1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be eqaul to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 71 #include <asm/cacheflush.h> 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/io.h> 75 76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 78 79 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 80 #ifndef __addr_to_pcpu_ptr 81 #define __addr_to_pcpu_ptr(addr) \ 82 (void __percpu *)((unsigned long)(addr) - \ 83 (unsigned long)pcpu_base_addr + \ 84 (unsigned long)__per_cpu_start) 85 #endif 86 #ifndef __pcpu_ptr_to_addr 87 #define __pcpu_ptr_to_addr(ptr) \ 88 (void __force *)((unsigned long)(ptr) + \ 89 (unsigned long)pcpu_base_addr - \ 90 (unsigned long)__per_cpu_start) 91 #endif 92 93 struct pcpu_chunk { 94 struct list_head list; /* linked to pcpu_slot lists */ 95 int free_size; /* free bytes in the chunk */ 96 int contig_hint; /* max contiguous size hint */ 97 void *base_addr; /* base address of this chunk */ 98 int map_used; /* # of map entries used */ 99 int map_alloc; /* # of map entries allocated */ 100 int *map; /* allocation map */ 101 void *data; /* chunk data */ 102 bool immutable; /* no [de]population allowed */ 103 unsigned long populated[]; /* populated bitmap */ 104 }; 105 106 static int pcpu_unit_pages __read_mostly; 107 static int pcpu_unit_size __read_mostly; 108 static int pcpu_nr_units __read_mostly; 109 static int pcpu_atom_size __read_mostly; 110 static int pcpu_nr_slots __read_mostly; 111 static size_t pcpu_chunk_struct_size __read_mostly; 112 113 /* cpus with the lowest and highest unit numbers */ 114 static unsigned int pcpu_first_unit_cpu __read_mostly; 115 static unsigned int pcpu_last_unit_cpu __read_mostly; 116 117 /* the address of the first chunk which starts with the kernel static area */ 118 void *pcpu_base_addr __read_mostly; 119 EXPORT_SYMBOL_GPL(pcpu_base_addr); 120 121 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 122 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 123 124 /* group information, used for vm allocation */ 125 static int pcpu_nr_groups __read_mostly; 126 static const unsigned long *pcpu_group_offsets __read_mostly; 127 static const size_t *pcpu_group_sizes __read_mostly; 128 129 /* 130 * The first chunk which always exists. Note that unlike other 131 * chunks, this one can be allocated and mapped in several different 132 * ways and thus often doesn't live in the vmalloc area. 133 */ 134 static struct pcpu_chunk *pcpu_first_chunk; 135 136 /* 137 * Optional reserved chunk. This chunk reserves part of the first 138 * chunk and serves it for reserved allocations. The amount of 139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 140 * area doesn't exist, the following variables contain NULL and 0 141 * respectively. 142 */ 143 static struct pcpu_chunk *pcpu_reserved_chunk; 144 static int pcpu_reserved_chunk_limit; 145 146 /* 147 * Synchronization rules. 148 * 149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 150 * protects allocation/reclaim paths, chunks, populated bitmap and 151 * vmalloc mapping. The latter is a spinlock and protects the index 152 * data structures - chunk slots, chunks and area maps in chunks. 153 * 154 * During allocation, pcpu_alloc_mutex is kept locked all the time and 155 * pcpu_lock is grabbed and released as necessary. All actual memory 156 * allocations are done using GFP_KERNEL with pcpu_lock released. In 157 * general, percpu memory can't be allocated with irq off but 158 * irqsave/restore are still used in alloc path so that it can be used 159 * from early init path - sched_init() specifically. 160 * 161 * Free path accesses and alters only the index data structures, so it 162 * can be safely called from atomic context. When memory needs to be 163 * returned to the system, free path schedules reclaim_work which 164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 165 * reclaimed, release both locks and frees the chunks. Note that it's 166 * necessary to grab both locks to remove a chunk from circulation as 167 * allocation path might be referencing the chunk with only 168 * pcpu_alloc_mutex locked. 169 */ 170 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 171 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 172 173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 174 175 /* reclaim work to release fully free chunks, scheduled from free path */ 176 static void pcpu_reclaim(struct work_struct *work); 177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 178 179 static bool pcpu_addr_in_first_chunk(void *addr) 180 { 181 void *first_start = pcpu_first_chunk->base_addr; 182 183 return addr >= first_start && addr < first_start + pcpu_unit_size; 184 } 185 186 static bool pcpu_addr_in_reserved_chunk(void *addr) 187 { 188 void *first_start = pcpu_first_chunk->base_addr; 189 190 return addr >= first_start && 191 addr < first_start + pcpu_reserved_chunk_limit; 192 } 193 194 static int __pcpu_size_to_slot(int size) 195 { 196 int highbit = fls(size); /* size is in bytes */ 197 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 198 } 199 200 static int pcpu_size_to_slot(int size) 201 { 202 if (size == pcpu_unit_size) 203 return pcpu_nr_slots - 1; 204 return __pcpu_size_to_slot(size); 205 } 206 207 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 208 { 209 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 210 return 0; 211 212 return pcpu_size_to_slot(chunk->free_size); 213 } 214 215 /* set the pointer to a chunk in a page struct */ 216 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 217 { 218 page->index = (unsigned long)pcpu; 219 } 220 221 /* obtain pointer to a chunk from a page struct */ 222 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 223 { 224 return (struct pcpu_chunk *)page->index; 225 } 226 227 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 228 { 229 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 230 } 231 232 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 233 unsigned int cpu, int page_idx) 234 { 235 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 236 (page_idx << PAGE_SHIFT); 237 } 238 239 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 240 int *rs, int *re, int end) 241 { 242 *rs = find_next_zero_bit(chunk->populated, end, *rs); 243 *re = find_next_bit(chunk->populated, end, *rs + 1); 244 } 245 246 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 247 int *rs, int *re, int end) 248 { 249 *rs = find_next_bit(chunk->populated, end, *rs); 250 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 251 } 252 253 /* 254 * (Un)populated page region iterators. Iterate over (un)populated 255 * page regions betwen @start and @end in @chunk. @rs and @re should 256 * be integer variables and will be set to start and end page index of 257 * the current region. 258 */ 259 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 260 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 261 (rs) < (re); \ 262 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 263 264 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 265 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 266 (rs) < (re); \ 267 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 268 269 /** 270 * pcpu_mem_alloc - allocate memory 271 * @size: bytes to allocate 272 * 273 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 274 * kzalloc() is used; otherwise, vmalloc() is used. The returned 275 * memory is always zeroed. 276 * 277 * CONTEXT: 278 * Does GFP_KERNEL allocation. 279 * 280 * RETURNS: 281 * Pointer to the allocated area on success, NULL on failure. 282 */ 283 static void *pcpu_mem_alloc(size_t size) 284 { 285 if (WARN_ON_ONCE(!slab_is_available())) 286 return NULL; 287 288 if (size <= PAGE_SIZE) 289 return kzalloc(size, GFP_KERNEL); 290 else { 291 void *ptr = vmalloc(size); 292 if (ptr) 293 memset(ptr, 0, size); 294 return ptr; 295 } 296 } 297 298 /** 299 * pcpu_mem_free - free memory 300 * @ptr: memory to free 301 * @size: size of the area 302 * 303 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). 304 */ 305 static void pcpu_mem_free(void *ptr, size_t size) 306 { 307 if (size <= PAGE_SIZE) 308 kfree(ptr); 309 else 310 vfree(ptr); 311 } 312 313 /** 314 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 315 * @chunk: chunk of interest 316 * @oslot: the previous slot it was on 317 * 318 * This function is called after an allocation or free changed @chunk. 319 * New slot according to the changed state is determined and @chunk is 320 * moved to the slot. Note that the reserved chunk is never put on 321 * chunk slots. 322 * 323 * CONTEXT: 324 * pcpu_lock. 325 */ 326 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 327 { 328 int nslot = pcpu_chunk_slot(chunk); 329 330 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 331 if (oslot < nslot) 332 list_move(&chunk->list, &pcpu_slot[nslot]); 333 else 334 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 335 } 336 } 337 338 /** 339 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 340 * @chunk: chunk of interest 341 * 342 * Determine whether area map of @chunk needs to be extended to 343 * accomodate a new allocation. 344 * 345 * CONTEXT: 346 * pcpu_lock. 347 * 348 * RETURNS: 349 * New target map allocation length if extension is necessary, 0 350 * otherwise. 351 */ 352 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 353 { 354 int new_alloc; 355 356 if (chunk->map_alloc >= chunk->map_used + 2) 357 return 0; 358 359 new_alloc = PCPU_DFL_MAP_ALLOC; 360 while (new_alloc < chunk->map_used + 2) 361 new_alloc *= 2; 362 363 return new_alloc; 364 } 365 366 /** 367 * pcpu_extend_area_map - extend area map of a chunk 368 * @chunk: chunk of interest 369 * @new_alloc: new target allocation length of the area map 370 * 371 * Extend area map of @chunk to have @new_alloc entries. 372 * 373 * CONTEXT: 374 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 375 * 376 * RETURNS: 377 * 0 on success, -errno on failure. 378 */ 379 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 380 { 381 int *old = NULL, *new = NULL; 382 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 383 unsigned long flags; 384 385 new = pcpu_mem_alloc(new_size); 386 if (!new) 387 return -ENOMEM; 388 389 /* acquire pcpu_lock and switch to new area map */ 390 spin_lock_irqsave(&pcpu_lock, flags); 391 392 if (new_alloc <= chunk->map_alloc) 393 goto out_unlock; 394 395 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 396 old = chunk->map; 397 398 memcpy(new, old, old_size); 399 400 chunk->map_alloc = new_alloc; 401 chunk->map = new; 402 new = NULL; 403 404 out_unlock: 405 spin_unlock_irqrestore(&pcpu_lock, flags); 406 407 /* 408 * pcpu_mem_free() might end up calling vfree() which uses 409 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 410 */ 411 pcpu_mem_free(old, old_size); 412 pcpu_mem_free(new, new_size); 413 414 return 0; 415 } 416 417 /** 418 * pcpu_split_block - split a map block 419 * @chunk: chunk of interest 420 * @i: index of map block to split 421 * @head: head size in bytes (can be 0) 422 * @tail: tail size in bytes (can be 0) 423 * 424 * Split the @i'th map block into two or three blocks. If @head is 425 * non-zero, @head bytes block is inserted before block @i moving it 426 * to @i+1 and reducing its size by @head bytes. 427 * 428 * If @tail is non-zero, the target block, which can be @i or @i+1 429 * depending on @head, is reduced by @tail bytes and @tail byte block 430 * is inserted after the target block. 431 * 432 * @chunk->map must have enough free slots to accomodate the split. 433 * 434 * CONTEXT: 435 * pcpu_lock. 436 */ 437 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 438 int head, int tail) 439 { 440 int nr_extra = !!head + !!tail; 441 442 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 443 444 /* insert new subblocks */ 445 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 446 sizeof(chunk->map[0]) * (chunk->map_used - i)); 447 chunk->map_used += nr_extra; 448 449 if (head) { 450 chunk->map[i + 1] = chunk->map[i] - head; 451 chunk->map[i++] = head; 452 } 453 if (tail) { 454 chunk->map[i++] -= tail; 455 chunk->map[i] = tail; 456 } 457 } 458 459 /** 460 * pcpu_alloc_area - allocate area from a pcpu_chunk 461 * @chunk: chunk of interest 462 * @size: wanted size in bytes 463 * @align: wanted align 464 * 465 * Try to allocate @size bytes area aligned at @align from @chunk. 466 * Note that this function only allocates the offset. It doesn't 467 * populate or map the area. 468 * 469 * @chunk->map must have at least two free slots. 470 * 471 * CONTEXT: 472 * pcpu_lock. 473 * 474 * RETURNS: 475 * Allocated offset in @chunk on success, -1 if no matching area is 476 * found. 477 */ 478 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 479 { 480 int oslot = pcpu_chunk_slot(chunk); 481 int max_contig = 0; 482 int i, off; 483 484 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 485 bool is_last = i + 1 == chunk->map_used; 486 int head, tail; 487 488 /* extra for alignment requirement */ 489 head = ALIGN(off, align) - off; 490 BUG_ON(i == 0 && head != 0); 491 492 if (chunk->map[i] < 0) 493 continue; 494 if (chunk->map[i] < head + size) { 495 max_contig = max(chunk->map[i], max_contig); 496 continue; 497 } 498 499 /* 500 * If head is small or the previous block is free, 501 * merge'em. Note that 'small' is defined as smaller 502 * than sizeof(int), which is very small but isn't too 503 * uncommon for percpu allocations. 504 */ 505 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 506 if (chunk->map[i - 1] > 0) 507 chunk->map[i - 1] += head; 508 else { 509 chunk->map[i - 1] -= head; 510 chunk->free_size -= head; 511 } 512 chunk->map[i] -= head; 513 off += head; 514 head = 0; 515 } 516 517 /* if tail is small, just keep it around */ 518 tail = chunk->map[i] - head - size; 519 if (tail < sizeof(int)) 520 tail = 0; 521 522 /* split if warranted */ 523 if (head || tail) { 524 pcpu_split_block(chunk, i, head, tail); 525 if (head) { 526 i++; 527 off += head; 528 max_contig = max(chunk->map[i - 1], max_contig); 529 } 530 if (tail) 531 max_contig = max(chunk->map[i + 1], max_contig); 532 } 533 534 /* update hint and mark allocated */ 535 if (is_last) 536 chunk->contig_hint = max_contig; /* fully scanned */ 537 else 538 chunk->contig_hint = max(chunk->contig_hint, 539 max_contig); 540 541 chunk->free_size -= chunk->map[i]; 542 chunk->map[i] = -chunk->map[i]; 543 544 pcpu_chunk_relocate(chunk, oslot); 545 return off; 546 } 547 548 chunk->contig_hint = max_contig; /* fully scanned */ 549 pcpu_chunk_relocate(chunk, oslot); 550 551 /* tell the upper layer that this chunk has no matching area */ 552 return -1; 553 } 554 555 /** 556 * pcpu_free_area - free area to a pcpu_chunk 557 * @chunk: chunk of interest 558 * @freeme: offset of area to free 559 * 560 * Free area starting from @freeme to @chunk. Note that this function 561 * only modifies the allocation map. It doesn't depopulate or unmap 562 * the area. 563 * 564 * CONTEXT: 565 * pcpu_lock. 566 */ 567 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 568 { 569 int oslot = pcpu_chunk_slot(chunk); 570 int i, off; 571 572 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 573 if (off == freeme) 574 break; 575 BUG_ON(off != freeme); 576 BUG_ON(chunk->map[i] > 0); 577 578 chunk->map[i] = -chunk->map[i]; 579 chunk->free_size += chunk->map[i]; 580 581 /* merge with previous? */ 582 if (i > 0 && chunk->map[i - 1] >= 0) { 583 chunk->map[i - 1] += chunk->map[i]; 584 chunk->map_used--; 585 memmove(&chunk->map[i], &chunk->map[i + 1], 586 (chunk->map_used - i) * sizeof(chunk->map[0])); 587 i--; 588 } 589 /* merge with next? */ 590 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 591 chunk->map[i] += chunk->map[i + 1]; 592 chunk->map_used--; 593 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 594 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 595 } 596 597 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 598 pcpu_chunk_relocate(chunk, oslot); 599 } 600 601 static struct pcpu_chunk *pcpu_alloc_chunk(void) 602 { 603 struct pcpu_chunk *chunk; 604 605 chunk = pcpu_mem_alloc(pcpu_chunk_struct_size); 606 if (!chunk) 607 return NULL; 608 609 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); 610 if (!chunk->map) { 611 kfree(chunk); 612 return NULL; 613 } 614 615 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 616 chunk->map[chunk->map_used++] = pcpu_unit_size; 617 618 INIT_LIST_HEAD(&chunk->list); 619 chunk->free_size = pcpu_unit_size; 620 chunk->contig_hint = pcpu_unit_size; 621 622 return chunk; 623 } 624 625 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 626 { 627 if (!chunk) 628 return; 629 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 630 kfree(chunk); 631 } 632 633 /* 634 * Chunk management implementation. 635 * 636 * To allow different implementations, chunk alloc/free and 637 * [de]population are implemented in a separate file which is pulled 638 * into this file and compiled together. The following functions 639 * should be implemented. 640 * 641 * pcpu_populate_chunk - populate the specified range of a chunk 642 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 643 * pcpu_create_chunk - create a new chunk 644 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 645 * pcpu_addr_to_page - translate address to physical address 646 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 647 */ 648 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 649 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 650 static struct pcpu_chunk *pcpu_create_chunk(void); 651 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 652 static struct page *pcpu_addr_to_page(void *addr); 653 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 654 655 #ifdef CONFIG_NEED_PER_CPU_KM 656 #include "percpu-km.c" 657 #else 658 #include "percpu-vm.c" 659 #endif 660 661 /** 662 * pcpu_chunk_addr_search - determine chunk containing specified address 663 * @addr: address for which the chunk needs to be determined. 664 * 665 * RETURNS: 666 * The address of the found chunk. 667 */ 668 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 669 { 670 /* is it in the first chunk? */ 671 if (pcpu_addr_in_first_chunk(addr)) { 672 /* is it in the reserved area? */ 673 if (pcpu_addr_in_reserved_chunk(addr)) 674 return pcpu_reserved_chunk; 675 return pcpu_first_chunk; 676 } 677 678 /* 679 * The address is relative to unit0 which might be unused and 680 * thus unmapped. Offset the address to the unit space of the 681 * current processor before looking it up in the vmalloc 682 * space. Note that any possible cpu id can be used here, so 683 * there's no need to worry about preemption or cpu hotplug. 684 */ 685 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 686 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 687 } 688 689 /** 690 * pcpu_alloc - the percpu allocator 691 * @size: size of area to allocate in bytes 692 * @align: alignment of area (max PAGE_SIZE) 693 * @reserved: allocate from the reserved chunk if available 694 * 695 * Allocate percpu area of @size bytes aligned at @align. 696 * 697 * CONTEXT: 698 * Does GFP_KERNEL allocation. 699 * 700 * RETURNS: 701 * Percpu pointer to the allocated area on success, NULL on failure. 702 */ 703 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 704 { 705 static int warn_limit = 10; 706 struct pcpu_chunk *chunk; 707 const char *err; 708 int slot, off, new_alloc; 709 unsigned long flags; 710 711 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 712 WARN(true, "illegal size (%zu) or align (%zu) for " 713 "percpu allocation\n", size, align); 714 return NULL; 715 } 716 717 mutex_lock(&pcpu_alloc_mutex); 718 spin_lock_irqsave(&pcpu_lock, flags); 719 720 /* serve reserved allocations from the reserved chunk if available */ 721 if (reserved && pcpu_reserved_chunk) { 722 chunk = pcpu_reserved_chunk; 723 724 if (size > chunk->contig_hint) { 725 err = "alloc from reserved chunk failed"; 726 goto fail_unlock; 727 } 728 729 while ((new_alloc = pcpu_need_to_extend(chunk))) { 730 spin_unlock_irqrestore(&pcpu_lock, flags); 731 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 732 err = "failed to extend area map of reserved chunk"; 733 goto fail_unlock_mutex; 734 } 735 spin_lock_irqsave(&pcpu_lock, flags); 736 } 737 738 off = pcpu_alloc_area(chunk, size, align); 739 if (off >= 0) 740 goto area_found; 741 742 err = "alloc from reserved chunk failed"; 743 goto fail_unlock; 744 } 745 746 restart: 747 /* search through normal chunks */ 748 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 749 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 750 if (size > chunk->contig_hint) 751 continue; 752 753 new_alloc = pcpu_need_to_extend(chunk); 754 if (new_alloc) { 755 spin_unlock_irqrestore(&pcpu_lock, flags); 756 if (pcpu_extend_area_map(chunk, 757 new_alloc) < 0) { 758 err = "failed to extend area map"; 759 goto fail_unlock_mutex; 760 } 761 spin_lock_irqsave(&pcpu_lock, flags); 762 /* 763 * pcpu_lock has been dropped, need to 764 * restart cpu_slot list walking. 765 */ 766 goto restart; 767 } 768 769 off = pcpu_alloc_area(chunk, size, align); 770 if (off >= 0) 771 goto area_found; 772 } 773 } 774 775 /* hmmm... no space left, create a new chunk */ 776 spin_unlock_irqrestore(&pcpu_lock, flags); 777 778 chunk = pcpu_create_chunk(); 779 if (!chunk) { 780 err = "failed to allocate new chunk"; 781 goto fail_unlock_mutex; 782 } 783 784 spin_lock_irqsave(&pcpu_lock, flags); 785 pcpu_chunk_relocate(chunk, -1); 786 goto restart; 787 788 area_found: 789 spin_unlock_irqrestore(&pcpu_lock, flags); 790 791 /* populate, map and clear the area */ 792 if (pcpu_populate_chunk(chunk, off, size)) { 793 spin_lock_irqsave(&pcpu_lock, flags); 794 pcpu_free_area(chunk, off); 795 err = "failed to populate"; 796 goto fail_unlock; 797 } 798 799 mutex_unlock(&pcpu_alloc_mutex); 800 801 /* return address relative to base address */ 802 return __addr_to_pcpu_ptr(chunk->base_addr + off); 803 804 fail_unlock: 805 spin_unlock_irqrestore(&pcpu_lock, flags); 806 fail_unlock_mutex: 807 mutex_unlock(&pcpu_alloc_mutex); 808 if (warn_limit) { 809 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 810 "%s\n", size, align, err); 811 dump_stack(); 812 if (!--warn_limit) 813 pr_info("PERCPU: limit reached, disable warning\n"); 814 } 815 return NULL; 816 } 817 818 /** 819 * __alloc_percpu - allocate dynamic percpu area 820 * @size: size of area to allocate in bytes 821 * @align: alignment of area (max PAGE_SIZE) 822 * 823 * Allocate percpu area of @size bytes aligned at @align. Might 824 * sleep. Might trigger writeouts. 825 * 826 * CONTEXT: 827 * Does GFP_KERNEL allocation. 828 * 829 * RETURNS: 830 * Percpu pointer to the allocated area on success, NULL on failure. 831 */ 832 void __percpu *__alloc_percpu(size_t size, size_t align) 833 { 834 return pcpu_alloc(size, align, false); 835 } 836 EXPORT_SYMBOL_GPL(__alloc_percpu); 837 838 /** 839 * __alloc_reserved_percpu - allocate reserved percpu area 840 * @size: size of area to allocate in bytes 841 * @align: alignment of area (max PAGE_SIZE) 842 * 843 * Allocate percpu area of @size bytes aligned at @align from reserved 844 * percpu area if arch has set it up; otherwise, allocation is served 845 * from the same dynamic area. Might sleep. Might trigger writeouts. 846 * 847 * CONTEXT: 848 * Does GFP_KERNEL allocation. 849 * 850 * RETURNS: 851 * Percpu pointer to the allocated area on success, NULL on failure. 852 */ 853 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 854 { 855 return pcpu_alloc(size, align, true); 856 } 857 858 /** 859 * pcpu_reclaim - reclaim fully free chunks, workqueue function 860 * @work: unused 861 * 862 * Reclaim all fully free chunks except for the first one. 863 * 864 * CONTEXT: 865 * workqueue context. 866 */ 867 static void pcpu_reclaim(struct work_struct *work) 868 { 869 LIST_HEAD(todo); 870 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 871 struct pcpu_chunk *chunk, *next; 872 873 mutex_lock(&pcpu_alloc_mutex); 874 spin_lock_irq(&pcpu_lock); 875 876 list_for_each_entry_safe(chunk, next, head, list) { 877 WARN_ON(chunk->immutable); 878 879 /* spare the first one */ 880 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 881 continue; 882 883 list_move(&chunk->list, &todo); 884 } 885 886 spin_unlock_irq(&pcpu_lock); 887 888 list_for_each_entry_safe(chunk, next, &todo, list) { 889 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 890 pcpu_destroy_chunk(chunk); 891 } 892 893 mutex_unlock(&pcpu_alloc_mutex); 894 } 895 896 /** 897 * free_percpu - free percpu area 898 * @ptr: pointer to area to free 899 * 900 * Free percpu area @ptr. 901 * 902 * CONTEXT: 903 * Can be called from atomic context. 904 */ 905 void free_percpu(void __percpu *ptr) 906 { 907 void *addr; 908 struct pcpu_chunk *chunk; 909 unsigned long flags; 910 int off; 911 912 if (!ptr) 913 return; 914 915 addr = __pcpu_ptr_to_addr(ptr); 916 917 spin_lock_irqsave(&pcpu_lock, flags); 918 919 chunk = pcpu_chunk_addr_search(addr); 920 off = addr - chunk->base_addr; 921 922 pcpu_free_area(chunk, off); 923 924 /* if there are more than one fully free chunks, wake up grim reaper */ 925 if (chunk->free_size == pcpu_unit_size) { 926 struct pcpu_chunk *pos; 927 928 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 929 if (pos != chunk) { 930 schedule_work(&pcpu_reclaim_work); 931 break; 932 } 933 } 934 935 spin_unlock_irqrestore(&pcpu_lock, flags); 936 } 937 EXPORT_SYMBOL_GPL(free_percpu); 938 939 /** 940 * is_kernel_percpu_address - test whether address is from static percpu area 941 * @addr: address to test 942 * 943 * Test whether @addr belongs to in-kernel static percpu area. Module 944 * static percpu areas are not considered. For those, use 945 * is_module_percpu_address(). 946 * 947 * RETURNS: 948 * %true if @addr is from in-kernel static percpu area, %false otherwise. 949 */ 950 bool is_kernel_percpu_address(unsigned long addr) 951 { 952 const size_t static_size = __per_cpu_end - __per_cpu_start; 953 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 954 unsigned int cpu; 955 956 for_each_possible_cpu(cpu) { 957 void *start = per_cpu_ptr(base, cpu); 958 959 if ((void *)addr >= start && (void *)addr < start + static_size) 960 return true; 961 } 962 return false; 963 } 964 965 /** 966 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 967 * @addr: the address to be converted to physical address 968 * 969 * Given @addr which is dereferenceable address obtained via one of 970 * percpu access macros, this function translates it into its physical 971 * address. The caller is responsible for ensuring @addr stays valid 972 * until this function finishes. 973 * 974 * RETURNS: 975 * The physical address for @addr. 976 */ 977 phys_addr_t per_cpu_ptr_to_phys(void *addr) 978 { 979 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 980 bool in_first_chunk = false; 981 unsigned long first_start, first_end; 982 unsigned int cpu; 983 984 /* 985 * The following test on first_start/end isn't strictly 986 * necessary but will speed up lookups of addresses which 987 * aren't in the first chunk. 988 */ 989 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0); 990 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu, 991 pcpu_unit_pages); 992 if ((unsigned long)addr >= first_start && 993 (unsigned long)addr < first_end) { 994 for_each_possible_cpu(cpu) { 995 void *start = per_cpu_ptr(base, cpu); 996 997 if (addr >= start && addr < start + pcpu_unit_size) { 998 in_first_chunk = true; 999 break; 1000 } 1001 } 1002 } 1003 1004 if (in_first_chunk) { 1005 if ((unsigned long)addr < VMALLOC_START || 1006 (unsigned long)addr >= VMALLOC_END) 1007 return __pa(addr); 1008 else 1009 return page_to_phys(vmalloc_to_page(addr)); 1010 } else 1011 return page_to_phys(pcpu_addr_to_page(addr)); 1012 } 1013 1014 /** 1015 * pcpu_alloc_alloc_info - allocate percpu allocation info 1016 * @nr_groups: the number of groups 1017 * @nr_units: the number of units 1018 * 1019 * Allocate ai which is large enough for @nr_groups groups containing 1020 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1021 * cpu_map array which is long enough for @nr_units and filled with 1022 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1023 * pointer of other groups. 1024 * 1025 * RETURNS: 1026 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1027 * failure. 1028 */ 1029 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1030 int nr_units) 1031 { 1032 struct pcpu_alloc_info *ai; 1033 size_t base_size, ai_size; 1034 void *ptr; 1035 int unit; 1036 1037 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1038 __alignof__(ai->groups[0].cpu_map[0])); 1039 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1040 1041 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1042 if (!ptr) 1043 return NULL; 1044 ai = ptr; 1045 ptr += base_size; 1046 1047 ai->groups[0].cpu_map = ptr; 1048 1049 for (unit = 0; unit < nr_units; unit++) 1050 ai->groups[0].cpu_map[unit] = NR_CPUS; 1051 1052 ai->nr_groups = nr_groups; 1053 ai->__ai_size = PFN_ALIGN(ai_size); 1054 1055 return ai; 1056 } 1057 1058 /** 1059 * pcpu_free_alloc_info - free percpu allocation info 1060 * @ai: pcpu_alloc_info to free 1061 * 1062 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1063 */ 1064 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1065 { 1066 free_bootmem(__pa(ai), ai->__ai_size); 1067 } 1068 1069 /** 1070 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1071 * @reserved_size: the size of reserved percpu area in bytes 1072 * @dyn_size: minimum free size for dynamic allocation in bytes 1073 * @atom_size: allocation atom size 1074 * @cpu_distance_fn: callback to determine distance between cpus, optional 1075 * 1076 * This function determines grouping of units, their mappings to cpus 1077 * and other parameters considering needed percpu size, allocation 1078 * atom size and distances between CPUs. 1079 * 1080 * Groups are always mutliples of atom size and CPUs which are of 1081 * LOCAL_DISTANCE both ways are grouped together and share space for 1082 * units in the same group. The returned configuration is guaranteed 1083 * to have CPUs on different nodes on different groups and >=75% usage 1084 * of allocated virtual address space. 1085 * 1086 * RETURNS: 1087 * On success, pointer to the new allocation_info is returned. On 1088 * failure, ERR_PTR value is returned. 1089 */ 1090 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1091 size_t reserved_size, size_t dyn_size, 1092 size_t atom_size, 1093 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1094 { 1095 static int group_map[NR_CPUS] __initdata; 1096 static int group_cnt[NR_CPUS] __initdata; 1097 const size_t static_size = __per_cpu_end - __per_cpu_start; 1098 int nr_groups = 1, nr_units = 0; 1099 size_t size_sum, min_unit_size, alloc_size; 1100 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1101 int last_allocs, group, unit; 1102 unsigned int cpu, tcpu; 1103 struct pcpu_alloc_info *ai; 1104 unsigned int *cpu_map; 1105 1106 /* this function may be called multiple times */ 1107 memset(group_map, 0, sizeof(group_map)); 1108 memset(group_cnt, 0, sizeof(group_cnt)); 1109 1110 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1111 size_sum = PFN_ALIGN(static_size + reserved_size + 1112 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1113 dyn_size = size_sum - static_size - reserved_size; 1114 1115 /* 1116 * Determine min_unit_size, alloc_size and max_upa such that 1117 * alloc_size is multiple of atom_size and is the smallest 1118 * which can accomodate 4k aligned segments which are equal to 1119 * or larger than min_unit_size. 1120 */ 1121 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1122 1123 alloc_size = roundup(min_unit_size, atom_size); 1124 upa = alloc_size / min_unit_size; 1125 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1126 upa--; 1127 max_upa = upa; 1128 1129 /* group cpus according to their proximity */ 1130 for_each_possible_cpu(cpu) { 1131 group = 0; 1132 next_group: 1133 for_each_possible_cpu(tcpu) { 1134 if (cpu == tcpu) 1135 break; 1136 if (group_map[tcpu] == group && cpu_distance_fn && 1137 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1138 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1139 group++; 1140 nr_groups = max(nr_groups, group + 1); 1141 goto next_group; 1142 } 1143 } 1144 group_map[cpu] = group; 1145 group_cnt[group]++; 1146 } 1147 1148 /* 1149 * Expand unit size until address space usage goes over 75% 1150 * and then as much as possible without using more address 1151 * space. 1152 */ 1153 last_allocs = INT_MAX; 1154 for (upa = max_upa; upa; upa--) { 1155 int allocs = 0, wasted = 0; 1156 1157 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1158 continue; 1159 1160 for (group = 0; group < nr_groups; group++) { 1161 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1162 allocs += this_allocs; 1163 wasted += this_allocs * upa - group_cnt[group]; 1164 } 1165 1166 /* 1167 * Don't accept if wastage is over 1/3. The 1168 * greater-than comparison ensures upa==1 always 1169 * passes the following check. 1170 */ 1171 if (wasted > num_possible_cpus() / 3) 1172 continue; 1173 1174 /* and then don't consume more memory */ 1175 if (allocs > last_allocs) 1176 break; 1177 last_allocs = allocs; 1178 best_upa = upa; 1179 } 1180 upa = best_upa; 1181 1182 /* allocate and fill alloc_info */ 1183 for (group = 0; group < nr_groups; group++) 1184 nr_units += roundup(group_cnt[group], upa); 1185 1186 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1187 if (!ai) 1188 return ERR_PTR(-ENOMEM); 1189 cpu_map = ai->groups[0].cpu_map; 1190 1191 for (group = 0; group < nr_groups; group++) { 1192 ai->groups[group].cpu_map = cpu_map; 1193 cpu_map += roundup(group_cnt[group], upa); 1194 } 1195 1196 ai->static_size = static_size; 1197 ai->reserved_size = reserved_size; 1198 ai->dyn_size = dyn_size; 1199 ai->unit_size = alloc_size / upa; 1200 ai->atom_size = atom_size; 1201 ai->alloc_size = alloc_size; 1202 1203 for (group = 0, unit = 0; group_cnt[group]; group++) { 1204 struct pcpu_group_info *gi = &ai->groups[group]; 1205 1206 /* 1207 * Initialize base_offset as if all groups are located 1208 * back-to-back. The caller should update this to 1209 * reflect actual allocation. 1210 */ 1211 gi->base_offset = unit * ai->unit_size; 1212 1213 for_each_possible_cpu(cpu) 1214 if (group_map[cpu] == group) 1215 gi->cpu_map[gi->nr_units++] = cpu; 1216 gi->nr_units = roundup(gi->nr_units, upa); 1217 unit += gi->nr_units; 1218 } 1219 BUG_ON(unit != nr_units); 1220 1221 return ai; 1222 } 1223 1224 /** 1225 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1226 * @lvl: loglevel 1227 * @ai: allocation info to dump 1228 * 1229 * Print out information about @ai using loglevel @lvl. 1230 */ 1231 static void pcpu_dump_alloc_info(const char *lvl, 1232 const struct pcpu_alloc_info *ai) 1233 { 1234 int group_width = 1, cpu_width = 1, width; 1235 char empty_str[] = "--------"; 1236 int alloc = 0, alloc_end = 0; 1237 int group, v; 1238 int upa, apl; /* units per alloc, allocs per line */ 1239 1240 v = ai->nr_groups; 1241 while (v /= 10) 1242 group_width++; 1243 1244 v = num_possible_cpus(); 1245 while (v /= 10) 1246 cpu_width++; 1247 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1248 1249 upa = ai->alloc_size / ai->unit_size; 1250 width = upa * (cpu_width + 1) + group_width + 3; 1251 apl = rounddown_pow_of_two(max(60 / width, 1)); 1252 1253 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1254 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1255 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1256 1257 for (group = 0; group < ai->nr_groups; group++) { 1258 const struct pcpu_group_info *gi = &ai->groups[group]; 1259 int unit = 0, unit_end = 0; 1260 1261 BUG_ON(gi->nr_units % upa); 1262 for (alloc_end += gi->nr_units / upa; 1263 alloc < alloc_end; alloc++) { 1264 if (!(alloc % apl)) { 1265 printk("\n"); 1266 printk("%spcpu-alloc: ", lvl); 1267 } 1268 printk("[%0*d] ", group_width, group); 1269 1270 for (unit_end += upa; unit < unit_end; unit++) 1271 if (gi->cpu_map[unit] != NR_CPUS) 1272 printk("%0*d ", cpu_width, 1273 gi->cpu_map[unit]); 1274 else 1275 printk("%s ", empty_str); 1276 } 1277 } 1278 printk("\n"); 1279 } 1280 1281 /** 1282 * pcpu_setup_first_chunk - initialize the first percpu chunk 1283 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1284 * @base_addr: mapped address 1285 * 1286 * Initialize the first percpu chunk which contains the kernel static 1287 * perpcu area. This function is to be called from arch percpu area 1288 * setup path. 1289 * 1290 * @ai contains all information necessary to initialize the first 1291 * chunk and prime the dynamic percpu allocator. 1292 * 1293 * @ai->static_size is the size of static percpu area. 1294 * 1295 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1296 * reserve after the static area in the first chunk. This reserves 1297 * the first chunk such that it's available only through reserved 1298 * percpu allocation. This is primarily used to serve module percpu 1299 * static areas on architectures where the addressing model has 1300 * limited offset range for symbol relocations to guarantee module 1301 * percpu symbols fall inside the relocatable range. 1302 * 1303 * @ai->dyn_size determines the number of bytes available for dynamic 1304 * allocation in the first chunk. The area between @ai->static_size + 1305 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1306 * 1307 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1308 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1309 * @ai->dyn_size. 1310 * 1311 * @ai->atom_size is the allocation atom size and used as alignment 1312 * for vm areas. 1313 * 1314 * @ai->alloc_size is the allocation size and always multiple of 1315 * @ai->atom_size. This is larger than @ai->atom_size if 1316 * @ai->unit_size is larger than @ai->atom_size. 1317 * 1318 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1319 * percpu areas. Units which should be colocated are put into the 1320 * same group. Dynamic VM areas will be allocated according to these 1321 * groupings. If @ai->nr_groups is zero, a single group containing 1322 * all units is assumed. 1323 * 1324 * The caller should have mapped the first chunk at @base_addr and 1325 * copied static data to each unit. 1326 * 1327 * If the first chunk ends up with both reserved and dynamic areas, it 1328 * is served by two chunks - one to serve the core static and reserved 1329 * areas and the other for the dynamic area. They share the same vm 1330 * and page map but uses different area allocation map to stay away 1331 * from each other. The latter chunk is circulated in the chunk slots 1332 * and available for dynamic allocation like any other chunks. 1333 * 1334 * RETURNS: 1335 * 0 on success, -errno on failure. 1336 */ 1337 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1338 void *base_addr) 1339 { 1340 static char cpus_buf[4096] __initdata; 1341 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1342 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1343 size_t dyn_size = ai->dyn_size; 1344 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1345 struct pcpu_chunk *schunk, *dchunk = NULL; 1346 unsigned long *group_offsets; 1347 size_t *group_sizes; 1348 unsigned long *unit_off; 1349 unsigned int cpu; 1350 int *unit_map; 1351 int group, unit, i; 1352 1353 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1354 1355 #define PCPU_SETUP_BUG_ON(cond) do { \ 1356 if (unlikely(cond)) { \ 1357 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1358 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1359 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1360 BUG(); \ 1361 } \ 1362 } while (0) 1363 1364 /* sanity checks */ 1365 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1366 PCPU_SETUP_BUG_ON(!ai->static_size); 1367 PCPU_SETUP_BUG_ON(!base_addr); 1368 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1369 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1370 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1371 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1372 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1373 1374 /* process group information and build config tables accordingly */ 1375 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1376 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1377 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1378 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1379 1380 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1381 unit_map[cpu] = UINT_MAX; 1382 pcpu_first_unit_cpu = NR_CPUS; 1383 1384 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1385 const struct pcpu_group_info *gi = &ai->groups[group]; 1386 1387 group_offsets[group] = gi->base_offset; 1388 group_sizes[group] = gi->nr_units * ai->unit_size; 1389 1390 for (i = 0; i < gi->nr_units; i++) { 1391 cpu = gi->cpu_map[i]; 1392 if (cpu == NR_CPUS) 1393 continue; 1394 1395 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1396 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1397 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1398 1399 unit_map[cpu] = unit + i; 1400 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1401 1402 if (pcpu_first_unit_cpu == NR_CPUS) 1403 pcpu_first_unit_cpu = cpu; 1404 pcpu_last_unit_cpu = cpu; 1405 } 1406 } 1407 pcpu_nr_units = unit; 1408 1409 for_each_possible_cpu(cpu) 1410 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1411 1412 /* we're done parsing the input, undefine BUG macro and dump config */ 1413 #undef PCPU_SETUP_BUG_ON 1414 pcpu_dump_alloc_info(KERN_INFO, ai); 1415 1416 pcpu_nr_groups = ai->nr_groups; 1417 pcpu_group_offsets = group_offsets; 1418 pcpu_group_sizes = group_sizes; 1419 pcpu_unit_map = unit_map; 1420 pcpu_unit_offsets = unit_off; 1421 1422 /* determine basic parameters */ 1423 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1424 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1425 pcpu_atom_size = ai->atom_size; 1426 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1427 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1428 1429 /* 1430 * Allocate chunk slots. The additional last slot is for 1431 * empty chunks. 1432 */ 1433 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1434 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1435 for (i = 0; i < pcpu_nr_slots; i++) 1436 INIT_LIST_HEAD(&pcpu_slot[i]); 1437 1438 /* 1439 * Initialize static chunk. If reserved_size is zero, the 1440 * static chunk covers static area + dynamic allocation area 1441 * in the first chunk. If reserved_size is not zero, it 1442 * covers static area + reserved area (mostly used for module 1443 * static percpu allocation). 1444 */ 1445 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1446 INIT_LIST_HEAD(&schunk->list); 1447 schunk->base_addr = base_addr; 1448 schunk->map = smap; 1449 schunk->map_alloc = ARRAY_SIZE(smap); 1450 schunk->immutable = true; 1451 bitmap_fill(schunk->populated, pcpu_unit_pages); 1452 1453 if (ai->reserved_size) { 1454 schunk->free_size = ai->reserved_size; 1455 pcpu_reserved_chunk = schunk; 1456 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1457 } else { 1458 schunk->free_size = dyn_size; 1459 dyn_size = 0; /* dynamic area covered */ 1460 } 1461 schunk->contig_hint = schunk->free_size; 1462 1463 schunk->map[schunk->map_used++] = -ai->static_size; 1464 if (schunk->free_size) 1465 schunk->map[schunk->map_used++] = schunk->free_size; 1466 1467 /* init dynamic chunk if necessary */ 1468 if (dyn_size) { 1469 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1470 INIT_LIST_HEAD(&dchunk->list); 1471 dchunk->base_addr = base_addr; 1472 dchunk->map = dmap; 1473 dchunk->map_alloc = ARRAY_SIZE(dmap); 1474 dchunk->immutable = true; 1475 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1476 1477 dchunk->contig_hint = dchunk->free_size = dyn_size; 1478 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1479 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1480 } 1481 1482 /* link the first chunk in */ 1483 pcpu_first_chunk = dchunk ?: schunk; 1484 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1485 1486 /* we're done */ 1487 pcpu_base_addr = base_addr; 1488 return 0; 1489 } 1490 1491 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1492 [PCPU_FC_AUTO] = "auto", 1493 [PCPU_FC_EMBED] = "embed", 1494 [PCPU_FC_PAGE] = "page", 1495 }; 1496 1497 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1498 1499 static int __init percpu_alloc_setup(char *str) 1500 { 1501 if (0) 1502 /* nada */; 1503 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1504 else if (!strcmp(str, "embed")) 1505 pcpu_chosen_fc = PCPU_FC_EMBED; 1506 #endif 1507 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1508 else if (!strcmp(str, "page")) 1509 pcpu_chosen_fc = PCPU_FC_PAGE; 1510 #endif 1511 else 1512 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1513 1514 return 0; 1515 } 1516 early_param("percpu_alloc", percpu_alloc_setup); 1517 1518 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1519 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1520 /** 1521 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1522 * @reserved_size: the size of reserved percpu area in bytes 1523 * @dyn_size: minimum free size for dynamic allocation in bytes 1524 * @atom_size: allocation atom size 1525 * @cpu_distance_fn: callback to determine distance between cpus, optional 1526 * @alloc_fn: function to allocate percpu page 1527 * @free_fn: funtion to free percpu page 1528 * 1529 * This is a helper to ease setting up embedded first percpu chunk and 1530 * can be called where pcpu_setup_first_chunk() is expected. 1531 * 1532 * If this function is used to setup the first chunk, it is allocated 1533 * by calling @alloc_fn and used as-is without being mapped into 1534 * vmalloc area. Allocations are always whole multiples of @atom_size 1535 * aligned to @atom_size. 1536 * 1537 * This enables the first chunk to piggy back on the linear physical 1538 * mapping which often uses larger page size. Please note that this 1539 * can result in very sparse cpu->unit mapping on NUMA machines thus 1540 * requiring large vmalloc address space. Don't use this allocator if 1541 * vmalloc space is not orders of magnitude larger than distances 1542 * between node memory addresses (ie. 32bit NUMA machines). 1543 * 1544 * @dyn_size specifies the minimum dynamic area size. 1545 * 1546 * If the needed size is smaller than the minimum or specified unit 1547 * size, the leftover is returned using @free_fn. 1548 * 1549 * RETURNS: 1550 * 0 on success, -errno on failure. 1551 */ 1552 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1553 size_t atom_size, 1554 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1555 pcpu_fc_alloc_fn_t alloc_fn, 1556 pcpu_fc_free_fn_t free_fn) 1557 { 1558 void *base = (void *)ULONG_MAX; 1559 void **areas = NULL; 1560 struct pcpu_alloc_info *ai; 1561 size_t size_sum, areas_size, max_distance; 1562 int group, i, rc; 1563 1564 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1565 cpu_distance_fn); 1566 if (IS_ERR(ai)) 1567 return PTR_ERR(ai); 1568 1569 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1570 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1571 1572 areas = alloc_bootmem_nopanic(areas_size); 1573 if (!areas) { 1574 rc = -ENOMEM; 1575 goto out_free; 1576 } 1577 1578 /* allocate, copy and determine base address */ 1579 for (group = 0; group < ai->nr_groups; group++) { 1580 struct pcpu_group_info *gi = &ai->groups[group]; 1581 unsigned int cpu = NR_CPUS; 1582 void *ptr; 1583 1584 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1585 cpu = gi->cpu_map[i]; 1586 BUG_ON(cpu == NR_CPUS); 1587 1588 /* allocate space for the whole group */ 1589 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1590 if (!ptr) { 1591 rc = -ENOMEM; 1592 goto out_free_areas; 1593 } 1594 areas[group] = ptr; 1595 1596 base = min(ptr, base); 1597 1598 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1599 if (gi->cpu_map[i] == NR_CPUS) { 1600 /* unused unit, free whole */ 1601 free_fn(ptr, ai->unit_size); 1602 continue; 1603 } 1604 /* copy and return the unused part */ 1605 memcpy(ptr, __per_cpu_load, ai->static_size); 1606 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1607 } 1608 } 1609 1610 /* base address is now known, determine group base offsets */ 1611 max_distance = 0; 1612 for (group = 0; group < ai->nr_groups; group++) { 1613 ai->groups[group].base_offset = areas[group] - base; 1614 max_distance = max_t(size_t, max_distance, 1615 ai->groups[group].base_offset); 1616 } 1617 max_distance += ai->unit_size; 1618 1619 /* warn if maximum distance is further than 75% of vmalloc space */ 1620 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1621 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1622 "space 0x%lx\n", 1623 max_distance, VMALLOC_END - VMALLOC_START); 1624 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1625 /* and fail if we have fallback */ 1626 rc = -EINVAL; 1627 goto out_free; 1628 #endif 1629 } 1630 1631 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1632 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1633 ai->dyn_size, ai->unit_size); 1634 1635 rc = pcpu_setup_first_chunk(ai, base); 1636 goto out_free; 1637 1638 out_free_areas: 1639 for (group = 0; group < ai->nr_groups; group++) 1640 free_fn(areas[group], 1641 ai->groups[group].nr_units * ai->unit_size); 1642 out_free: 1643 pcpu_free_alloc_info(ai); 1644 if (areas) 1645 free_bootmem(__pa(areas), areas_size); 1646 return rc; 1647 } 1648 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || 1649 !CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1650 1651 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1652 /** 1653 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1654 * @reserved_size: the size of reserved percpu area in bytes 1655 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1656 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE 1657 * @populate_pte_fn: function to populate pte 1658 * 1659 * This is a helper to ease setting up page-remapped first percpu 1660 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1661 * 1662 * This is the basic allocator. Static percpu area is allocated 1663 * page-by-page into vmalloc area. 1664 * 1665 * RETURNS: 1666 * 0 on success, -errno on failure. 1667 */ 1668 int __init pcpu_page_first_chunk(size_t reserved_size, 1669 pcpu_fc_alloc_fn_t alloc_fn, 1670 pcpu_fc_free_fn_t free_fn, 1671 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1672 { 1673 static struct vm_struct vm; 1674 struct pcpu_alloc_info *ai; 1675 char psize_str[16]; 1676 int unit_pages; 1677 size_t pages_size; 1678 struct page **pages; 1679 int unit, i, j, rc; 1680 1681 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1682 1683 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 1684 if (IS_ERR(ai)) 1685 return PTR_ERR(ai); 1686 BUG_ON(ai->nr_groups != 1); 1687 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1688 1689 unit_pages = ai->unit_size >> PAGE_SHIFT; 1690 1691 /* unaligned allocations can't be freed, round up to page size */ 1692 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1693 sizeof(pages[0])); 1694 pages = alloc_bootmem(pages_size); 1695 1696 /* allocate pages */ 1697 j = 0; 1698 for (unit = 0; unit < num_possible_cpus(); unit++) 1699 for (i = 0; i < unit_pages; i++) { 1700 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1701 void *ptr; 1702 1703 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1704 if (!ptr) { 1705 pr_warning("PERCPU: failed to allocate %s page " 1706 "for cpu%u\n", psize_str, cpu); 1707 goto enomem; 1708 } 1709 pages[j++] = virt_to_page(ptr); 1710 } 1711 1712 /* allocate vm area, map the pages and copy static data */ 1713 vm.flags = VM_ALLOC; 1714 vm.size = num_possible_cpus() * ai->unit_size; 1715 vm_area_register_early(&vm, PAGE_SIZE); 1716 1717 for (unit = 0; unit < num_possible_cpus(); unit++) { 1718 unsigned long unit_addr = 1719 (unsigned long)vm.addr + unit * ai->unit_size; 1720 1721 for (i = 0; i < unit_pages; i++) 1722 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1723 1724 /* pte already populated, the following shouldn't fail */ 1725 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1726 unit_pages); 1727 if (rc < 0) 1728 panic("failed to map percpu area, err=%d\n", rc); 1729 1730 /* 1731 * FIXME: Archs with virtual cache should flush local 1732 * cache for the linear mapping here - something 1733 * equivalent to flush_cache_vmap() on the local cpu. 1734 * flush_cache_vmap() can't be used as most supporting 1735 * data structures are not set up yet. 1736 */ 1737 1738 /* copy static data */ 1739 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1740 } 1741 1742 /* we're ready, commit */ 1743 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1744 unit_pages, psize_str, vm.addr, ai->static_size, 1745 ai->reserved_size, ai->dyn_size); 1746 1747 rc = pcpu_setup_first_chunk(ai, vm.addr); 1748 goto out_free_ar; 1749 1750 enomem: 1751 while (--j >= 0) 1752 free_fn(page_address(pages[j]), PAGE_SIZE); 1753 rc = -ENOMEM; 1754 out_free_ar: 1755 free_bootmem(__pa(pages), pages_size); 1756 pcpu_free_alloc_info(ai); 1757 return rc; 1758 } 1759 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ 1760 1761 /* 1762 * Generic percpu area setup. 1763 * 1764 * The embedding helper is used because its behavior closely resembles 1765 * the original non-dynamic generic percpu area setup. This is 1766 * important because many archs have addressing restrictions and might 1767 * fail if the percpu area is located far away from the previous 1768 * location. As an added bonus, in non-NUMA cases, embedding is 1769 * generally a good idea TLB-wise because percpu area can piggy back 1770 * on the physical linear memory mapping which uses large page 1771 * mappings on applicable archs. 1772 */ 1773 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1774 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1775 EXPORT_SYMBOL(__per_cpu_offset); 1776 1777 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1778 size_t align) 1779 { 1780 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 1781 } 1782 1783 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1784 { 1785 free_bootmem(__pa(ptr), size); 1786 } 1787 1788 void __init setup_per_cpu_areas(void) 1789 { 1790 unsigned long delta; 1791 unsigned int cpu; 1792 int rc; 1793 1794 /* 1795 * Always reserve area for module percpu variables. That's 1796 * what the legacy allocator did. 1797 */ 1798 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1799 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1800 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1801 if (rc < 0) 1802 panic("Failed to initialized percpu areas."); 1803 1804 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1805 for_each_possible_cpu(cpu) 1806 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1807 } 1808 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1809 1810 /* 1811 * First and reserved chunks are initialized with temporary allocation 1812 * map in initdata so that they can be used before slab is online. 1813 * This function is called after slab is brought up and replaces those 1814 * with properly allocated maps. 1815 */ 1816 void __init percpu_init_late(void) 1817 { 1818 struct pcpu_chunk *target_chunks[] = 1819 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 1820 struct pcpu_chunk *chunk; 1821 unsigned long flags; 1822 int i; 1823 1824 for (i = 0; (chunk = target_chunks[i]); i++) { 1825 int *map; 1826 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 1827 1828 BUILD_BUG_ON(size > PAGE_SIZE); 1829 1830 map = pcpu_mem_alloc(size); 1831 BUG_ON(!map); 1832 1833 spin_lock_irqsave(&pcpu_lock, flags); 1834 memcpy(map, chunk->map, size); 1835 chunk->map = map; 1836 spin_unlock_irqrestore(&pcpu_lock, flags); 1837 } 1838 } 1839