xref: /linux/mm/percpu.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * tries to allocate from the fullest chunk first.  Each chunk is managed
41  * by a bitmap with metadata blocks.  The allocation map is updated on
42  * every allocation and free to reflect the current state while the boundary
43  * map is only updated on allocation.  Each metadata block contains
44  * information to help mitigate the need to iterate over large portions
45  * of the bitmap.  The reverse mapping from page to chunk is stored in
46  * the page's index.  Lastly, units are lazily backed and grow in unison.
47  *
48  * There is a unique conversion that goes on here between bytes and bits.
49  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
50  * tracks the number of pages it is responsible for in nr_pages.  Helper
51  * functions are used to convert from between the bytes, bits, and blocks.
52  * All hints are managed in bits unless explicitly stated.
53  *
54  * To use this allocator, arch code should do the following:
55  *
56  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57  *   regular address to percpu pointer and back if they need to be
58  *   different from the default
59  *
60  * - use pcpu_setup_first_chunk() during percpu area initialization to
61  *   setup the first chunk containing the kernel static percpu area
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
72 #include <linux/mm.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
83 
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91 
92 #include "percpu-internal.h"
93 
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT		5
96 /* chunks in slots below this are subject to being sidelined on failed alloc */
97 #define PCPU_SLOT_FAIL_THRESHOLD	3
98 
99 #define PCPU_EMPTY_POP_PAGES_LOW	2
100 #define PCPU_EMPTY_POP_PAGES_HIGH	4
101 
102 #ifdef CONFIG_SMP
103 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
104 #ifndef __addr_to_pcpu_ptr
105 #define __addr_to_pcpu_ptr(addr)					\
106 	(void __percpu *)((unsigned long)(addr) -			\
107 			  (unsigned long)pcpu_base_addr	+		\
108 			  (unsigned long)__per_cpu_start)
109 #endif
110 #ifndef __pcpu_ptr_to_addr
111 #define __pcpu_ptr_to_addr(ptr)						\
112 	(void __force *)((unsigned long)(ptr) +				\
113 			 (unsigned long)pcpu_base_addr -		\
114 			 (unsigned long)__per_cpu_start)
115 #endif
116 #else	/* CONFIG_SMP */
117 /* on UP, it's always identity mapped */
118 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
119 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
120 #endif	/* CONFIG_SMP */
121 
122 static int pcpu_unit_pages __ro_after_init;
123 static int pcpu_unit_size __ro_after_init;
124 static int pcpu_nr_units __ro_after_init;
125 static int pcpu_atom_size __ro_after_init;
126 int pcpu_nr_slots __ro_after_init;
127 static size_t pcpu_chunk_struct_size __ro_after_init;
128 
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __ro_after_init;
131 static unsigned int pcpu_high_unit_cpu __ro_after_init;
132 
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __ro_after_init;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr);
136 
137 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
139 
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __ro_after_init;
142 static const unsigned long *pcpu_group_offsets __ro_after_init;
143 static const size_t *pcpu_group_sizes __ro_after_init;
144 
145 /*
146  * The first chunk which always exists.  Note that unlike other
147  * chunks, this one can be allocated and mapped in several different
148  * ways and thus often doesn't live in the vmalloc area.
149  */
150 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
151 
152 /*
153  * Optional reserved chunk.  This chunk reserves part of the first
154  * chunk and serves it for reserved allocations.  When the reserved
155  * region doesn't exist, the following variable is NULL.
156  */
157 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
158 
159 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
160 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
161 
162 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
163 
164 /* chunks which need their map areas extended, protected by pcpu_lock */
165 static LIST_HEAD(pcpu_map_extend_chunks);
166 
167 /*
168  * The number of empty populated pages, protected by pcpu_lock.  The
169  * reserved chunk doesn't contribute to the count.
170  */
171 int pcpu_nr_empty_pop_pages;
172 
173 /*
174  * The number of populated pages in use by the allocator, protected by
175  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
176  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
177  * and increments/decrements this count by 1).
178  */
179 static unsigned long pcpu_nr_populated;
180 
181 /*
182  * Balance work is used to populate or destroy chunks asynchronously.  We
183  * try to keep the number of populated free pages between
184  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
185  * empty chunk.
186  */
187 static void pcpu_balance_workfn(struct work_struct *work);
188 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
189 static bool pcpu_async_enabled __read_mostly;
190 static bool pcpu_atomic_alloc_failed;
191 
192 static void pcpu_schedule_balance_work(void)
193 {
194 	if (pcpu_async_enabled)
195 		schedule_work(&pcpu_balance_work);
196 }
197 
198 /**
199  * pcpu_addr_in_chunk - check if the address is served from this chunk
200  * @chunk: chunk of interest
201  * @addr: percpu address
202  *
203  * RETURNS:
204  * True if the address is served from this chunk.
205  */
206 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
207 {
208 	void *start_addr, *end_addr;
209 
210 	if (!chunk)
211 		return false;
212 
213 	start_addr = chunk->base_addr + chunk->start_offset;
214 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
215 		   chunk->end_offset;
216 
217 	return addr >= start_addr && addr < end_addr;
218 }
219 
220 static int __pcpu_size_to_slot(int size)
221 {
222 	int highbit = fls(size);	/* size is in bytes */
223 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
224 }
225 
226 static int pcpu_size_to_slot(int size)
227 {
228 	if (size == pcpu_unit_size)
229 		return pcpu_nr_slots - 1;
230 	return __pcpu_size_to_slot(size);
231 }
232 
233 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
234 {
235 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
236 
237 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
238 	    chunk_md->contig_hint == 0)
239 		return 0;
240 
241 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
242 }
243 
244 /* set the pointer to a chunk in a page struct */
245 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
246 {
247 	page->index = (unsigned long)pcpu;
248 }
249 
250 /* obtain pointer to a chunk from a page struct */
251 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
252 {
253 	return (struct pcpu_chunk *)page->index;
254 }
255 
256 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
257 {
258 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
259 }
260 
261 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
262 {
263 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
264 }
265 
266 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
267 				     unsigned int cpu, int page_idx)
268 {
269 	return (unsigned long)chunk->base_addr +
270 	       pcpu_unit_page_offset(cpu, page_idx);
271 }
272 
273 /*
274  * The following are helper functions to help access bitmaps and convert
275  * between bitmap offsets to address offsets.
276  */
277 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
278 {
279 	return chunk->alloc_map +
280 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
281 }
282 
283 static unsigned long pcpu_off_to_block_index(int off)
284 {
285 	return off / PCPU_BITMAP_BLOCK_BITS;
286 }
287 
288 static unsigned long pcpu_off_to_block_off(int off)
289 {
290 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
291 }
292 
293 static unsigned long pcpu_block_off_to_off(int index, int off)
294 {
295 	return index * PCPU_BITMAP_BLOCK_BITS + off;
296 }
297 
298 /*
299  * pcpu_next_hint - determine which hint to use
300  * @block: block of interest
301  * @alloc_bits: size of allocation
302  *
303  * This determines if we should scan based on the scan_hint or first_free.
304  * In general, we want to scan from first_free to fulfill allocations by
305  * first fit.  However, if we know a scan_hint at position scan_hint_start
306  * cannot fulfill an allocation, we can begin scanning from there knowing
307  * the contig_hint will be our fallback.
308  */
309 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
310 {
311 	/*
312 	 * The three conditions below determine if we can skip past the
313 	 * scan_hint.  First, does the scan hint exist.  Second, is the
314 	 * contig_hint after the scan_hint (possibly not true iff
315 	 * contig_hint == scan_hint).  Third, is the allocation request
316 	 * larger than the scan_hint.
317 	 */
318 	if (block->scan_hint &&
319 	    block->contig_hint_start > block->scan_hint_start &&
320 	    alloc_bits > block->scan_hint)
321 		return block->scan_hint_start + block->scan_hint;
322 
323 	return block->first_free;
324 }
325 
326 /**
327  * pcpu_next_md_free_region - finds the next hint free area
328  * @chunk: chunk of interest
329  * @bit_off: chunk offset
330  * @bits: size of free area
331  *
332  * Helper function for pcpu_for_each_md_free_region.  It checks
333  * block->contig_hint and performs aggregation across blocks to find the
334  * next hint.  It modifies bit_off and bits in-place to be consumed in the
335  * loop.
336  */
337 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
338 				     int *bits)
339 {
340 	int i = pcpu_off_to_block_index(*bit_off);
341 	int block_off = pcpu_off_to_block_off(*bit_off);
342 	struct pcpu_block_md *block;
343 
344 	*bits = 0;
345 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
346 	     block++, i++) {
347 		/* handles contig area across blocks */
348 		if (*bits) {
349 			*bits += block->left_free;
350 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
351 				continue;
352 			return;
353 		}
354 
355 		/*
356 		 * This checks three things.  First is there a contig_hint to
357 		 * check.  Second, have we checked this hint before by
358 		 * comparing the block_off.  Third, is this the same as the
359 		 * right contig hint.  In the last case, it spills over into
360 		 * the next block and should be handled by the contig area
361 		 * across blocks code.
362 		 */
363 		*bits = block->contig_hint;
364 		if (*bits && block->contig_hint_start >= block_off &&
365 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
366 			*bit_off = pcpu_block_off_to_off(i,
367 					block->contig_hint_start);
368 			return;
369 		}
370 		/* reset to satisfy the second predicate above */
371 		block_off = 0;
372 
373 		*bits = block->right_free;
374 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
375 	}
376 }
377 
378 /**
379  * pcpu_next_fit_region - finds fit areas for a given allocation request
380  * @chunk: chunk of interest
381  * @alloc_bits: size of allocation
382  * @align: alignment of area (max PAGE_SIZE)
383  * @bit_off: chunk offset
384  * @bits: size of free area
385  *
386  * Finds the next free region that is viable for use with a given size and
387  * alignment.  This only returns if there is a valid area to be used for this
388  * allocation.  block->first_free is returned if the allocation request fits
389  * within the block to see if the request can be fulfilled prior to the contig
390  * hint.
391  */
392 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
393 				 int align, int *bit_off, int *bits)
394 {
395 	int i = pcpu_off_to_block_index(*bit_off);
396 	int block_off = pcpu_off_to_block_off(*bit_off);
397 	struct pcpu_block_md *block;
398 
399 	*bits = 0;
400 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
401 	     block++, i++) {
402 		/* handles contig area across blocks */
403 		if (*bits) {
404 			*bits += block->left_free;
405 			if (*bits >= alloc_bits)
406 				return;
407 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
408 				continue;
409 		}
410 
411 		/* check block->contig_hint */
412 		*bits = ALIGN(block->contig_hint_start, align) -
413 			block->contig_hint_start;
414 		/*
415 		 * This uses the block offset to determine if this has been
416 		 * checked in the prior iteration.
417 		 */
418 		if (block->contig_hint &&
419 		    block->contig_hint_start >= block_off &&
420 		    block->contig_hint >= *bits + alloc_bits) {
421 			int start = pcpu_next_hint(block, alloc_bits);
422 
423 			*bits += alloc_bits + block->contig_hint_start -
424 				 start;
425 			*bit_off = pcpu_block_off_to_off(i, start);
426 			return;
427 		}
428 		/* reset to satisfy the second predicate above */
429 		block_off = 0;
430 
431 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
432 				 align);
433 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
434 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
435 		if (*bits >= alloc_bits)
436 			return;
437 	}
438 
439 	/* no valid offsets were found - fail condition */
440 	*bit_off = pcpu_chunk_map_bits(chunk);
441 }
442 
443 /*
444  * Metadata free area iterators.  These perform aggregation of free areas
445  * based on the metadata blocks and return the offset @bit_off and size in
446  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
447  * a fit is found for the allocation request.
448  */
449 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
450 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
451 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
452 	     (bit_off) += (bits) + 1,					\
453 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
454 
455 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
456 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
457 				  &(bits));				      \
458 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
459 	     (bit_off) += (bits),					      \
460 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
461 				  &(bits)))
462 
463 /**
464  * pcpu_mem_zalloc - allocate memory
465  * @size: bytes to allocate
466  * @gfp: allocation flags
467  *
468  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
469  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
470  * This is to facilitate passing through whitelisted flags.  The
471  * returned memory is always zeroed.
472  *
473  * RETURNS:
474  * Pointer to the allocated area on success, NULL on failure.
475  */
476 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
477 {
478 	if (WARN_ON_ONCE(!slab_is_available()))
479 		return NULL;
480 
481 	if (size <= PAGE_SIZE)
482 		return kzalloc(size, gfp);
483 	else
484 		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
485 }
486 
487 /**
488  * pcpu_mem_free - free memory
489  * @ptr: memory to free
490  *
491  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
492  */
493 static void pcpu_mem_free(void *ptr)
494 {
495 	kvfree(ptr);
496 }
497 
498 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
499 			      bool move_front)
500 {
501 	if (chunk != pcpu_reserved_chunk) {
502 		if (move_front)
503 			list_move(&chunk->list, &pcpu_slot[slot]);
504 		else
505 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
506 	}
507 }
508 
509 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
510 {
511 	__pcpu_chunk_move(chunk, slot, true);
512 }
513 
514 /**
515  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
516  * @chunk: chunk of interest
517  * @oslot: the previous slot it was on
518  *
519  * This function is called after an allocation or free changed @chunk.
520  * New slot according to the changed state is determined and @chunk is
521  * moved to the slot.  Note that the reserved chunk is never put on
522  * chunk slots.
523  *
524  * CONTEXT:
525  * pcpu_lock.
526  */
527 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
528 {
529 	int nslot = pcpu_chunk_slot(chunk);
530 
531 	if (oslot != nslot)
532 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
533 }
534 
535 /*
536  * pcpu_update_empty_pages - update empty page counters
537  * @chunk: chunk of interest
538  * @nr: nr of empty pages
539  *
540  * This is used to keep track of the empty pages now based on the premise
541  * a md_block covers a page.  The hint update functions recognize if a block
542  * is made full or broken to calculate deltas for keeping track of free pages.
543  */
544 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
545 {
546 	chunk->nr_empty_pop_pages += nr;
547 	if (chunk != pcpu_reserved_chunk)
548 		pcpu_nr_empty_pop_pages += nr;
549 }
550 
551 /*
552  * pcpu_region_overlap - determines if two regions overlap
553  * @a: start of first region, inclusive
554  * @b: end of first region, exclusive
555  * @x: start of second region, inclusive
556  * @y: end of second region, exclusive
557  *
558  * This is used to determine if the hint region [a, b) overlaps with the
559  * allocated region [x, y).
560  */
561 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
562 {
563 	return (a < y) && (x < b);
564 }
565 
566 /**
567  * pcpu_block_update - updates a block given a free area
568  * @block: block of interest
569  * @start: start offset in block
570  * @end: end offset in block
571  *
572  * Updates a block given a known free area.  The region [start, end) is
573  * expected to be the entirety of the free area within a block.  Chooses
574  * the best starting offset if the contig hints are equal.
575  */
576 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
577 {
578 	int contig = end - start;
579 
580 	block->first_free = min(block->first_free, start);
581 	if (start == 0)
582 		block->left_free = contig;
583 
584 	if (end == block->nr_bits)
585 		block->right_free = contig;
586 
587 	if (contig > block->contig_hint) {
588 		/* promote the old contig_hint to be the new scan_hint */
589 		if (start > block->contig_hint_start) {
590 			if (block->contig_hint > block->scan_hint) {
591 				block->scan_hint_start =
592 					block->contig_hint_start;
593 				block->scan_hint = block->contig_hint;
594 			} else if (start < block->scan_hint_start) {
595 				/*
596 				 * The old contig_hint == scan_hint.  But, the
597 				 * new contig is larger so hold the invariant
598 				 * scan_hint_start < contig_hint_start.
599 				 */
600 				block->scan_hint = 0;
601 			}
602 		} else {
603 			block->scan_hint = 0;
604 		}
605 		block->contig_hint_start = start;
606 		block->contig_hint = contig;
607 	} else if (contig == block->contig_hint) {
608 		if (block->contig_hint_start &&
609 		    (!start ||
610 		     __ffs(start) > __ffs(block->contig_hint_start))) {
611 			/* start has a better alignment so use it */
612 			block->contig_hint_start = start;
613 			if (start < block->scan_hint_start &&
614 			    block->contig_hint > block->scan_hint)
615 				block->scan_hint = 0;
616 		} else if (start > block->scan_hint_start ||
617 			   block->contig_hint > block->scan_hint) {
618 			/*
619 			 * Knowing contig == contig_hint, update the scan_hint
620 			 * if it is farther than or larger than the current
621 			 * scan_hint.
622 			 */
623 			block->scan_hint_start = start;
624 			block->scan_hint = contig;
625 		}
626 	} else {
627 		/*
628 		 * The region is smaller than the contig_hint.  So only update
629 		 * the scan_hint if it is larger than or equal and farther than
630 		 * the current scan_hint.
631 		 */
632 		if ((start < block->contig_hint_start &&
633 		     (contig > block->scan_hint ||
634 		      (contig == block->scan_hint &&
635 		       start > block->scan_hint_start)))) {
636 			block->scan_hint_start = start;
637 			block->scan_hint = contig;
638 		}
639 	}
640 }
641 
642 /*
643  * pcpu_block_update_scan - update a block given a free area from a scan
644  * @chunk: chunk of interest
645  * @bit_off: chunk offset
646  * @bits: size of free area
647  *
648  * Finding the final allocation spot first goes through pcpu_find_block_fit()
649  * to find a block that can hold the allocation and then pcpu_alloc_area()
650  * where a scan is used.  When allocations require specific alignments,
651  * we can inadvertently create holes which will not be seen in the alloc
652  * or free paths.
653  *
654  * This takes a given free area hole and updates a block as it may change the
655  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
656  * from alignment.
657  */
658 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
659 				   int bits)
660 {
661 	int s_off = pcpu_off_to_block_off(bit_off);
662 	int e_off = s_off + bits;
663 	int s_index, l_bit;
664 	struct pcpu_block_md *block;
665 
666 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
667 		return;
668 
669 	s_index = pcpu_off_to_block_index(bit_off);
670 	block = chunk->md_blocks + s_index;
671 
672 	/* scan backwards in case of alignment skipping free bits */
673 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
674 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
675 
676 	pcpu_block_update(block, s_off, e_off);
677 }
678 
679 /**
680  * pcpu_chunk_refresh_hint - updates metadata about a chunk
681  * @chunk: chunk of interest
682  * @full_scan: if we should scan from the beginning
683  *
684  * Iterates over the metadata blocks to find the largest contig area.
685  * A full scan can be avoided on the allocation path as this is triggered
686  * if we broke the contig_hint.  In doing so, the scan_hint will be before
687  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
688  * be prevented on freeing as we want to find the largest area possibly
689  * spanning blocks.
690  */
691 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
692 {
693 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
694 	int bit_off, bits;
695 
696 	/* promote scan_hint to contig_hint */
697 	if (!full_scan && chunk_md->scan_hint) {
698 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
699 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
700 		chunk_md->contig_hint = chunk_md->scan_hint;
701 		chunk_md->scan_hint = 0;
702 	} else {
703 		bit_off = chunk_md->first_free;
704 		chunk_md->contig_hint = 0;
705 	}
706 
707 	bits = 0;
708 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
709 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
710 }
711 
712 /**
713  * pcpu_block_refresh_hint
714  * @chunk: chunk of interest
715  * @index: index of the metadata block
716  *
717  * Scans over the block beginning at first_free and updates the block
718  * metadata accordingly.
719  */
720 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
721 {
722 	struct pcpu_block_md *block = chunk->md_blocks + index;
723 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
724 	unsigned int rs, re, start;	/* region start, region end */
725 
726 	/* promote scan_hint to contig_hint */
727 	if (block->scan_hint) {
728 		start = block->scan_hint_start + block->scan_hint;
729 		block->contig_hint_start = block->scan_hint_start;
730 		block->contig_hint = block->scan_hint;
731 		block->scan_hint = 0;
732 	} else {
733 		start = block->first_free;
734 		block->contig_hint = 0;
735 	}
736 
737 	block->right_free = 0;
738 
739 	/* iterate over free areas and update the contig hints */
740 	bitmap_for_each_clear_region(alloc_map, rs, re, start,
741 				     PCPU_BITMAP_BLOCK_BITS)
742 		pcpu_block_update(block, rs, re);
743 }
744 
745 /**
746  * pcpu_block_update_hint_alloc - update hint on allocation path
747  * @chunk: chunk of interest
748  * @bit_off: chunk offset
749  * @bits: size of request
750  *
751  * Updates metadata for the allocation path.  The metadata only has to be
752  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
753  * scans are required if the block's contig hint is broken.
754  */
755 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
756 					 int bits)
757 {
758 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
759 	int nr_empty_pages = 0;
760 	struct pcpu_block_md *s_block, *e_block, *block;
761 	int s_index, e_index;	/* block indexes of the freed allocation */
762 	int s_off, e_off;	/* block offsets of the freed allocation */
763 
764 	/*
765 	 * Calculate per block offsets.
766 	 * The calculation uses an inclusive range, but the resulting offsets
767 	 * are [start, end).  e_index always points to the last block in the
768 	 * range.
769 	 */
770 	s_index = pcpu_off_to_block_index(bit_off);
771 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
772 	s_off = pcpu_off_to_block_off(bit_off);
773 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
774 
775 	s_block = chunk->md_blocks + s_index;
776 	e_block = chunk->md_blocks + e_index;
777 
778 	/*
779 	 * Update s_block.
780 	 * block->first_free must be updated if the allocation takes its place.
781 	 * If the allocation breaks the contig_hint, a scan is required to
782 	 * restore this hint.
783 	 */
784 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
785 		nr_empty_pages++;
786 
787 	if (s_off == s_block->first_free)
788 		s_block->first_free = find_next_zero_bit(
789 					pcpu_index_alloc_map(chunk, s_index),
790 					PCPU_BITMAP_BLOCK_BITS,
791 					s_off + bits);
792 
793 	if (pcpu_region_overlap(s_block->scan_hint_start,
794 				s_block->scan_hint_start + s_block->scan_hint,
795 				s_off,
796 				s_off + bits))
797 		s_block->scan_hint = 0;
798 
799 	if (pcpu_region_overlap(s_block->contig_hint_start,
800 				s_block->contig_hint_start +
801 				s_block->contig_hint,
802 				s_off,
803 				s_off + bits)) {
804 		/* block contig hint is broken - scan to fix it */
805 		if (!s_off)
806 			s_block->left_free = 0;
807 		pcpu_block_refresh_hint(chunk, s_index);
808 	} else {
809 		/* update left and right contig manually */
810 		s_block->left_free = min(s_block->left_free, s_off);
811 		if (s_index == e_index)
812 			s_block->right_free = min_t(int, s_block->right_free,
813 					PCPU_BITMAP_BLOCK_BITS - e_off);
814 		else
815 			s_block->right_free = 0;
816 	}
817 
818 	/*
819 	 * Update e_block.
820 	 */
821 	if (s_index != e_index) {
822 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
823 			nr_empty_pages++;
824 
825 		/*
826 		 * When the allocation is across blocks, the end is along
827 		 * the left part of the e_block.
828 		 */
829 		e_block->first_free = find_next_zero_bit(
830 				pcpu_index_alloc_map(chunk, e_index),
831 				PCPU_BITMAP_BLOCK_BITS, e_off);
832 
833 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
834 			/* reset the block */
835 			e_block++;
836 		} else {
837 			if (e_off > e_block->scan_hint_start)
838 				e_block->scan_hint = 0;
839 
840 			e_block->left_free = 0;
841 			if (e_off > e_block->contig_hint_start) {
842 				/* contig hint is broken - scan to fix it */
843 				pcpu_block_refresh_hint(chunk, e_index);
844 			} else {
845 				e_block->right_free =
846 					min_t(int, e_block->right_free,
847 					      PCPU_BITMAP_BLOCK_BITS - e_off);
848 			}
849 		}
850 
851 		/* update in-between md_blocks */
852 		nr_empty_pages += (e_index - s_index - 1);
853 		for (block = s_block + 1; block < e_block; block++) {
854 			block->scan_hint = 0;
855 			block->contig_hint = 0;
856 			block->left_free = 0;
857 			block->right_free = 0;
858 		}
859 	}
860 
861 	if (nr_empty_pages)
862 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
863 
864 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
865 				chunk_md->scan_hint_start +
866 				chunk_md->scan_hint,
867 				bit_off,
868 				bit_off + bits))
869 		chunk_md->scan_hint = 0;
870 
871 	/*
872 	 * The only time a full chunk scan is required is if the chunk
873 	 * contig hint is broken.  Otherwise, it means a smaller space
874 	 * was used and therefore the chunk contig hint is still correct.
875 	 */
876 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
877 				chunk_md->contig_hint_start +
878 				chunk_md->contig_hint,
879 				bit_off,
880 				bit_off + bits))
881 		pcpu_chunk_refresh_hint(chunk, false);
882 }
883 
884 /**
885  * pcpu_block_update_hint_free - updates the block hints on the free path
886  * @chunk: chunk of interest
887  * @bit_off: chunk offset
888  * @bits: size of request
889  *
890  * Updates metadata for the allocation path.  This avoids a blind block
891  * refresh by making use of the block contig hints.  If this fails, it scans
892  * forward and backward to determine the extent of the free area.  This is
893  * capped at the boundary of blocks.
894  *
895  * A chunk update is triggered if a page becomes free, a block becomes free,
896  * or the free spans across blocks.  This tradeoff is to minimize iterating
897  * over the block metadata to update chunk_md->contig_hint.
898  * chunk_md->contig_hint may be off by up to a page, but it will never be more
899  * than the available space.  If the contig hint is contained in one block, it
900  * will be accurate.
901  */
902 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
903 					int bits)
904 {
905 	int nr_empty_pages = 0;
906 	struct pcpu_block_md *s_block, *e_block, *block;
907 	int s_index, e_index;	/* block indexes of the freed allocation */
908 	int s_off, e_off;	/* block offsets of the freed allocation */
909 	int start, end;		/* start and end of the whole free area */
910 
911 	/*
912 	 * Calculate per block offsets.
913 	 * The calculation uses an inclusive range, but the resulting offsets
914 	 * are [start, end).  e_index always points to the last block in the
915 	 * range.
916 	 */
917 	s_index = pcpu_off_to_block_index(bit_off);
918 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
919 	s_off = pcpu_off_to_block_off(bit_off);
920 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
921 
922 	s_block = chunk->md_blocks + s_index;
923 	e_block = chunk->md_blocks + e_index;
924 
925 	/*
926 	 * Check if the freed area aligns with the block->contig_hint.
927 	 * If it does, then the scan to find the beginning/end of the
928 	 * larger free area can be avoided.
929 	 *
930 	 * start and end refer to beginning and end of the free area
931 	 * within each their respective blocks.  This is not necessarily
932 	 * the entire free area as it may span blocks past the beginning
933 	 * or end of the block.
934 	 */
935 	start = s_off;
936 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
937 		start = s_block->contig_hint_start;
938 	} else {
939 		/*
940 		 * Scan backwards to find the extent of the free area.
941 		 * find_last_bit returns the starting bit, so if the start bit
942 		 * is returned, that means there was no last bit and the
943 		 * remainder of the chunk is free.
944 		 */
945 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
946 					  start);
947 		start = (start == l_bit) ? 0 : l_bit + 1;
948 	}
949 
950 	end = e_off;
951 	if (e_off == e_block->contig_hint_start)
952 		end = e_block->contig_hint_start + e_block->contig_hint;
953 	else
954 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
955 				    PCPU_BITMAP_BLOCK_BITS, end);
956 
957 	/* update s_block */
958 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
959 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
960 		nr_empty_pages++;
961 	pcpu_block_update(s_block, start, e_off);
962 
963 	/* freeing in the same block */
964 	if (s_index != e_index) {
965 		/* update e_block */
966 		if (end == PCPU_BITMAP_BLOCK_BITS)
967 			nr_empty_pages++;
968 		pcpu_block_update(e_block, 0, end);
969 
970 		/* reset md_blocks in the middle */
971 		nr_empty_pages += (e_index - s_index - 1);
972 		for (block = s_block + 1; block < e_block; block++) {
973 			block->first_free = 0;
974 			block->scan_hint = 0;
975 			block->contig_hint_start = 0;
976 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
977 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
978 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
979 		}
980 	}
981 
982 	if (nr_empty_pages)
983 		pcpu_update_empty_pages(chunk, nr_empty_pages);
984 
985 	/*
986 	 * Refresh chunk metadata when the free makes a block free or spans
987 	 * across blocks.  The contig_hint may be off by up to a page, but if
988 	 * the contig_hint is contained in a block, it will be accurate with
989 	 * the else condition below.
990 	 */
991 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
992 		pcpu_chunk_refresh_hint(chunk, true);
993 	else
994 		pcpu_block_update(&chunk->chunk_md,
995 				  pcpu_block_off_to_off(s_index, start),
996 				  end);
997 }
998 
999 /**
1000  * pcpu_is_populated - determines if the region is populated
1001  * @chunk: chunk of interest
1002  * @bit_off: chunk offset
1003  * @bits: size of area
1004  * @next_off: return value for the next offset to start searching
1005  *
1006  * For atomic allocations, check if the backing pages are populated.
1007  *
1008  * RETURNS:
1009  * Bool if the backing pages are populated.
1010  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1011  */
1012 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1013 			      int *next_off)
1014 {
1015 	unsigned int page_start, page_end, rs, re;
1016 
1017 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1018 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1019 
1020 	rs = page_start;
1021 	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1022 	if (rs >= page_end)
1023 		return true;
1024 
1025 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1026 	return false;
1027 }
1028 
1029 /**
1030  * pcpu_find_block_fit - finds the block index to start searching
1031  * @chunk: chunk of interest
1032  * @alloc_bits: size of request in allocation units
1033  * @align: alignment of area (max PAGE_SIZE bytes)
1034  * @pop_only: use populated regions only
1035  *
1036  * Given a chunk and an allocation spec, find the offset to begin searching
1037  * for a free region.  This iterates over the bitmap metadata blocks to
1038  * find an offset that will be guaranteed to fit the requirements.  It is
1039  * not quite first fit as if the allocation does not fit in the contig hint
1040  * of a block or chunk, it is skipped.  This errs on the side of caution
1041  * to prevent excess iteration.  Poor alignment can cause the allocator to
1042  * skip over blocks and chunks that have valid free areas.
1043  *
1044  * RETURNS:
1045  * The offset in the bitmap to begin searching.
1046  * -1 if no offset is found.
1047  */
1048 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1049 			       size_t align, bool pop_only)
1050 {
1051 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1052 	int bit_off, bits, next_off;
1053 
1054 	/*
1055 	 * Check to see if the allocation can fit in the chunk's contig hint.
1056 	 * This is an optimization to prevent scanning by assuming if it
1057 	 * cannot fit in the global hint, there is memory pressure and creating
1058 	 * a new chunk would happen soon.
1059 	 */
1060 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1061 		  chunk_md->contig_hint_start;
1062 	if (bit_off + alloc_bits > chunk_md->contig_hint)
1063 		return -1;
1064 
1065 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1066 	bits = 0;
1067 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1068 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1069 						   &next_off))
1070 			break;
1071 
1072 		bit_off = next_off;
1073 		bits = 0;
1074 	}
1075 
1076 	if (bit_off == pcpu_chunk_map_bits(chunk))
1077 		return -1;
1078 
1079 	return bit_off;
1080 }
1081 
1082 /*
1083  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1084  * @map: the address to base the search on
1085  * @size: the bitmap size in bits
1086  * @start: the bitnumber to start searching at
1087  * @nr: the number of zeroed bits we're looking for
1088  * @align_mask: alignment mask for zero area
1089  * @largest_off: offset of the largest area skipped
1090  * @largest_bits: size of the largest area skipped
1091  *
1092  * The @align_mask should be one less than a power of 2.
1093  *
1094  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1095  * the largest area that was skipped.  This is imperfect, but in general is
1096  * good enough.  The largest remembered region is the largest failed region
1097  * seen.  This does not include anything we possibly skipped due to alignment.
1098  * pcpu_block_update_scan() does scan backwards to try and recover what was
1099  * lost to alignment.  While this can cause scanning to miss earlier possible
1100  * free areas, smaller allocations will eventually fill those holes.
1101  */
1102 static unsigned long pcpu_find_zero_area(unsigned long *map,
1103 					 unsigned long size,
1104 					 unsigned long start,
1105 					 unsigned long nr,
1106 					 unsigned long align_mask,
1107 					 unsigned long *largest_off,
1108 					 unsigned long *largest_bits)
1109 {
1110 	unsigned long index, end, i, area_off, area_bits;
1111 again:
1112 	index = find_next_zero_bit(map, size, start);
1113 
1114 	/* Align allocation */
1115 	index = __ALIGN_MASK(index, align_mask);
1116 	area_off = index;
1117 
1118 	end = index + nr;
1119 	if (end > size)
1120 		return end;
1121 	i = find_next_bit(map, end, index);
1122 	if (i < end) {
1123 		area_bits = i - area_off;
1124 		/* remember largest unused area with best alignment */
1125 		if (area_bits > *largest_bits ||
1126 		    (area_bits == *largest_bits && *largest_off &&
1127 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1128 			*largest_off = area_off;
1129 			*largest_bits = area_bits;
1130 		}
1131 
1132 		start = i + 1;
1133 		goto again;
1134 	}
1135 	return index;
1136 }
1137 
1138 /**
1139  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1140  * @chunk: chunk of interest
1141  * @alloc_bits: size of request in allocation units
1142  * @align: alignment of area (max PAGE_SIZE)
1143  * @start: bit_off to start searching
1144  *
1145  * This function takes in a @start offset to begin searching to fit an
1146  * allocation of @alloc_bits with alignment @align.  It needs to scan
1147  * the allocation map because if it fits within the block's contig hint,
1148  * @start will be block->first_free. This is an attempt to fill the
1149  * allocation prior to breaking the contig hint.  The allocation and
1150  * boundary maps are updated accordingly if it confirms a valid
1151  * free area.
1152  *
1153  * RETURNS:
1154  * Allocated addr offset in @chunk on success.
1155  * -1 if no matching area is found.
1156  */
1157 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1158 			   size_t align, int start)
1159 {
1160 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1161 	size_t align_mask = (align) ? (align - 1) : 0;
1162 	unsigned long area_off = 0, area_bits = 0;
1163 	int bit_off, end, oslot;
1164 
1165 	lockdep_assert_held(&pcpu_lock);
1166 
1167 	oslot = pcpu_chunk_slot(chunk);
1168 
1169 	/*
1170 	 * Search to find a fit.
1171 	 */
1172 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1173 		    pcpu_chunk_map_bits(chunk));
1174 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1175 				      align_mask, &area_off, &area_bits);
1176 	if (bit_off >= end)
1177 		return -1;
1178 
1179 	if (area_bits)
1180 		pcpu_block_update_scan(chunk, area_off, area_bits);
1181 
1182 	/* update alloc map */
1183 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1184 
1185 	/* update boundary map */
1186 	set_bit(bit_off, chunk->bound_map);
1187 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1188 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1189 
1190 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1191 
1192 	/* update first free bit */
1193 	if (bit_off == chunk_md->first_free)
1194 		chunk_md->first_free = find_next_zero_bit(
1195 					chunk->alloc_map,
1196 					pcpu_chunk_map_bits(chunk),
1197 					bit_off + alloc_bits);
1198 
1199 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1200 
1201 	pcpu_chunk_relocate(chunk, oslot);
1202 
1203 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1204 }
1205 
1206 /**
1207  * pcpu_free_area - frees the corresponding offset
1208  * @chunk: chunk of interest
1209  * @off: addr offset into chunk
1210  *
1211  * This function determines the size of an allocation to free using
1212  * the boundary bitmap and clears the allocation map.
1213  */
1214 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1215 {
1216 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1217 	int bit_off, bits, end, oslot;
1218 
1219 	lockdep_assert_held(&pcpu_lock);
1220 	pcpu_stats_area_dealloc(chunk);
1221 
1222 	oslot = pcpu_chunk_slot(chunk);
1223 
1224 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1225 
1226 	/* find end index */
1227 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1228 			    bit_off + 1);
1229 	bits = end - bit_off;
1230 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1231 
1232 	/* update metadata */
1233 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1234 
1235 	/* update first free bit */
1236 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1237 
1238 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1239 
1240 	pcpu_chunk_relocate(chunk, oslot);
1241 }
1242 
1243 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1244 {
1245 	block->scan_hint = 0;
1246 	block->contig_hint = nr_bits;
1247 	block->left_free = nr_bits;
1248 	block->right_free = nr_bits;
1249 	block->first_free = 0;
1250 	block->nr_bits = nr_bits;
1251 }
1252 
1253 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1254 {
1255 	struct pcpu_block_md *md_block;
1256 
1257 	/* init the chunk's block */
1258 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1259 
1260 	for (md_block = chunk->md_blocks;
1261 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1262 	     md_block++)
1263 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1264 }
1265 
1266 /**
1267  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1268  * @tmp_addr: the start of the region served
1269  * @map_size: size of the region served
1270  *
1271  * This is responsible for creating the chunks that serve the first chunk.  The
1272  * base_addr is page aligned down of @tmp_addr while the region end is page
1273  * aligned up.  Offsets are kept track of to determine the region served. All
1274  * this is done to appease the bitmap allocator in avoiding partial blocks.
1275  *
1276  * RETURNS:
1277  * Chunk serving the region at @tmp_addr of @map_size.
1278  */
1279 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1280 							 int map_size)
1281 {
1282 	struct pcpu_chunk *chunk;
1283 	unsigned long aligned_addr, lcm_align;
1284 	int start_offset, offset_bits, region_size, region_bits;
1285 	size_t alloc_size;
1286 
1287 	/* region calculations */
1288 	aligned_addr = tmp_addr & PAGE_MASK;
1289 
1290 	start_offset = tmp_addr - aligned_addr;
1291 
1292 	/*
1293 	 * Align the end of the region with the LCM of PAGE_SIZE and
1294 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1295 	 * the other.
1296 	 */
1297 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1298 	region_size = ALIGN(start_offset + map_size, lcm_align);
1299 
1300 	/* allocate chunk */
1301 	alloc_size = sizeof(struct pcpu_chunk) +
1302 		BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1303 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1304 	if (!chunk)
1305 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1306 		      alloc_size);
1307 
1308 	INIT_LIST_HEAD(&chunk->list);
1309 
1310 	chunk->base_addr = (void *)aligned_addr;
1311 	chunk->start_offset = start_offset;
1312 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1313 
1314 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1315 	region_bits = pcpu_chunk_map_bits(chunk);
1316 
1317 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1318 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1319 	if (!chunk->alloc_map)
1320 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1321 		      alloc_size);
1322 
1323 	alloc_size =
1324 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1325 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1326 	if (!chunk->bound_map)
1327 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1328 		      alloc_size);
1329 
1330 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1331 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1332 	if (!chunk->md_blocks)
1333 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1334 		      alloc_size);
1335 
1336 	pcpu_init_md_blocks(chunk);
1337 
1338 	/* manage populated page bitmap */
1339 	chunk->immutable = true;
1340 	bitmap_fill(chunk->populated, chunk->nr_pages);
1341 	chunk->nr_populated = chunk->nr_pages;
1342 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1343 
1344 	chunk->free_bytes = map_size;
1345 
1346 	if (chunk->start_offset) {
1347 		/* hide the beginning of the bitmap */
1348 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1349 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1350 		set_bit(0, chunk->bound_map);
1351 		set_bit(offset_bits, chunk->bound_map);
1352 
1353 		chunk->chunk_md.first_free = offset_bits;
1354 
1355 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1356 	}
1357 
1358 	if (chunk->end_offset) {
1359 		/* hide the end of the bitmap */
1360 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1361 		bitmap_set(chunk->alloc_map,
1362 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1363 			   offset_bits);
1364 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1365 			chunk->bound_map);
1366 		set_bit(region_bits, chunk->bound_map);
1367 
1368 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1369 					     - offset_bits, offset_bits);
1370 	}
1371 
1372 	return chunk;
1373 }
1374 
1375 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1376 {
1377 	struct pcpu_chunk *chunk;
1378 	int region_bits;
1379 
1380 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1381 	if (!chunk)
1382 		return NULL;
1383 
1384 	INIT_LIST_HEAD(&chunk->list);
1385 	chunk->nr_pages = pcpu_unit_pages;
1386 	region_bits = pcpu_chunk_map_bits(chunk);
1387 
1388 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1389 					   sizeof(chunk->alloc_map[0]), gfp);
1390 	if (!chunk->alloc_map)
1391 		goto alloc_map_fail;
1392 
1393 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1394 					   sizeof(chunk->bound_map[0]), gfp);
1395 	if (!chunk->bound_map)
1396 		goto bound_map_fail;
1397 
1398 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1399 					   sizeof(chunk->md_blocks[0]), gfp);
1400 	if (!chunk->md_blocks)
1401 		goto md_blocks_fail;
1402 
1403 	pcpu_init_md_blocks(chunk);
1404 
1405 	/* init metadata */
1406 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1407 
1408 	return chunk;
1409 
1410 md_blocks_fail:
1411 	pcpu_mem_free(chunk->bound_map);
1412 bound_map_fail:
1413 	pcpu_mem_free(chunk->alloc_map);
1414 alloc_map_fail:
1415 	pcpu_mem_free(chunk);
1416 
1417 	return NULL;
1418 }
1419 
1420 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1421 {
1422 	if (!chunk)
1423 		return;
1424 	pcpu_mem_free(chunk->md_blocks);
1425 	pcpu_mem_free(chunk->bound_map);
1426 	pcpu_mem_free(chunk->alloc_map);
1427 	pcpu_mem_free(chunk);
1428 }
1429 
1430 /**
1431  * pcpu_chunk_populated - post-population bookkeeping
1432  * @chunk: pcpu_chunk which got populated
1433  * @page_start: the start page
1434  * @page_end: the end page
1435  *
1436  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1437  * the bookkeeping information accordingly.  Must be called after each
1438  * successful population.
1439  *
1440  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1441  * is to serve an allocation in that area.
1442  */
1443 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1444 				 int page_end)
1445 {
1446 	int nr = page_end - page_start;
1447 
1448 	lockdep_assert_held(&pcpu_lock);
1449 
1450 	bitmap_set(chunk->populated, page_start, nr);
1451 	chunk->nr_populated += nr;
1452 	pcpu_nr_populated += nr;
1453 
1454 	pcpu_update_empty_pages(chunk, nr);
1455 }
1456 
1457 /**
1458  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1459  * @chunk: pcpu_chunk which got depopulated
1460  * @page_start: the start page
1461  * @page_end: the end page
1462  *
1463  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1464  * Update the bookkeeping information accordingly.  Must be called after
1465  * each successful depopulation.
1466  */
1467 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1468 				   int page_start, int page_end)
1469 {
1470 	int nr = page_end - page_start;
1471 
1472 	lockdep_assert_held(&pcpu_lock);
1473 
1474 	bitmap_clear(chunk->populated, page_start, nr);
1475 	chunk->nr_populated -= nr;
1476 	pcpu_nr_populated -= nr;
1477 
1478 	pcpu_update_empty_pages(chunk, -nr);
1479 }
1480 
1481 /*
1482  * Chunk management implementation.
1483  *
1484  * To allow different implementations, chunk alloc/free and
1485  * [de]population are implemented in a separate file which is pulled
1486  * into this file and compiled together.  The following functions
1487  * should be implemented.
1488  *
1489  * pcpu_populate_chunk		- populate the specified range of a chunk
1490  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1491  * pcpu_create_chunk		- create a new chunk
1492  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1493  * pcpu_addr_to_page		- translate address to physical address
1494  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1495  */
1496 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1497 			       int page_start, int page_end, gfp_t gfp);
1498 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1499 				  int page_start, int page_end);
1500 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1501 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1502 static struct page *pcpu_addr_to_page(void *addr);
1503 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1504 
1505 #ifdef CONFIG_NEED_PER_CPU_KM
1506 #include "percpu-km.c"
1507 #else
1508 #include "percpu-vm.c"
1509 #endif
1510 
1511 /**
1512  * pcpu_chunk_addr_search - determine chunk containing specified address
1513  * @addr: address for which the chunk needs to be determined.
1514  *
1515  * This is an internal function that handles all but static allocations.
1516  * Static percpu address values should never be passed into the allocator.
1517  *
1518  * RETURNS:
1519  * The address of the found chunk.
1520  */
1521 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1522 {
1523 	/* is it in the dynamic region (first chunk)? */
1524 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1525 		return pcpu_first_chunk;
1526 
1527 	/* is it in the reserved region? */
1528 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1529 		return pcpu_reserved_chunk;
1530 
1531 	/*
1532 	 * The address is relative to unit0 which might be unused and
1533 	 * thus unmapped.  Offset the address to the unit space of the
1534 	 * current processor before looking it up in the vmalloc
1535 	 * space.  Note that any possible cpu id can be used here, so
1536 	 * there's no need to worry about preemption or cpu hotplug.
1537 	 */
1538 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1539 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1540 }
1541 
1542 /**
1543  * pcpu_alloc - the percpu allocator
1544  * @size: size of area to allocate in bytes
1545  * @align: alignment of area (max PAGE_SIZE)
1546  * @reserved: allocate from the reserved chunk if available
1547  * @gfp: allocation flags
1548  *
1549  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1550  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1551  * then no warning will be triggered on invalid or failed allocation
1552  * requests.
1553  *
1554  * RETURNS:
1555  * Percpu pointer to the allocated area on success, NULL on failure.
1556  */
1557 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1558 				 gfp_t gfp)
1559 {
1560 	/* whitelisted flags that can be passed to the backing allocators */
1561 	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1562 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1563 	bool do_warn = !(gfp & __GFP_NOWARN);
1564 	static int warn_limit = 10;
1565 	struct pcpu_chunk *chunk, *next;
1566 	const char *err;
1567 	int slot, off, cpu, ret;
1568 	unsigned long flags;
1569 	void __percpu *ptr;
1570 	size_t bits, bit_align;
1571 
1572 	/*
1573 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1574 	 * therefore alignment must be a minimum of that many bytes.
1575 	 * An allocation may have internal fragmentation from rounding up
1576 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1577 	 */
1578 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1579 		align = PCPU_MIN_ALLOC_SIZE;
1580 
1581 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1582 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1583 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1584 
1585 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1586 		     !is_power_of_2(align))) {
1587 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1588 		     size, align);
1589 		return NULL;
1590 	}
1591 
1592 	if (!is_atomic) {
1593 		/*
1594 		 * pcpu_balance_workfn() allocates memory under this mutex,
1595 		 * and it may wait for memory reclaim. Allow current task
1596 		 * to become OOM victim, in case of memory pressure.
1597 		 */
1598 		if (gfp & __GFP_NOFAIL)
1599 			mutex_lock(&pcpu_alloc_mutex);
1600 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1601 			return NULL;
1602 	}
1603 
1604 	spin_lock_irqsave(&pcpu_lock, flags);
1605 
1606 	/* serve reserved allocations from the reserved chunk if available */
1607 	if (reserved && pcpu_reserved_chunk) {
1608 		chunk = pcpu_reserved_chunk;
1609 
1610 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1611 		if (off < 0) {
1612 			err = "alloc from reserved chunk failed";
1613 			goto fail_unlock;
1614 		}
1615 
1616 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1617 		if (off >= 0)
1618 			goto area_found;
1619 
1620 		err = "alloc from reserved chunk failed";
1621 		goto fail_unlock;
1622 	}
1623 
1624 restart:
1625 	/* search through normal chunks */
1626 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1627 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1628 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1629 						  is_atomic);
1630 			if (off < 0) {
1631 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1632 					pcpu_chunk_move(chunk, 0);
1633 				continue;
1634 			}
1635 
1636 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1637 			if (off >= 0)
1638 				goto area_found;
1639 
1640 		}
1641 	}
1642 
1643 	spin_unlock_irqrestore(&pcpu_lock, flags);
1644 
1645 	/*
1646 	 * No space left.  Create a new chunk.  We don't want multiple
1647 	 * tasks to create chunks simultaneously.  Serialize and create iff
1648 	 * there's still no empty chunk after grabbing the mutex.
1649 	 */
1650 	if (is_atomic) {
1651 		err = "atomic alloc failed, no space left";
1652 		goto fail;
1653 	}
1654 
1655 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1656 		chunk = pcpu_create_chunk(pcpu_gfp);
1657 		if (!chunk) {
1658 			err = "failed to allocate new chunk";
1659 			goto fail;
1660 		}
1661 
1662 		spin_lock_irqsave(&pcpu_lock, flags);
1663 		pcpu_chunk_relocate(chunk, -1);
1664 	} else {
1665 		spin_lock_irqsave(&pcpu_lock, flags);
1666 	}
1667 
1668 	goto restart;
1669 
1670 area_found:
1671 	pcpu_stats_area_alloc(chunk, size);
1672 	spin_unlock_irqrestore(&pcpu_lock, flags);
1673 
1674 	/* populate if not all pages are already there */
1675 	if (!is_atomic) {
1676 		unsigned int page_start, page_end, rs, re;
1677 
1678 		page_start = PFN_DOWN(off);
1679 		page_end = PFN_UP(off + size);
1680 
1681 		bitmap_for_each_clear_region(chunk->populated, rs, re,
1682 					     page_start, page_end) {
1683 			WARN_ON(chunk->immutable);
1684 
1685 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1686 
1687 			spin_lock_irqsave(&pcpu_lock, flags);
1688 			if (ret) {
1689 				pcpu_free_area(chunk, off);
1690 				err = "failed to populate";
1691 				goto fail_unlock;
1692 			}
1693 			pcpu_chunk_populated(chunk, rs, re);
1694 			spin_unlock_irqrestore(&pcpu_lock, flags);
1695 		}
1696 
1697 		mutex_unlock(&pcpu_alloc_mutex);
1698 	}
1699 
1700 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1701 		pcpu_schedule_balance_work();
1702 
1703 	/* clear the areas and return address relative to base address */
1704 	for_each_possible_cpu(cpu)
1705 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1706 
1707 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1708 	kmemleak_alloc_percpu(ptr, size, gfp);
1709 
1710 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1711 			chunk->base_addr, off, ptr);
1712 
1713 	return ptr;
1714 
1715 fail_unlock:
1716 	spin_unlock_irqrestore(&pcpu_lock, flags);
1717 fail:
1718 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1719 
1720 	if (!is_atomic && do_warn && warn_limit) {
1721 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1722 			size, align, is_atomic, err);
1723 		dump_stack();
1724 		if (!--warn_limit)
1725 			pr_info("limit reached, disable warning\n");
1726 	}
1727 	if (is_atomic) {
1728 		/* see the flag handling in pcpu_blance_workfn() */
1729 		pcpu_atomic_alloc_failed = true;
1730 		pcpu_schedule_balance_work();
1731 	} else {
1732 		mutex_unlock(&pcpu_alloc_mutex);
1733 	}
1734 	return NULL;
1735 }
1736 
1737 /**
1738  * __alloc_percpu_gfp - allocate dynamic percpu area
1739  * @size: size of area to allocate in bytes
1740  * @align: alignment of area (max PAGE_SIZE)
1741  * @gfp: allocation flags
1742  *
1743  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1744  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1745  * be called from any context but is a lot more likely to fail. If @gfp
1746  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1747  * allocation requests.
1748  *
1749  * RETURNS:
1750  * Percpu pointer to the allocated area on success, NULL on failure.
1751  */
1752 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1753 {
1754 	return pcpu_alloc(size, align, false, gfp);
1755 }
1756 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1757 
1758 /**
1759  * __alloc_percpu - allocate dynamic percpu area
1760  * @size: size of area to allocate in bytes
1761  * @align: alignment of area (max PAGE_SIZE)
1762  *
1763  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1764  */
1765 void __percpu *__alloc_percpu(size_t size, size_t align)
1766 {
1767 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1768 }
1769 EXPORT_SYMBOL_GPL(__alloc_percpu);
1770 
1771 /**
1772  * __alloc_reserved_percpu - allocate reserved percpu area
1773  * @size: size of area to allocate in bytes
1774  * @align: alignment of area (max PAGE_SIZE)
1775  *
1776  * Allocate zero-filled percpu area of @size bytes aligned at @align
1777  * from reserved percpu area if arch has set it up; otherwise,
1778  * allocation is served from the same dynamic area.  Might sleep.
1779  * Might trigger writeouts.
1780  *
1781  * CONTEXT:
1782  * Does GFP_KERNEL allocation.
1783  *
1784  * RETURNS:
1785  * Percpu pointer to the allocated area on success, NULL on failure.
1786  */
1787 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1788 {
1789 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1790 }
1791 
1792 /**
1793  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1794  * @work: unused
1795  *
1796  * Reclaim all fully free chunks except for the first one.  This is also
1797  * responsible for maintaining the pool of empty populated pages.  However,
1798  * it is possible that this is called when physical memory is scarce causing
1799  * OOM killer to be triggered.  We should avoid doing so until an actual
1800  * allocation causes the failure as it is possible that requests can be
1801  * serviced from already backed regions.
1802  */
1803 static void pcpu_balance_workfn(struct work_struct *work)
1804 {
1805 	/* gfp flags passed to underlying allocators */
1806 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1807 	LIST_HEAD(to_free);
1808 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1809 	struct pcpu_chunk *chunk, *next;
1810 	int slot, nr_to_pop, ret;
1811 
1812 	/*
1813 	 * There's no reason to keep around multiple unused chunks and VM
1814 	 * areas can be scarce.  Destroy all free chunks except for one.
1815 	 */
1816 	mutex_lock(&pcpu_alloc_mutex);
1817 	spin_lock_irq(&pcpu_lock);
1818 
1819 	list_for_each_entry_safe(chunk, next, free_head, list) {
1820 		WARN_ON(chunk->immutable);
1821 
1822 		/* spare the first one */
1823 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1824 			continue;
1825 
1826 		list_move(&chunk->list, &to_free);
1827 	}
1828 
1829 	spin_unlock_irq(&pcpu_lock);
1830 
1831 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1832 		unsigned int rs, re;
1833 
1834 		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1835 					   chunk->nr_pages) {
1836 			pcpu_depopulate_chunk(chunk, rs, re);
1837 			spin_lock_irq(&pcpu_lock);
1838 			pcpu_chunk_depopulated(chunk, rs, re);
1839 			spin_unlock_irq(&pcpu_lock);
1840 		}
1841 		pcpu_destroy_chunk(chunk);
1842 		cond_resched();
1843 	}
1844 
1845 	/*
1846 	 * Ensure there are certain number of free populated pages for
1847 	 * atomic allocs.  Fill up from the most packed so that atomic
1848 	 * allocs don't increase fragmentation.  If atomic allocation
1849 	 * failed previously, always populate the maximum amount.  This
1850 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1851 	 * failing indefinitely; however, large atomic allocs are not
1852 	 * something we support properly and can be highly unreliable and
1853 	 * inefficient.
1854 	 */
1855 retry_pop:
1856 	if (pcpu_atomic_alloc_failed) {
1857 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1858 		/* best effort anyway, don't worry about synchronization */
1859 		pcpu_atomic_alloc_failed = false;
1860 	} else {
1861 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1862 				  pcpu_nr_empty_pop_pages,
1863 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1864 	}
1865 
1866 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1867 		unsigned int nr_unpop = 0, rs, re;
1868 
1869 		if (!nr_to_pop)
1870 			break;
1871 
1872 		spin_lock_irq(&pcpu_lock);
1873 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1874 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1875 			if (nr_unpop)
1876 				break;
1877 		}
1878 		spin_unlock_irq(&pcpu_lock);
1879 
1880 		if (!nr_unpop)
1881 			continue;
1882 
1883 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1884 		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
1885 					     chunk->nr_pages) {
1886 			int nr = min_t(int, re - rs, nr_to_pop);
1887 
1888 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1889 			if (!ret) {
1890 				nr_to_pop -= nr;
1891 				spin_lock_irq(&pcpu_lock);
1892 				pcpu_chunk_populated(chunk, rs, rs + nr);
1893 				spin_unlock_irq(&pcpu_lock);
1894 			} else {
1895 				nr_to_pop = 0;
1896 			}
1897 
1898 			if (!nr_to_pop)
1899 				break;
1900 		}
1901 	}
1902 
1903 	if (nr_to_pop) {
1904 		/* ran out of chunks to populate, create a new one and retry */
1905 		chunk = pcpu_create_chunk(gfp);
1906 		if (chunk) {
1907 			spin_lock_irq(&pcpu_lock);
1908 			pcpu_chunk_relocate(chunk, -1);
1909 			spin_unlock_irq(&pcpu_lock);
1910 			goto retry_pop;
1911 		}
1912 	}
1913 
1914 	mutex_unlock(&pcpu_alloc_mutex);
1915 }
1916 
1917 /**
1918  * free_percpu - free percpu area
1919  * @ptr: pointer to area to free
1920  *
1921  * Free percpu area @ptr.
1922  *
1923  * CONTEXT:
1924  * Can be called from atomic context.
1925  */
1926 void free_percpu(void __percpu *ptr)
1927 {
1928 	void *addr;
1929 	struct pcpu_chunk *chunk;
1930 	unsigned long flags;
1931 	int off;
1932 	bool need_balance = false;
1933 
1934 	if (!ptr)
1935 		return;
1936 
1937 	kmemleak_free_percpu(ptr);
1938 
1939 	addr = __pcpu_ptr_to_addr(ptr);
1940 
1941 	spin_lock_irqsave(&pcpu_lock, flags);
1942 
1943 	chunk = pcpu_chunk_addr_search(addr);
1944 	off = addr - chunk->base_addr;
1945 
1946 	pcpu_free_area(chunk, off);
1947 
1948 	/* if there are more than one fully free chunks, wake up grim reaper */
1949 	if (chunk->free_bytes == pcpu_unit_size) {
1950 		struct pcpu_chunk *pos;
1951 
1952 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1953 			if (pos != chunk) {
1954 				need_balance = true;
1955 				break;
1956 			}
1957 	}
1958 
1959 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1960 
1961 	spin_unlock_irqrestore(&pcpu_lock, flags);
1962 
1963 	if (need_balance)
1964 		pcpu_schedule_balance_work();
1965 }
1966 EXPORT_SYMBOL_GPL(free_percpu);
1967 
1968 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1969 {
1970 #ifdef CONFIG_SMP
1971 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1972 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1973 	unsigned int cpu;
1974 
1975 	for_each_possible_cpu(cpu) {
1976 		void *start = per_cpu_ptr(base, cpu);
1977 		void *va = (void *)addr;
1978 
1979 		if (va >= start && va < start + static_size) {
1980 			if (can_addr) {
1981 				*can_addr = (unsigned long) (va - start);
1982 				*can_addr += (unsigned long)
1983 					per_cpu_ptr(base, get_boot_cpu_id());
1984 			}
1985 			return true;
1986 		}
1987 	}
1988 #endif
1989 	/* on UP, can't distinguish from other static vars, always false */
1990 	return false;
1991 }
1992 
1993 /**
1994  * is_kernel_percpu_address - test whether address is from static percpu area
1995  * @addr: address to test
1996  *
1997  * Test whether @addr belongs to in-kernel static percpu area.  Module
1998  * static percpu areas are not considered.  For those, use
1999  * is_module_percpu_address().
2000  *
2001  * RETURNS:
2002  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2003  */
2004 bool is_kernel_percpu_address(unsigned long addr)
2005 {
2006 	return __is_kernel_percpu_address(addr, NULL);
2007 }
2008 
2009 /**
2010  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2011  * @addr: the address to be converted to physical address
2012  *
2013  * Given @addr which is dereferenceable address obtained via one of
2014  * percpu access macros, this function translates it into its physical
2015  * address.  The caller is responsible for ensuring @addr stays valid
2016  * until this function finishes.
2017  *
2018  * percpu allocator has special setup for the first chunk, which currently
2019  * supports either embedding in linear address space or vmalloc mapping,
2020  * and, from the second one, the backing allocator (currently either vm or
2021  * km) provides translation.
2022  *
2023  * The addr can be translated simply without checking if it falls into the
2024  * first chunk. But the current code reflects better how percpu allocator
2025  * actually works, and the verification can discover both bugs in percpu
2026  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2027  * code.
2028  *
2029  * RETURNS:
2030  * The physical address for @addr.
2031  */
2032 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2033 {
2034 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2035 	bool in_first_chunk = false;
2036 	unsigned long first_low, first_high;
2037 	unsigned int cpu;
2038 
2039 	/*
2040 	 * The following test on unit_low/high isn't strictly
2041 	 * necessary but will speed up lookups of addresses which
2042 	 * aren't in the first chunk.
2043 	 *
2044 	 * The address check is against full chunk sizes.  pcpu_base_addr
2045 	 * points to the beginning of the first chunk including the
2046 	 * static region.  Assumes good intent as the first chunk may
2047 	 * not be full (ie. < pcpu_unit_pages in size).
2048 	 */
2049 	first_low = (unsigned long)pcpu_base_addr +
2050 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2051 	first_high = (unsigned long)pcpu_base_addr +
2052 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2053 	if ((unsigned long)addr >= first_low &&
2054 	    (unsigned long)addr < first_high) {
2055 		for_each_possible_cpu(cpu) {
2056 			void *start = per_cpu_ptr(base, cpu);
2057 
2058 			if (addr >= start && addr < start + pcpu_unit_size) {
2059 				in_first_chunk = true;
2060 				break;
2061 			}
2062 		}
2063 	}
2064 
2065 	if (in_first_chunk) {
2066 		if (!is_vmalloc_addr(addr))
2067 			return __pa(addr);
2068 		else
2069 			return page_to_phys(vmalloc_to_page(addr)) +
2070 			       offset_in_page(addr);
2071 	} else
2072 		return page_to_phys(pcpu_addr_to_page(addr)) +
2073 		       offset_in_page(addr);
2074 }
2075 
2076 /**
2077  * pcpu_alloc_alloc_info - allocate percpu allocation info
2078  * @nr_groups: the number of groups
2079  * @nr_units: the number of units
2080  *
2081  * Allocate ai which is large enough for @nr_groups groups containing
2082  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2083  * cpu_map array which is long enough for @nr_units and filled with
2084  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2085  * pointer of other groups.
2086  *
2087  * RETURNS:
2088  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2089  * failure.
2090  */
2091 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2092 						      int nr_units)
2093 {
2094 	struct pcpu_alloc_info *ai;
2095 	size_t base_size, ai_size;
2096 	void *ptr;
2097 	int unit;
2098 
2099 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2100 			  __alignof__(ai->groups[0].cpu_map[0]));
2101 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2102 
2103 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2104 	if (!ptr)
2105 		return NULL;
2106 	ai = ptr;
2107 	ptr += base_size;
2108 
2109 	ai->groups[0].cpu_map = ptr;
2110 
2111 	for (unit = 0; unit < nr_units; unit++)
2112 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2113 
2114 	ai->nr_groups = nr_groups;
2115 	ai->__ai_size = PFN_ALIGN(ai_size);
2116 
2117 	return ai;
2118 }
2119 
2120 /**
2121  * pcpu_free_alloc_info - free percpu allocation info
2122  * @ai: pcpu_alloc_info to free
2123  *
2124  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2125  */
2126 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2127 {
2128 	memblock_free_early(__pa(ai), ai->__ai_size);
2129 }
2130 
2131 /**
2132  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2133  * @lvl: loglevel
2134  * @ai: allocation info to dump
2135  *
2136  * Print out information about @ai using loglevel @lvl.
2137  */
2138 static void pcpu_dump_alloc_info(const char *lvl,
2139 				 const struct pcpu_alloc_info *ai)
2140 {
2141 	int group_width = 1, cpu_width = 1, width;
2142 	char empty_str[] = "--------";
2143 	int alloc = 0, alloc_end = 0;
2144 	int group, v;
2145 	int upa, apl;	/* units per alloc, allocs per line */
2146 
2147 	v = ai->nr_groups;
2148 	while (v /= 10)
2149 		group_width++;
2150 
2151 	v = num_possible_cpus();
2152 	while (v /= 10)
2153 		cpu_width++;
2154 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2155 
2156 	upa = ai->alloc_size / ai->unit_size;
2157 	width = upa * (cpu_width + 1) + group_width + 3;
2158 	apl = rounddown_pow_of_two(max(60 / width, 1));
2159 
2160 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2161 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2162 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2163 
2164 	for (group = 0; group < ai->nr_groups; group++) {
2165 		const struct pcpu_group_info *gi = &ai->groups[group];
2166 		int unit = 0, unit_end = 0;
2167 
2168 		BUG_ON(gi->nr_units % upa);
2169 		for (alloc_end += gi->nr_units / upa;
2170 		     alloc < alloc_end; alloc++) {
2171 			if (!(alloc % apl)) {
2172 				pr_cont("\n");
2173 				printk("%spcpu-alloc: ", lvl);
2174 			}
2175 			pr_cont("[%0*d] ", group_width, group);
2176 
2177 			for (unit_end += upa; unit < unit_end; unit++)
2178 				if (gi->cpu_map[unit] != NR_CPUS)
2179 					pr_cont("%0*d ",
2180 						cpu_width, gi->cpu_map[unit]);
2181 				else
2182 					pr_cont("%s ", empty_str);
2183 		}
2184 	}
2185 	pr_cont("\n");
2186 }
2187 
2188 /**
2189  * pcpu_setup_first_chunk - initialize the first percpu chunk
2190  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2191  * @base_addr: mapped address
2192  *
2193  * Initialize the first percpu chunk which contains the kernel static
2194  * percpu area.  This function is to be called from arch percpu area
2195  * setup path.
2196  *
2197  * @ai contains all information necessary to initialize the first
2198  * chunk and prime the dynamic percpu allocator.
2199  *
2200  * @ai->static_size is the size of static percpu area.
2201  *
2202  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2203  * reserve after the static area in the first chunk.  This reserves
2204  * the first chunk such that it's available only through reserved
2205  * percpu allocation.  This is primarily used to serve module percpu
2206  * static areas on architectures where the addressing model has
2207  * limited offset range for symbol relocations to guarantee module
2208  * percpu symbols fall inside the relocatable range.
2209  *
2210  * @ai->dyn_size determines the number of bytes available for dynamic
2211  * allocation in the first chunk.  The area between @ai->static_size +
2212  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2213  *
2214  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2215  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2216  * @ai->dyn_size.
2217  *
2218  * @ai->atom_size is the allocation atom size and used as alignment
2219  * for vm areas.
2220  *
2221  * @ai->alloc_size is the allocation size and always multiple of
2222  * @ai->atom_size.  This is larger than @ai->atom_size if
2223  * @ai->unit_size is larger than @ai->atom_size.
2224  *
2225  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2226  * percpu areas.  Units which should be colocated are put into the
2227  * same group.  Dynamic VM areas will be allocated according to these
2228  * groupings.  If @ai->nr_groups is zero, a single group containing
2229  * all units is assumed.
2230  *
2231  * The caller should have mapped the first chunk at @base_addr and
2232  * copied static data to each unit.
2233  *
2234  * The first chunk will always contain a static and a dynamic region.
2235  * However, the static region is not managed by any chunk.  If the first
2236  * chunk also contains a reserved region, it is served by two chunks -
2237  * one for the reserved region and one for the dynamic region.  They
2238  * share the same vm, but use offset regions in the area allocation map.
2239  * The chunk serving the dynamic region is circulated in the chunk slots
2240  * and available for dynamic allocation like any other chunk.
2241  */
2242 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2243 				   void *base_addr)
2244 {
2245 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2246 	size_t static_size, dyn_size;
2247 	struct pcpu_chunk *chunk;
2248 	unsigned long *group_offsets;
2249 	size_t *group_sizes;
2250 	unsigned long *unit_off;
2251 	unsigned int cpu;
2252 	int *unit_map;
2253 	int group, unit, i;
2254 	int map_size;
2255 	unsigned long tmp_addr;
2256 	size_t alloc_size;
2257 
2258 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2259 	if (unlikely(cond)) {						\
2260 		pr_emerg("failed to initialize, %s\n", #cond);		\
2261 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2262 			 cpumask_pr_args(cpu_possible_mask));		\
2263 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2264 		BUG();							\
2265 	}								\
2266 } while (0)
2267 
2268 	/* sanity checks */
2269 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2270 #ifdef CONFIG_SMP
2271 	PCPU_SETUP_BUG_ON(!ai->static_size);
2272 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2273 #endif
2274 	PCPU_SETUP_BUG_ON(!base_addr);
2275 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2276 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2277 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2278 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2279 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2280 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2281 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2282 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2283 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2284 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2285 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2286 
2287 	/* process group information and build config tables accordingly */
2288 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2289 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2290 	if (!group_offsets)
2291 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2292 		      alloc_size);
2293 
2294 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2295 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2296 	if (!group_sizes)
2297 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2298 		      alloc_size);
2299 
2300 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2301 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2302 	if (!unit_map)
2303 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2304 		      alloc_size);
2305 
2306 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2307 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2308 	if (!unit_off)
2309 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2310 		      alloc_size);
2311 
2312 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2313 		unit_map[cpu] = UINT_MAX;
2314 
2315 	pcpu_low_unit_cpu = NR_CPUS;
2316 	pcpu_high_unit_cpu = NR_CPUS;
2317 
2318 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2319 		const struct pcpu_group_info *gi = &ai->groups[group];
2320 
2321 		group_offsets[group] = gi->base_offset;
2322 		group_sizes[group] = gi->nr_units * ai->unit_size;
2323 
2324 		for (i = 0; i < gi->nr_units; i++) {
2325 			cpu = gi->cpu_map[i];
2326 			if (cpu == NR_CPUS)
2327 				continue;
2328 
2329 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2330 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2331 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2332 
2333 			unit_map[cpu] = unit + i;
2334 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2335 
2336 			/* determine low/high unit_cpu */
2337 			if (pcpu_low_unit_cpu == NR_CPUS ||
2338 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2339 				pcpu_low_unit_cpu = cpu;
2340 			if (pcpu_high_unit_cpu == NR_CPUS ||
2341 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2342 				pcpu_high_unit_cpu = cpu;
2343 		}
2344 	}
2345 	pcpu_nr_units = unit;
2346 
2347 	for_each_possible_cpu(cpu)
2348 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2349 
2350 	/* we're done parsing the input, undefine BUG macro and dump config */
2351 #undef PCPU_SETUP_BUG_ON
2352 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2353 
2354 	pcpu_nr_groups = ai->nr_groups;
2355 	pcpu_group_offsets = group_offsets;
2356 	pcpu_group_sizes = group_sizes;
2357 	pcpu_unit_map = unit_map;
2358 	pcpu_unit_offsets = unit_off;
2359 
2360 	/* determine basic parameters */
2361 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2362 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2363 	pcpu_atom_size = ai->atom_size;
2364 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2365 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2366 
2367 	pcpu_stats_save_ai(ai);
2368 
2369 	/*
2370 	 * Allocate chunk slots.  The additional last slot is for
2371 	 * empty chunks.
2372 	 */
2373 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2374 	pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2375 				   SMP_CACHE_BYTES);
2376 	if (!pcpu_slot)
2377 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2378 		      pcpu_nr_slots * sizeof(pcpu_slot[0]));
2379 	for (i = 0; i < pcpu_nr_slots; i++)
2380 		INIT_LIST_HEAD(&pcpu_slot[i]);
2381 
2382 	/*
2383 	 * The end of the static region needs to be aligned with the
2384 	 * minimum allocation size as this offsets the reserved and
2385 	 * dynamic region.  The first chunk ends page aligned by
2386 	 * expanding the dynamic region, therefore the dynamic region
2387 	 * can be shrunk to compensate while still staying above the
2388 	 * configured sizes.
2389 	 */
2390 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2391 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2392 
2393 	/*
2394 	 * Initialize first chunk.
2395 	 * If the reserved_size is non-zero, this initializes the reserved
2396 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2397 	 * and the dynamic region is initialized here.  The first chunk,
2398 	 * pcpu_first_chunk, will always point to the chunk that serves
2399 	 * the dynamic region.
2400 	 */
2401 	tmp_addr = (unsigned long)base_addr + static_size;
2402 	map_size = ai->reserved_size ?: dyn_size;
2403 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2404 
2405 	/* init dynamic chunk if necessary */
2406 	if (ai->reserved_size) {
2407 		pcpu_reserved_chunk = chunk;
2408 
2409 		tmp_addr = (unsigned long)base_addr + static_size +
2410 			   ai->reserved_size;
2411 		map_size = dyn_size;
2412 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2413 	}
2414 
2415 	/* link the first chunk in */
2416 	pcpu_first_chunk = chunk;
2417 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2418 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2419 
2420 	/* include all regions of the first chunk */
2421 	pcpu_nr_populated += PFN_DOWN(size_sum);
2422 
2423 	pcpu_stats_chunk_alloc();
2424 	trace_percpu_create_chunk(base_addr);
2425 
2426 	/* we're done */
2427 	pcpu_base_addr = base_addr;
2428 }
2429 
2430 #ifdef CONFIG_SMP
2431 
2432 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2433 	[PCPU_FC_AUTO]	= "auto",
2434 	[PCPU_FC_EMBED]	= "embed",
2435 	[PCPU_FC_PAGE]	= "page",
2436 };
2437 
2438 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2439 
2440 static int __init percpu_alloc_setup(char *str)
2441 {
2442 	if (!str)
2443 		return -EINVAL;
2444 
2445 	if (0)
2446 		/* nada */;
2447 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2448 	else if (!strcmp(str, "embed"))
2449 		pcpu_chosen_fc = PCPU_FC_EMBED;
2450 #endif
2451 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2452 	else if (!strcmp(str, "page"))
2453 		pcpu_chosen_fc = PCPU_FC_PAGE;
2454 #endif
2455 	else
2456 		pr_warn("unknown allocator %s specified\n", str);
2457 
2458 	return 0;
2459 }
2460 early_param("percpu_alloc", percpu_alloc_setup);
2461 
2462 /*
2463  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2464  * Build it if needed by the arch config or the generic setup is going
2465  * to be used.
2466  */
2467 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2468 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2469 #define BUILD_EMBED_FIRST_CHUNK
2470 #endif
2471 
2472 /* build pcpu_page_first_chunk() iff needed by the arch config */
2473 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2474 #define BUILD_PAGE_FIRST_CHUNK
2475 #endif
2476 
2477 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2478 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2479 /**
2480  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2481  * @reserved_size: the size of reserved percpu area in bytes
2482  * @dyn_size: minimum free size for dynamic allocation in bytes
2483  * @atom_size: allocation atom size
2484  * @cpu_distance_fn: callback to determine distance between cpus, optional
2485  *
2486  * This function determines grouping of units, their mappings to cpus
2487  * and other parameters considering needed percpu size, allocation
2488  * atom size and distances between CPUs.
2489  *
2490  * Groups are always multiples of atom size and CPUs which are of
2491  * LOCAL_DISTANCE both ways are grouped together and share space for
2492  * units in the same group.  The returned configuration is guaranteed
2493  * to have CPUs on different nodes on different groups and >=75% usage
2494  * of allocated virtual address space.
2495  *
2496  * RETURNS:
2497  * On success, pointer to the new allocation_info is returned.  On
2498  * failure, ERR_PTR value is returned.
2499  */
2500 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2501 				size_t reserved_size, size_t dyn_size,
2502 				size_t atom_size,
2503 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2504 {
2505 	static int group_map[NR_CPUS] __initdata;
2506 	static int group_cnt[NR_CPUS] __initdata;
2507 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2508 	int nr_groups = 1, nr_units = 0;
2509 	size_t size_sum, min_unit_size, alloc_size;
2510 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2511 	int last_allocs, group, unit;
2512 	unsigned int cpu, tcpu;
2513 	struct pcpu_alloc_info *ai;
2514 	unsigned int *cpu_map;
2515 
2516 	/* this function may be called multiple times */
2517 	memset(group_map, 0, sizeof(group_map));
2518 	memset(group_cnt, 0, sizeof(group_cnt));
2519 
2520 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2521 	size_sum = PFN_ALIGN(static_size + reserved_size +
2522 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2523 	dyn_size = size_sum - static_size - reserved_size;
2524 
2525 	/*
2526 	 * Determine min_unit_size, alloc_size and max_upa such that
2527 	 * alloc_size is multiple of atom_size and is the smallest
2528 	 * which can accommodate 4k aligned segments which are equal to
2529 	 * or larger than min_unit_size.
2530 	 */
2531 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2532 
2533 	/* determine the maximum # of units that can fit in an allocation */
2534 	alloc_size = roundup(min_unit_size, atom_size);
2535 	upa = alloc_size / min_unit_size;
2536 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2537 		upa--;
2538 	max_upa = upa;
2539 
2540 	/* group cpus according to their proximity */
2541 	for_each_possible_cpu(cpu) {
2542 		group = 0;
2543 	next_group:
2544 		for_each_possible_cpu(tcpu) {
2545 			if (cpu == tcpu)
2546 				break;
2547 			if (group_map[tcpu] == group && cpu_distance_fn &&
2548 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2549 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2550 				group++;
2551 				nr_groups = max(nr_groups, group + 1);
2552 				goto next_group;
2553 			}
2554 		}
2555 		group_map[cpu] = group;
2556 		group_cnt[group]++;
2557 	}
2558 
2559 	/*
2560 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2561 	 * Expand the unit_size until we use >= 75% of the units allocated.
2562 	 * Related to atom_size, which could be much larger than the unit_size.
2563 	 */
2564 	last_allocs = INT_MAX;
2565 	for (upa = max_upa; upa; upa--) {
2566 		int allocs = 0, wasted = 0;
2567 
2568 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2569 			continue;
2570 
2571 		for (group = 0; group < nr_groups; group++) {
2572 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2573 			allocs += this_allocs;
2574 			wasted += this_allocs * upa - group_cnt[group];
2575 		}
2576 
2577 		/*
2578 		 * Don't accept if wastage is over 1/3.  The
2579 		 * greater-than comparison ensures upa==1 always
2580 		 * passes the following check.
2581 		 */
2582 		if (wasted > num_possible_cpus() / 3)
2583 			continue;
2584 
2585 		/* and then don't consume more memory */
2586 		if (allocs > last_allocs)
2587 			break;
2588 		last_allocs = allocs;
2589 		best_upa = upa;
2590 	}
2591 	upa = best_upa;
2592 
2593 	/* allocate and fill alloc_info */
2594 	for (group = 0; group < nr_groups; group++)
2595 		nr_units += roundup(group_cnt[group], upa);
2596 
2597 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2598 	if (!ai)
2599 		return ERR_PTR(-ENOMEM);
2600 	cpu_map = ai->groups[0].cpu_map;
2601 
2602 	for (group = 0; group < nr_groups; group++) {
2603 		ai->groups[group].cpu_map = cpu_map;
2604 		cpu_map += roundup(group_cnt[group], upa);
2605 	}
2606 
2607 	ai->static_size = static_size;
2608 	ai->reserved_size = reserved_size;
2609 	ai->dyn_size = dyn_size;
2610 	ai->unit_size = alloc_size / upa;
2611 	ai->atom_size = atom_size;
2612 	ai->alloc_size = alloc_size;
2613 
2614 	for (group = 0, unit = 0; group < nr_groups; group++) {
2615 		struct pcpu_group_info *gi = &ai->groups[group];
2616 
2617 		/*
2618 		 * Initialize base_offset as if all groups are located
2619 		 * back-to-back.  The caller should update this to
2620 		 * reflect actual allocation.
2621 		 */
2622 		gi->base_offset = unit * ai->unit_size;
2623 
2624 		for_each_possible_cpu(cpu)
2625 			if (group_map[cpu] == group)
2626 				gi->cpu_map[gi->nr_units++] = cpu;
2627 		gi->nr_units = roundup(gi->nr_units, upa);
2628 		unit += gi->nr_units;
2629 	}
2630 	BUG_ON(unit != nr_units);
2631 
2632 	return ai;
2633 }
2634 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2635 
2636 #if defined(BUILD_EMBED_FIRST_CHUNK)
2637 /**
2638  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2639  * @reserved_size: the size of reserved percpu area in bytes
2640  * @dyn_size: minimum free size for dynamic allocation in bytes
2641  * @atom_size: allocation atom size
2642  * @cpu_distance_fn: callback to determine distance between cpus, optional
2643  * @alloc_fn: function to allocate percpu page
2644  * @free_fn: function to free percpu page
2645  *
2646  * This is a helper to ease setting up embedded first percpu chunk and
2647  * can be called where pcpu_setup_first_chunk() is expected.
2648  *
2649  * If this function is used to setup the first chunk, it is allocated
2650  * by calling @alloc_fn and used as-is without being mapped into
2651  * vmalloc area.  Allocations are always whole multiples of @atom_size
2652  * aligned to @atom_size.
2653  *
2654  * This enables the first chunk to piggy back on the linear physical
2655  * mapping which often uses larger page size.  Please note that this
2656  * can result in very sparse cpu->unit mapping on NUMA machines thus
2657  * requiring large vmalloc address space.  Don't use this allocator if
2658  * vmalloc space is not orders of magnitude larger than distances
2659  * between node memory addresses (ie. 32bit NUMA machines).
2660  *
2661  * @dyn_size specifies the minimum dynamic area size.
2662  *
2663  * If the needed size is smaller than the minimum or specified unit
2664  * size, the leftover is returned using @free_fn.
2665  *
2666  * RETURNS:
2667  * 0 on success, -errno on failure.
2668  */
2669 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2670 				  size_t atom_size,
2671 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2672 				  pcpu_fc_alloc_fn_t alloc_fn,
2673 				  pcpu_fc_free_fn_t free_fn)
2674 {
2675 	void *base = (void *)ULONG_MAX;
2676 	void **areas = NULL;
2677 	struct pcpu_alloc_info *ai;
2678 	size_t size_sum, areas_size;
2679 	unsigned long max_distance;
2680 	int group, i, highest_group, rc = 0;
2681 
2682 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2683 				   cpu_distance_fn);
2684 	if (IS_ERR(ai))
2685 		return PTR_ERR(ai);
2686 
2687 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2688 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2689 
2690 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2691 	if (!areas) {
2692 		rc = -ENOMEM;
2693 		goto out_free;
2694 	}
2695 
2696 	/* allocate, copy and determine base address & max_distance */
2697 	highest_group = 0;
2698 	for (group = 0; group < ai->nr_groups; group++) {
2699 		struct pcpu_group_info *gi = &ai->groups[group];
2700 		unsigned int cpu = NR_CPUS;
2701 		void *ptr;
2702 
2703 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2704 			cpu = gi->cpu_map[i];
2705 		BUG_ON(cpu == NR_CPUS);
2706 
2707 		/* allocate space for the whole group */
2708 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2709 		if (!ptr) {
2710 			rc = -ENOMEM;
2711 			goto out_free_areas;
2712 		}
2713 		/* kmemleak tracks the percpu allocations separately */
2714 		kmemleak_free(ptr);
2715 		areas[group] = ptr;
2716 
2717 		base = min(ptr, base);
2718 		if (ptr > areas[highest_group])
2719 			highest_group = group;
2720 	}
2721 	max_distance = areas[highest_group] - base;
2722 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2723 
2724 	/* warn if maximum distance is further than 75% of vmalloc space */
2725 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2726 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2727 				max_distance, VMALLOC_TOTAL);
2728 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2729 		/* and fail if we have fallback */
2730 		rc = -EINVAL;
2731 		goto out_free_areas;
2732 #endif
2733 	}
2734 
2735 	/*
2736 	 * Copy data and free unused parts.  This should happen after all
2737 	 * allocations are complete; otherwise, we may end up with
2738 	 * overlapping groups.
2739 	 */
2740 	for (group = 0; group < ai->nr_groups; group++) {
2741 		struct pcpu_group_info *gi = &ai->groups[group];
2742 		void *ptr = areas[group];
2743 
2744 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2745 			if (gi->cpu_map[i] == NR_CPUS) {
2746 				/* unused unit, free whole */
2747 				free_fn(ptr, ai->unit_size);
2748 				continue;
2749 			}
2750 			/* copy and return the unused part */
2751 			memcpy(ptr, __per_cpu_load, ai->static_size);
2752 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2753 		}
2754 	}
2755 
2756 	/* base address is now known, determine group base offsets */
2757 	for (group = 0; group < ai->nr_groups; group++) {
2758 		ai->groups[group].base_offset = areas[group] - base;
2759 	}
2760 
2761 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2762 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2763 		ai->dyn_size, ai->unit_size);
2764 
2765 	pcpu_setup_first_chunk(ai, base);
2766 	goto out_free;
2767 
2768 out_free_areas:
2769 	for (group = 0; group < ai->nr_groups; group++)
2770 		if (areas[group])
2771 			free_fn(areas[group],
2772 				ai->groups[group].nr_units * ai->unit_size);
2773 out_free:
2774 	pcpu_free_alloc_info(ai);
2775 	if (areas)
2776 		memblock_free_early(__pa(areas), areas_size);
2777 	return rc;
2778 }
2779 #endif /* BUILD_EMBED_FIRST_CHUNK */
2780 
2781 #ifdef BUILD_PAGE_FIRST_CHUNK
2782 /**
2783  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2784  * @reserved_size: the size of reserved percpu area in bytes
2785  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2786  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2787  * @populate_pte_fn: function to populate pte
2788  *
2789  * This is a helper to ease setting up page-remapped first percpu
2790  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2791  *
2792  * This is the basic allocator.  Static percpu area is allocated
2793  * page-by-page into vmalloc area.
2794  *
2795  * RETURNS:
2796  * 0 on success, -errno on failure.
2797  */
2798 int __init pcpu_page_first_chunk(size_t reserved_size,
2799 				 pcpu_fc_alloc_fn_t alloc_fn,
2800 				 pcpu_fc_free_fn_t free_fn,
2801 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2802 {
2803 	static struct vm_struct vm;
2804 	struct pcpu_alloc_info *ai;
2805 	char psize_str[16];
2806 	int unit_pages;
2807 	size_t pages_size;
2808 	struct page **pages;
2809 	int unit, i, j, rc = 0;
2810 	int upa;
2811 	int nr_g0_units;
2812 
2813 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2814 
2815 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2816 	if (IS_ERR(ai))
2817 		return PTR_ERR(ai);
2818 	BUG_ON(ai->nr_groups != 1);
2819 	upa = ai->alloc_size/ai->unit_size;
2820 	nr_g0_units = roundup(num_possible_cpus(), upa);
2821 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2822 		pcpu_free_alloc_info(ai);
2823 		return -EINVAL;
2824 	}
2825 
2826 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2827 
2828 	/* unaligned allocations can't be freed, round up to page size */
2829 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2830 			       sizeof(pages[0]));
2831 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2832 	if (!pages)
2833 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2834 		      pages_size);
2835 
2836 	/* allocate pages */
2837 	j = 0;
2838 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2839 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2840 		for (i = 0; i < unit_pages; i++) {
2841 			void *ptr;
2842 
2843 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2844 			if (!ptr) {
2845 				pr_warn("failed to allocate %s page for cpu%u\n",
2846 						psize_str, cpu);
2847 				goto enomem;
2848 			}
2849 			/* kmemleak tracks the percpu allocations separately */
2850 			kmemleak_free(ptr);
2851 			pages[j++] = virt_to_page(ptr);
2852 		}
2853 	}
2854 
2855 	/* allocate vm area, map the pages and copy static data */
2856 	vm.flags = VM_ALLOC;
2857 	vm.size = num_possible_cpus() * ai->unit_size;
2858 	vm_area_register_early(&vm, PAGE_SIZE);
2859 
2860 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2861 		unsigned long unit_addr =
2862 			(unsigned long)vm.addr + unit * ai->unit_size;
2863 
2864 		for (i = 0; i < unit_pages; i++)
2865 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2866 
2867 		/* pte already populated, the following shouldn't fail */
2868 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2869 				      unit_pages);
2870 		if (rc < 0)
2871 			panic("failed to map percpu area, err=%d\n", rc);
2872 
2873 		/*
2874 		 * FIXME: Archs with virtual cache should flush local
2875 		 * cache for the linear mapping here - something
2876 		 * equivalent to flush_cache_vmap() on the local cpu.
2877 		 * flush_cache_vmap() can't be used as most supporting
2878 		 * data structures are not set up yet.
2879 		 */
2880 
2881 		/* copy static data */
2882 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2883 	}
2884 
2885 	/* we're ready, commit */
2886 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2887 		unit_pages, psize_str, ai->static_size,
2888 		ai->reserved_size, ai->dyn_size);
2889 
2890 	pcpu_setup_first_chunk(ai, vm.addr);
2891 	goto out_free_ar;
2892 
2893 enomem:
2894 	while (--j >= 0)
2895 		free_fn(page_address(pages[j]), PAGE_SIZE);
2896 	rc = -ENOMEM;
2897 out_free_ar:
2898 	memblock_free_early(__pa(pages), pages_size);
2899 	pcpu_free_alloc_info(ai);
2900 	return rc;
2901 }
2902 #endif /* BUILD_PAGE_FIRST_CHUNK */
2903 
2904 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2905 /*
2906  * Generic SMP percpu area setup.
2907  *
2908  * The embedding helper is used because its behavior closely resembles
2909  * the original non-dynamic generic percpu area setup.  This is
2910  * important because many archs have addressing restrictions and might
2911  * fail if the percpu area is located far away from the previous
2912  * location.  As an added bonus, in non-NUMA cases, embedding is
2913  * generally a good idea TLB-wise because percpu area can piggy back
2914  * on the physical linear memory mapping which uses large page
2915  * mappings on applicable archs.
2916  */
2917 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2918 EXPORT_SYMBOL(__per_cpu_offset);
2919 
2920 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2921 				       size_t align)
2922 {
2923 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2924 }
2925 
2926 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2927 {
2928 	memblock_free_early(__pa(ptr), size);
2929 }
2930 
2931 void __init setup_per_cpu_areas(void)
2932 {
2933 	unsigned long delta;
2934 	unsigned int cpu;
2935 	int rc;
2936 
2937 	/*
2938 	 * Always reserve area for module percpu variables.  That's
2939 	 * what the legacy allocator did.
2940 	 */
2941 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2942 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2943 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2944 	if (rc < 0)
2945 		panic("Failed to initialize percpu areas.");
2946 
2947 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2948 	for_each_possible_cpu(cpu)
2949 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2950 }
2951 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2952 
2953 #else	/* CONFIG_SMP */
2954 
2955 /*
2956  * UP percpu area setup.
2957  *
2958  * UP always uses km-based percpu allocator with identity mapping.
2959  * Static percpu variables are indistinguishable from the usual static
2960  * variables and don't require any special preparation.
2961  */
2962 void __init setup_per_cpu_areas(void)
2963 {
2964 	const size_t unit_size =
2965 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2966 					 PERCPU_DYNAMIC_RESERVE));
2967 	struct pcpu_alloc_info *ai;
2968 	void *fc;
2969 
2970 	ai = pcpu_alloc_alloc_info(1, 1);
2971 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
2972 	if (!ai || !fc)
2973 		panic("Failed to allocate memory for percpu areas.");
2974 	/* kmemleak tracks the percpu allocations separately */
2975 	kmemleak_free(fc);
2976 
2977 	ai->dyn_size = unit_size;
2978 	ai->unit_size = unit_size;
2979 	ai->atom_size = unit_size;
2980 	ai->alloc_size = unit_size;
2981 	ai->groups[0].nr_units = 1;
2982 	ai->groups[0].cpu_map[0] = 0;
2983 
2984 	pcpu_setup_first_chunk(ai, fc);
2985 	pcpu_free_alloc_info(ai);
2986 }
2987 
2988 #endif	/* CONFIG_SMP */
2989 
2990 /*
2991  * pcpu_nr_pages - calculate total number of populated backing pages
2992  *
2993  * This reflects the number of pages populated to back chunks.  Metadata is
2994  * excluded in the number exposed in meminfo as the number of backing pages
2995  * scales with the number of cpus and can quickly outweigh the memory used for
2996  * metadata.  It also keeps this calculation nice and simple.
2997  *
2998  * RETURNS:
2999  * Total number of populated backing pages in use by the allocator.
3000  */
3001 unsigned long pcpu_nr_pages(void)
3002 {
3003 	return pcpu_nr_populated * pcpu_nr_units;
3004 }
3005 
3006 /*
3007  * Percpu allocator is initialized early during boot when neither slab or
3008  * workqueue is available.  Plug async management until everything is up
3009  * and running.
3010  */
3011 static int __init percpu_enable_async(void)
3012 {
3013 	pcpu_async_enabled = true;
3014 	return 0;
3015 }
3016 subsys_initcall(percpu_enable_async);
3017