1 /* 2 * linux/mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each 11 * chunk is consisted of boot-time determined number of units and the 12 * first chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. ie. in 17 * vmalloc area 18 * 19 * c0 c1 c2 20 * ------------------- ------------------- ------------ 21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 22 * ------------------- ...... ------------------- .... ------------ 23 * 24 * Allocation is done in offset-size areas of single unit space. Ie, 25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 27 * cpus. On NUMA, the mapping can be non-linear and even sparse. 28 * Percpu access can be done by configuring percpu base registers 29 * according to cpu to unit mapping and pcpu_unit_size. 30 * 31 * There are usually many small percpu allocations many of them being 32 * as small as 4 bytes. The allocator organizes chunks into lists 33 * according to free size and tries to allocate from the fullest one. 34 * Each chunk keeps the maximum contiguous area size hint which is 35 * guaranteed to be eqaul to or larger than the maximum contiguous 36 * area in the chunk. This helps the allocator not to iterate the 37 * chunk maps unnecessarily. 38 * 39 * Allocation state in each chunk is kept using an array of integers 40 * on chunk->map. A positive value in the map represents a free 41 * region and negative allocated. Allocation inside a chunk is done 42 * by scanning this map sequentially and serving the first matching 43 * entry. This is mostly copied from the percpu_modalloc() allocator. 44 * Chunks can be determined from the address using the index field 45 * in the page struct. The index field contains a pointer to the chunk. 46 * 47 * To use this allocator, arch code should do the followings. 48 * 49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA 50 * 51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 52 * regular address to percpu pointer and back if they need to be 53 * different from the default 54 * 55 * - use pcpu_setup_first_chunk() during percpu area initialization to 56 * setup the first chunk containing the kernel static percpu area 57 */ 58 59 #include <linux/bitmap.h> 60 #include <linux/bootmem.h> 61 #include <linux/err.h> 62 #include <linux/list.h> 63 #include <linux/log2.h> 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/mutex.h> 67 #include <linux/percpu.h> 68 #include <linux/pfn.h> 69 #include <linux/slab.h> 70 #include <linux/spinlock.h> 71 #include <linux/vmalloc.h> 72 #include <linux/workqueue.h> 73 74 #include <asm/cacheflush.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 78 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 79 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 80 81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 82 #ifndef __addr_to_pcpu_ptr 83 #define __addr_to_pcpu_ptr(addr) \ 84 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \ 85 + (unsigned long)__per_cpu_start) 86 #endif 87 #ifndef __pcpu_ptr_to_addr 88 #define __pcpu_ptr_to_addr(ptr) \ 89 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \ 90 - (unsigned long)__per_cpu_start) 91 #endif 92 93 struct pcpu_chunk { 94 struct list_head list; /* linked to pcpu_slot lists */ 95 int free_size; /* free bytes in the chunk */ 96 int contig_hint; /* max contiguous size hint */ 97 void *base_addr; /* base address of this chunk */ 98 int map_used; /* # of map entries used */ 99 int map_alloc; /* # of map entries allocated */ 100 int *map; /* allocation map */ 101 struct vm_struct **vms; /* mapped vmalloc regions */ 102 bool immutable; /* no [de]population allowed */ 103 unsigned long populated[]; /* populated bitmap */ 104 }; 105 106 static int pcpu_unit_pages __read_mostly; 107 static int pcpu_unit_size __read_mostly; 108 static int pcpu_nr_units __read_mostly; 109 static int pcpu_atom_size __read_mostly; 110 static int pcpu_nr_slots __read_mostly; 111 static size_t pcpu_chunk_struct_size __read_mostly; 112 113 /* cpus with the lowest and highest unit numbers */ 114 static unsigned int pcpu_first_unit_cpu __read_mostly; 115 static unsigned int pcpu_last_unit_cpu __read_mostly; 116 117 /* the address of the first chunk which starts with the kernel static area */ 118 void *pcpu_base_addr __read_mostly; 119 EXPORT_SYMBOL_GPL(pcpu_base_addr); 120 121 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 122 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 123 124 /* group information, used for vm allocation */ 125 static int pcpu_nr_groups __read_mostly; 126 static const unsigned long *pcpu_group_offsets __read_mostly; 127 static const size_t *pcpu_group_sizes __read_mostly; 128 129 /* 130 * The first chunk which always exists. Note that unlike other 131 * chunks, this one can be allocated and mapped in several different 132 * ways and thus often doesn't live in the vmalloc area. 133 */ 134 static struct pcpu_chunk *pcpu_first_chunk; 135 136 /* 137 * Optional reserved chunk. This chunk reserves part of the first 138 * chunk and serves it for reserved allocations. The amount of 139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 140 * area doesn't exist, the following variables contain NULL and 0 141 * respectively. 142 */ 143 static struct pcpu_chunk *pcpu_reserved_chunk; 144 static int pcpu_reserved_chunk_limit; 145 146 /* 147 * Synchronization rules. 148 * 149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 150 * protects allocation/reclaim paths, chunks, populated bitmap and 151 * vmalloc mapping. The latter is a spinlock and protects the index 152 * data structures - chunk slots, chunks and area maps in chunks. 153 * 154 * During allocation, pcpu_alloc_mutex is kept locked all the time and 155 * pcpu_lock is grabbed and released as necessary. All actual memory 156 * allocations are done using GFP_KERNEL with pcpu_lock released. In 157 * general, percpu memory can't be allocated with irq off but 158 * irqsave/restore are still used in alloc path so that it can be used 159 * from early init path - sched_init() specifically. 160 * 161 * Free path accesses and alters only the index data structures, so it 162 * can be safely called from atomic context. When memory needs to be 163 * returned to the system, free path schedules reclaim_work which 164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 165 * reclaimed, release both locks and frees the chunks. Note that it's 166 * necessary to grab both locks to remove a chunk from circulation as 167 * allocation path might be referencing the chunk with only 168 * pcpu_alloc_mutex locked. 169 */ 170 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 171 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 172 173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 174 175 /* reclaim work to release fully free chunks, scheduled from free path */ 176 static void pcpu_reclaim(struct work_struct *work); 177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 178 179 static int __pcpu_size_to_slot(int size) 180 { 181 int highbit = fls(size); /* size is in bytes */ 182 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 183 } 184 185 static int pcpu_size_to_slot(int size) 186 { 187 if (size == pcpu_unit_size) 188 return pcpu_nr_slots - 1; 189 return __pcpu_size_to_slot(size); 190 } 191 192 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 193 { 194 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 195 return 0; 196 197 return pcpu_size_to_slot(chunk->free_size); 198 } 199 200 static int pcpu_page_idx(unsigned int cpu, int page_idx) 201 { 202 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 203 } 204 205 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 206 unsigned int cpu, int page_idx) 207 { 208 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 209 (page_idx << PAGE_SHIFT); 210 } 211 212 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, 213 unsigned int cpu, int page_idx) 214 { 215 /* must not be used on pre-mapped chunk */ 216 WARN_ON(chunk->immutable); 217 218 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); 219 } 220 221 /* set the pointer to a chunk in a page struct */ 222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 223 { 224 page->index = (unsigned long)pcpu; 225 } 226 227 /* obtain pointer to a chunk from a page struct */ 228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 229 { 230 return (struct pcpu_chunk *)page->index; 231 } 232 233 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) 234 { 235 *rs = find_next_zero_bit(chunk->populated, end, *rs); 236 *re = find_next_bit(chunk->populated, end, *rs + 1); 237 } 238 239 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) 240 { 241 *rs = find_next_bit(chunk->populated, end, *rs); 242 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 243 } 244 245 /* 246 * (Un)populated page region iterators. Iterate over (un)populated 247 * page regions betwen @start and @end in @chunk. @rs and @re should 248 * be integer variables and will be set to start and end page index of 249 * the current region. 250 */ 251 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 252 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 253 (rs) < (re); \ 254 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 255 256 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 257 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 258 (rs) < (re); \ 259 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 260 261 /** 262 * pcpu_mem_alloc - allocate memory 263 * @size: bytes to allocate 264 * 265 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 266 * kzalloc() is used; otherwise, vmalloc() is used. The returned 267 * memory is always zeroed. 268 * 269 * CONTEXT: 270 * Does GFP_KERNEL allocation. 271 * 272 * RETURNS: 273 * Pointer to the allocated area on success, NULL on failure. 274 */ 275 static void *pcpu_mem_alloc(size_t size) 276 { 277 if (size <= PAGE_SIZE) 278 return kzalloc(size, GFP_KERNEL); 279 else { 280 void *ptr = vmalloc(size); 281 if (ptr) 282 memset(ptr, 0, size); 283 return ptr; 284 } 285 } 286 287 /** 288 * pcpu_mem_free - free memory 289 * @ptr: memory to free 290 * @size: size of the area 291 * 292 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). 293 */ 294 static void pcpu_mem_free(void *ptr, size_t size) 295 { 296 if (size <= PAGE_SIZE) 297 kfree(ptr); 298 else 299 vfree(ptr); 300 } 301 302 /** 303 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 304 * @chunk: chunk of interest 305 * @oslot: the previous slot it was on 306 * 307 * This function is called after an allocation or free changed @chunk. 308 * New slot according to the changed state is determined and @chunk is 309 * moved to the slot. Note that the reserved chunk is never put on 310 * chunk slots. 311 * 312 * CONTEXT: 313 * pcpu_lock. 314 */ 315 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 316 { 317 int nslot = pcpu_chunk_slot(chunk); 318 319 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 320 if (oslot < nslot) 321 list_move(&chunk->list, &pcpu_slot[nslot]); 322 else 323 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 324 } 325 } 326 327 /** 328 * pcpu_chunk_addr_search - determine chunk containing specified address 329 * @addr: address for which the chunk needs to be determined. 330 * 331 * RETURNS: 332 * The address of the found chunk. 333 */ 334 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 335 { 336 void *first_start = pcpu_first_chunk->base_addr; 337 338 /* is it in the first chunk? */ 339 if (addr >= first_start && addr < first_start + pcpu_unit_size) { 340 /* is it in the reserved area? */ 341 if (addr < first_start + pcpu_reserved_chunk_limit) 342 return pcpu_reserved_chunk; 343 return pcpu_first_chunk; 344 } 345 346 /* 347 * The address is relative to unit0 which might be unused and 348 * thus unmapped. Offset the address to the unit space of the 349 * current processor before looking it up in the vmalloc 350 * space. Note that any possible cpu id can be used here, so 351 * there's no need to worry about preemption or cpu hotplug. 352 */ 353 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 354 return pcpu_get_page_chunk(vmalloc_to_page(addr)); 355 } 356 357 /** 358 * pcpu_extend_area_map - extend area map for allocation 359 * @chunk: target chunk 360 * 361 * Extend area map of @chunk so that it can accomodate an allocation. 362 * A single allocation can split an area into three areas, so this 363 * function makes sure that @chunk->map has at least two extra slots. 364 * 365 * CONTEXT: 366 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired 367 * if area map is extended. 368 * 369 * RETURNS: 370 * 0 if noop, 1 if successfully extended, -errno on failure. 371 */ 372 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, unsigned long *flags) 373 { 374 int new_alloc; 375 int *new; 376 size_t size; 377 378 /* has enough? */ 379 if (chunk->map_alloc >= chunk->map_used + 2) 380 return 0; 381 382 spin_unlock_irqrestore(&pcpu_lock, *flags); 383 384 new_alloc = PCPU_DFL_MAP_ALLOC; 385 while (new_alloc < chunk->map_used + 2) 386 new_alloc *= 2; 387 388 new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); 389 if (!new) { 390 spin_lock_irqsave(&pcpu_lock, *flags); 391 return -ENOMEM; 392 } 393 394 /* 395 * Acquire pcpu_lock and switch to new area map. Only free 396 * could have happened inbetween, so map_used couldn't have 397 * grown. 398 */ 399 spin_lock_irqsave(&pcpu_lock, *flags); 400 BUG_ON(new_alloc < chunk->map_used + 2); 401 402 size = chunk->map_alloc * sizeof(chunk->map[0]); 403 memcpy(new, chunk->map, size); 404 405 /* 406 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is 407 * one of the first chunks and still using static map. 408 */ 409 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) 410 pcpu_mem_free(chunk->map, size); 411 412 chunk->map_alloc = new_alloc; 413 chunk->map = new; 414 return 0; 415 } 416 417 /** 418 * pcpu_split_block - split a map block 419 * @chunk: chunk of interest 420 * @i: index of map block to split 421 * @head: head size in bytes (can be 0) 422 * @tail: tail size in bytes (can be 0) 423 * 424 * Split the @i'th map block into two or three blocks. If @head is 425 * non-zero, @head bytes block is inserted before block @i moving it 426 * to @i+1 and reducing its size by @head bytes. 427 * 428 * If @tail is non-zero, the target block, which can be @i or @i+1 429 * depending on @head, is reduced by @tail bytes and @tail byte block 430 * is inserted after the target block. 431 * 432 * @chunk->map must have enough free slots to accomodate the split. 433 * 434 * CONTEXT: 435 * pcpu_lock. 436 */ 437 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 438 int head, int tail) 439 { 440 int nr_extra = !!head + !!tail; 441 442 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 443 444 /* insert new subblocks */ 445 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 446 sizeof(chunk->map[0]) * (chunk->map_used - i)); 447 chunk->map_used += nr_extra; 448 449 if (head) { 450 chunk->map[i + 1] = chunk->map[i] - head; 451 chunk->map[i++] = head; 452 } 453 if (tail) { 454 chunk->map[i++] -= tail; 455 chunk->map[i] = tail; 456 } 457 } 458 459 /** 460 * pcpu_alloc_area - allocate area from a pcpu_chunk 461 * @chunk: chunk of interest 462 * @size: wanted size in bytes 463 * @align: wanted align 464 * 465 * Try to allocate @size bytes area aligned at @align from @chunk. 466 * Note that this function only allocates the offset. It doesn't 467 * populate or map the area. 468 * 469 * @chunk->map must have at least two free slots. 470 * 471 * CONTEXT: 472 * pcpu_lock. 473 * 474 * RETURNS: 475 * Allocated offset in @chunk on success, -1 if no matching area is 476 * found. 477 */ 478 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 479 { 480 int oslot = pcpu_chunk_slot(chunk); 481 int max_contig = 0; 482 int i, off; 483 484 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 485 bool is_last = i + 1 == chunk->map_used; 486 int head, tail; 487 488 /* extra for alignment requirement */ 489 head = ALIGN(off, align) - off; 490 BUG_ON(i == 0 && head != 0); 491 492 if (chunk->map[i] < 0) 493 continue; 494 if (chunk->map[i] < head + size) { 495 max_contig = max(chunk->map[i], max_contig); 496 continue; 497 } 498 499 /* 500 * If head is small or the previous block is free, 501 * merge'em. Note that 'small' is defined as smaller 502 * than sizeof(int), which is very small but isn't too 503 * uncommon for percpu allocations. 504 */ 505 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 506 if (chunk->map[i - 1] > 0) 507 chunk->map[i - 1] += head; 508 else { 509 chunk->map[i - 1] -= head; 510 chunk->free_size -= head; 511 } 512 chunk->map[i] -= head; 513 off += head; 514 head = 0; 515 } 516 517 /* if tail is small, just keep it around */ 518 tail = chunk->map[i] - head - size; 519 if (tail < sizeof(int)) 520 tail = 0; 521 522 /* split if warranted */ 523 if (head || tail) { 524 pcpu_split_block(chunk, i, head, tail); 525 if (head) { 526 i++; 527 off += head; 528 max_contig = max(chunk->map[i - 1], max_contig); 529 } 530 if (tail) 531 max_contig = max(chunk->map[i + 1], max_contig); 532 } 533 534 /* update hint and mark allocated */ 535 if (is_last) 536 chunk->contig_hint = max_contig; /* fully scanned */ 537 else 538 chunk->contig_hint = max(chunk->contig_hint, 539 max_contig); 540 541 chunk->free_size -= chunk->map[i]; 542 chunk->map[i] = -chunk->map[i]; 543 544 pcpu_chunk_relocate(chunk, oslot); 545 return off; 546 } 547 548 chunk->contig_hint = max_contig; /* fully scanned */ 549 pcpu_chunk_relocate(chunk, oslot); 550 551 /* tell the upper layer that this chunk has no matching area */ 552 return -1; 553 } 554 555 /** 556 * pcpu_free_area - free area to a pcpu_chunk 557 * @chunk: chunk of interest 558 * @freeme: offset of area to free 559 * 560 * Free area starting from @freeme to @chunk. Note that this function 561 * only modifies the allocation map. It doesn't depopulate or unmap 562 * the area. 563 * 564 * CONTEXT: 565 * pcpu_lock. 566 */ 567 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 568 { 569 int oslot = pcpu_chunk_slot(chunk); 570 int i, off; 571 572 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 573 if (off == freeme) 574 break; 575 BUG_ON(off != freeme); 576 BUG_ON(chunk->map[i] > 0); 577 578 chunk->map[i] = -chunk->map[i]; 579 chunk->free_size += chunk->map[i]; 580 581 /* merge with previous? */ 582 if (i > 0 && chunk->map[i - 1] >= 0) { 583 chunk->map[i - 1] += chunk->map[i]; 584 chunk->map_used--; 585 memmove(&chunk->map[i], &chunk->map[i + 1], 586 (chunk->map_used - i) * sizeof(chunk->map[0])); 587 i--; 588 } 589 /* merge with next? */ 590 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 591 chunk->map[i] += chunk->map[i + 1]; 592 chunk->map_used--; 593 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 594 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 595 } 596 597 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 598 pcpu_chunk_relocate(chunk, oslot); 599 } 600 601 /** 602 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap 603 * @chunk: chunk of interest 604 * @bitmapp: output parameter for bitmap 605 * @may_alloc: may allocate the array 606 * 607 * Returns pointer to array of pointers to struct page and bitmap, 608 * both of which can be indexed with pcpu_page_idx(). The returned 609 * array is cleared to zero and *@bitmapp is copied from 610 * @chunk->populated. Note that there is only one array and bitmap 611 * and access exclusion is the caller's responsibility. 612 * 613 * CONTEXT: 614 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. 615 * Otherwise, don't care. 616 * 617 * RETURNS: 618 * Pointer to temp pages array on success, NULL on failure. 619 */ 620 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, 621 unsigned long **bitmapp, 622 bool may_alloc) 623 { 624 static struct page **pages; 625 static unsigned long *bitmap; 626 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); 627 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * 628 sizeof(unsigned long); 629 630 if (!pages || !bitmap) { 631 if (may_alloc && !pages) 632 pages = pcpu_mem_alloc(pages_size); 633 if (may_alloc && !bitmap) 634 bitmap = pcpu_mem_alloc(bitmap_size); 635 if (!pages || !bitmap) 636 return NULL; 637 } 638 639 memset(pages, 0, pages_size); 640 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); 641 642 *bitmapp = bitmap; 643 return pages; 644 } 645 646 /** 647 * pcpu_free_pages - free pages which were allocated for @chunk 648 * @chunk: chunk pages were allocated for 649 * @pages: array of pages to be freed, indexed by pcpu_page_idx() 650 * @populated: populated bitmap 651 * @page_start: page index of the first page to be freed 652 * @page_end: page index of the last page to be freed + 1 653 * 654 * Free pages [@page_start and @page_end) in @pages for all units. 655 * The pages were allocated for @chunk. 656 */ 657 static void pcpu_free_pages(struct pcpu_chunk *chunk, 658 struct page **pages, unsigned long *populated, 659 int page_start, int page_end) 660 { 661 unsigned int cpu; 662 int i; 663 664 for_each_possible_cpu(cpu) { 665 for (i = page_start; i < page_end; i++) { 666 struct page *page = pages[pcpu_page_idx(cpu, i)]; 667 668 if (page) 669 __free_page(page); 670 } 671 } 672 } 673 674 /** 675 * pcpu_alloc_pages - allocates pages for @chunk 676 * @chunk: target chunk 677 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() 678 * @populated: populated bitmap 679 * @page_start: page index of the first page to be allocated 680 * @page_end: page index of the last page to be allocated + 1 681 * 682 * Allocate pages [@page_start,@page_end) into @pages for all units. 683 * The allocation is for @chunk. Percpu core doesn't care about the 684 * content of @pages and will pass it verbatim to pcpu_map_pages(). 685 */ 686 static int pcpu_alloc_pages(struct pcpu_chunk *chunk, 687 struct page **pages, unsigned long *populated, 688 int page_start, int page_end) 689 { 690 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; 691 unsigned int cpu; 692 int i; 693 694 for_each_possible_cpu(cpu) { 695 for (i = page_start; i < page_end; i++) { 696 struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; 697 698 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); 699 if (!*pagep) { 700 pcpu_free_pages(chunk, pages, populated, 701 page_start, page_end); 702 return -ENOMEM; 703 } 704 } 705 } 706 return 0; 707 } 708 709 /** 710 * pcpu_pre_unmap_flush - flush cache prior to unmapping 711 * @chunk: chunk the regions to be flushed belongs to 712 * @page_start: page index of the first page to be flushed 713 * @page_end: page index of the last page to be flushed + 1 714 * 715 * Pages in [@page_start,@page_end) of @chunk are about to be 716 * unmapped. Flush cache. As each flushing trial can be very 717 * expensive, issue flush on the whole region at once rather than 718 * doing it for each cpu. This could be an overkill but is more 719 * scalable. 720 */ 721 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, 722 int page_start, int page_end) 723 { 724 flush_cache_vunmap( 725 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 726 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 727 } 728 729 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) 730 { 731 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); 732 } 733 734 /** 735 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk 736 * @chunk: chunk of interest 737 * @pages: pages array which can be used to pass information to free 738 * @populated: populated bitmap 739 * @page_start: page index of the first page to unmap 740 * @page_end: page index of the last page to unmap + 1 741 * 742 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. 743 * Corresponding elements in @pages were cleared by the caller and can 744 * be used to carry information to pcpu_free_pages() which will be 745 * called after all unmaps are finished. The caller should call 746 * proper pre/post flush functions. 747 */ 748 static void pcpu_unmap_pages(struct pcpu_chunk *chunk, 749 struct page **pages, unsigned long *populated, 750 int page_start, int page_end) 751 { 752 unsigned int cpu; 753 int i; 754 755 for_each_possible_cpu(cpu) { 756 for (i = page_start; i < page_end; i++) { 757 struct page *page; 758 759 page = pcpu_chunk_page(chunk, cpu, i); 760 WARN_ON(!page); 761 pages[pcpu_page_idx(cpu, i)] = page; 762 } 763 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), 764 page_end - page_start); 765 } 766 767 for (i = page_start; i < page_end; i++) 768 __clear_bit(i, populated); 769 } 770 771 /** 772 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping 773 * @chunk: pcpu_chunk the regions to be flushed belong to 774 * @page_start: page index of the first page to be flushed 775 * @page_end: page index of the last page to be flushed + 1 776 * 777 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush 778 * TLB for the regions. This can be skipped if the area is to be 779 * returned to vmalloc as vmalloc will handle TLB flushing lazily. 780 * 781 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once 782 * for the whole region. 783 */ 784 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, 785 int page_start, int page_end) 786 { 787 flush_tlb_kernel_range( 788 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 789 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 790 } 791 792 static int __pcpu_map_pages(unsigned long addr, struct page **pages, 793 int nr_pages) 794 { 795 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, 796 PAGE_KERNEL, pages); 797 } 798 799 /** 800 * pcpu_map_pages - map pages into a pcpu_chunk 801 * @chunk: chunk of interest 802 * @pages: pages array containing pages to be mapped 803 * @populated: populated bitmap 804 * @page_start: page index of the first page to map 805 * @page_end: page index of the last page to map + 1 806 * 807 * For each cpu, map pages [@page_start,@page_end) into @chunk. The 808 * caller is responsible for calling pcpu_post_map_flush() after all 809 * mappings are complete. 810 * 811 * This function is responsible for setting corresponding bits in 812 * @chunk->populated bitmap and whatever is necessary for reverse 813 * lookup (addr -> chunk). 814 */ 815 static int pcpu_map_pages(struct pcpu_chunk *chunk, 816 struct page **pages, unsigned long *populated, 817 int page_start, int page_end) 818 { 819 unsigned int cpu, tcpu; 820 int i, err; 821 822 for_each_possible_cpu(cpu) { 823 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), 824 &pages[pcpu_page_idx(cpu, page_start)], 825 page_end - page_start); 826 if (err < 0) 827 goto err; 828 } 829 830 /* mapping successful, link chunk and mark populated */ 831 for (i = page_start; i < page_end; i++) { 832 for_each_possible_cpu(cpu) 833 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], 834 chunk); 835 __set_bit(i, populated); 836 } 837 838 return 0; 839 840 err: 841 for_each_possible_cpu(tcpu) { 842 if (tcpu == cpu) 843 break; 844 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), 845 page_end - page_start); 846 } 847 return err; 848 } 849 850 /** 851 * pcpu_post_map_flush - flush cache after mapping 852 * @chunk: pcpu_chunk the regions to be flushed belong to 853 * @page_start: page index of the first page to be flushed 854 * @page_end: page index of the last page to be flushed + 1 855 * 856 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush 857 * cache. 858 * 859 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once 860 * for the whole region. 861 */ 862 static void pcpu_post_map_flush(struct pcpu_chunk *chunk, 863 int page_start, int page_end) 864 { 865 flush_cache_vmap( 866 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), 867 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); 868 } 869 870 /** 871 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk 872 * @chunk: chunk to depopulate 873 * @off: offset to the area to depopulate 874 * @size: size of the area to depopulate in bytes 875 * @flush: whether to flush cache and tlb or not 876 * 877 * For each cpu, depopulate and unmap pages [@page_start,@page_end) 878 * from @chunk. If @flush is true, vcache is flushed before unmapping 879 * and tlb after. 880 * 881 * CONTEXT: 882 * pcpu_alloc_mutex. 883 */ 884 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) 885 { 886 int page_start = PFN_DOWN(off); 887 int page_end = PFN_UP(off + size); 888 struct page **pages; 889 unsigned long *populated; 890 int rs, re; 891 892 /* quick path, check whether it's empty already */ 893 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 894 if (rs == page_start && re == page_end) 895 return; 896 break; 897 } 898 899 /* immutable chunks can't be depopulated */ 900 WARN_ON(chunk->immutable); 901 902 /* 903 * If control reaches here, there must have been at least one 904 * successful population attempt so the temp pages array must 905 * be available now. 906 */ 907 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); 908 BUG_ON(!pages); 909 910 /* unmap and free */ 911 pcpu_pre_unmap_flush(chunk, page_start, page_end); 912 913 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) 914 pcpu_unmap_pages(chunk, pages, populated, rs, re); 915 916 /* no need to flush tlb, vmalloc will handle it lazily */ 917 918 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) 919 pcpu_free_pages(chunk, pages, populated, rs, re); 920 921 /* commit new bitmap */ 922 bitmap_copy(chunk->populated, populated, pcpu_unit_pages); 923 } 924 925 /** 926 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk 927 * @chunk: chunk of interest 928 * @off: offset to the area to populate 929 * @size: size of the area to populate in bytes 930 * 931 * For each cpu, populate and map pages [@page_start,@page_end) into 932 * @chunk. The area is cleared on return. 933 * 934 * CONTEXT: 935 * pcpu_alloc_mutex, does GFP_KERNEL allocation. 936 */ 937 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) 938 { 939 int page_start = PFN_DOWN(off); 940 int page_end = PFN_UP(off + size); 941 int free_end = page_start, unmap_end = page_start; 942 struct page **pages; 943 unsigned long *populated; 944 unsigned int cpu; 945 int rs, re, rc; 946 947 /* quick path, check whether all pages are already there */ 948 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) { 949 if (rs == page_start && re == page_end) 950 goto clear; 951 break; 952 } 953 954 /* need to allocate and map pages, this chunk can't be immutable */ 955 WARN_ON(chunk->immutable); 956 957 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); 958 if (!pages) 959 return -ENOMEM; 960 961 /* alloc and map */ 962 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 963 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); 964 if (rc) 965 goto err_free; 966 free_end = re; 967 } 968 969 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 970 rc = pcpu_map_pages(chunk, pages, populated, rs, re); 971 if (rc) 972 goto err_unmap; 973 unmap_end = re; 974 } 975 pcpu_post_map_flush(chunk, page_start, page_end); 976 977 /* commit new bitmap */ 978 bitmap_copy(chunk->populated, populated, pcpu_unit_pages); 979 clear: 980 for_each_possible_cpu(cpu) 981 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 982 return 0; 983 984 err_unmap: 985 pcpu_pre_unmap_flush(chunk, page_start, unmap_end); 986 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) 987 pcpu_unmap_pages(chunk, pages, populated, rs, re); 988 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); 989 err_free: 990 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) 991 pcpu_free_pages(chunk, pages, populated, rs, re); 992 return rc; 993 } 994 995 static void free_pcpu_chunk(struct pcpu_chunk *chunk) 996 { 997 if (!chunk) 998 return; 999 if (chunk->vms) 1000 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); 1001 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 1002 kfree(chunk); 1003 } 1004 1005 static struct pcpu_chunk *alloc_pcpu_chunk(void) 1006 { 1007 struct pcpu_chunk *chunk; 1008 1009 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); 1010 if (!chunk) 1011 return NULL; 1012 1013 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); 1014 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 1015 chunk->map[chunk->map_used++] = pcpu_unit_size; 1016 1017 chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, 1018 pcpu_nr_groups, pcpu_atom_size, 1019 GFP_KERNEL); 1020 if (!chunk->vms) { 1021 free_pcpu_chunk(chunk); 1022 return NULL; 1023 } 1024 1025 INIT_LIST_HEAD(&chunk->list); 1026 chunk->free_size = pcpu_unit_size; 1027 chunk->contig_hint = pcpu_unit_size; 1028 chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; 1029 1030 return chunk; 1031 } 1032 1033 /** 1034 * pcpu_alloc - the percpu allocator 1035 * @size: size of area to allocate in bytes 1036 * @align: alignment of area (max PAGE_SIZE) 1037 * @reserved: allocate from the reserved chunk if available 1038 * 1039 * Allocate percpu area of @size bytes aligned at @align. 1040 * 1041 * CONTEXT: 1042 * Does GFP_KERNEL allocation. 1043 * 1044 * RETURNS: 1045 * Percpu pointer to the allocated area on success, NULL on failure. 1046 */ 1047 static void *pcpu_alloc(size_t size, size_t align, bool reserved) 1048 { 1049 static int warn_limit = 10; 1050 struct pcpu_chunk *chunk; 1051 const char *err; 1052 int slot, off; 1053 unsigned long flags; 1054 1055 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 1056 WARN(true, "illegal size (%zu) or align (%zu) for " 1057 "percpu allocation\n", size, align); 1058 return NULL; 1059 } 1060 1061 mutex_lock(&pcpu_alloc_mutex); 1062 spin_lock_irqsave(&pcpu_lock, flags); 1063 1064 /* serve reserved allocations from the reserved chunk if available */ 1065 if (reserved && pcpu_reserved_chunk) { 1066 chunk = pcpu_reserved_chunk; 1067 if (size > chunk->contig_hint || 1068 pcpu_extend_area_map(chunk, &flags) < 0) { 1069 err = "failed to extend area map of reserved chunk"; 1070 goto fail_unlock; 1071 } 1072 off = pcpu_alloc_area(chunk, size, align); 1073 if (off >= 0) 1074 goto area_found; 1075 err = "alloc from reserved chunk failed"; 1076 goto fail_unlock; 1077 } 1078 1079 restart: 1080 /* search through normal chunks */ 1081 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1082 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1083 if (size > chunk->contig_hint) 1084 continue; 1085 1086 switch (pcpu_extend_area_map(chunk, &flags)) { 1087 case 0: 1088 break; 1089 case 1: 1090 goto restart; /* pcpu_lock dropped, restart */ 1091 default: 1092 err = "failed to extend area map"; 1093 goto fail_unlock; 1094 } 1095 1096 off = pcpu_alloc_area(chunk, size, align); 1097 if (off >= 0) 1098 goto area_found; 1099 } 1100 } 1101 1102 /* hmmm... no space left, create a new chunk */ 1103 spin_unlock_irqrestore(&pcpu_lock, flags); 1104 1105 chunk = alloc_pcpu_chunk(); 1106 if (!chunk) { 1107 err = "failed to allocate new chunk"; 1108 goto fail_unlock_mutex; 1109 } 1110 1111 spin_lock_irqsave(&pcpu_lock, flags); 1112 pcpu_chunk_relocate(chunk, -1); 1113 goto restart; 1114 1115 area_found: 1116 spin_unlock_irqrestore(&pcpu_lock, flags); 1117 1118 /* populate, map and clear the area */ 1119 if (pcpu_populate_chunk(chunk, off, size)) { 1120 spin_lock_irqsave(&pcpu_lock, flags); 1121 pcpu_free_area(chunk, off); 1122 err = "failed to populate"; 1123 goto fail_unlock; 1124 } 1125 1126 mutex_unlock(&pcpu_alloc_mutex); 1127 1128 /* return address relative to base address */ 1129 return __addr_to_pcpu_ptr(chunk->base_addr + off); 1130 1131 fail_unlock: 1132 spin_unlock_irqrestore(&pcpu_lock, flags); 1133 fail_unlock_mutex: 1134 mutex_unlock(&pcpu_alloc_mutex); 1135 if (warn_limit) { 1136 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 1137 "%s\n", size, align, err); 1138 dump_stack(); 1139 if (!--warn_limit) 1140 pr_info("PERCPU: limit reached, disable warning\n"); 1141 } 1142 return NULL; 1143 } 1144 1145 /** 1146 * __alloc_percpu - allocate dynamic percpu area 1147 * @size: size of area to allocate in bytes 1148 * @align: alignment of area (max PAGE_SIZE) 1149 * 1150 * Allocate percpu area of @size bytes aligned at @align. Might 1151 * sleep. Might trigger writeouts. 1152 * 1153 * CONTEXT: 1154 * Does GFP_KERNEL allocation. 1155 * 1156 * RETURNS: 1157 * Percpu pointer to the allocated area on success, NULL on failure. 1158 */ 1159 void *__alloc_percpu(size_t size, size_t align) 1160 { 1161 return pcpu_alloc(size, align, false); 1162 } 1163 EXPORT_SYMBOL_GPL(__alloc_percpu); 1164 1165 /** 1166 * __alloc_reserved_percpu - allocate reserved percpu area 1167 * @size: size of area to allocate in bytes 1168 * @align: alignment of area (max PAGE_SIZE) 1169 * 1170 * Allocate percpu area of @size bytes aligned at @align from reserved 1171 * percpu area if arch has set it up; otherwise, allocation is served 1172 * from the same dynamic area. Might sleep. Might trigger writeouts. 1173 * 1174 * CONTEXT: 1175 * Does GFP_KERNEL allocation. 1176 * 1177 * RETURNS: 1178 * Percpu pointer to the allocated area on success, NULL on failure. 1179 */ 1180 void *__alloc_reserved_percpu(size_t size, size_t align) 1181 { 1182 return pcpu_alloc(size, align, true); 1183 } 1184 1185 /** 1186 * pcpu_reclaim - reclaim fully free chunks, workqueue function 1187 * @work: unused 1188 * 1189 * Reclaim all fully free chunks except for the first one. 1190 * 1191 * CONTEXT: 1192 * workqueue context. 1193 */ 1194 static void pcpu_reclaim(struct work_struct *work) 1195 { 1196 LIST_HEAD(todo); 1197 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 1198 struct pcpu_chunk *chunk, *next; 1199 1200 mutex_lock(&pcpu_alloc_mutex); 1201 spin_lock_irq(&pcpu_lock); 1202 1203 list_for_each_entry_safe(chunk, next, head, list) { 1204 WARN_ON(chunk->immutable); 1205 1206 /* spare the first one */ 1207 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 1208 continue; 1209 1210 list_move(&chunk->list, &todo); 1211 } 1212 1213 spin_unlock_irq(&pcpu_lock); 1214 1215 list_for_each_entry_safe(chunk, next, &todo, list) { 1216 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 1217 free_pcpu_chunk(chunk); 1218 } 1219 1220 mutex_unlock(&pcpu_alloc_mutex); 1221 } 1222 1223 /** 1224 * free_percpu - free percpu area 1225 * @ptr: pointer to area to free 1226 * 1227 * Free percpu area @ptr. 1228 * 1229 * CONTEXT: 1230 * Can be called from atomic context. 1231 */ 1232 void free_percpu(void *ptr) 1233 { 1234 void *addr = __pcpu_ptr_to_addr(ptr); 1235 struct pcpu_chunk *chunk; 1236 unsigned long flags; 1237 int off; 1238 1239 if (!ptr) 1240 return; 1241 1242 spin_lock_irqsave(&pcpu_lock, flags); 1243 1244 chunk = pcpu_chunk_addr_search(addr); 1245 off = addr - chunk->base_addr; 1246 1247 pcpu_free_area(chunk, off); 1248 1249 /* if there are more than one fully free chunks, wake up grim reaper */ 1250 if (chunk->free_size == pcpu_unit_size) { 1251 struct pcpu_chunk *pos; 1252 1253 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1254 if (pos != chunk) { 1255 schedule_work(&pcpu_reclaim_work); 1256 break; 1257 } 1258 } 1259 1260 spin_unlock_irqrestore(&pcpu_lock, flags); 1261 } 1262 EXPORT_SYMBOL_GPL(free_percpu); 1263 1264 static inline size_t pcpu_calc_fc_sizes(size_t static_size, 1265 size_t reserved_size, 1266 ssize_t *dyn_sizep) 1267 { 1268 size_t size_sum; 1269 1270 size_sum = PFN_ALIGN(static_size + reserved_size + 1271 (*dyn_sizep >= 0 ? *dyn_sizep : 0)); 1272 if (*dyn_sizep != 0) 1273 *dyn_sizep = size_sum - static_size - reserved_size; 1274 1275 return size_sum; 1276 } 1277 1278 /** 1279 * pcpu_alloc_alloc_info - allocate percpu allocation info 1280 * @nr_groups: the number of groups 1281 * @nr_units: the number of units 1282 * 1283 * Allocate ai which is large enough for @nr_groups groups containing 1284 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1285 * cpu_map array which is long enough for @nr_units and filled with 1286 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1287 * pointer of other groups. 1288 * 1289 * RETURNS: 1290 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1291 * failure. 1292 */ 1293 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1294 int nr_units) 1295 { 1296 struct pcpu_alloc_info *ai; 1297 size_t base_size, ai_size; 1298 void *ptr; 1299 int unit; 1300 1301 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1302 __alignof__(ai->groups[0].cpu_map[0])); 1303 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1304 1305 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1306 if (!ptr) 1307 return NULL; 1308 ai = ptr; 1309 ptr += base_size; 1310 1311 ai->groups[0].cpu_map = ptr; 1312 1313 for (unit = 0; unit < nr_units; unit++) 1314 ai->groups[0].cpu_map[unit] = NR_CPUS; 1315 1316 ai->nr_groups = nr_groups; 1317 ai->__ai_size = PFN_ALIGN(ai_size); 1318 1319 return ai; 1320 } 1321 1322 /** 1323 * pcpu_free_alloc_info - free percpu allocation info 1324 * @ai: pcpu_alloc_info to free 1325 * 1326 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1327 */ 1328 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1329 { 1330 free_bootmem(__pa(ai), ai->__ai_size); 1331 } 1332 1333 /** 1334 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1335 * @reserved_size: the size of reserved percpu area in bytes 1336 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1337 * @atom_size: allocation atom size 1338 * @cpu_distance_fn: callback to determine distance between cpus, optional 1339 * 1340 * This function determines grouping of units, their mappings to cpus 1341 * and other parameters considering needed percpu size, allocation 1342 * atom size and distances between CPUs. 1343 * 1344 * Groups are always mutliples of atom size and CPUs which are of 1345 * LOCAL_DISTANCE both ways are grouped together and share space for 1346 * units in the same group. The returned configuration is guaranteed 1347 * to have CPUs on different nodes on different groups and >=75% usage 1348 * of allocated virtual address space. 1349 * 1350 * RETURNS: 1351 * On success, pointer to the new allocation_info is returned. On 1352 * failure, ERR_PTR value is returned. 1353 */ 1354 struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1355 size_t reserved_size, ssize_t dyn_size, 1356 size_t atom_size, 1357 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1358 { 1359 static int group_map[NR_CPUS] __initdata; 1360 static int group_cnt[NR_CPUS] __initdata; 1361 const size_t static_size = __per_cpu_end - __per_cpu_start; 1362 int group_cnt_max = 0, nr_groups = 1, nr_units = 0; 1363 size_t size_sum, min_unit_size, alloc_size; 1364 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1365 int last_allocs, group, unit; 1366 unsigned int cpu, tcpu; 1367 struct pcpu_alloc_info *ai; 1368 unsigned int *cpu_map; 1369 1370 /* this function may be called multiple times */ 1371 memset(group_map, 0, sizeof(group_map)); 1372 memset(group_cnt, 0, sizeof(group_map)); 1373 1374 /* 1375 * Determine min_unit_size, alloc_size and max_upa such that 1376 * alloc_size is multiple of atom_size and is the smallest 1377 * which can accomodate 4k aligned segments which are equal to 1378 * or larger than min_unit_size. 1379 */ 1380 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); 1381 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1382 1383 alloc_size = roundup(min_unit_size, atom_size); 1384 upa = alloc_size / min_unit_size; 1385 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1386 upa--; 1387 max_upa = upa; 1388 1389 /* group cpus according to their proximity */ 1390 for_each_possible_cpu(cpu) { 1391 group = 0; 1392 next_group: 1393 for_each_possible_cpu(tcpu) { 1394 if (cpu == tcpu) 1395 break; 1396 if (group_map[tcpu] == group && cpu_distance_fn && 1397 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1398 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1399 group++; 1400 nr_groups = max(nr_groups, group + 1); 1401 goto next_group; 1402 } 1403 } 1404 group_map[cpu] = group; 1405 group_cnt[group]++; 1406 group_cnt_max = max(group_cnt_max, group_cnt[group]); 1407 } 1408 1409 /* 1410 * Expand unit size until address space usage goes over 75% 1411 * and then as much as possible without using more address 1412 * space. 1413 */ 1414 last_allocs = INT_MAX; 1415 for (upa = max_upa; upa; upa--) { 1416 int allocs = 0, wasted = 0; 1417 1418 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1419 continue; 1420 1421 for (group = 0; group < nr_groups; group++) { 1422 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1423 allocs += this_allocs; 1424 wasted += this_allocs * upa - group_cnt[group]; 1425 } 1426 1427 /* 1428 * Don't accept if wastage is over 25%. The 1429 * greater-than comparison ensures upa==1 always 1430 * passes the following check. 1431 */ 1432 if (wasted > num_possible_cpus() / 3) 1433 continue; 1434 1435 /* and then don't consume more memory */ 1436 if (allocs > last_allocs) 1437 break; 1438 last_allocs = allocs; 1439 best_upa = upa; 1440 } 1441 upa = best_upa; 1442 1443 /* allocate and fill alloc_info */ 1444 for (group = 0; group < nr_groups; group++) 1445 nr_units += roundup(group_cnt[group], upa); 1446 1447 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1448 if (!ai) 1449 return ERR_PTR(-ENOMEM); 1450 cpu_map = ai->groups[0].cpu_map; 1451 1452 for (group = 0; group < nr_groups; group++) { 1453 ai->groups[group].cpu_map = cpu_map; 1454 cpu_map += roundup(group_cnt[group], upa); 1455 } 1456 1457 ai->static_size = static_size; 1458 ai->reserved_size = reserved_size; 1459 ai->dyn_size = dyn_size; 1460 ai->unit_size = alloc_size / upa; 1461 ai->atom_size = atom_size; 1462 ai->alloc_size = alloc_size; 1463 1464 for (group = 0, unit = 0; group_cnt[group]; group++) { 1465 struct pcpu_group_info *gi = &ai->groups[group]; 1466 1467 /* 1468 * Initialize base_offset as if all groups are located 1469 * back-to-back. The caller should update this to 1470 * reflect actual allocation. 1471 */ 1472 gi->base_offset = unit * ai->unit_size; 1473 1474 for_each_possible_cpu(cpu) 1475 if (group_map[cpu] == group) 1476 gi->cpu_map[gi->nr_units++] = cpu; 1477 gi->nr_units = roundup(gi->nr_units, upa); 1478 unit += gi->nr_units; 1479 } 1480 BUG_ON(unit != nr_units); 1481 1482 return ai; 1483 } 1484 1485 /** 1486 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1487 * @lvl: loglevel 1488 * @ai: allocation info to dump 1489 * 1490 * Print out information about @ai using loglevel @lvl. 1491 */ 1492 static void pcpu_dump_alloc_info(const char *lvl, 1493 const struct pcpu_alloc_info *ai) 1494 { 1495 int group_width = 1, cpu_width = 1, width; 1496 char empty_str[] = "--------"; 1497 int alloc = 0, alloc_end = 0; 1498 int group, v; 1499 int upa, apl; /* units per alloc, allocs per line */ 1500 1501 v = ai->nr_groups; 1502 while (v /= 10) 1503 group_width++; 1504 1505 v = num_possible_cpus(); 1506 while (v /= 10) 1507 cpu_width++; 1508 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1509 1510 upa = ai->alloc_size / ai->unit_size; 1511 width = upa * (cpu_width + 1) + group_width + 3; 1512 apl = rounddown_pow_of_two(max(60 / width, 1)); 1513 1514 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1515 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1516 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1517 1518 for (group = 0; group < ai->nr_groups; group++) { 1519 const struct pcpu_group_info *gi = &ai->groups[group]; 1520 int unit = 0, unit_end = 0; 1521 1522 BUG_ON(gi->nr_units % upa); 1523 for (alloc_end += gi->nr_units / upa; 1524 alloc < alloc_end; alloc++) { 1525 if (!(alloc % apl)) { 1526 printk("\n"); 1527 printk("%spcpu-alloc: ", lvl); 1528 } 1529 printk("[%0*d] ", group_width, group); 1530 1531 for (unit_end += upa; unit < unit_end; unit++) 1532 if (gi->cpu_map[unit] != NR_CPUS) 1533 printk("%0*d ", cpu_width, 1534 gi->cpu_map[unit]); 1535 else 1536 printk("%s ", empty_str); 1537 } 1538 } 1539 printk("\n"); 1540 } 1541 1542 /** 1543 * pcpu_setup_first_chunk - initialize the first percpu chunk 1544 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1545 * @base_addr: mapped address 1546 * 1547 * Initialize the first percpu chunk which contains the kernel static 1548 * perpcu area. This function is to be called from arch percpu area 1549 * setup path. 1550 * 1551 * @ai contains all information necessary to initialize the first 1552 * chunk and prime the dynamic percpu allocator. 1553 * 1554 * @ai->static_size is the size of static percpu area. 1555 * 1556 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1557 * reserve after the static area in the first chunk. This reserves 1558 * the first chunk such that it's available only through reserved 1559 * percpu allocation. This is primarily used to serve module percpu 1560 * static areas on architectures where the addressing model has 1561 * limited offset range for symbol relocations to guarantee module 1562 * percpu symbols fall inside the relocatable range. 1563 * 1564 * @ai->dyn_size determines the number of bytes available for dynamic 1565 * allocation in the first chunk. The area between @ai->static_size + 1566 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1567 * 1568 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1569 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1570 * @ai->dyn_size. 1571 * 1572 * @ai->atom_size is the allocation atom size and used as alignment 1573 * for vm areas. 1574 * 1575 * @ai->alloc_size is the allocation size and always multiple of 1576 * @ai->atom_size. This is larger than @ai->atom_size if 1577 * @ai->unit_size is larger than @ai->atom_size. 1578 * 1579 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1580 * percpu areas. Units which should be colocated are put into the 1581 * same group. Dynamic VM areas will be allocated according to these 1582 * groupings. If @ai->nr_groups is zero, a single group containing 1583 * all units is assumed. 1584 * 1585 * The caller should have mapped the first chunk at @base_addr and 1586 * copied static data to each unit. 1587 * 1588 * If the first chunk ends up with both reserved and dynamic areas, it 1589 * is served by two chunks - one to serve the core static and reserved 1590 * areas and the other for the dynamic area. They share the same vm 1591 * and page map but uses different area allocation map to stay away 1592 * from each other. The latter chunk is circulated in the chunk slots 1593 * and available for dynamic allocation like any other chunks. 1594 * 1595 * RETURNS: 1596 * 0 on success, -errno on failure. 1597 */ 1598 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1599 void *base_addr) 1600 { 1601 static char cpus_buf[4096] __initdata; 1602 static int smap[2], dmap[2]; 1603 size_t dyn_size = ai->dyn_size; 1604 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1605 struct pcpu_chunk *schunk, *dchunk = NULL; 1606 unsigned long *group_offsets; 1607 size_t *group_sizes; 1608 unsigned long *unit_off; 1609 unsigned int cpu; 1610 int *unit_map; 1611 int group, unit, i; 1612 1613 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1614 1615 #define PCPU_SETUP_BUG_ON(cond) do { \ 1616 if (unlikely(cond)) { \ 1617 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1618 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1619 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1620 BUG(); \ 1621 } \ 1622 } while (0) 1623 1624 /* sanity checks */ 1625 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || 1626 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); 1627 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1628 PCPU_SETUP_BUG_ON(!ai->static_size); 1629 PCPU_SETUP_BUG_ON(!base_addr); 1630 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1631 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1632 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1633 1634 /* process group information and build config tables accordingly */ 1635 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1636 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1637 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1638 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1639 1640 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1641 unit_map[cpu] = UINT_MAX; 1642 pcpu_first_unit_cpu = NR_CPUS; 1643 1644 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1645 const struct pcpu_group_info *gi = &ai->groups[group]; 1646 1647 group_offsets[group] = gi->base_offset; 1648 group_sizes[group] = gi->nr_units * ai->unit_size; 1649 1650 for (i = 0; i < gi->nr_units; i++) { 1651 cpu = gi->cpu_map[i]; 1652 if (cpu == NR_CPUS) 1653 continue; 1654 1655 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1656 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1657 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1658 1659 unit_map[cpu] = unit + i; 1660 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1661 1662 if (pcpu_first_unit_cpu == NR_CPUS) 1663 pcpu_first_unit_cpu = cpu; 1664 } 1665 } 1666 pcpu_last_unit_cpu = cpu; 1667 pcpu_nr_units = unit; 1668 1669 for_each_possible_cpu(cpu) 1670 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1671 1672 /* we're done parsing the input, undefine BUG macro and dump config */ 1673 #undef PCPU_SETUP_BUG_ON 1674 pcpu_dump_alloc_info(KERN_INFO, ai); 1675 1676 pcpu_nr_groups = ai->nr_groups; 1677 pcpu_group_offsets = group_offsets; 1678 pcpu_group_sizes = group_sizes; 1679 pcpu_unit_map = unit_map; 1680 pcpu_unit_offsets = unit_off; 1681 1682 /* determine basic parameters */ 1683 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1684 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1685 pcpu_atom_size = ai->atom_size; 1686 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1687 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1688 1689 /* 1690 * Allocate chunk slots. The additional last slot is for 1691 * empty chunks. 1692 */ 1693 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1694 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1695 for (i = 0; i < pcpu_nr_slots; i++) 1696 INIT_LIST_HEAD(&pcpu_slot[i]); 1697 1698 /* 1699 * Initialize static chunk. If reserved_size is zero, the 1700 * static chunk covers static area + dynamic allocation area 1701 * in the first chunk. If reserved_size is not zero, it 1702 * covers static area + reserved area (mostly used for module 1703 * static percpu allocation). 1704 */ 1705 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1706 INIT_LIST_HEAD(&schunk->list); 1707 schunk->base_addr = base_addr; 1708 schunk->map = smap; 1709 schunk->map_alloc = ARRAY_SIZE(smap); 1710 schunk->immutable = true; 1711 bitmap_fill(schunk->populated, pcpu_unit_pages); 1712 1713 if (ai->reserved_size) { 1714 schunk->free_size = ai->reserved_size; 1715 pcpu_reserved_chunk = schunk; 1716 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1717 } else { 1718 schunk->free_size = dyn_size; 1719 dyn_size = 0; /* dynamic area covered */ 1720 } 1721 schunk->contig_hint = schunk->free_size; 1722 1723 schunk->map[schunk->map_used++] = -ai->static_size; 1724 if (schunk->free_size) 1725 schunk->map[schunk->map_used++] = schunk->free_size; 1726 1727 /* init dynamic chunk if necessary */ 1728 if (dyn_size) { 1729 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1730 INIT_LIST_HEAD(&dchunk->list); 1731 dchunk->base_addr = base_addr; 1732 dchunk->map = dmap; 1733 dchunk->map_alloc = ARRAY_SIZE(dmap); 1734 dchunk->immutable = true; 1735 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1736 1737 dchunk->contig_hint = dchunk->free_size = dyn_size; 1738 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1739 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1740 } 1741 1742 /* link the first chunk in */ 1743 pcpu_first_chunk = dchunk ?: schunk; 1744 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1745 1746 /* we're done */ 1747 pcpu_base_addr = base_addr; 1748 return 0; 1749 } 1750 1751 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1752 [PCPU_FC_AUTO] = "auto", 1753 [PCPU_FC_EMBED] = "embed", 1754 [PCPU_FC_PAGE] = "page", 1755 }; 1756 1757 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1758 1759 static int __init percpu_alloc_setup(char *str) 1760 { 1761 if (0) 1762 /* nada */; 1763 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1764 else if (!strcmp(str, "embed")) 1765 pcpu_chosen_fc = PCPU_FC_EMBED; 1766 #endif 1767 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1768 else if (!strcmp(str, "page")) 1769 pcpu_chosen_fc = PCPU_FC_PAGE; 1770 #endif 1771 else 1772 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1773 1774 return 0; 1775 } 1776 early_param("percpu_alloc", percpu_alloc_setup); 1777 1778 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1779 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1780 /** 1781 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1782 * @reserved_size: the size of reserved percpu area in bytes 1783 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto 1784 * @atom_size: allocation atom size 1785 * @cpu_distance_fn: callback to determine distance between cpus, optional 1786 * @alloc_fn: function to allocate percpu page 1787 * @free_fn: funtion to free percpu page 1788 * 1789 * This is a helper to ease setting up embedded first percpu chunk and 1790 * can be called where pcpu_setup_first_chunk() is expected. 1791 * 1792 * If this function is used to setup the first chunk, it is allocated 1793 * by calling @alloc_fn and used as-is without being mapped into 1794 * vmalloc area. Allocations are always whole multiples of @atom_size 1795 * aligned to @atom_size. 1796 * 1797 * This enables the first chunk to piggy back on the linear physical 1798 * mapping which often uses larger page size. Please note that this 1799 * can result in very sparse cpu->unit mapping on NUMA machines thus 1800 * requiring large vmalloc address space. Don't use this allocator if 1801 * vmalloc space is not orders of magnitude larger than distances 1802 * between node memory addresses (ie. 32bit NUMA machines). 1803 * 1804 * When @dyn_size is positive, dynamic area might be larger than 1805 * specified to fill page alignment. When @dyn_size is auto, 1806 * @dyn_size is just big enough to fill page alignment after static 1807 * and reserved areas. 1808 * 1809 * If the needed size is smaller than the minimum or specified unit 1810 * size, the leftover is returned using @free_fn. 1811 * 1812 * RETURNS: 1813 * 0 on success, -errno on failure. 1814 */ 1815 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 1816 size_t atom_size, 1817 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1818 pcpu_fc_alloc_fn_t alloc_fn, 1819 pcpu_fc_free_fn_t free_fn) 1820 { 1821 void *base = (void *)ULONG_MAX; 1822 void **areas = NULL; 1823 struct pcpu_alloc_info *ai; 1824 size_t size_sum, areas_size, max_distance; 1825 int group, i, rc; 1826 1827 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1828 cpu_distance_fn); 1829 if (IS_ERR(ai)) 1830 return PTR_ERR(ai); 1831 1832 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1833 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1834 1835 areas = alloc_bootmem_nopanic(areas_size); 1836 if (!areas) { 1837 rc = -ENOMEM; 1838 goto out_free; 1839 } 1840 1841 /* allocate, copy and determine base address */ 1842 for (group = 0; group < ai->nr_groups; group++) { 1843 struct pcpu_group_info *gi = &ai->groups[group]; 1844 unsigned int cpu = NR_CPUS; 1845 void *ptr; 1846 1847 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1848 cpu = gi->cpu_map[i]; 1849 BUG_ON(cpu == NR_CPUS); 1850 1851 /* allocate space for the whole group */ 1852 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1853 if (!ptr) { 1854 rc = -ENOMEM; 1855 goto out_free_areas; 1856 } 1857 areas[group] = ptr; 1858 1859 base = min(ptr, base); 1860 1861 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1862 if (gi->cpu_map[i] == NR_CPUS) { 1863 /* unused unit, free whole */ 1864 free_fn(ptr, ai->unit_size); 1865 continue; 1866 } 1867 /* copy and return the unused part */ 1868 memcpy(ptr, __per_cpu_load, ai->static_size); 1869 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1870 } 1871 } 1872 1873 /* base address is now known, determine group base offsets */ 1874 max_distance = 0; 1875 for (group = 0; group < ai->nr_groups; group++) { 1876 ai->groups[group].base_offset = areas[group] - base; 1877 max_distance = max_t(size_t, max_distance, 1878 ai->groups[group].base_offset); 1879 } 1880 max_distance += ai->unit_size; 1881 1882 /* warn if maximum distance is further than 75% of vmalloc space */ 1883 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1884 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1885 "space 0x%lx\n", 1886 max_distance, VMALLOC_END - VMALLOC_START); 1887 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1888 /* and fail if we have fallback */ 1889 rc = -EINVAL; 1890 goto out_free; 1891 #endif 1892 } 1893 1894 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1895 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1896 ai->dyn_size, ai->unit_size); 1897 1898 rc = pcpu_setup_first_chunk(ai, base); 1899 goto out_free; 1900 1901 out_free_areas: 1902 for (group = 0; group < ai->nr_groups; group++) 1903 free_fn(areas[group], 1904 ai->groups[group].nr_units * ai->unit_size); 1905 out_free: 1906 pcpu_free_alloc_info(ai); 1907 if (areas) 1908 free_bootmem(__pa(areas), areas_size); 1909 return rc; 1910 } 1911 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || 1912 !CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1913 1914 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1915 /** 1916 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1917 * @reserved_size: the size of reserved percpu area in bytes 1918 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1919 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE 1920 * @populate_pte_fn: function to populate pte 1921 * 1922 * This is a helper to ease setting up page-remapped first percpu 1923 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1924 * 1925 * This is the basic allocator. Static percpu area is allocated 1926 * page-by-page into vmalloc area. 1927 * 1928 * RETURNS: 1929 * 0 on success, -errno on failure. 1930 */ 1931 int __init pcpu_page_first_chunk(size_t reserved_size, 1932 pcpu_fc_alloc_fn_t alloc_fn, 1933 pcpu_fc_free_fn_t free_fn, 1934 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1935 { 1936 static struct vm_struct vm; 1937 struct pcpu_alloc_info *ai; 1938 char psize_str[16]; 1939 int unit_pages; 1940 size_t pages_size; 1941 struct page **pages; 1942 int unit, i, j, rc; 1943 1944 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1945 1946 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); 1947 if (IS_ERR(ai)) 1948 return PTR_ERR(ai); 1949 BUG_ON(ai->nr_groups != 1); 1950 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1951 1952 unit_pages = ai->unit_size >> PAGE_SHIFT; 1953 1954 /* unaligned allocations can't be freed, round up to page size */ 1955 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1956 sizeof(pages[0])); 1957 pages = alloc_bootmem(pages_size); 1958 1959 /* allocate pages */ 1960 j = 0; 1961 for (unit = 0; unit < num_possible_cpus(); unit++) 1962 for (i = 0; i < unit_pages; i++) { 1963 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1964 void *ptr; 1965 1966 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1967 if (!ptr) { 1968 pr_warning("PERCPU: failed to allocate %s page " 1969 "for cpu%u\n", psize_str, cpu); 1970 goto enomem; 1971 } 1972 pages[j++] = virt_to_page(ptr); 1973 } 1974 1975 /* allocate vm area, map the pages and copy static data */ 1976 vm.flags = VM_ALLOC; 1977 vm.size = num_possible_cpus() * ai->unit_size; 1978 vm_area_register_early(&vm, PAGE_SIZE); 1979 1980 for (unit = 0; unit < num_possible_cpus(); unit++) { 1981 unsigned long unit_addr = 1982 (unsigned long)vm.addr + unit * ai->unit_size; 1983 1984 for (i = 0; i < unit_pages; i++) 1985 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1986 1987 /* pte already populated, the following shouldn't fail */ 1988 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1989 unit_pages); 1990 if (rc < 0) 1991 panic("failed to map percpu area, err=%d\n", rc); 1992 1993 /* 1994 * FIXME: Archs with virtual cache should flush local 1995 * cache for the linear mapping here - something 1996 * equivalent to flush_cache_vmap() on the local cpu. 1997 * flush_cache_vmap() can't be used as most supporting 1998 * data structures are not set up yet. 1999 */ 2000 2001 /* copy static data */ 2002 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2003 } 2004 2005 /* we're ready, commit */ 2006 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 2007 unit_pages, psize_str, vm.addr, ai->static_size, 2008 ai->reserved_size, ai->dyn_size); 2009 2010 rc = pcpu_setup_first_chunk(ai, vm.addr); 2011 goto out_free_ar; 2012 2013 enomem: 2014 while (--j >= 0) 2015 free_fn(page_address(pages[j]), PAGE_SIZE); 2016 rc = -ENOMEM; 2017 out_free_ar: 2018 free_bootmem(__pa(pages), pages_size); 2019 pcpu_free_alloc_info(ai); 2020 return rc; 2021 } 2022 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ 2023 2024 /* 2025 * Generic percpu area setup. 2026 * 2027 * The embedding helper is used because its behavior closely resembles 2028 * the original non-dynamic generic percpu area setup. This is 2029 * important because many archs have addressing restrictions and might 2030 * fail if the percpu area is located far away from the previous 2031 * location. As an added bonus, in non-NUMA cases, embedding is 2032 * generally a good idea TLB-wise because percpu area can piggy back 2033 * on the physical linear memory mapping which uses large page 2034 * mappings on applicable archs. 2035 */ 2036 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2037 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2038 EXPORT_SYMBOL(__per_cpu_offset); 2039 2040 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2041 size_t align) 2042 { 2043 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 2044 } 2045 2046 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2047 { 2048 free_bootmem(__pa(ptr), size); 2049 } 2050 2051 void __init setup_per_cpu_areas(void) 2052 { 2053 unsigned long delta; 2054 unsigned int cpu; 2055 int rc; 2056 2057 /* 2058 * Always reserve area for module percpu variables. That's 2059 * what the legacy allocator did. 2060 */ 2061 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2062 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2063 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2064 if (rc < 0) 2065 panic("Failed to initialized percpu areas."); 2066 2067 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2068 for_each_possible_cpu(cpu) 2069 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2070 } 2071 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2072