xref: /linux/mm/percpu.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * Copyright (C) 2017		Facebook Inc.
8  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
9  *
10  * This file is released under the GPLv2 license.
11  *
12  * The percpu allocator handles both static and dynamic areas.  Percpu
13  * areas are allocated in chunks which are divided into units.  There is
14  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
15  * based on NUMA properties of the machine.
16  *
17  *  c0                           c1                         c2
18  *  -------------------          -------------------        ------------
19  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
20  *  -------------------  ......  -------------------  ....  ------------
21  *
22  * Allocation is done by offsets into a unit's address space.  Ie., an
23  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
25  * and even sparse.  Access is handled by configuring percpu base
26  * registers according to the cpu to unit mappings and offsetting the
27  * base address using pcpu_unit_size.
28  *
29  * There is special consideration for the first chunk which must handle
30  * the static percpu variables in the kernel image as allocation services
31  * are not online yet.  In short, the first chunk is structured like so:
32  *
33  *                  <Static | [Reserved] | Dynamic>
34  *
35  * The static data is copied from the original section managed by the
36  * linker.  The reserved section, if non-zero, primarily manages static
37  * percpu variables from kernel modules.  Finally, the dynamic section
38  * takes care of normal allocations.
39  *
40  * The allocator organizes chunks into lists according to free size and
41  * tries to allocate from the fullest chunk first.  Each chunk is managed
42  * by a bitmap with metadata blocks.  The allocation map is updated on
43  * every allocation and free to reflect the current state while the boundary
44  * map is only updated on allocation.  Each metadata block contains
45  * information to help mitigate the need to iterate over large portions
46  * of the bitmap.  The reverse mapping from page to chunk is stored in
47  * the page's index.  Lastly, units are lazily backed and grow in unison.
48  *
49  * There is a unique conversion that goes on here between bytes and bits.
50  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
51  * tracks the number of pages it is responsible for in nr_pages.  Helper
52  * functions are used to convert from between the bytes, bits, and blocks.
53  * All hints are managed in bits unless explicitly stated.
54  *
55  * To use this allocator, arch code should do the following:
56  *
57  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58  *   regular address to percpu pointer and back if they need to be
59  *   different from the default
60  *
61  * - use pcpu_setup_first_chunk() during percpu area initialization to
62  *   setup the first chunk containing the kernel static percpu area
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91 
92 #include "percpu-internal.h"
93 
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT		5
96 
97 #define PCPU_EMPTY_POP_PAGES_LOW	2
98 #define PCPU_EMPTY_POP_PAGES_HIGH	4
99 
100 #ifdef CONFIG_SMP
101 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
102 #ifndef __addr_to_pcpu_ptr
103 #define __addr_to_pcpu_ptr(addr)					\
104 	(void __percpu *)((unsigned long)(addr) -			\
105 			  (unsigned long)pcpu_base_addr	+		\
106 			  (unsigned long)__per_cpu_start)
107 #endif
108 #ifndef __pcpu_ptr_to_addr
109 #define __pcpu_ptr_to_addr(ptr)						\
110 	(void __force *)((unsigned long)(ptr) +				\
111 			 (unsigned long)pcpu_base_addr -		\
112 			 (unsigned long)__per_cpu_start)
113 #endif
114 #else	/* CONFIG_SMP */
115 /* on UP, it's always identity mapped */
116 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
117 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
118 #endif	/* CONFIG_SMP */
119 
120 static int pcpu_unit_pages __ro_after_init;
121 static int pcpu_unit_size __ro_after_init;
122 static int pcpu_nr_units __ro_after_init;
123 static int pcpu_atom_size __ro_after_init;
124 int pcpu_nr_slots __ro_after_init;
125 static size_t pcpu_chunk_struct_size __ro_after_init;
126 
127 /* cpus with the lowest and highest unit addresses */
128 static unsigned int pcpu_low_unit_cpu __ro_after_init;
129 static unsigned int pcpu_high_unit_cpu __ro_after_init;
130 
131 /* the address of the first chunk which starts with the kernel static area */
132 void *pcpu_base_addr __ro_after_init;
133 EXPORT_SYMBOL_GPL(pcpu_base_addr);
134 
135 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
136 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
137 
138 /* group information, used for vm allocation */
139 static int pcpu_nr_groups __ro_after_init;
140 static const unsigned long *pcpu_group_offsets __ro_after_init;
141 static const size_t *pcpu_group_sizes __ro_after_init;
142 
143 /*
144  * The first chunk which always exists.  Note that unlike other
145  * chunks, this one can be allocated and mapped in several different
146  * ways and thus often doesn't live in the vmalloc area.
147  */
148 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
149 
150 /*
151  * Optional reserved chunk.  This chunk reserves part of the first
152  * chunk and serves it for reserved allocations.  When the reserved
153  * region doesn't exist, the following variable is NULL.
154  */
155 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
156 
157 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
158 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
159 
160 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
161 
162 /* chunks which need their map areas extended, protected by pcpu_lock */
163 static LIST_HEAD(pcpu_map_extend_chunks);
164 
165 /*
166  * The number of empty populated pages, protected by pcpu_lock.  The
167  * reserved chunk doesn't contribute to the count.
168  */
169 int pcpu_nr_empty_pop_pages;
170 
171 /*
172  * Balance work is used to populate or destroy chunks asynchronously.  We
173  * try to keep the number of populated free pages between
174  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
175  * empty chunk.
176  */
177 static void pcpu_balance_workfn(struct work_struct *work);
178 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
179 static bool pcpu_async_enabled __read_mostly;
180 static bool pcpu_atomic_alloc_failed;
181 
182 static void pcpu_schedule_balance_work(void)
183 {
184 	if (pcpu_async_enabled)
185 		schedule_work(&pcpu_balance_work);
186 }
187 
188 /**
189  * pcpu_addr_in_chunk - check if the address is served from this chunk
190  * @chunk: chunk of interest
191  * @addr: percpu address
192  *
193  * RETURNS:
194  * True if the address is served from this chunk.
195  */
196 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
197 {
198 	void *start_addr, *end_addr;
199 
200 	if (!chunk)
201 		return false;
202 
203 	start_addr = chunk->base_addr + chunk->start_offset;
204 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
205 		   chunk->end_offset;
206 
207 	return addr >= start_addr && addr < end_addr;
208 }
209 
210 static int __pcpu_size_to_slot(int size)
211 {
212 	int highbit = fls(size);	/* size is in bytes */
213 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
214 }
215 
216 static int pcpu_size_to_slot(int size)
217 {
218 	if (size == pcpu_unit_size)
219 		return pcpu_nr_slots - 1;
220 	return __pcpu_size_to_slot(size);
221 }
222 
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
224 {
225 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
226 		return 0;
227 
228 	return pcpu_size_to_slot(chunk->free_bytes);
229 }
230 
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
233 {
234 	page->index = (unsigned long)pcpu;
235 }
236 
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
239 {
240 	return (struct pcpu_chunk *)page->index;
241 }
242 
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244 {
245 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 }
247 
248 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
249 {
250 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
251 }
252 
253 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
254 				     unsigned int cpu, int page_idx)
255 {
256 	return (unsigned long)chunk->base_addr +
257 	       pcpu_unit_page_offset(cpu, page_idx);
258 }
259 
260 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
261 {
262 	*rs = find_next_zero_bit(bitmap, end, *rs);
263 	*re = find_next_bit(bitmap, end, *rs + 1);
264 }
265 
266 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
267 {
268 	*rs = find_next_bit(bitmap, end, *rs);
269 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
270 }
271 
272 /*
273  * Bitmap region iterators.  Iterates over the bitmap between
274  * [@start, @end) in @chunk.  @rs and @re should be integer variables
275  * and will be set to start and end index of the current free region.
276  */
277 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
278 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
279 	     (rs) < (re);						     \
280 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
281 
282 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
283 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
284 	     (rs) < (re);						     \
285 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
286 
287 /*
288  * The following are helper functions to help access bitmaps and convert
289  * between bitmap offsets to address offsets.
290  */
291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
292 {
293 	return chunk->alloc_map +
294 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
295 }
296 
297 static unsigned long pcpu_off_to_block_index(int off)
298 {
299 	return off / PCPU_BITMAP_BLOCK_BITS;
300 }
301 
302 static unsigned long pcpu_off_to_block_off(int off)
303 {
304 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
305 }
306 
307 static unsigned long pcpu_block_off_to_off(int index, int off)
308 {
309 	return index * PCPU_BITMAP_BLOCK_BITS + off;
310 }
311 
312 /**
313  * pcpu_next_md_free_region - finds the next hint free area
314  * @chunk: chunk of interest
315  * @bit_off: chunk offset
316  * @bits: size of free area
317  *
318  * Helper function for pcpu_for_each_md_free_region.  It checks
319  * block->contig_hint and performs aggregation across blocks to find the
320  * next hint.  It modifies bit_off and bits in-place to be consumed in the
321  * loop.
322  */
323 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
324 				     int *bits)
325 {
326 	int i = pcpu_off_to_block_index(*bit_off);
327 	int block_off = pcpu_off_to_block_off(*bit_off);
328 	struct pcpu_block_md *block;
329 
330 	*bits = 0;
331 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
332 	     block++, i++) {
333 		/* handles contig area across blocks */
334 		if (*bits) {
335 			*bits += block->left_free;
336 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
337 				continue;
338 			return;
339 		}
340 
341 		/*
342 		 * This checks three things.  First is there a contig_hint to
343 		 * check.  Second, have we checked this hint before by
344 		 * comparing the block_off.  Third, is this the same as the
345 		 * right contig hint.  In the last case, it spills over into
346 		 * the next block and should be handled by the contig area
347 		 * across blocks code.
348 		 */
349 		*bits = block->contig_hint;
350 		if (*bits && block->contig_hint_start >= block_off &&
351 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
352 			*bit_off = pcpu_block_off_to_off(i,
353 					block->contig_hint_start);
354 			return;
355 		}
356 		/* reset to satisfy the second predicate above */
357 		block_off = 0;
358 
359 		*bits = block->right_free;
360 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
361 	}
362 }
363 
364 /**
365  * pcpu_next_fit_region - finds fit areas for a given allocation request
366  * @chunk: chunk of interest
367  * @alloc_bits: size of allocation
368  * @align: alignment of area (max PAGE_SIZE)
369  * @bit_off: chunk offset
370  * @bits: size of free area
371  *
372  * Finds the next free region that is viable for use with a given size and
373  * alignment.  This only returns if there is a valid area to be used for this
374  * allocation.  block->first_free is returned if the allocation request fits
375  * within the block to see if the request can be fulfilled prior to the contig
376  * hint.
377  */
378 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
379 				 int align, int *bit_off, int *bits)
380 {
381 	int i = pcpu_off_to_block_index(*bit_off);
382 	int block_off = pcpu_off_to_block_off(*bit_off);
383 	struct pcpu_block_md *block;
384 
385 	*bits = 0;
386 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
387 	     block++, i++) {
388 		/* handles contig area across blocks */
389 		if (*bits) {
390 			*bits += block->left_free;
391 			if (*bits >= alloc_bits)
392 				return;
393 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
394 				continue;
395 		}
396 
397 		/* check block->contig_hint */
398 		*bits = ALIGN(block->contig_hint_start, align) -
399 			block->contig_hint_start;
400 		/*
401 		 * This uses the block offset to determine if this has been
402 		 * checked in the prior iteration.
403 		 */
404 		if (block->contig_hint &&
405 		    block->contig_hint_start >= block_off &&
406 		    block->contig_hint >= *bits + alloc_bits) {
407 			*bits += alloc_bits + block->contig_hint_start -
408 				 block->first_free;
409 			*bit_off = pcpu_block_off_to_off(i, block->first_free);
410 			return;
411 		}
412 		/* reset to satisfy the second predicate above */
413 		block_off = 0;
414 
415 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
416 				 align);
417 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
418 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
419 		if (*bits >= alloc_bits)
420 			return;
421 	}
422 
423 	/* no valid offsets were found - fail condition */
424 	*bit_off = pcpu_chunk_map_bits(chunk);
425 }
426 
427 /*
428  * Metadata free area iterators.  These perform aggregation of free areas
429  * based on the metadata blocks and return the offset @bit_off and size in
430  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
431  * a fit is found for the allocation request.
432  */
433 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
434 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
435 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
436 	     (bit_off) += (bits) + 1,					\
437 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
438 
439 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
440 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
441 				  &(bits));				      \
442 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
443 	     (bit_off) += (bits),					      \
444 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
445 				  &(bits)))
446 
447 /**
448  * pcpu_mem_zalloc - allocate memory
449  * @size: bytes to allocate
450  *
451  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
452  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
453  * memory is always zeroed.
454  *
455  * CONTEXT:
456  * Does GFP_KERNEL allocation.
457  *
458  * RETURNS:
459  * Pointer to the allocated area on success, NULL on failure.
460  */
461 static void *pcpu_mem_zalloc(size_t size)
462 {
463 	if (WARN_ON_ONCE(!slab_is_available()))
464 		return NULL;
465 
466 	if (size <= PAGE_SIZE)
467 		return kzalloc(size, GFP_KERNEL);
468 	else
469 		return vzalloc(size);
470 }
471 
472 /**
473  * pcpu_mem_free - free memory
474  * @ptr: memory to free
475  *
476  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
477  */
478 static void pcpu_mem_free(void *ptr)
479 {
480 	kvfree(ptr);
481 }
482 
483 /**
484  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
485  * @chunk: chunk of interest
486  * @oslot: the previous slot it was on
487  *
488  * This function is called after an allocation or free changed @chunk.
489  * New slot according to the changed state is determined and @chunk is
490  * moved to the slot.  Note that the reserved chunk is never put on
491  * chunk slots.
492  *
493  * CONTEXT:
494  * pcpu_lock.
495  */
496 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
497 {
498 	int nslot = pcpu_chunk_slot(chunk);
499 
500 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
501 		if (oslot < nslot)
502 			list_move(&chunk->list, &pcpu_slot[nslot]);
503 		else
504 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
505 	}
506 }
507 
508 /**
509  * pcpu_cnt_pop_pages- counts populated backing pages in range
510  * @chunk: chunk of interest
511  * @bit_off: start offset
512  * @bits: size of area to check
513  *
514  * Calculates the number of populated pages in the region
515  * [page_start, page_end).  This keeps track of how many empty populated
516  * pages are available and decide if async work should be scheduled.
517  *
518  * RETURNS:
519  * The nr of populated pages.
520  */
521 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
522 				     int bits)
523 {
524 	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
525 	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
526 
527 	if (page_start >= page_end)
528 		return 0;
529 
530 	/*
531 	 * bitmap_weight counts the number of bits set in a bitmap up to
532 	 * the specified number of bits.  This is counting the populated
533 	 * pages up to page_end and then subtracting the populated pages
534 	 * up to page_start to count the populated pages in
535 	 * [page_start, page_end).
536 	 */
537 	return bitmap_weight(chunk->populated, page_end) -
538 	       bitmap_weight(chunk->populated, page_start);
539 }
540 
541 /**
542  * pcpu_chunk_update - updates the chunk metadata given a free area
543  * @chunk: chunk of interest
544  * @bit_off: chunk offset
545  * @bits: size of free area
546  *
547  * This updates the chunk's contig hint and starting offset given a free area.
548  * Choose the best starting offset if the contig hint is equal.
549  */
550 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
551 {
552 	if (bits > chunk->contig_bits) {
553 		chunk->contig_bits_start = bit_off;
554 		chunk->contig_bits = bits;
555 	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
556 		   (!bit_off ||
557 		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
558 		/* use the start with the best alignment */
559 		chunk->contig_bits_start = bit_off;
560 	}
561 }
562 
563 /**
564  * pcpu_chunk_refresh_hint - updates metadata about a chunk
565  * @chunk: chunk of interest
566  *
567  * Iterates over the metadata blocks to find the largest contig area.
568  * It also counts the populated pages and uses the delta to update the
569  * global count.
570  *
571  * Updates:
572  *      chunk->contig_bits
573  *      chunk->contig_bits_start
574  *      nr_empty_pop_pages (chunk and global)
575  */
576 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
577 {
578 	int bit_off, bits, nr_empty_pop_pages;
579 
580 	/* clear metadata */
581 	chunk->contig_bits = 0;
582 
583 	bit_off = chunk->first_bit;
584 	bits = nr_empty_pop_pages = 0;
585 	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
586 		pcpu_chunk_update(chunk, bit_off, bits);
587 
588 		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
589 	}
590 
591 	/*
592 	 * Keep track of nr_empty_pop_pages.
593 	 *
594 	 * The chunk maintains the previous number of free pages it held,
595 	 * so the delta is used to update the global counter.  The reserved
596 	 * chunk is not part of the free page count as they are populated
597 	 * at init and are special to serving reserved allocations.
598 	 */
599 	if (chunk != pcpu_reserved_chunk)
600 		pcpu_nr_empty_pop_pages +=
601 			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
602 
603 	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
604 }
605 
606 /**
607  * pcpu_block_update - updates a block given a free area
608  * @block: block of interest
609  * @start: start offset in block
610  * @end: end offset in block
611  *
612  * Updates a block given a known free area.  The region [start, end) is
613  * expected to be the entirety of the free area within a block.  Chooses
614  * the best starting offset if the contig hints are equal.
615  */
616 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
617 {
618 	int contig = end - start;
619 
620 	block->first_free = min(block->first_free, start);
621 	if (start == 0)
622 		block->left_free = contig;
623 
624 	if (end == PCPU_BITMAP_BLOCK_BITS)
625 		block->right_free = contig;
626 
627 	if (contig > block->contig_hint) {
628 		block->contig_hint_start = start;
629 		block->contig_hint = contig;
630 	} else if (block->contig_hint_start && contig == block->contig_hint &&
631 		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
632 		/* use the start with the best alignment */
633 		block->contig_hint_start = start;
634 	}
635 }
636 
637 /**
638  * pcpu_block_refresh_hint
639  * @chunk: chunk of interest
640  * @index: index of the metadata block
641  *
642  * Scans over the block beginning at first_free and updates the block
643  * metadata accordingly.
644  */
645 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
646 {
647 	struct pcpu_block_md *block = chunk->md_blocks + index;
648 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
649 	int rs, re;	/* region start, region end */
650 
651 	/* clear hints */
652 	block->contig_hint = 0;
653 	block->left_free = block->right_free = 0;
654 
655 	/* iterate over free areas and update the contig hints */
656 	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
657 				   PCPU_BITMAP_BLOCK_BITS) {
658 		pcpu_block_update(block, rs, re);
659 	}
660 }
661 
662 /**
663  * pcpu_block_update_hint_alloc - update hint on allocation path
664  * @chunk: chunk of interest
665  * @bit_off: chunk offset
666  * @bits: size of request
667  *
668  * Updates metadata for the allocation path.  The metadata only has to be
669  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
670  * scans are required if the block's contig hint is broken.
671  */
672 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
673 					 int bits)
674 {
675 	struct pcpu_block_md *s_block, *e_block, *block;
676 	int s_index, e_index;	/* block indexes of the freed allocation */
677 	int s_off, e_off;	/* block offsets of the freed allocation */
678 
679 	/*
680 	 * Calculate per block offsets.
681 	 * The calculation uses an inclusive range, but the resulting offsets
682 	 * are [start, end).  e_index always points to the last block in the
683 	 * range.
684 	 */
685 	s_index = pcpu_off_to_block_index(bit_off);
686 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
687 	s_off = pcpu_off_to_block_off(bit_off);
688 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
689 
690 	s_block = chunk->md_blocks + s_index;
691 	e_block = chunk->md_blocks + e_index;
692 
693 	/*
694 	 * Update s_block.
695 	 * block->first_free must be updated if the allocation takes its place.
696 	 * If the allocation breaks the contig_hint, a scan is required to
697 	 * restore this hint.
698 	 */
699 	if (s_off == s_block->first_free)
700 		s_block->first_free = find_next_zero_bit(
701 					pcpu_index_alloc_map(chunk, s_index),
702 					PCPU_BITMAP_BLOCK_BITS,
703 					s_off + bits);
704 
705 	if (s_off >= s_block->contig_hint_start &&
706 	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
707 		/* block contig hint is broken - scan to fix it */
708 		pcpu_block_refresh_hint(chunk, s_index);
709 	} else {
710 		/* update left and right contig manually */
711 		s_block->left_free = min(s_block->left_free, s_off);
712 		if (s_index == e_index)
713 			s_block->right_free = min_t(int, s_block->right_free,
714 					PCPU_BITMAP_BLOCK_BITS - e_off);
715 		else
716 			s_block->right_free = 0;
717 	}
718 
719 	/*
720 	 * Update e_block.
721 	 */
722 	if (s_index != e_index) {
723 		/*
724 		 * When the allocation is across blocks, the end is along
725 		 * the left part of the e_block.
726 		 */
727 		e_block->first_free = find_next_zero_bit(
728 				pcpu_index_alloc_map(chunk, e_index),
729 				PCPU_BITMAP_BLOCK_BITS, e_off);
730 
731 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
732 			/* reset the block */
733 			e_block++;
734 		} else {
735 			if (e_off > e_block->contig_hint_start) {
736 				/* contig hint is broken - scan to fix it */
737 				pcpu_block_refresh_hint(chunk, e_index);
738 			} else {
739 				e_block->left_free = 0;
740 				e_block->right_free =
741 					min_t(int, e_block->right_free,
742 					      PCPU_BITMAP_BLOCK_BITS - e_off);
743 			}
744 		}
745 
746 		/* update in-between md_blocks */
747 		for (block = s_block + 1; block < e_block; block++) {
748 			block->contig_hint = 0;
749 			block->left_free = 0;
750 			block->right_free = 0;
751 		}
752 	}
753 
754 	/*
755 	 * The only time a full chunk scan is required is if the chunk
756 	 * contig hint is broken.  Otherwise, it means a smaller space
757 	 * was used and therefore the chunk contig hint is still correct.
758 	 */
759 	if (bit_off >= chunk->contig_bits_start  &&
760 	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
761 		pcpu_chunk_refresh_hint(chunk);
762 }
763 
764 /**
765  * pcpu_block_update_hint_free - updates the block hints on the free path
766  * @chunk: chunk of interest
767  * @bit_off: chunk offset
768  * @bits: size of request
769  *
770  * Updates metadata for the allocation path.  This avoids a blind block
771  * refresh by making use of the block contig hints.  If this fails, it scans
772  * forward and backward to determine the extent of the free area.  This is
773  * capped at the boundary of blocks.
774  *
775  * A chunk update is triggered if a page becomes free, a block becomes free,
776  * or the free spans across blocks.  This tradeoff is to minimize iterating
777  * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
778  * may be off by up to a page, but it will never be more than the available
779  * space.  If the contig hint is contained in one block, it will be accurate.
780  */
781 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
782 					int bits)
783 {
784 	struct pcpu_block_md *s_block, *e_block, *block;
785 	int s_index, e_index;	/* block indexes of the freed allocation */
786 	int s_off, e_off;	/* block offsets of the freed allocation */
787 	int start, end;		/* start and end of the whole free area */
788 
789 	/*
790 	 * Calculate per block offsets.
791 	 * The calculation uses an inclusive range, but the resulting offsets
792 	 * are [start, end).  e_index always points to the last block in the
793 	 * range.
794 	 */
795 	s_index = pcpu_off_to_block_index(bit_off);
796 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
797 	s_off = pcpu_off_to_block_off(bit_off);
798 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
799 
800 	s_block = chunk->md_blocks + s_index;
801 	e_block = chunk->md_blocks + e_index;
802 
803 	/*
804 	 * Check if the freed area aligns with the block->contig_hint.
805 	 * If it does, then the scan to find the beginning/end of the
806 	 * larger free area can be avoided.
807 	 *
808 	 * start and end refer to beginning and end of the free area
809 	 * within each their respective blocks.  This is not necessarily
810 	 * the entire free area as it may span blocks past the beginning
811 	 * or end of the block.
812 	 */
813 	start = s_off;
814 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
815 		start = s_block->contig_hint_start;
816 	} else {
817 		/*
818 		 * Scan backwards to find the extent of the free area.
819 		 * find_last_bit returns the starting bit, so if the start bit
820 		 * is returned, that means there was no last bit and the
821 		 * remainder of the chunk is free.
822 		 */
823 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
824 					  start);
825 		start = (start == l_bit) ? 0 : l_bit + 1;
826 	}
827 
828 	end = e_off;
829 	if (e_off == e_block->contig_hint_start)
830 		end = e_block->contig_hint_start + e_block->contig_hint;
831 	else
832 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
833 				    PCPU_BITMAP_BLOCK_BITS, end);
834 
835 	/* update s_block */
836 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
837 	pcpu_block_update(s_block, start, e_off);
838 
839 	/* freeing in the same block */
840 	if (s_index != e_index) {
841 		/* update e_block */
842 		pcpu_block_update(e_block, 0, end);
843 
844 		/* reset md_blocks in the middle */
845 		for (block = s_block + 1; block < e_block; block++) {
846 			block->first_free = 0;
847 			block->contig_hint_start = 0;
848 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
849 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
850 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
851 		}
852 	}
853 
854 	/*
855 	 * Refresh chunk metadata when the free makes a page free, a block
856 	 * free, or spans across blocks.  The contig hint may be off by up to
857 	 * a page, but if the hint is contained in a block, it will be accurate
858 	 * with the else condition below.
859 	 */
860 	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
861 	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
862 	    s_index != e_index)
863 		pcpu_chunk_refresh_hint(chunk);
864 	else
865 		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
866 				  s_block->contig_hint);
867 }
868 
869 /**
870  * pcpu_is_populated - determines if the region is populated
871  * @chunk: chunk of interest
872  * @bit_off: chunk offset
873  * @bits: size of area
874  * @next_off: return value for the next offset to start searching
875  *
876  * For atomic allocations, check if the backing pages are populated.
877  *
878  * RETURNS:
879  * Bool if the backing pages are populated.
880  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
881  */
882 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
883 			      int *next_off)
884 {
885 	int page_start, page_end, rs, re;
886 
887 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
888 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
889 
890 	rs = page_start;
891 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
892 	if (rs >= page_end)
893 		return true;
894 
895 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
896 	return false;
897 }
898 
899 /**
900  * pcpu_find_block_fit - finds the block index to start searching
901  * @chunk: chunk of interest
902  * @alloc_bits: size of request in allocation units
903  * @align: alignment of area (max PAGE_SIZE bytes)
904  * @pop_only: use populated regions only
905  *
906  * Given a chunk and an allocation spec, find the offset to begin searching
907  * for a free region.  This iterates over the bitmap metadata blocks to
908  * find an offset that will be guaranteed to fit the requirements.  It is
909  * not quite first fit as if the allocation does not fit in the contig hint
910  * of a block or chunk, it is skipped.  This errs on the side of caution
911  * to prevent excess iteration.  Poor alignment can cause the allocator to
912  * skip over blocks and chunks that have valid free areas.
913  *
914  * RETURNS:
915  * The offset in the bitmap to begin searching.
916  * -1 if no offset is found.
917  */
918 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
919 			       size_t align, bool pop_only)
920 {
921 	int bit_off, bits, next_off;
922 
923 	/*
924 	 * Check to see if the allocation can fit in the chunk's contig hint.
925 	 * This is an optimization to prevent scanning by assuming if it
926 	 * cannot fit in the global hint, there is memory pressure and creating
927 	 * a new chunk would happen soon.
928 	 */
929 	bit_off = ALIGN(chunk->contig_bits_start, align) -
930 		  chunk->contig_bits_start;
931 	if (bit_off + alloc_bits > chunk->contig_bits)
932 		return -1;
933 
934 	bit_off = chunk->first_bit;
935 	bits = 0;
936 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
937 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
938 						   &next_off))
939 			break;
940 
941 		bit_off = next_off;
942 		bits = 0;
943 	}
944 
945 	if (bit_off == pcpu_chunk_map_bits(chunk))
946 		return -1;
947 
948 	return bit_off;
949 }
950 
951 /**
952  * pcpu_alloc_area - allocates an area from a pcpu_chunk
953  * @chunk: chunk of interest
954  * @alloc_bits: size of request in allocation units
955  * @align: alignment of area (max PAGE_SIZE)
956  * @start: bit_off to start searching
957  *
958  * This function takes in a @start offset to begin searching to fit an
959  * allocation of @alloc_bits with alignment @align.  It needs to scan
960  * the allocation map because if it fits within the block's contig hint,
961  * @start will be block->first_free. This is an attempt to fill the
962  * allocation prior to breaking the contig hint.  The allocation and
963  * boundary maps are updated accordingly if it confirms a valid
964  * free area.
965  *
966  * RETURNS:
967  * Allocated addr offset in @chunk on success.
968  * -1 if no matching area is found.
969  */
970 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
971 			   size_t align, int start)
972 {
973 	size_t align_mask = (align) ? (align - 1) : 0;
974 	int bit_off, end, oslot;
975 
976 	lockdep_assert_held(&pcpu_lock);
977 
978 	oslot = pcpu_chunk_slot(chunk);
979 
980 	/*
981 	 * Search to find a fit.
982 	 */
983 	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
984 	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
985 					     alloc_bits, align_mask);
986 	if (bit_off >= end)
987 		return -1;
988 
989 	/* update alloc map */
990 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
991 
992 	/* update boundary map */
993 	set_bit(bit_off, chunk->bound_map);
994 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
995 	set_bit(bit_off + alloc_bits, chunk->bound_map);
996 
997 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
998 
999 	/* update first free bit */
1000 	if (bit_off == chunk->first_bit)
1001 		chunk->first_bit = find_next_zero_bit(
1002 					chunk->alloc_map,
1003 					pcpu_chunk_map_bits(chunk),
1004 					bit_off + alloc_bits);
1005 
1006 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007 
1008 	pcpu_chunk_relocate(chunk, oslot);
1009 
1010 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1011 }
1012 
1013 /**
1014  * pcpu_free_area - frees the corresponding offset
1015  * @chunk: chunk of interest
1016  * @off: addr offset into chunk
1017  *
1018  * This function determines the size of an allocation to free using
1019  * the boundary bitmap and clears the allocation map.
1020  */
1021 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022 {
1023 	int bit_off, bits, end, oslot;
1024 
1025 	lockdep_assert_held(&pcpu_lock);
1026 	pcpu_stats_area_dealloc(chunk);
1027 
1028 	oslot = pcpu_chunk_slot(chunk);
1029 
1030 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1031 
1032 	/* find end index */
1033 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034 			    bit_off + 1);
1035 	bits = end - bit_off;
1036 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1037 
1038 	/* update metadata */
1039 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040 
1041 	/* update first free bit */
1042 	chunk->first_bit = min(chunk->first_bit, bit_off);
1043 
1044 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1045 
1046 	pcpu_chunk_relocate(chunk, oslot);
1047 }
1048 
1049 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1050 {
1051 	struct pcpu_block_md *md_block;
1052 
1053 	for (md_block = chunk->md_blocks;
1054 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055 	     md_block++) {
1056 		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057 		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058 		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1059 	}
1060 }
1061 
1062 /**
1063  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064  * @tmp_addr: the start of the region served
1065  * @map_size: size of the region served
1066  *
1067  * This is responsible for creating the chunks that serve the first chunk.  The
1068  * base_addr is page aligned down of @tmp_addr while the region end is page
1069  * aligned up.  Offsets are kept track of to determine the region served. All
1070  * this is done to appease the bitmap allocator in avoiding partial blocks.
1071  *
1072  * RETURNS:
1073  * Chunk serving the region at @tmp_addr of @map_size.
1074  */
1075 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076 							 int map_size)
1077 {
1078 	struct pcpu_chunk *chunk;
1079 	unsigned long aligned_addr, lcm_align;
1080 	int start_offset, offset_bits, region_size, region_bits;
1081 
1082 	/* region calculations */
1083 	aligned_addr = tmp_addr & PAGE_MASK;
1084 
1085 	start_offset = tmp_addr - aligned_addr;
1086 
1087 	/*
1088 	 * Align the end of the region with the LCM of PAGE_SIZE and
1089 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1090 	 * the other.
1091 	 */
1092 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093 	region_size = ALIGN(start_offset + map_size, lcm_align);
1094 
1095 	/* allocate chunk */
1096 	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097 				    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1098 				    0);
1099 
1100 	INIT_LIST_HEAD(&chunk->list);
1101 
1102 	chunk->base_addr = (void *)aligned_addr;
1103 	chunk->start_offset = start_offset;
1104 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1105 
1106 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1107 	region_bits = pcpu_chunk_map_bits(chunk);
1108 
1109 	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110 					       sizeof(chunk->alloc_map[0]), 0);
1111 	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112 					       sizeof(chunk->bound_map[0]), 0);
1113 	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114 					       sizeof(chunk->md_blocks[0]), 0);
1115 	pcpu_init_md_blocks(chunk);
1116 
1117 	/* manage populated page bitmap */
1118 	chunk->immutable = true;
1119 	bitmap_fill(chunk->populated, chunk->nr_pages);
1120 	chunk->nr_populated = chunk->nr_pages;
1121 	chunk->nr_empty_pop_pages =
1122 		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123 				   map_size / PCPU_MIN_ALLOC_SIZE);
1124 
1125 	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126 	chunk->free_bytes = map_size;
1127 
1128 	if (chunk->start_offset) {
1129 		/* hide the beginning of the bitmap */
1130 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1132 		set_bit(0, chunk->bound_map);
1133 		set_bit(offset_bits, chunk->bound_map);
1134 
1135 		chunk->first_bit = offset_bits;
1136 
1137 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138 	}
1139 
1140 	if (chunk->end_offset) {
1141 		/* hide the end of the bitmap */
1142 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143 		bitmap_set(chunk->alloc_map,
1144 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1145 			   offset_bits);
1146 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147 			chunk->bound_map);
1148 		set_bit(region_bits, chunk->bound_map);
1149 
1150 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151 					     - offset_bits, offset_bits);
1152 	}
1153 
1154 	return chunk;
1155 }
1156 
1157 static struct pcpu_chunk *pcpu_alloc_chunk(void)
1158 {
1159 	struct pcpu_chunk *chunk;
1160 	int region_bits;
1161 
1162 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
1163 	if (!chunk)
1164 		return NULL;
1165 
1166 	INIT_LIST_HEAD(&chunk->list);
1167 	chunk->nr_pages = pcpu_unit_pages;
1168 	region_bits = pcpu_chunk_map_bits(chunk);
1169 
1170 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171 					   sizeof(chunk->alloc_map[0]));
1172 	if (!chunk->alloc_map)
1173 		goto alloc_map_fail;
1174 
1175 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176 					   sizeof(chunk->bound_map[0]));
1177 	if (!chunk->bound_map)
1178 		goto bound_map_fail;
1179 
1180 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181 					   sizeof(chunk->md_blocks[0]));
1182 	if (!chunk->md_blocks)
1183 		goto md_blocks_fail;
1184 
1185 	pcpu_init_md_blocks(chunk);
1186 
1187 	/* init metadata */
1188 	chunk->contig_bits = region_bits;
1189 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190 
1191 	return chunk;
1192 
1193 md_blocks_fail:
1194 	pcpu_mem_free(chunk->bound_map);
1195 bound_map_fail:
1196 	pcpu_mem_free(chunk->alloc_map);
1197 alloc_map_fail:
1198 	pcpu_mem_free(chunk);
1199 
1200 	return NULL;
1201 }
1202 
1203 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1204 {
1205 	if (!chunk)
1206 		return;
1207 	pcpu_mem_free(chunk->bound_map);
1208 	pcpu_mem_free(chunk->alloc_map);
1209 	pcpu_mem_free(chunk);
1210 }
1211 
1212 /**
1213  * pcpu_chunk_populated - post-population bookkeeping
1214  * @chunk: pcpu_chunk which got populated
1215  * @page_start: the start page
1216  * @page_end: the end page
1217  * @for_alloc: if this is to populate for allocation
1218  *
1219  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1220  * the bookkeeping information accordingly.  Must be called after each
1221  * successful population.
1222  *
1223  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224  * is to serve an allocation in that area.
1225  */
1226 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227 				 int page_end, bool for_alloc)
1228 {
1229 	int nr = page_end - page_start;
1230 
1231 	lockdep_assert_held(&pcpu_lock);
1232 
1233 	bitmap_set(chunk->populated, page_start, nr);
1234 	chunk->nr_populated += nr;
1235 
1236 	if (!for_alloc) {
1237 		chunk->nr_empty_pop_pages += nr;
1238 		pcpu_nr_empty_pop_pages += nr;
1239 	}
1240 }
1241 
1242 /**
1243  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244  * @chunk: pcpu_chunk which got depopulated
1245  * @page_start: the start page
1246  * @page_end: the end page
1247  *
1248  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249  * Update the bookkeeping information accordingly.  Must be called after
1250  * each successful depopulation.
1251  */
1252 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253 				   int page_start, int page_end)
1254 {
1255 	int nr = page_end - page_start;
1256 
1257 	lockdep_assert_held(&pcpu_lock);
1258 
1259 	bitmap_clear(chunk->populated, page_start, nr);
1260 	chunk->nr_populated -= nr;
1261 	chunk->nr_empty_pop_pages -= nr;
1262 	pcpu_nr_empty_pop_pages -= nr;
1263 }
1264 
1265 /*
1266  * Chunk management implementation.
1267  *
1268  * To allow different implementations, chunk alloc/free and
1269  * [de]population are implemented in a separate file which is pulled
1270  * into this file and compiled together.  The following functions
1271  * should be implemented.
1272  *
1273  * pcpu_populate_chunk		- populate the specified range of a chunk
1274  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1275  * pcpu_create_chunk		- create a new chunk
1276  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1277  * pcpu_addr_to_page		- translate address to physical address
1278  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1279  */
1280 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
1281 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1282 static struct pcpu_chunk *pcpu_create_chunk(void);
1283 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1284 static struct page *pcpu_addr_to_page(void *addr);
1285 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1286 
1287 #ifdef CONFIG_NEED_PER_CPU_KM
1288 #include "percpu-km.c"
1289 #else
1290 #include "percpu-vm.c"
1291 #endif
1292 
1293 /**
1294  * pcpu_chunk_addr_search - determine chunk containing specified address
1295  * @addr: address for which the chunk needs to be determined.
1296  *
1297  * This is an internal function that handles all but static allocations.
1298  * Static percpu address values should never be passed into the allocator.
1299  *
1300  * RETURNS:
1301  * The address of the found chunk.
1302  */
1303 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1304 {
1305 	/* is it in the dynamic region (first chunk)? */
1306 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1307 		return pcpu_first_chunk;
1308 
1309 	/* is it in the reserved region? */
1310 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1311 		return pcpu_reserved_chunk;
1312 
1313 	/*
1314 	 * The address is relative to unit0 which might be unused and
1315 	 * thus unmapped.  Offset the address to the unit space of the
1316 	 * current processor before looking it up in the vmalloc
1317 	 * space.  Note that any possible cpu id can be used here, so
1318 	 * there's no need to worry about preemption or cpu hotplug.
1319 	 */
1320 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1321 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1322 }
1323 
1324 /**
1325  * pcpu_alloc - the percpu allocator
1326  * @size: size of area to allocate in bytes
1327  * @align: alignment of area (max PAGE_SIZE)
1328  * @reserved: allocate from the reserved chunk if available
1329  * @gfp: allocation flags
1330  *
1331  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1332  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1333  * then no warning will be triggered on invalid or failed allocation
1334  * requests.
1335  *
1336  * RETURNS:
1337  * Percpu pointer to the allocated area on success, NULL on failure.
1338  */
1339 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1340 				 gfp_t gfp)
1341 {
1342 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1343 	bool do_warn = !(gfp & __GFP_NOWARN);
1344 	static int warn_limit = 10;
1345 	struct pcpu_chunk *chunk;
1346 	const char *err;
1347 	int slot, off, cpu, ret;
1348 	unsigned long flags;
1349 	void __percpu *ptr;
1350 	size_t bits, bit_align;
1351 
1352 	/*
1353 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1354 	 * therefore alignment must be a minimum of that many bytes.
1355 	 * An allocation may have internal fragmentation from rounding up
1356 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1357 	 */
1358 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1359 		align = PCPU_MIN_ALLOC_SIZE;
1360 
1361 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1362 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1363 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1364 
1365 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1366 		     !is_power_of_2(align))) {
1367 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1368 		     size, align);
1369 		return NULL;
1370 	}
1371 
1372 	if (!is_atomic)
1373 		mutex_lock(&pcpu_alloc_mutex);
1374 
1375 	spin_lock_irqsave(&pcpu_lock, flags);
1376 
1377 	/* serve reserved allocations from the reserved chunk if available */
1378 	if (reserved && pcpu_reserved_chunk) {
1379 		chunk = pcpu_reserved_chunk;
1380 
1381 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1382 		if (off < 0) {
1383 			err = "alloc from reserved chunk failed";
1384 			goto fail_unlock;
1385 		}
1386 
1387 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1388 		if (off >= 0)
1389 			goto area_found;
1390 
1391 		err = "alloc from reserved chunk failed";
1392 		goto fail_unlock;
1393 	}
1394 
1395 restart:
1396 	/* search through normal chunks */
1397 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1398 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1399 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1400 						  is_atomic);
1401 			if (off < 0)
1402 				continue;
1403 
1404 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1405 			if (off >= 0)
1406 				goto area_found;
1407 
1408 		}
1409 	}
1410 
1411 	spin_unlock_irqrestore(&pcpu_lock, flags);
1412 
1413 	/*
1414 	 * No space left.  Create a new chunk.  We don't want multiple
1415 	 * tasks to create chunks simultaneously.  Serialize and create iff
1416 	 * there's still no empty chunk after grabbing the mutex.
1417 	 */
1418 	if (is_atomic) {
1419 		err = "atomic alloc failed, no space left";
1420 		goto fail;
1421 	}
1422 
1423 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1424 		chunk = pcpu_create_chunk();
1425 		if (!chunk) {
1426 			err = "failed to allocate new chunk";
1427 			goto fail;
1428 		}
1429 
1430 		spin_lock_irqsave(&pcpu_lock, flags);
1431 		pcpu_chunk_relocate(chunk, -1);
1432 	} else {
1433 		spin_lock_irqsave(&pcpu_lock, flags);
1434 	}
1435 
1436 	goto restart;
1437 
1438 area_found:
1439 	pcpu_stats_area_alloc(chunk, size);
1440 	spin_unlock_irqrestore(&pcpu_lock, flags);
1441 
1442 	/* populate if not all pages are already there */
1443 	if (!is_atomic) {
1444 		int page_start, page_end, rs, re;
1445 
1446 		page_start = PFN_DOWN(off);
1447 		page_end = PFN_UP(off + size);
1448 
1449 		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1450 					   page_start, page_end) {
1451 			WARN_ON(chunk->immutable);
1452 
1453 			ret = pcpu_populate_chunk(chunk, rs, re);
1454 
1455 			spin_lock_irqsave(&pcpu_lock, flags);
1456 			if (ret) {
1457 				pcpu_free_area(chunk, off);
1458 				err = "failed to populate";
1459 				goto fail_unlock;
1460 			}
1461 			pcpu_chunk_populated(chunk, rs, re, true);
1462 			spin_unlock_irqrestore(&pcpu_lock, flags);
1463 		}
1464 
1465 		mutex_unlock(&pcpu_alloc_mutex);
1466 	}
1467 
1468 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1469 		pcpu_schedule_balance_work();
1470 
1471 	/* clear the areas and return address relative to base address */
1472 	for_each_possible_cpu(cpu)
1473 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1474 
1475 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1476 	kmemleak_alloc_percpu(ptr, size, gfp);
1477 
1478 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1479 			chunk->base_addr, off, ptr);
1480 
1481 	return ptr;
1482 
1483 fail_unlock:
1484 	spin_unlock_irqrestore(&pcpu_lock, flags);
1485 fail:
1486 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1487 
1488 	if (!is_atomic && do_warn && warn_limit) {
1489 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1490 			size, align, is_atomic, err);
1491 		dump_stack();
1492 		if (!--warn_limit)
1493 			pr_info("limit reached, disable warning\n");
1494 	}
1495 	if (is_atomic) {
1496 		/* see the flag handling in pcpu_blance_workfn() */
1497 		pcpu_atomic_alloc_failed = true;
1498 		pcpu_schedule_balance_work();
1499 	} else {
1500 		mutex_unlock(&pcpu_alloc_mutex);
1501 	}
1502 	return NULL;
1503 }
1504 
1505 /**
1506  * __alloc_percpu_gfp - allocate dynamic percpu area
1507  * @size: size of area to allocate in bytes
1508  * @align: alignment of area (max PAGE_SIZE)
1509  * @gfp: allocation flags
1510  *
1511  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1512  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1513  * be called from any context but is a lot more likely to fail. If @gfp
1514  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1515  * allocation requests.
1516  *
1517  * RETURNS:
1518  * Percpu pointer to the allocated area on success, NULL on failure.
1519  */
1520 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1521 {
1522 	return pcpu_alloc(size, align, false, gfp);
1523 }
1524 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1525 
1526 /**
1527  * __alloc_percpu - allocate dynamic percpu area
1528  * @size: size of area to allocate in bytes
1529  * @align: alignment of area (max PAGE_SIZE)
1530  *
1531  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1532  */
1533 void __percpu *__alloc_percpu(size_t size, size_t align)
1534 {
1535 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1536 }
1537 EXPORT_SYMBOL_GPL(__alloc_percpu);
1538 
1539 /**
1540  * __alloc_reserved_percpu - allocate reserved percpu area
1541  * @size: size of area to allocate in bytes
1542  * @align: alignment of area (max PAGE_SIZE)
1543  *
1544  * Allocate zero-filled percpu area of @size bytes aligned at @align
1545  * from reserved percpu area if arch has set it up; otherwise,
1546  * allocation is served from the same dynamic area.  Might sleep.
1547  * Might trigger writeouts.
1548  *
1549  * CONTEXT:
1550  * Does GFP_KERNEL allocation.
1551  *
1552  * RETURNS:
1553  * Percpu pointer to the allocated area on success, NULL on failure.
1554  */
1555 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1556 {
1557 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1558 }
1559 
1560 /**
1561  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1562  * @work: unused
1563  *
1564  * Reclaim all fully free chunks except for the first one.
1565  */
1566 static void pcpu_balance_workfn(struct work_struct *work)
1567 {
1568 	LIST_HEAD(to_free);
1569 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1570 	struct pcpu_chunk *chunk, *next;
1571 	int slot, nr_to_pop, ret;
1572 
1573 	/*
1574 	 * There's no reason to keep around multiple unused chunks and VM
1575 	 * areas can be scarce.  Destroy all free chunks except for one.
1576 	 */
1577 	mutex_lock(&pcpu_alloc_mutex);
1578 	spin_lock_irq(&pcpu_lock);
1579 
1580 	list_for_each_entry_safe(chunk, next, free_head, list) {
1581 		WARN_ON(chunk->immutable);
1582 
1583 		/* spare the first one */
1584 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1585 			continue;
1586 
1587 		list_move(&chunk->list, &to_free);
1588 	}
1589 
1590 	spin_unlock_irq(&pcpu_lock);
1591 
1592 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1593 		int rs, re;
1594 
1595 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1596 					 chunk->nr_pages) {
1597 			pcpu_depopulate_chunk(chunk, rs, re);
1598 			spin_lock_irq(&pcpu_lock);
1599 			pcpu_chunk_depopulated(chunk, rs, re);
1600 			spin_unlock_irq(&pcpu_lock);
1601 		}
1602 		pcpu_destroy_chunk(chunk);
1603 	}
1604 
1605 	/*
1606 	 * Ensure there are certain number of free populated pages for
1607 	 * atomic allocs.  Fill up from the most packed so that atomic
1608 	 * allocs don't increase fragmentation.  If atomic allocation
1609 	 * failed previously, always populate the maximum amount.  This
1610 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1611 	 * failing indefinitely; however, large atomic allocs are not
1612 	 * something we support properly and can be highly unreliable and
1613 	 * inefficient.
1614 	 */
1615 retry_pop:
1616 	if (pcpu_atomic_alloc_failed) {
1617 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1618 		/* best effort anyway, don't worry about synchronization */
1619 		pcpu_atomic_alloc_failed = false;
1620 	} else {
1621 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1622 				  pcpu_nr_empty_pop_pages,
1623 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1624 	}
1625 
1626 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1627 		int nr_unpop = 0, rs, re;
1628 
1629 		if (!nr_to_pop)
1630 			break;
1631 
1632 		spin_lock_irq(&pcpu_lock);
1633 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1634 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1635 			if (nr_unpop)
1636 				break;
1637 		}
1638 		spin_unlock_irq(&pcpu_lock);
1639 
1640 		if (!nr_unpop)
1641 			continue;
1642 
1643 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1644 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1645 					   chunk->nr_pages) {
1646 			int nr = min(re - rs, nr_to_pop);
1647 
1648 			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1649 			if (!ret) {
1650 				nr_to_pop -= nr;
1651 				spin_lock_irq(&pcpu_lock);
1652 				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1653 				spin_unlock_irq(&pcpu_lock);
1654 			} else {
1655 				nr_to_pop = 0;
1656 			}
1657 
1658 			if (!nr_to_pop)
1659 				break;
1660 		}
1661 	}
1662 
1663 	if (nr_to_pop) {
1664 		/* ran out of chunks to populate, create a new one and retry */
1665 		chunk = pcpu_create_chunk();
1666 		if (chunk) {
1667 			spin_lock_irq(&pcpu_lock);
1668 			pcpu_chunk_relocate(chunk, -1);
1669 			spin_unlock_irq(&pcpu_lock);
1670 			goto retry_pop;
1671 		}
1672 	}
1673 
1674 	mutex_unlock(&pcpu_alloc_mutex);
1675 }
1676 
1677 /**
1678  * free_percpu - free percpu area
1679  * @ptr: pointer to area to free
1680  *
1681  * Free percpu area @ptr.
1682  *
1683  * CONTEXT:
1684  * Can be called from atomic context.
1685  */
1686 void free_percpu(void __percpu *ptr)
1687 {
1688 	void *addr;
1689 	struct pcpu_chunk *chunk;
1690 	unsigned long flags;
1691 	int off;
1692 
1693 	if (!ptr)
1694 		return;
1695 
1696 	kmemleak_free_percpu(ptr);
1697 
1698 	addr = __pcpu_ptr_to_addr(ptr);
1699 
1700 	spin_lock_irqsave(&pcpu_lock, flags);
1701 
1702 	chunk = pcpu_chunk_addr_search(addr);
1703 	off = addr - chunk->base_addr;
1704 
1705 	pcpu_free_area(chunk, off);
1706 
1707 	/* if there are more than one fully free chunks, wake up grim reaper */
1708 	if (chunk->free_bytes == pcpu_unit_size) {
1709 		struct pcpu_chunk *pos;
1710 
1711 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1712 			if (pos != chunk) {
1713 				pcpu_schedule_balance_work();
1714 				break;
1715 			}
1716 	}
1717 
1718 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1719 
1720 	spin_unlock_irqrestore(&pcpu_lock, flags);
1721 }
1722 EXPORT_SYMBOL_GPL(free_percpu);
1723 
1724 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1725 {
1726 #ifdef CONFIG_SMP
1727 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1728 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1729 	unsigned int cpu;
1730 
1731 	for_each_possible_cpu(cpu) {
1732 		void *start = per_cpu_ptr(base, cpu);
1733 		void *va = (void *)addr;
1734 
1735 		if (va >= start && va < start + static_size) {
1736 			if (can_addr) {
1737 				*can_addr = (unsigned long) (va - start);
1738 				*can_addr += (unsigned long)
1739 					per_cpu_ptr(base, get_boot_cpu_id());
1740 			}
1741 			return true;
1742 		}
1743 	}
1744 #endif
1745 	/* on UP, can't distinguish from other static vars, always false */
1746 	return false;
1747 }
1748 
1749 /**
1750  * is_kernel_percpu_address - test whether address is from static percpu area
1751  * @addr: address to test
1752  *
1753  * Test whether @addr belongs to in-kernel static percpu area.  Module
1754  * static percpu areas are not considered.  For those, use
1755  * is_module_percpu_address().
1756  *
1757  * RETURNS:
1758  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1759  */
1760 bool is_kernel_percpu_address(unsigned long addr)
1761 {
1762 	return __is_kernel_percpu_address(addr, NULL);
1763 }
1764 
1765 /**
1766  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1767  * @addr: the address to be converted to physical address
1768  *
1769  * Given @addr which is dereferenceable address obtained via one of
1770  * percpu access macros, this function translates it into its physical
1771  * address.  The caller is responsible for ensuring @addr stays valid
1772  * until this function finishes.
1773  *
1774  * percpu allocator has special setup for the first chunk, which currently
1775  * supports either embedding in linear address space or vmalloc mapping,
1776  * and, from the second one, the backing allocator (currently either vm or
1777  * km) provides translation.
1778  *
1779  * The addr can be translated simply without checking if it falls into the
1780  * first chunk. But the current code reflects better how percpu allocator
1781  * actually works, and the verification can discover both bugs in percpu
1782  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1783  * code.
1784  *
1785  * RETURNS:
1786  * The physical address for @addr.
1787  */
1788 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1789 {
1790 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1791 	bool in_first_chunk = false;
1792 	unsigned long first_low, first_high;
1793 	unsigned int cpu;
1794 
1795 	/*
1796 	 * The following test on unit_low/high isn't strictly
1797 	 * necessary but will speed up lookups of addresses which
1798 	 * aren't in the first chunk.
1799 	 *
1800 	 * The address check is against full chunk sizes.  pcpu_base_addr
1801 	 * points to the beginning of the first chunk including the
1802 	 * static region.  Assumes good intent as the first chunk may
1803 	 * not be full (ie. < pcpu_unit_pages in size).
1804 	 */
1805 	first_low = (unsigned long)pcpu_base_addr +
1806 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1807 	first_high = (unsigned long)pcpu_base_addr +
1808 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1809 	if ((unsigned long)addr >= first_low &&
1810 	    (unsigned long)addr < first_high) {
1811 		for_each_possible_cpu(cpu) {
1812 			void *start = per_cpu_ptr(base, cpu);
1813 
1814 			if (addr >= start && addr < start + pcpu_unit_size) {
1815 				in_first_chunk = true;
1816 				break;
1817 			}
1818 		}
1819 	}
1820 
1821 	if (in_first_chunk) {
1822 		if (!is_vmalloc_addr(addr))
1823 			return __pa(addr);
1824 		else
1825 			return page_to_phys(vmalloc_to_page(addr)) +
1826 			       offset_in_page(addr);
1827 	} else
1828 		return page_to_phys(pcpu_addr_to_page(addr)) +
1829 		       offset_in_page(addr);
1830 }
1831 
1832 /**
1833  * pcpu_alloc_alloc_info - allocate percpu allocation info
1834  * @nr_groups: the number of groups
1835  * @nr_units: the number of units
1836  *
1837  * Allocate ai which is large enough for @nr_groups groups containing
1838  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1839  * cpu_map array which is long enough for @nr_units and filled with
1840  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1841  * pointer of other groups.
1842  *
1843  * RETURNS:
1844  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1845  * failure.
1846  */
1847 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1848 						      int nr_units)
1849 {
1850 	struct pcpu_alloc_info *ai;
1851 	size_t base_size, ai_size;
1852 	void *ptr;
1853 	int unit;
1854 
1855 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1856 			  __alignof__(ai->groups[0].cpu_map[0]));
1857 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1858 
1859 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1860 	if (!ptr)
1861 		return NULL;
1862 	ai = ptr;
1863 	ptr += base_size;
1864 
1865 	ai->groups[0].cpu_map = ptr;
1866 
1867 	for (unit = 0; unit < nr_units; unit++)
1868 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1869 
1870 	ai->nr_groups = nr_groups;
1871 	ai->__ai_size = PFN_ALIGN(ai_size);
1872 
1873 	return ai;
1874 }
1875 
1876 /**
1877  * pcpu_free_alloc_info - free percpu allocation info
1878  * @ai: pcpu_alloc_info to free
1879  *
1880  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1881  */
1882 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1883 {
1884 	memblock_free_early(__pa(ai), ai->__ai_size);
1885 }
1886 
1887 /**
1888  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1889  * @lvl: loglevel
1890  * @ai: allocation info to dump
1891  *
1892  * Print out information about @ai using loglevel @lvl.
1893  */
1894 static void pcpu_dump_alloc_info(const char *lvl,
1895 				 const struct pcpu_alloc_info *ai)
1896 {
1897 	int group_width = 1, cpu_width = 1, width;
1898 	char empty_str[] = "--------";
1899 	int alloc = 0, alloc_end = 0;
1900 	int group, v;
1901 	int upa, apl;	/* units per alloc, allocs per line */
1902 
1903 	v = ai->nr_groups;
1904 	while (v /= 10)
1905 		group_width++;
1906 
1907 	v = num_possible_cpus();
1908 	while (v /= 10)
1909 		cpu_width++;
1910 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1911 
1912 	upa = ai->alloc_size / ai->unit_size;
1913 	width = upa * (cpu_width + 1) + group_width + 3;
1914 	apl = rounddown_pow_of_two(max(60 / width, 1));
1915 
1916 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1917 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1918 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1919 
1920 	for (group = 0; group < ai->nr_groups; group++) {
1921 		const struct pcpu_group_info *gi = &ai->groups[group];
1922 		int unit = 0, unit_end = 0;
1923 
1924 		BUG_ON(gi->nr_units % upa);
1925 		for (alloc_end += gi->nr_units / upa;
1926 		     alloc < alloc_end; alloc++) {
1927 			if (!(alloc % apl)) {
1928 				pr_cont("\n");
1929 				printk("%spcpu-alloc: ", lvl);
1930 			}
1931 			pr_cont("[%0*d] ", group_width, group);
1932 
1933 			for (unit_end += upa; unit < unit_end; unit++)
1934 				if (gi->cpu_map[unit] != NR_CPUS)
1935 					pr_cont("%0*d ",
1936 						cpu_width, gi->cpu_map[unit]);
1937 				else
1938 					pr_cont("%s ", empty_str);
1939 		}
1940 	}
1941 	pr_cont("\n");
1942 }
1943 
1944 /**
1945  * pcpu_setup_first_chunk - initialize the first percpu chunk
1946  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1947  * @base_addr: mapped address
1948  *
1949  * Initialize the first percpu chunk which contains the kernel static
1950  * perpcu area.  This function is to be called from arch percpu area
1951  * setup path.
1952  *
1953  * @ai contains all information necessary to initialize the first
1954  * chunk and prime the dynamic percpu allocator.
1955  *
1956  * @ai->static_size is the size of static percpu area.
1957  *
1958  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1959  * reserve after the static area in the first chunk.  This reserves
1960  * the first chunk such that it's available only through reserved
1961  * percpu allocation.  This is primarily used to serve module percpu
1962  * static areas on architectures where the addressing model has
1963  * limited offset range for symbol relocations to guarantee module
1964  * percpu symbols fall inside the relocatable range.
1965  *
1966  * @ai->dyn_size determines the number of bytes available for dynamic
1967  * allocation in the first chunk.  The area between @ai->static_size +
1968  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1969  *
1970  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1971  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1972  * @ai->dyn_size.
1973  *
1974  * @ai->atom_size is the allocation atom size and used as alignment
1975  * for vm areas.
1976  *
1977  * @ai->alloc_size is the allocation size and always multiple of
1978  * @ai->atom_size.  This is larger than @ai->atom_size if
1979  * @ai->unit_size is larger than @ai->atom_size.
1980  *
1981  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1982  * percpu areas.  Units which should be colocated are put into the
1983  * same group.  Dynamic VM areas will be allocated according to these
1984  * groupings.  If @ai->nr_groups is zero, a single group containing
1985  * all units is assumed.
1986  *
1987  * The caller should have mapped the first chunk at @base_addr and
1988  * copied static data to each unit.
1989  *
1990  * The first chunk will always contain a static and a dynamic region.
1991  * However, the static region is not managed by any chunk.  If the first
1992  * chunk also contains a reserved region, it is served by two chunks -
1993  * one for the reserved region and one for the dynamic region.  They
1994  * share the same vm, but use offset regions in the area allocation map.
1995  * The chunk serving the dynamic region is circulated in the chunk slots
1996  * and available for dynamic allocation like any other chunk.
1997  *
1998  * RETURNS:
1999  * 0 on success, -errno on failure.
2000  */
2001 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2002 				  void *base_addr)
2003 {
2004 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2005 	size_t static_size, dyn_size;
2006 	struct pcpu_chunk *chunk;
2007 	unsigned long *group_offsets;
2008 	size_t *group_sizes;
2009 	unsigned long *unit_off;
2010 	unsigned int cpu;
2011 	int *unit_map;
2012 	int group, unit, i;
2013 	int map_size;
2014 	unsigned long tmp_addr;
2015 
2016 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2017 	if (unlikely(cond)) {						\
2018 		pr_emerg("failed to initialize, %s\n", #cond);		\
2019 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2020 			 cpumask_pr_args(cpu_possible_mask));		\
2021 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2022 		BUG();							\
2023 	}								\
2024 } while (0)
2025 
2026 	/* sanity checks */
2027 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2028 #ifdef CONFIG_SMP
2029 	PCPU_SETUP_BUG_ON(!ai->static_size);
2030 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2031 #endif
2032 	PCPU_SETUP_BUG_ON(!base_addr);
2033 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2034 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2035 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2036 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2037 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2038 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2039 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2040 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2041 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2042 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2043 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2044 
2045 	/* process group information and build config tables accordingly */
2046 	group_offsets = memblock_virt_alloc(ai->nr_groups *
2047 					     sizeof(group_offsets[0]), 0);
2048 	group_sizes = memblock_virt_alloc(ai->nr_groups *
2049 					   sizeof(group_sizes[0]), 0);
2050 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2051 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2052 
2053 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2054 		unit_map[cpu] = UINT_MAX;
2055 
2056 	pcpu_low_unit_cpu = NR_CPUS;
2057 	pcpu_high_unit_cpu = NR_CPUS;
2058 
2059 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2060 		const struct pcpu_group_info *gi = &ai->groups[group];
2061 
2062 		group_offsets[group] = gi->base_offset;
2063 		group_sizes[group] = gi->nr_units * ai->unit_size;
2064 
2065 		for (i = 0; i < gi->nr_units; i++) {
2066 			cpu = gi->cpu_map[i];
2067 			if (cpu == NR_CPUS)
2068 				continue;
2069 
2070 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2071 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2072 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2073 
2074 			unit_map[cpu] = unit + i;
2075 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2076 
2077 			/* determine low/high unit_cpu */
2078 			if (pcpu_low_unit_cpu == NR_CPUS ||
2079 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2080 				pcpu_low_unit_cpu = cpu;
2081 			if (pcpu_high_unit_cpu == NR_CPUS ||
2082 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2083 				pcpu_high_unit_cpu = cpu;
2084 		}
2085 	}
2086 	pcpu_nr_units = unit;
2087 
2088 	for_each_possible_cpu(cpu)
2089 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2090 
2091 	/* we're done parsing the input, undefine BUG macro and dump config */
2092 #undef PCPU_SETUP_BUG_ON
2093 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2094 
2095 	pcpu_nr_groups = ai->nr_groups;
2096 	pcpu_group_offsets = group_offsets;
2097 	pcpu_group_sizes = group_sizes;
2098 	pcpu_unit_map = unit_map;
2099 	pcpu_unit_offsets = unit_off;
2100 
2101 	/* determine basic parameters */
2102 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2103 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2104 	pcpu_atom_size = ai->atom_size;
2105 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2106 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2107 
2108 	pcpu_stats_save_ai(ai);
2109 
2110 	/*
2111 	 * Allocate chunk slots.  The additional last slot is for
2112 	 * empty chunks.
2113 	 */
2114 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2115 	pcpu_slot = memblock_virt_alloc(
2116 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2117 	for (i = 0; i < pcpu_nr_slots; i++)
2118 		INIT_LIST_HEAD(&pcpu_slot[i]);
2119 
2120 	/*
2121 	 * The end of the static region needs to be aligned with the
2122 	 * minimum allocation size as this offsets the reserved and
2123 	 * dynamic region.  The first chunk ends page aligned by
2124 	 * expanding the dynamic region, therefore the dynamic region
2125 	 * can be shrunk to compensate while still staying above the
2126 	 * configured sizes.
2127 	 */
2128 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2129 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2130 
2131 	/*
2132 	 * Initialize first chunk.
2133 	 * If the reserved_size is non-zero, this initializes the reserved
2134 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2135 	 * and the dynamic region is initialized here.  The first chunk,
2136 	 * pcpu_first_chunk, will always point to the chunk that serves
2137 	 * the dynamic region.
2138 	 */
2139 	tmp_addr = (unsigned long)base_addr + static_size;
2140 	map_size = ai->reserved_size ?: dyn_size;
2141 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2142 
2143 	/* init dynamic chunk if necessary */
2144 	if (ai->reserved_size) {
2145 		pcpu_reserved_chunk = chunk;
2146 
2147 		tmp_addr = (unsigned long)base_addr + static_size +
2148 			   ai->reserved_size;
2149 		map_size = dyn_size;
2150 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2151 	}
2152 
2153 	/* link the first chunk in */
2154 	pcpu_first_chunk = chunk;
2155 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2156 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2157 
2158 	pcpu_stats_chunk_alloc();
2159 	trace_percpu_create_chunk(base_addr);
2160 
2161 	/* we're done */
2162 	pcpu_base_addr = base_addr;
2163 	return 0;
2164 }
2165 
2166 #ifdef CONFIG_SMP
2167 
2168 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2169 	[PCPU_FC_AUTO]	= "auto",
2170 	[PCPU_FC_EMBED]	= "embed",
2171 	[PCPU_FC_PAGE]	= "page",
2172 };
2173 
2174 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2175 
2176 static int __init percpu_alloc_setup(char *str)
2177 {
2178 	if (!str)
2179 		return -EINVAL;
2180 
2181 	if (0)
2182 		/* nada */;
2183 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2184 	else if (!strcmp(str, "embed"))
2185 		pcpu_chosen_fc = PCPU_FC_EMBED;
2186 #endif
2187 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2188 	else if (!strcmp(str, "page"))
2189 		pcpu_chosen_fc = PCPU_FC_PAGE;
2190 #endif
2191 	else
2192 		pr_warn("unknown allocator %s specified\n", str);
2193 
2194 	return 0;
2195 }
2196 early_param("percpu_alloc", percpu_alloc_setup);
2197 
2198 /*
2199  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2200  * Build it if needed by the arch config or the generic setup is going
2201  * to be used.
2202  */
2203 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2204 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2205 #define BUILD_EMBED_FIRST_CHUNK
2206 #endif
2207 
2208 /* build pcpu_page_first_chunk() iff needed by the arch config */
2209 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2210 #define BUILD_PAGE_FIRST_CHUNK
2211 #endif
2212 
2213 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2214 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2215 /**
2216  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2217  * @reserved_size: the size of reserved percpu area in bytes
2218  * @dyn_size: minimum free size for dynamic allocation in bytes
2219  * @atom_size: allocation atom size
2220  * @cpu_distance_fn: callback to determine distance between cpus, optional
2221  *
2222  * This function determines grouping of units, their mappings to cpus
2223  * and other parameters considering needed percpu size, allocation
2224  * atom size and distances between CPUs.
2225  *
2226  * Groups are always multiples of atom size and CPUs which are of
2227  * LOCAL_DISTANCE both ways are grouped together and share space for
2228  * units in the same group.  The returned configuration is guaranteed
2229  * to have CPUs on different nodes on different groups and >=75% usage
2230  * of allocated virtual address space.
2231  *
2232  * RETURNS:
2233  * On success, pointer to the new allocation_info is returned.  On
2234  * failure, ERR_PTR value is returned.
2235  */
2236 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2237 				size_t reserved_size, size_t dyn_size,
2238 				size_t atom_size,
2239 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2240 {
2241 	static int group_map[NR_CPUS] __initdata;
2242 	static int group_cnt[NR_CPUS] __initdata;
2243 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2244 	int nr_groups = 1, nr_units = 0;
2245 	size_t size_sum, min_unit_size, alloc_size;
2246 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2247 	int last_allocs, group, unit;
2248 	unsigned int cpu, tcpu;
2249 	struct pcpu_alloc_info *ai;
2250 	unsigned int *cpu_map;
2251 
2252 	/* this function may be called multiple times */
2253 	memset(group_map, 0, sizeof(group_map));
2254 	memset(group_cnt, 0, sizeof(group_cnt));
2255 
2256 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2257 	size_sum = PFN_ALIGN(static_size + reserved_size +
2258 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2259 	dyn_size = size_sum - static_size - reserved_size;
2260 
2261 	/*
2262 	 * Determine min_unit_size, alloc_size and max_upa such that
2263 	 * alloc_size is multiple of atom_size and is the smallest
2264 	 * which can accommodate 4k aligned segments which are equal to
2265 	 * or larger than min_unit_size.
2266 	 */
2267 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2268 
2269 	/* determine the maximum # of units that can fit in an allocation */
2270 	alloc_size = roundup(min_unit_size, atom_size);
2271 	upa = alloc_size / min_unit_size;
2272 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2273 		upa--;
2274 	max_upa = upa;
2275 
2276 	/* group cpus according to their proximity */
2277 	for_each_possible_cpu(cpu) {
2278 		group = 0;
2279 	next_group:
2280 		for_each_possible_cpu(tcpu) {
2281 			if (cpu == tcpu)
2282 				break;
2283 			if (group_map[tcpu] == group && cpu_distance_fn &&
2284 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2285 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2286 				group++;
2287 				nr_groups = max(nr_groups, group + 1);
2288 				goto next_group;
2289 			}
2290 		}
2291 		group_map[cpu] = group;
2292 		group_cnt[group]++;
2293 	}
2294 
2295 	/*
2296 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2297 	 * Expand the unit_size until we use >= 75% of the units allocated.
2298 	 * Related to atom_size, which could be much larger than the unit_size.
2299 	 */
2300 	last_allocs = INT_MAX;
2301 	for (upa = max_upa; upa; upa--) {
2302 		int allocs = 0, wasted = 0;
2303 
2304 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2305 			continue;
2306 
2307 		for (group = 0; group < nr_groups; group++) {
2308 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2309 			allocs += this_allocs;
2310 			wasted += this_allocs * upa - group_cnt[group];
2311 		}
2312 
2313 		/*
2314 		 * Don't accept if wastage is over 1/3.  The
2315 		 * greater-than comparison ensures upa==1 always
2316 		 * passes the following check.
2317 		 */
2318 		if (wasted > num_possible_cpus() / 3)
2319 			continue;
2320 
2321 		/* and then don't consume more memory */
2322 		if (allocs > last_allocs)
2323 			break;
2324 		last_allocs = allocs;
2325 		best_upa = upa;
2326 	}
2327 	upa = best_upa;
2328 
2329 	/* allocate and fill alloc_info */
2330 	for (group = 0; group < nr_groups; group++)
2331 		nr_units += roundup(group_cnt[group], upa);
2332 
2333 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2334 	if (!ai)
2335 		return ERR_PTR(-ENOMEM);
2336 	cpu_map = ai->groups[0].cpu_map;
2337 
2338 	for (group = 0; group < nr_groups; group++) {
2339 		ai->groups[group].cpu_map = cpu_map;
2340 		cpu_map += roundup(group_cnt[group], upa);
2341 	}
2342 
2343 	ai->static_size = static_size;
2344 	ai->reserved_size = reserved_size;
2345 	ai->dyn_size = dyn_size;
2346 	ai->unit_size = alloc_size / upa;
2347 	ai->atom_size = atom_size;
2348 	ai->alloc_size = alloc_size;
2349 
2350 	for (group = 0, unit = 0; group_cnt[group]; group++) {
2351 		struct pcpu_group_info *gi = &ai->groups[group];
2352 
2353 		/*
2354 		 * Initialize base_offset as if all groups are located
2355 		 * back-to-back.  The caller should update this to
2356 		 * reflect actual allocation.
2357 		 */
2358 		gi->base_offset = unit * ai->unit_size;
2359 
2360 		for_each_possible_cpu(cpu)
2361 			if (group_map[cpu] == group)
2362 				gi->cpu_map[gi->nr_units++] = cpu;
2363 		gi->nr_units = roundup(gi->nr_units, upa);
2364 		unit += gi->nr_units;
2365 	}
2366 	BUG_ON(unit != nr_units);
2367 
2368 	return ai;
2369 }
2370 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2371 
2372 #if defined(BUILD_EMBED_FIRST_CHUNK)
2373 /**
2374  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2375  * @reserved_size: the size of reserved percpu area in bytes
2376  * @dyn_size: minimum free size for dynamic allocation in bytes
2377  * @atom_size: allocation atom size
2378  * @cpu_distance_fn: callback to determine distance between cpus, optional
2379  * @alloc_fn: function to allocate percpu page
2380  * @free_fn: function to free percpu page
2381  *
2382  * This is a helper to ease setting up embedded first percpu chunk and
2383  * can be called where pcpu_setup_first_chunk() is expected.
2384  *
2385  * If this function is used to setup the first chunk, it is allocated
2386  * by calling @alloc_fn and used as-is without being mapped into
2387  * vmalloc area.  Allocations are always whole multiples of @atom_size
2388  * aligned to @atom_size.
2389  *
2390  * This enables the first chunk to piggy back on the linear physical
2391  * mapping which often uses larger page size.  Please note that this
2392  * can result in very sparse cpu->unit mapping on NUMA machines thus
2393  * requiring large vmalloc address space.  Don't use this allocator if
2394  * vmalloc space is not orders of magnitude larger than distances
2395  * between node memory addresses (ie. 32bit NUMA machines).
2396  *
2397  * @dyn_size specifies the minimum dynamic area size.
2398  *
2399  * If the needed size is smaller than the minimum or specified unit
2400  * size, the leftover is returned using @free_fn.
2401  *
2402  * RETURNS:
2403  * 0 on success, -errno on failure.
2404  */
2405 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2406 				  size_t atom_size,
2407 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2408 				  pcpu_fc_alloc_fn_t alloc_fn,
2409 				  pcpu_fc_free_fn_t free_fn)
2410 {
2411 	void *base = (void *)ULONG_MAX;
2412 	void **areas = NULL;
2413 	struct pcpu_alloc_info *ai;
2414 	size_t size_sum, areas_size;
2415 	unsigned long max_distance;
2416 	int group, i, highest_group, rc;
2417 
2418 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2419 				   cpu_distance_fn);
2420 	if (IS_ERR(ai))
2421 		return PTR_ERR(ai);
2422 
2423 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2424 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2425 
2426 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2427 	if (!areas) {
2428 		rc = -ENOMEM;
2429 		goto out_free;
2430 	}
2431 
2432 	/* allocate, copy and determine base address & max_distance */
2433 	highest_group = 0;
2434 	for (group = 0; group < ai->nr_groups; group++) {
2435 		struct pcpu_group_info *gi = &ai->groups[group];
2436 		unsigned int cpu = NR_CPUS;
2437 		void *ptr;
2438 
2439 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2440 			cpu = gi->cpu_map[i];
2441 		BUG_ON(cpu == NR_CPUS);
2442 
2443 		/* allocate space for the whole group */
2444 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2445 		if (!ptr) {
2446 			rc = -ENOMEM;
2447 			goto out_free_areas;
2448 		}
2449 		/* kmemleak tracks the percpu allocations separately */
2450 		kmemleak_free(ptr);
2451 		areas[group] = ptr;
2452 
2453 		base = min(ptr, base);
2454 		if (ptr > areas[highest_group])
2455 			highest_group = group;
2456 	}
2457 	max_distance = areas[highest_group] - base;
2458 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2459 
2460 	/* warn if maximum distance is further than 75% of vmalloc space */
2461 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2462 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2463 				max_distance, VMALLOC_TOTAL);
2464 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2465 		/* and fail if we have fallback */
2466 		rc = -EINVAL;
2467 		goto out_free_areas;
2468 #endif
2469 	}
2470 
2471 	/*
2472 	 * Copy data and free unused parts.  This should happen after all
2473 	 * allocations are complete; otherwise, we may end up with
2474 	 * overlapping groups.
2475 	 */
2476 	for (group = 0; group < ai->nr_groups; group++) {
2477 		struct pcpu_group_info *gi = &ai->groups[group];
2478 		void *ptr = areas[group];
2479 
2480 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2481 			if (gi->cpu_map[i] == NR_CPUS) {
2482 				/* unused unit, free whole */
2483 				free_fn(ptr, ai->unit_size);
2484 				continue;
2485 			}
2486 			/* copy and return the unused part */
2487 			memcpy(ptr, __per_cpu_load, ai->static_size);
2488 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2489 		}
2490 	}
2491 
2492 	/* base address is now known, determine group base offsets */
2493 	for (group = 0; group < ai->nr_groups; group++) {
2494 		ai->groups[group].base_offset = areas[group] - base;
2495 	}
2496 
2497 	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2498 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2499 		ai->dyn_size, ai->unit_size);
2500 
2501 	rc = pcpu_setup_first_chunk(ai, base);
2502 	goto out_free;
2503 
2504 out_free_areas:
2505 	for (group = 0; group < ai->nr_groups; group++)
2506 		if (areas[group])
2507 			free_fn(areas[group],
2508 				ai->groups[group].nr_units * ai->unit_size);
2509 out_free:
2510 	pcpu_free_alloc_info(ai);
2511 	if (areas)
2512 		memblock_free_early(__pa(areas), areas_size);
2513 	return rc;
2514 }
2515 #endif /* BUILD_EMBED_FIRST_CHUNK */
2516 
2517 #ifdef BUILD_PAGE_FIRST_CHUNK
2518 /**
2519  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2520  * @reserved_size: the size of reserved percpu area in bytes
2521  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2522  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2523  * @populate_pte_fn: function to populate pte
2524  *
2525  * This is a helper to ease setting up page-remapped first percpu
2526  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2527  *
2528  * This is the basic allocator.  Static percpu area is allocated
2529  * page-by-page into vmalloc area.
2530  *
2531  * RETURNS:
2532  * 0 on success, -errno on failure.
2533  */
2534 int __init pcpu_page_first_chunk(size_t reserved_size,
2535 				 pcpu_fc_alloc_fn_t alloc_fn,
2536 				 pcpu_fc_free_fn_t free_fn,
2537 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2538 {
2539 	static struct vm_struct vm;
2540 	struct pcpu_alloc_info *ai;
2541 	char psize_str[16];
2542 	int unit_pages;
2543 	size_t pages_size;
2544 	struct page **pages;
2545 	int unit, i, j, rc;
2546 	int upa;
2547 	int nr_g0_units;
2548 
2549 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2550 
2551 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2552 	if (IS_ERR(ai))
2553 		return PTR_ERR(ai);
2554 	BUG_ON(ai->nr_groups != 1);
2555 	upa = ai->alloc_size/ai->unit_size;
2556 	nr_g0_units = roundup(num_possible_cpus(), upa);
2557 	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2558 		pcpu_free_alloc_info(ai);
2559 		return -EINVAL;
2560 	}
2561 
2562 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2563 
2564 	/* unaligned allocations can't be freed, round up to page size */
2565 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2566 			       sizeof(pages[0]));
2567 	pages = memblock_virt_alloc(pages_size, 0);
2568 
2569 	/* allocate pages */
2570 	j = 0;
2571 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2572 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2573 		for (i = 0; i < unit_pages; i++) {
2574 			void *ptr;
2575 
2576 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2577 			if (!ptr) {
2578 				pr_warn("failed to allocate %s page for cpu%u\n",
2579 						psize_str, cpu);
2580 				goto enomem;
2581 			}
2582 			/* kmemleak tracks the percpu allocations separately */
2583 			kmemleak_free(ptr);
2584 			pages[j++] = virt_to_page(ptr);
2585 		}
2586 	}
2587 
2588 	/* allocate vm area, map the pages and copy static data */
2589 	vm.flags = VM_ALLOC;
2590 	vm.size = num_possible_cpus() * ai->unit_size;
2591 	vm_area_register_early(&vm, PAGE_SIZE);
2592 
2593 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2594 		unsigned long unit_addr =
2595 			(unsigned long)vm.addr + unit * ai->unit_size;
2596 
2597 		for (i = 0; i < unit_pages; i++)
2598 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2599 
2600 		/* pte already populated, the following shouldn't fail */
2601 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2602 				      unit_pages);
2603 		if (rc < 0)
2604 			panic("failed to map percpu area, err=%d\n", rc);
2605 
2606 		/*
2607 		 * FIXME: Archs with virtual cache should flush local
2608 		 * cache for the linear mapping here - something
2609 		 * equivalent to flush_cache_vmap() on the local cpu.
2610 		 * flush_cache_vmap() can't be used as most supporting
2611 		 * data structures are not set up yet.
2612 		 */
2613 
2614 		/* copy static data */
2615 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2616 	}
2617 
2618 	/* we're ready, commit */
2619 	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2620 		unit_pages, psize_str, vm.addr, ai->static_size,
2621 		ai->reserved_size, ai->dyn_size);
2622 
2623 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2624 	goto out_free_ar;
2625 
2626 enomem:
2627 	while (--j >= 0)
2628 		free_fn(page_address(pages[j]), PAGE_SIZE);
2629 	rc = -ENOMEM;
2630 out_free_ar:
2631 	memblock_free_early(__pa(pages), pages_size);
2632 	pcpu_free_alloc_info(ai);
2633 	return rc;
2634 }
2635 #endif /* BUILD_PAGE_FIRST_CHUNK */
2636 
2637 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2638 /*
2639  * Generic SMP percpu area setup.
2640  *
2641  * The embedding helper is used because its behavior closely resembles
2642  * the original non-dynamic generic percpu area setup.  This is
2643  * important because many archs have addressing restrictions and might
2644  * fail if the percpu area is located far away from the previous
2645  * location.  As an added bonus, in non-NUMA cases, embedding is
2646  * generally a good idea TLB-wise because percpu area can piggy back
2647  * on the physical linear memory mapping which uses large page
2648  * mappings on applicable archs.
2649  */
2650 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2651 EXPORT_SYMBOL(__per_cpu_offset);
2652 
2653 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2654 				       size_t align)
2655 {
2656 	return  memblock_virt_alloc_from_nopanic(
2657 			size, align, __pa(MAX_DMA_ADDRESS));
2658 }
2659 
2660 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2661 {
2662 	memblock_free_early(__pa(ptr), size);
2663 }
2664 
2665 void __init setup_per_cpu_areas(void)
2666 {
2667 	unsigned long delta;
2668 	unsigned int cpu;
2669 	int rc;
2670 
2671 	/*
2672 	 * Always reserve area for module percpu variables.  That's
2673 	 * what the legacy allocator did.
2674 	 */
2675 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2676 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2677 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2678 	if (rc < 0)
2679 		panic("Failed to initialize percpu areas.");
2680 
2681 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2682 	for_each_possible_cpu(cpu)
2683 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2684 }
2685 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2686 
2687 #else	/* CONFIG_SMP */
2688 
2689 /*
2690  * UP percpu area setup.
2691  *
2692  * UP always uses km-based percpu allocator with identity mapping.
2693  * Static percpu variables are indistinguishable from the usual static
2694  * variables and don't require any special preparation.
2695  */
2696 void __init setup_per_cpu_areas(void)
2697 {
2698 	const size_t unit_size =
2699 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2700 					 PERCPU_DYNAMIC_RESERVE));
2701 	struct pcpu_alloc_info *ai;
2702 	void *fc;
2703 
2704 	ai = pcpu_alloc_alloc_info(1, 1);
2705 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2706 					      PAGE_SIZE,
2707 					      __pa(MAX_DMA_ADDRESS));
2708 	if (!ai || !fc)
2709 		panic("Failed to allocate memory for percpu areas.");
2710 	/* kmemleak tracks the percpu allocations separately */
2711 	kmemleak_free(fc);
2712 
2713 	ai->dyn_size = unit_size;
2714 	ai->unit_size = unit_size;
2715 	ai->atom_size = unit_size;
2716 	ai->alloc_size = unit_size;
2717 	ai->groups[0].nr_units = 1;
2718 	ai->groups[0].cpu_map[0] = 0;
2719 
2720 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2721 		panic("Failed to initialize percpu areas.");
2722 #ifdef CONFIG_CRIS
2723 #warning "the CRIS architecture has physical and virtual addresses confused"
2724 #else
2725 	pcpu_free_alloc_info(ai);
2726 #endif
2727 }
2728 
2729 #endif	/* CONFIG_SMP */
2730 
2731 /*
2732  * Percpu allocator is initialized early during boot when neither slab or
2733  * workqueue is available.  Plug async management until everything is up
2734  * and running.
2735  */
2736 static int __init percpu_enable_async(void)
2737 {
2738 	pcpu_async_enabled = true;
2739 	return 0;
2740 }
2741 subsys_initcall(percpu_enable_async);
2742