.  As each flushing trial can be very
741  * expensive, issue flush on the whole region at once rather than
742  * doing it for each cpu.  This could be an overkill but is more
743  * scalable.
744  */
745 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
746 				 int page_start, int page_end)
747 {
748 	flush_cache_vunmap(
749 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
750 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
751 }
752 
753 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
754 {
755 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
756 }
757 
758 /**
759  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
760  * @chunk: chunk of interest
761  * @pages: pages array which can be used to pass information to free
762  * @populated: populated bitmap
763  * @page_start: page index of the first page to unmap
764  * @page_end: page index of the last page to unmap + 1
765  *
766  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
767  * Corresponding elements in @pages were cleared by the caller and can
768  * be used to carry information to pcpu_free_pages() which will be
769  * called after all unmaps are finished.  The caller should call
770  * proper pre/post flush functions.
771  */
772 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
773 			     struct page **pages, unsigned long *populated,
774 			     int page_start, int page_end)
775 {
776 	unsigned int cpu;
777 	int i;
778 
779 	for_each_possible_cpu(cpu) {
780 		for (i = page_start; i < page_end; i++) {
781 			struct page *page;
782 
783 			page = pcpu_chunk_page(chunk, cpu, i);
784 			WARN_ON(!page);
785 			pages[pcpu_page_idx(cpu, i)] = page;
786 		}
787 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
788 				   page_end - page_start);
789 	}
790 
791 	for (i = page_start; i < page_end; i++)
792 		__clear_bit(i, populated);
793 }
794 
795 /**
796  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
797  * @chunk: pcpu_chunk the regions to be flushed belong to
798  * @page_start: page index of the first page to be flushed
799  * @page_end: page index of the last page to be flushed + 1
800  *
801  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
802  * TLB for the regions.  This can be skipped if the area is to be
803  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
804  *
805  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
806  * for the whole region.
807  */
808 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
809 				      int page_start, int page_end)
810 {
811 	flush_tlb_kernel_range(
812 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
813 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
814 }
815 
816 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
817 			    int nr_pages)
818 {
819 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
820 					PAGE_KERNEL, pages);
821 }
822 
823 /**
824  * pcpu_map_pages - map pages into a pcpu_chunk
825  * @chunk: chunk of interest
826  * @pages: pages array containing pages to be mapped
827  * @populated: populated bitmap
828  * @page_start: page index of the first page to map
829  * @page_end: page index of the last page to map + 1
830  *
831  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
832  * caller is responsible for calling pcpu_post_map_flush() after all
833  * mappings are complete.
834  *
835  * This function is responsible for setting corresponding bits in
836  * @chunk->populated bitmap and whatever is necessary for reverse
837  * lookup (addr -> chunk).
838  */
839 static int pcpu_map_pages(struct pcpu_chunk *chunk,
840 			  struct page **pages, unsigned long *populated,
841 			  int page_start, int page_end)
842 {
843 	unsigned int cpu, tcpu;
844 	int i, err;
845 
846 	for_each_possible_cpu(cpu) {
847 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
848 				       &pages[pcpu_page_idx(cpu, page_start)],
849 				       page_end - page_start);
850 		if (err < 0)
851 			goto err;
852 	}
853 
854 	/* mapping successful, link chunk and mark populated */
855 	for (i = page_start; i < page_end; i++) {
856 		for_each_possible_cpu(cpu)
857 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
858 					    chunk);
859 		__set_bit(i, populated);
860 	}
861 
862 	return 0;
863 
864 err:
865 	for_each_possible_cpu(tcpu) {
866 		if (tcpu == cpu)
867 			break;
868 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
869 				   page_end - page_start);
870 	}
871 	return err;
872 }
873 
874 /**
875  * pcpu_post_map_flush - flush cache after mapping
876  * @chunk: pcpu_chunk the regions to be flushed belong to
877  * @page_start: page index of the first page to be flushed
878  * @page_end: page index of the last page to be flushed + 1
879  *
880  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
881  * cache.
882  *
883  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
884  * for the whole region.
885  */
886 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
887 				int page_start, int page_end)
888 {
889 	flush_cache_vmap(
890 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
891 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
892 }
893 
894 /**
895  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
896  * @chunk: chunk to depopulate
897  * @off: offset to the area to depopulate
898  * @size: size of the area to depopulate in bytes
899  * @flush: whether to flush cache and tlb or not
900  *
901  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
902  * from @chunk.  If @flush is true, vcache is flushed before unmapping
903  * and tlb after.
904  *
905  * CONTEXT:
906  * pcpu_alloc_mutex.
907  */
908 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
909 {
910 	int page_start = PFN_DOWN(off);
911 	int page_end = PFN_UP(off + size);
912 	struct page **pages;
913 	unsigned long *populated;
914 	int rs, re;
915 
916 	/* quick path, check whether it's empty already */
917 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
918 		if (rs == page_start && re == page_end)
919 			return;
920 		break;
921 	}
922 
923 	/* immutable chunks can't be depopulated */
924 	WARN_ON(chunk->immutable);
925 
926 	/*
927 	 * If control reaches here, there must have been at least one
928 	 * successful population attempt so the temp pages array must
929 	 * be available now.
930 	 */
931 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
932 	BUG_ON(!pages);
933 
934 	/* unmap and free */
935 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
936 
937 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
938 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
939 
940 	/* no need to flush tlb, vmalloc will handle it lazily */
941 
942 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
943 		pcpu_free_pages(chunk, pages, populated, rs, re);
944 
945 	/* commit new bitmap */
946 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
947 }
948 
949 /**
950  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
951  * @chunk: chunk of interest
952  * @off: offset to the area to populate
953  * @size: size of the area to populate in bytes
954  *
955  * For each cpu, populate and map pages [@page_start,@page_end) into
956  * @chunk.  The area is cleared on return.
957  *
958  * CONTEXT:
959  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
960  */
961 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
962 {
963 	int page_start = PFN_DOWN(off);
964 	int page_end = PFN_UP(off + size);
965 	int free_end = page_start, unmap_end = page_start;
966 	struct page **pages;
967 	unsigned long *populated;
968 	unsigned int cpu;
969 	int rs, re, rc;
970 
971 	/* quick path, check whether all pages are already there */
972 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
973 		if (rs == page_start && re == page_end)
974 			goto clear;
975 		break;
976 	}
977 
978 	/* need to allocate and map pages, this chunk can't be immutable */
979 	WARN_ON(chunk->immutable);
980 
981 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
982 	if (!pages)
983 		return -ENOMEM;
984 
985 	/* alloc and map */
986 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
987 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
988 		if (rc)
989 			goto err_free;
990 		free_end = re;
991 	}
992 
993 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
994 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
995 		if (rc)
996 			goto err_unmap;
997 		unmap_end = re;
998 	}
999 	pcpu_post_map_flush(chunk, page_start, page_end);
1000 
1001 	/* commit new bitmap */
1002 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1003 clear:
1004 	for_each_possible_cpu(cpu)
1005 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1006 	return 0;
1007 
1008 err_unmap:
1009 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1010 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1011 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
1012 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1013 err_free:
1014 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1015 		pcpu_free_pages(chunk, pages, populated, rs, re);
1016 	return rc;
1017 }
1018 
1019 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
1020 {
1021 	if (!chunk)
1022 		return;
1023 	if (chunk->vms)
1024 		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1025 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
1026 	kfree(chunk);
1027 }
1028 
1029 static struct pcpu_chunk *alloc_pcpu_chunk(void)
1030 {
1031 	struct pcpu_chunk *chunk;
1032 
1033 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1034 	if (!chunk)
1035 		return NULL;
1036 
1037 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1038 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1039 	chunk->map[chunk->map_used++] = pcpu_unit_size;
1040 
1041 	chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1042 				       pcpu_nr_groups, pcpu_atom_size,
1043 				       GFP_KERNEL);
1044 	if (!chunk->vms) {
1045 		free_pcpu_chunk(chunk);
1046 		return NULL;
1047 	}
1048 
1049 	INIT_LIST_HEAD(&chunk->list);
1050 	chunk->free_size = pcpu_unit_size;
1051 	chunk->contig_hint = pcpu_unit_size;
1052 	chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1053 
1054 	return chunk;
1055 }
1056 
1057 /**
1058  * pcpu_alloc - the percpu allocator
1059  * @size: size of area to allocate in bytes
1060  * @align: alignment of area (max PAGE_SIZE)
1061  * @reserved: allocate from the reserved chunk if available
1062  *
1063  * Allocate percpu area of @size bytes aligned at @align.
1064  *
1065  * CONTEXT:
1066  * Does GFP_KERNEL allocation.
1067  *
1068  * RETURNS:
1069  * Percpu pointer to the allocated area on success, NULL on failure.
1070  */
1071 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1072 {
1073 	static int warn_limit = 10;
1074 	struct pcpu_chunk *chunk;
1075 	const char *err;
1076 	int slot, off, new_alloc;
1077 	unsigned long flags;
1078 
1079 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1080 		WARN(true, "illegal size (%zu) or align (%zu) for "
1081 		     "percpu allocation\n", size, align);
1082 		return NULL;
1083 	}
1084 
1085 	mutex_lock(&pcpu_alloc_mutex);
1086 	spin_lock_irqsave(&pcpu_lock, flags);
1087 
1088 	/* serve reserved allocations from the reserved chunk if available */
1089 	if (reserved && pcpu_reserved_chunk) {
1090 		chunk = pcpu_reserved_chunk;
1091 
1092 		if (size > chunk->contig_hint) {
1093 			err = "alloc from reserved chunk failed";
1094 			goto fail_unlock;
1095 		}
1096 
1097 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
1098 			spin_unlock_irqrestore(&pcpu_lock, flags);
1099 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1100 				err = "failed to extend area map of reserved chunk";
1101 				goto fail_unlock_mutex;
1102 			}
1103 			spin_lock_irqsave(&pcpu_lock, flags);
1104 		}
1105 
1106 		off = pcpu_alloc_area(chunk, size, align);
1107 		if (off >= 0)
1108 			goto area_found;
1109 
1110 		err = "alloc from reserved chunk failed";
1111 		goto fail_unlock;
1112 	}
1113 
1114 restart:
1115 	/* search through normal chunks */
1116 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1117 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1118 			if (size > chunk->contig_hint)
1119 				continue;
1120 
1121 			new_alloc = pcpu_need_to_extend(chunk);
1122 			if (new_alloc) {
1123 				spin_unlock_irqrestore(&pcpu_lock, flags);
1124 				if (pcpu_extend_area_map(chunk,
1125 							 new_alloc) < 0) {
1126 					err = "failed to extend area map";
1127 					goto fail_unlock_mutex;
1128 				}
1129 				spin_lock_irqsave(&pcpu_lock, flags);
1130 				/*
1131 				 * pcpu_lock has been dropped, need to
1132 				 * restart cpu_slot list walking.
1133 				 */
1134 				goto restart;
1135 			}
1136 
1137 			off = pcpu_alloc_area(chunk, size, align);
1138 			if (off >= 0)
1139 				goto area_found;
1140 		}
1141 	}
1142 
1143 	/* hmmm... no space left, create a new chunk */
1144 	spin_unlock_irqrestore(&pcpu_lock, flags);
1145 
1146 	chunk = alloc_pcpu_chunk();
1147 	if (!chunk) {
1148 		err = "failed to allocate new chunk";
1149 		goto fail_unlock_mutex;
1150 	}
1151 
1152 	spin_lock_irqsave(&pcpu_lock, flags);
1153 	pcpu_chunk_relocate(chunk, -1);
1154 	goto restart;
1155 
1156 area_found:
1157 	spin_unlock_irqrestore(&pcpu_lock, flags);
1158 
1159 	/* populate, map and clear the area */
1160 	if (pcpu_populate_chunk(chunk, off, size)) {
1161 		spin_lock_irqsave(&pcpu_lock, flags);
1162 		pcpu_free_area(chunk, off);
1163 		err = "failed to populate";
1164 		goto fail_unlock;
1165 	}
1166 
1167 	mutex_unlock(&pcpu_alloc_mutex);
1168 
1169 	/* return address relative to base address */
1170 	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1171 
1172 fail_unlock:
1173 	spin_unlock_irqrestore(&pcpu_lock, flags);
1174 fail_unlock_mutex:
1175 	mutex_unlock(&pcpu_alloc_mutex);
1176 	if (warn_limit) {
1177 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1178 			   "%s\n", size, align, err);
1179 		dump_stack();
1180 		if (!--warn_limit)
1181 			pr_info("PERCPU: limit reached, disable warning\n");
1182 	}
1183 	return NULL;
1184 }
1185 
1186 /**
1187  * __alloc_percpu - allocate dynamic percpu area
1188  * @size: size of area to allocate in bytes
1189  * @align: alignment of area (max PAGE_SIZE)
1190  *
1191  * Allocate percpu area of @size bytes aligned at @align.  Might
1192  * sleep.  Might trigger writeouts.
1193  *
1194  * CONTEXT:
1195  * Does GFP_KERNEL allocation.
1196  *
1197  * RETURNS:
1198  * Percpu pointer to the allocated area on success, NULL on failure.
1199  */
1200 void *__alloc_percpu(size_t size, size_t align)
1201 {
1202 	return pcpu_alloc(size, align, false);
1203 }
1204 EXPORT_SYMBOL_GPL(__alloc_percpu);
1205 
1206 /**
1207  * __alloc_reserved_percpu - allocate reserved percpu area
1208  * @size: size of area to allocate in bytes
1209  * @align: alignment of area (max PAGE_SIZE)
1210  *
1211  * Allocate percpu area of @size bytes aligned at @align from reserved
1212  * percpu area if arch has set it up; otherwise, allocation is served
1213  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1214  *
1215  * CONTEXT:
1216  * Does GFP_KERNEL allocation.
1217  *
1218  * RETURNS:
1219  * Percpu pointer to the allocated area on success, NULL on failure.
1220  */
1221 void *__alloc_reserved_percpu(size_t size, size_t align)
1222 {
1223 	return pcpu_alloc(size, align, true);
1224 }
1225 
1226 /**
1227  * pcpu_reclaim - reclaim fully free chunks, workqueue function
1228  * @work: unused
1229  *
1230  * Reclaim all fully free chunks except for the first one.
1231  *
1232  * CONTEXT:
1233  * workqueue context.
1234  */
1235 static void pcpu_reclaim(struct work_struct *work)
1236 {
1237 	LIST_HEAD(todo);
1238 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1239 	struct pcpu_chunk *chunk, *next;
1240 
1241 	mutex_lock(&pcpu_alloc_mutex);
1242 	spin_lock_irq(&pcpu_lock);
1243 
1244 	list_for_each_entry_safe(chunk, next, head, list) {
1245 		WARN_ON(chunk->immutable);
1246 
1247 		/* spare the first one */
1248 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1249 			continue;
1250 
1251 		list_move(&chunk->list, &todo);
1252 	}
1253 
1254 	spin_unlock_irq(&pcpu_lock);
1255 
1256 	list_for_each_entry_safe(chunk, next, &todo, list) {
1257 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1258 		free_pcpu_chunk(chunk);
1259 	}
1260 
1261 	mutex_unlock(&pcpu_alloc_mutex);
1262 }
1263 
1264 /**
1265  * free_percpu - free percpu area
1266  * @ptr: pointer to area to free
1267  *
1268  * Free percpu area @ptr.
1269  *
1270  * CONTEXT:
1271  * Can be called from atomic context.
1272  */
1273 void free_percpu(void *ptr)
1274 {
1275 	void *addr = __pcpu_ptr_to_addr(ptr);
1276 	struct pcpu_chunk *chunk;
1277 	unsigned long flags;
1278 	int off;
1279 
1280 	if (!ptr)
1281 		return;
1282 
1283 	spin_lock_irqsave(&pcpu_lock, flags);
1284 
1285 	chunk = pcpu_chunk_addr_search(addr);
1286 	off = addr - chunk->base_addr;
1287 
1288 	pcpu_free_area(chunk, off);
1289 
1290 	/* if there are more than one fully free chunks, wake up grim reaper */
1291 	if (chunk->free_size == pcpu_unit_size) {
1292 		struct pcpu_chunk *pos;
1293 
1294 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1295 			if (pos != chunk) {
1296 				schedule_work(&pcpu_reclaim_work);
1297 				break;
1298 			}
1299 	}
1300 
1301 	spin_unlock_irqrestore(&pcpu_lock, flags);
1302 }
1303 EXPORT_SYMBOL_GPL(free_percpu);
1304 
1305 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1306 					size_t reserved_size,
1307 					ssize_t *dyn_sizep)
1308 {
1309 	size_t size_sum;
1310 
1311 	size_sum = PFN_ALIGN(static_size + reserved_size +
1312 			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1313 	if (*dyn_sizep != 0)
1314 		*dyn_sizep = size_sum - static_size - reserved_size;
1315 
1316 	return size_sum;
1317 }
1318 
1319 /**
1320  * pcpu_alloc_alloc_info - allocate percpu allocation info
1321  * @nr_groups: the number of groups
1322  * @nr_units: the number of units
1323  *
1324  * Allocate ai which is large enough for @nr_groups groups containing
1325  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1326  * cpu_map array which is long enough for @nr_units and filled with
1327  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1328  * pointer of other groups.
1329  *
1330  * RETURNS:
1331  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1332  * failure.
1333  */
1334 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1335 						      int nr_units)
1336 {
1337 	struct pcpu_alloc_info *ai;
1338 	size_t base_size, ai_size;
1339 	void *ptr;
1340 	int unit;
1341 
1342 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1343 			  __alignof__(ai->groups[0].cpu_map[0]));
1344 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1345 
1346 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1347 	if (!ptr)
1348 		return NULL;
1349 	ai = ptr;
1350 	ptr += base_size;
1351 
1352 	ai->groups[0].cpu_map = ptr;
1353 
1354 	for (unit = 0; unit < nr_units; unit++)
1355 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1356 
1357 	ai->nr_groups = nr_groups;
1358 	ai->__ai_size = PFN_ALIGN(ai_size);
1359 
1360 	return ai;
1361 }
1362 
1363 /**
1364  * pcpu_free_alloc_info - free percpu allocation info
1365  * @ai: pcpu_alloc_info to free
1366  *
1367  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1368  */
1369 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1370 {
1371 	free_bootmem(__pa(ai), ai->__ai_size);
1372 }
1373 
1374 /**
1375  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1376  * @reserved_size: the size of reserved percpu area in bytes
1377  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1378  * @atom_size: allocation atom size
1379  * @cpu_distance_fn: callback to determine distance between cpus, optional
1380  *
1381  * This function determines grouping of units, their mappings to cpus
1382  * and other parameters considering needed percpu size, allocation
1383  * atom size and distances between CPUs.
1384  *
1385  * Groups are always mutliples of atom size and CPUs which are of
1386  * LOCAL_DISTANCE both ways are grouped together and share space for
1387  * units in the same group.  The returned configuration is guaranteed
1388  * to have CPUs on different nodes on different groups and >=75% usage
1389  * of allocated virtual address space.
1390  *
1391  * RETURNS:
1392  * On success, pointer to the new allocation_info is returned.  On
1393  * failure, ERR_PTR value is returned.
1394  */
1395 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1396 				size_t reserved_size, ssize_t dyn_size,
1397 				size_t atom_size,
1398 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1399 {
1400 	static int group_map[NR_CPUS] __initdata;
1401 	static int group_cnt[NR_CPUS] __initdata;
1402 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1403 	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1404 	size_t size_sum, min_unit_size, alloc_size;
1405 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1406 	int last_allocs, group, unit;
1407 	unsigned int cpu, tcpu;
1408 	struct pcpu_alloc_info *ai;
1409 	unsigned int *cpu_map;
1410 
1411 	/* this function may be called multiple times */
1412 	memset(group_map, 0, sizeof(group_map));
1413 	memset(group_cnt, 0, sizeof(group_map));
1414 
1415 	/*
1416 	 * Determine min_unit_size, alloc_size and max_upa such that
1417 	 * alloc_size is multiple of atom_size and is the smallest
1418 	 * which can accomodate 4k aligned segments which are equal to
1419 	 * or larger than min_unit_size.
1420 	 */
1421 	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1422 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1423 
1424 	alloc_size = roundup(min_unit_size, atom_size);
1425 	upa = alloc_size / min_unit_size;
1426 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1427 		upa--;
1428 	max_upa = upa;
1429 
1430 	/* group cpus according to their proximity */
1431 	for_each_possible_cpu(cpu) {
1432 		group = 0;
1433 	next_group:
1434 		for_each_possible_cpu(tcpu) {
1435 			if (cpu == tcpu)
1436 				break;
1437 			if (group_map[tcpu] == group && cpu_distance_fn &&
1438 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1439 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1440 				group++;
1441 				nr_groups = max(nr_groups, group + 1);
1442 				goto next_group;
1443 			}
1444 		}
1445 		group_map[cpu] = group;
1446 		group_cnt[group]++;
1447 		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1448 	}
1449 
1450 	/*
1451 	 * Expand unit size until address space usage goes over 75%
1452 	 * and then as much as possible without using more address
1453 	 * space.
1454 	 */
1455 	last_allocs = INT_MAX;
1456 	for (upa = max_upa; upa; upa--) {
1457 		int allocs = 0, wasted = 0;
1458 
1459 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1460 			continue;
1461 
1462 		for (group = 0; group < nr_groups; group++) {
1463 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1464 			allocs += this_allocs;
1465 			wasted += this_allocs * upa - group_cnt[group];
1466 		}
1467 
1468 		/*
1469 		 * Don't accept if wastage is over 25%.  The
1470 		 * greater-than comparison ensures upa==1 always
1471 		 * passes the following check.
1472 		 */
1473 		if (wasted > num_possible_cpus() / 3)
1474 			continue;
1475 
1476 		/* and then don't consume more memory */
1477 		if (allocs > last_allocs)
1478 			break;
1479 		last_allocs = allocs;
1480 		best_upa = upa;
1481 	}
1482 	upa = best_upa;
1483 
1484 	/* allocate and fill alloc_info */
1485 	for (group = 0; group < nr_groups; group++)
1486 		nr_units += roundup(group_cnt[group], upa);
1487 
1488 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1489 	if (!ai)
1490 		return ERR_PTR(-ENOMEM);
1491 	cpu_map = ai->groups[0].cpu_map;
1492 
1493 	for (group = 0; group < nr_groups; group++) {
1494 		ai->groups[group].cpu_map = cpu_map;
1495 		cpu_map += roundup(group_cnt[group], upa);
1496 	}
1497 
1498 	ai->static_size = static_size;
1499 	ai->reserved_size = reserved_size;
1500 	ai->dyn_size = dyn_size;
1501 	ai->unit_size = alloc_size / upa;
1502 	ai->atom_size = atom_size;
1503 	ai->alloc_size = alloc_size;
1504 
1505 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1506 		struct pcpu_group_info *gi = &ai->groups[group];
1507 
1508 		/*
1509 		 * Initialize base_offset as if all groups are located
1510 		 * back-to-back.  The caller should update this to
1511 		 * reflect actual allocation.
1512 		 */
1513 		gi->base_offset = unit * ai->unit_size;
1514 
1515 		for_each_possible_cpu(cpu)
1516 			if (group_map[cpu] == group)
1517 				gi->cpu_map[gi->nr_units++] = cpu;
1518 		gi->nr_units = roundup(gi->nr_units, upa);
1519 		unit += gi->nr_units;
1520 	}
1521 	BUG_ON(unit != nr_units);
1522 
1523 	return ai;
1524 }
1525 
1526 /**
1527  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1528  * @lvl: loglevel
1529  * @ai: allocation info to dump
1530  *
1531  * Print out information about @ai using loglevel @lvl.
1532  */
1533 static void pcpu_dump_alloc_info(const char *lvl,
1534 				 const struct pcpu_alloc_info *ai)
1535 {
1536 	int group_width = 1, cpu_width = 1, width;
1537 	char empty_str[] = "--------";
1538 	int alloc = 0, alloc_end = 0;
1539 	int group, v;
1540 	int upa, apl;	/* units per alloc, allocs per line */
1541 
1542 	v = ai->nr_groups;
1543 	while (v /= 10)
1544 		group_width++;
1545 
1546 	v = num_possible_cpus();
1547 	while (v /= 10)
1548 		cpu_width++;
1549 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1550 
1551 	upa = ai->alloc_size / ai->unit_size;
1552 	width = upa * (cpu_width + 1) + group_width + 3;
1553 	apl = rounddown_pow_of_two(max(60 / width, 1));
1554 
1555 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1556 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1557 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1558 
1559 	for (group = 0; group < ai->nr_groups; group++) {
1560 		const struct pcpu_group_info *gi = &ai->groups[group];
1561 		int unit = 0, unit_end = 0;
1562 
1563 		BUG_ON(gi->nr_units % upa);
1564 		for (alloc_end += gi->nr_units / upa;
1565 		     alloc < alloc_end; alloc++) {
1566 			if (!(alloc % apl)) {
1567 				printk("\n");
1568 				printk("%spcpu-alloc: ", lvl);
1569 			}
1570 			printk("[%0*d] ", group_width, group);
1571 
1572 			for (unit_end += upa; unit < unit_end; unit++)
1573 				if (gi->cpu_map[unit] != NR_CPUS)
1574 					printk("%0*d ", cpu_width,
1575 					       gi->cpu_map[unit]);
1576 				else
1577 					printk("%s ", empty_str);
1578 		}
1579 	}
1580 	printk("\n");
1581 }
1582 
1583 /**
1584  * pcpu_setup_first_chunk - initialize the first percpu chunk
1585  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1586  * @base_addr: mapped address
1587  *
1588  * Initialize the first percpu chunk which contains the kernel static
1589  * perpcu area.  This function is to be called from arch percpu area
1590  * setup path.
1591  *
1592  * @ai contains all information necessary to initialize the first
1593  * chunk and prime the dynamic percpu allocator.
1594  *
1595  * @ai->static_size is the size of static percpu area.
1596  *
1597  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1598  * reserve after the static area in the first chunk.  This reserves
1599  * the first chunk such that it's available only through reserved
1600  * percpu allocation.  This is primarily used to serve module percpu
1601  * static areas on architectures where the addressing model has
1602  * limited offset range for symbol relocations to guarantee module
1603  * percpu symbols fall inside the relocatable range.
1604  *
1605  * @ai->dyn_size determines the number of bytes available for dynamic
1606  * allocation in the first chunk.  The area between @ai->static_size +
1607  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1608  *
1609  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1610  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1611  * @ai->dyn_size.
1612  *
1613  * @ai->atom_size is the allocation atom size and used as alignment
1614  * for vm areas.
1615  *
1616  * @ai->alloc_size is the allocation size and always multiple of
1617  * @ai->atom_size.  This is larger than @ai->atom_size if
1618  * @ai->unit_size is larger than @ai->atom_size.
1619  *
1620  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1621  * percpu areas.  Units which should be colocated are put into the
1622  * same group.  Dynamic VM areas will be allocated according to these
1623  * groupings.  If @ai->nr_groups is zero, a single group containing
1624  * all units is assumed.
1625  *
1626  * The caller should have mapped the first chunk at @base_addr and
1627  * copied static data to each unit.
1628  *
1629  * If the first chunk ends up with both reserved and dynamic areas, it
1630  * is served by two chunks - one to serve the core static and reserved
1631  * areas and the other for the dynamic area.  They share the same vm
1632  * and page map but uses different area allocation map to stay away
1633  * from each other.  The latter chunk is circulated in the chunk slots
1634  * and available for dynamic allocation like any other chunks.
1635  *
1636  * RETURNS:
1637  * 0 on success, -errno on failure.
1638  */
1639 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1640 				  void *base_addr)
1641 {
1642 	static char cpus_buf[4096] __initdata;
1643 	static int smap[2], dmap[2];
1644 	size_t dyn_size = ai->dyn_size;
1645 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1646 	struct pcpu_chunk *schunk, *dchunk = NULL;
1647 	unsigned long *group_offsets;
1648 	size_t *group_sizes;
1649 	unsigned long *unit_off;
1650 	unsigned int cpu;
1651 	int *unit_map;
1652 	int group, unit, i;
1653 
1654 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1655 
1656 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1657 	if (unlikely(cond)) {						\
1658 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1659 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1660 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1661 		BUG();							\
1662 	}								\
1663 } while (0)
1664 
1665 	/* sanity checks */
1666 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1667 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1668 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1669 	PCPU_SETUP_BUG_ON(!ai->static_size);
1670 	PCPU_SETUP_BUG_ON(!base_addr);
1671 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1672 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1673 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1674 
1675 	/* process group information and build config tables accordingly */
1676 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1677 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1678 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1679 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1680 
1681 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1682 		unit_map[cpu] = UINT_MAX;
1683 	pcpu_first_unit_cpu = NR_CPUS;
1684 
1685 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1686 		const struct pcpu_group_info *gi = &ai->groups[group];
1687 
1688 		group_offsets[group] = gi->base_offset;
1689 		group_sizes[group] = gi->nr_units * ai->unit_size;
1690 
1691 		for (i = 0; i < gi->nr_units; i++) {
1692 			cpu = gi->cpu_map[i];
1693 			if (cpu == NR_CPUS)
1694 				continue;
1695 
1696 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1697 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1698 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1699 
1700 			unit_map[cpu] = unit + i;
1701 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1702 
1703 			if (pcpu_first_unit_cpu == NR_CPUS)
1704 				pcpu_first_unit_cpu = cpu;
1705 		}
1706 	}
1707 	pcpu_last_unit_cpu = cpu;
1708 	pcpu_nr_units = unit;
1709 
1710 	for_each_possible_cpu(cpu)
1711 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1712 
1713 	/* we're done parsing the input, undefine BUG macro and dump config */
1714 #undef PCPU_SETUP_BUG_ON
1715 	pcpu_dump_alloc_info(KERN_INFO, ai);
1716 
1717 	pcpu_nr_groups = ai->nr_groups;
1718 	pcpu_group_offsets = group_offsets;
1719 	pcpu_group_sizes = group_sizes;
1720 	pcpu_unit_map = unit_map;
1721 	pcpu_unit_offsets = unit_off;
1722 
1723 	/* determine basic parameters */
1724 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1725 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1726 	pcpu_atom_size = ai->atom_size;
1727 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1728 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1729 
1730 	/*
1731 	 * Allocate chunk slots.  The additional last slot is for
1732 	 * empty chunks.
1733 	 */
1734 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1735 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1736 	for (i = 0; i < pcpu_nr_slots; i++)
1737 		INIT_LIST_HEAD(&pcpu_slot[i]);
1738 
1739 	/*
1740 	 * Initialize static chunk.  If reserved_size is zero, the
1741 	 * static chunk covers static area + dynamic allocation area
1742 	 * in the first chunk.  If reserved_size is not zero, it
1743 	 * covers static area + reserved area (mostly used for module
1744 	 * static percpu allocation).
1745 	 */
1746 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1747 	INIT_LIST_HEAD(&schunk->list);
1748 	schunk->base_addr = base_addr;
1749 	schunk->map = smap;
1750 	schunk->map_alloc = ARRAY_SIZE(smap);
1751 	schunk->immutable = true;
1752 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1753 
1754 	if (ai->reserved_size) {
1755 		schunk->free_size = ai->reserved_size;
1756 		pcpu_reserved_chunk = schunk;
1757 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1758 	} else {
1759 		schunk->free_size = dyn_size;
1760 		dyn_size = 0;			/* dynamic area covered */
1761 	}
1762 	schunk->contig_hint = schunk->free_size;
1763 
1764 	schunk->map[schunk->map_used++] = -ai->static_size;
1765 	if (schunk->free_size)
1766 		schunk->map[schunk->map_used++] = schunk->free_size;
1767 
1768 	/* init dynamic chunk if necessary */
1769 	if (dyn_size) {
1770 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1771 		INIT_LIST_HEAD(&dchunk->list);
1772 		dchunk->base_addr = base_addr;
1773 		dchunk->map = dmap;
1774 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1775 		dchunk->immutable = true;
1776 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1777 
1778 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1779 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1780 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1781 	}
1782 
1783 	/* link the first chunk in */
1784 	pcpu_first_chunk = dchunk ?: schunk;
1785 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1786 
1787 	/* we're done */
1788 	pcpu_base_addr = base_addr;
1789 	return 0;
1790 }
1791 
1792 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1793 	[PCPU_FC_AUTO]	= "auto",
1794 	[PCPU_FC_EMBED]	= "embed",
1795 	[PCPU_FC_PAGE]	= "page",
1796 };
1797 
1798 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1799 
1800 static int __init percpu_alloc_setup(char *str)
1801 {
1802 	if (0)
1803 		/* nada */;
1804 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1805 	else if (!strcmp(str, "embed"))
1806 		pcpu_chosen_fc = PCPU_FC_EMBED;
1807 #endif
1808 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1809 	else if (!strcmp(str, "page"))
1810 		pcpu_chosen_fc = PCPU_FC_PAGE;
1811 #endif
1812 	else
1813 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1814 
1815 	return 0;
1816 }
1817 early_param("percpu_alloc", percpu_alloc_setup);
1818 
1819 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1820 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1821 /**
1822  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1823  * @reserved_size: the size of reserved percpu area in bytes
1824  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1825  * @atom_size: allocation atom size
1826  * @cpu_distance_fn: callback to determine distance between cpus, optional
1827  * @alloc_fn: function to allocate percpu page
1828  * @free_fn: funtion to free percpu page
1829  *
1830  * This is a helper to ease setting up embedded first percpu chunk and
1831  * can be called where pcpu_setup_first_chunk() is expected.
1832  *
1833  * If this function is used to setup the first chunk, it is allocated
1834  * by calling @alloc_fn and used as-is without being mapped into
1835  * vmalloc area.  Allocations are always whole multiples of @atom_size
1836  * aligned to @atom_size.
1837  *
1838  * This enables the first chunk to piggy back on the linear physical
1839  * mapping which often uses larger page size.  Please note that this
1840  * can result in very sparse cpu->unit mapping on NUMA machines thus
1841  * requiring large vmalloc address space.  Don't use this allocator if
1842  * vmalloc space is not orders of magnitude larger than distances
1843  * between node memory addresses (ie. 32bit NUMA machines).
1844  *
1845  * When @dyn_size is positive, dynamic area might be larger than
1846  * specified to fill page alignment.  When @dyn_size is auto,
1847  * @dyn_size is just big enough to fill page alignment after static
1848  * and reserved areas.
1849  *
1850  * If the needed size is smaller than the minimum or specified unit
1851  * size, the leftover is returned using @free_fn.
1852  *
1853  * RETURNS:
1854  * 0 on success, -errno on failure.
1855  */
1856 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1857 				  size_t atom_size,
1858 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1859 				  pcpu_fc_alloc_fn_t alloc_fn,
1860 				  pcpu_fc_free_fn_t free_fn)
1861 {
1862 	void *base = (void *)ULONG_MAX;
1863 	void **areas = NULL;
1864 	struct pcpu_alloc_info *ai;
1865 	size_t size_sum, areas_size, max_distance;
1866 	int group, i, rc;
1867 
1868 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1869 				   cpu_distance_fn);
1870 	if (IS_ERR(ai))
1871 		return PTR_ERR(ai);
1872 
1873 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1874 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1875 
1876 	areas = alloc_bootmem_nopanic(areas_size);
1877 	if (!areas) {
1878 		rc = -ENOMEM;
1879 		goto out_free;
1880 	}
1881 
1882 	/* allocate, copy and determine base address */
1883 	for (group = 0; group < ai->nr_groups; group++) {
1884 		struct pcpu_group_info *gi = &ai->groups[group];
1885 		unsigned int cpu = NR_CPUS;
1886 		void *ptr;
1887 
1888 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1889 			cpu = gi->cpu_map[i];
1890 		BUG_ON(cpu == NR_CPUS);
1891 
1892 		/* allocate space for the whole group */
1893 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1894 		if (!ptr) {
1895 			rc = -ENOMEM;
1896 			goto out_free_areas;
1897 		}
1898 		areas[group] = ptr;
1899 
1900 		base = min(ptr, base);
1901 
1902 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1903 			if (gi->cpu_map[i] == NR_CPUS) {
1904 				/* unused unit, free whole */
1905 				free_fn(ptr, ai->unit_size);
1906 				continue;
1907 			}
1908 			/* copy and return the unused part */
1909 			memcpy(ptr, __per_cpu_load, ai->static_size);
1910 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1911 		}
1912 	}
1913 
1914 	/* base address is now known, determine group base offsets */
1915 	max_distance = 0;
1916 	for (group = 0; group < ai->nr_groups; group++) {
1917 		ai->groups[group].base_offset = areas[group] - base;
1918 		max_distance = max_t(size_t, max_distance,
1919 				     ai->groups[group].base_offset);
1920 	}
1921 	max_distance += ai->unit_size;
1922 
1923 	/* warn if maximum distance is further than 75% of vmalloc space */
1924 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1925 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1926 			   "space 0x%lx\n",
1927 			   max_distance, VMALLOC_END - VMALLOC_START);
1928 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1929 		/* and fail if we have fallback */
1930 		rc = -EINVAL;
1931 		goto out_free;
1932 #endif
1933 	}
1934 
1935 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1936 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1937 		ai->dyn_size, ai->unit_size);
1938 
1939 	rc = pcpu_setup_first_chunk(ai, base);
1940 	goto out_free;
1941 
1942 out_free_areas:
1943 	for (group = 0; group < ai->nr_groups; group++)
1944 		free_fn(areas[group],
1945 			ai->groups[group].nr_units * ai->unit_size);
1946 out_free:
1947 	pcpu_free_alloc_info(ai);
1948 	if (areas)
1949 		free_bootmem(__pa(areas), areas_size);
1950 	return rc;
1951 }
1952 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1953 	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1954 
1955 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1956 /**
1957  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1958  * @reserved_size: the size of reserved percpu area in bytes
1959  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1960  * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1961  * @populate_pte_fn: function to populate pte
1962  *
1963  * This is a helper to ease setting up page-remapped first percpu
1964  * chunk and can be called where pcpu_setup_first_chunk() is expected.
1965  *
1966  * This is the basic allocator.  Static percpu area is allocated
1967  * page-by-page into vmalloc area.
1968  *
1969  * RETURNS:
1970  * 0 on success, -errno on failure.
1971  */
1972 int __init pcpu_page_first_chunk(size_t reserved_size,
1973 				 pcpu_fc_alloc_fn_t alloc_fn,
1974 				 pcpu_fc_free_fn_t free_fn,
1975 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1976 {
1977 	static struct vm_struct vm;
1978 	struct pcpu_alloc_info *ai;
1979 	char psize_str[16];
1980 	int unit_pages;
1981 	size_t pages_size;
1982 	struct page **pages;
1983 	int unit, i, j, rc;
1984 
1985 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1986 
1987 	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1988 	if (IS_ERR(ai))
1989 		return PTR_ERR(ai);
1990 	BUG_ON(ai->nr_groups != 1);
1991 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1992 
1993 	unit_pages = ai->unit_size >> PAGE_SHIFT;
1994 
1995 	/* unaligned allocations can't be freed, round up to page size */
1996 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1997 			       sizeof(pages[0]));
1998 	pages = alloc_bootmem(pages_size);
1999 
2000 	/* allocate pages */
2001 	j = 0;
2002 	for (unit = 0; unit < num_possible_cpus(); unit++)
2003 		for (i = 0; i < unit_pages; i++) {
2004 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2005 			void *ptr;
2006 
2007 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2008 			if (!ptr) {
2009 				pr_warning("PERCPU: failed to allocate %s page "
2010 					   "for cpu%u\n", psize_str, cpu);
2011 				goto enomem;
2012 			}
2013 			pages[j++] = virt_to_page(ptr);
2014 		}
2015 
2016 	/* allocate vm area, map the pages and copy static data */
2017 	vm.flags = VM_ALLOC;
2018 	vm.size = num_possible_cpus() * ai->unit_size;
2019 	vm_area_register_early(&vm, PAGE_SIZE);
2020 
2021 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2022 		unsigned long unit_addr =
2023 			(unsigned long)vm.addr + unit * ai->unit_size;
2024 
2025 		for (i = 0; i < unit_pages; i++)
2026 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2027 
2028 		/* pte already populated, the following shouldn't fail */
2029 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2030 				      unit_pages);
2031 		if (rc < 0)
2032 			panic("failed to map percpu area, err=%d\n", rc);
2033 
2034 		/*
2035 		 * FIXME: Archs with virtual cache should flush local
2036 		 * cache for the linear mapping here - something
2037 		 * equivalent to flush_cache_vmap() on the local cpu.
2038 		 * flush_cache_vmap() can't be used as most supporting
2039 		 * data structures are not set up yet.
2040 		 */
2041 
2042 		/* copy static data */
2043 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2044 	}
2045 
2046 	/* we're ready, commit */
2047 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2048 		unit_pages, psize_str, vm.addr, ai->static_size,
2049 		ai->reserved_size, ai->dyn_size);
2050 
2051 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2052 	goto out_free_ar;
2053 
2054 enomem:
2055 	while (--j >= 0)
2056 		free_fn(page_address(pages[j]), PAGE_SIZE);
2057 	rc = -ENOMEM;
2058 out_free_ar:
2059 	free_bootmem(__pa(pages), pages_size);
2060 	pcpu_free_alloc_info(ai);
2061 	return rc;
2062 }
2063 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2064 
2065 /*
2066  * Generic percpu area setup.
2067  *
2068  * The embedding helper is used because its behavior closely resembles
2069  * the original non-dynamic generic percpu area setup.  This is
2070  * important because many archs have addressing restrictions and might
2071  * fail if the percpu area is located far away from the previous
2072  * location.  As an added bonus, in non-NUMA cases, embedding is
2073  * generally a good idea TLB-wise because percpu area can piggy back
2074  * on the physical linear memory mapping which uses large page
2075  * mappings on applicable archs.
2076  */
2077 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2078 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2079 EXPORT_SYMBOL(__per_cpu_offset);
2080 
2081 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2082 				       size_t align)
2083 {
2084 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2085 }
2086 
2087 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2088 {
2089 	free_bootmem(__pa(ptr), size);
2090 }
2091 
2092 void __init setup_per_cpu_areas(void)
2093 {
2094 	unsigned long delta;
2095 	unsigned int cpu;
2096 	int rc;
2097 
2098 	/*
2099 	 * Always reserve area for module percpu variables.  That's
2100 	 * what the legacy allocator did.
2101 	 */
2102 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2103 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2104 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2105 	if (rc < 0)
2106 		panic("Failed to initialized percpu areas.");
2107 
2108 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2109 	for_each_possible_cpu(cpu)
2110 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2111 }
2112 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2113