xref: /linux/mm/percpu.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be eqaul to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 
71 #include <asm/cacheflush.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/io.h>
75 
76 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
78 
79 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
80 #ifndef __addr_to_pcpu_ptr
81 #define __addr_to_pcpu_ptr(addr)					\
82 	(void __percpu *)((unsigned long)(addr) -			\
83 			  (unsigned long)pcpu_base_addr	+		\
84 			  (unsigned long)__per_cpu_start)
85 #endif
86 #ifndef __pcpu_ptr_to_addr
87 #define __pcpu_ptr_to_addr(ptr)						\
88 	(void __force *)((unsigned long)(ptr) +				\
89 			 (unsigned long)pcpu_base_addr -		\
90 			 (unsigned long)__per_cpu_start)
91 #endif
92 
93 struct pcpu_chunk {
94 	struct list_head	list;		/* linked to pcpu_slot lists */
95 	int			free_size;	/* free bytes in the chunk */
96 	int			contig_hint;	/* max contiguous size hint */
97 	void			*base_addr;	/* base address of this chunk */
98 	int			map_used;	/* # of map entries used */
99 	int			map_alloc;	/* # of map entries allocated */
100 	int			*map;		/* allocation map */
101 	void			*data;		/* chunk data */
102 	bool			immutable;	/* no [de]population allowed */
103 	unsigned long		populated[];	/* populated bitmap */
104 };
105 
106 static int pcpu_unit_pages __read_mostly;
107 static int pcpu_unit_size __read_mostly;
108 static int pcpu_nr_units __read_mostly;
109 static int pcpu_atom_size __read_mostly;
110 static int pcpu_nr_slots __read_mostly;
111 static size_t pcpu_chunk_struct_size __read_mostly;
112 
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly;
115 static unsigned int pcpu_last_unit_cpu __read_mostly;
116 
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr);
120 
121 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123 
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly;
126 static const unsigned long *pcpu_group_offsets __read_mostly;
127 static const size_t *pcpu_group_sizes __read_mostly;
128 
129 /*
130  * The first chunk which always exists.  Note that unlike other
131  * chunks, this one can be allocated and mapped in several different
132  * ways and thus often doesn't live in the vmalloc area.
133  */
134 static struct pcpu_chunk *pcpu_first_chunk;
135 
136 /*
137  * Optional reserved chunk.  This chunk reserves part of the first
138  * chunk and serves it for reserved allocations.  The amount of
139  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
140  * area doesn't exist, the following variables contain NULL and 0
141  * respectively.
142  */
143 static struct pcpu_chunk *pcpu_reserved_chunk;
144 static int pcpu_reserved_chunk_limit;
145 
146 /*
147  * Synchronization rules.
148  *
149  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
150  * protects allocation/reclaim paths, chunks, populated bitmap and
151  * vmalloc mapping.  The latter is a spinlock and protects the index
152  * data structures - chunk slots, chunks and area maps in chunks.
153  *
154  * During allocation, pcpu_alloc_mutex is kept locked all the time and
155  * pcpu_lock is grabbed and released as necessary.  All actual memory
156  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
157  * general, percpu memory can't be allocated with irq off but
158  * irqsave/restore are still used in alloc path so that it can be used
159  * from early init path - sched_init() specifically.
160  *
161  * Free path accesses and alters only the index data structures, so it
162  * can be safely called from atomic context.  When memory needs to be
163  * returned to the system, free path schedules reclaim_work which
164  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
165  * reclaimed, release both locks and frees the chunks.  Note that it's
166  * necessary to grab both locks to remove a chunk from circulation as
167  * allocation path might be referencing the chunk with only
168  * pcpu_alloc_mutex locked.
169  */
170 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
171 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
172 
173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
174 
175 /* reclaim work to release fully free chunks, scheduled from free path */
176 static void pcpu_reclaim(struct work_struct *work);
177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
178 
179 static bool pcpu_addr_in_first_chunk(void *addr)
180 {
181 	void *first_start = pcpu_first_chunk->base_addr;
182 
183 	return addr >= first_start && addr < first_start + pcpu_unit_size;
184 }
185 
186 static bool pcpu_addr_in_reserved_chunk(void *addr)
187 {
188 	void *first_start = pcpu_first_chunk->base_addr;
189 
190 	return addr >= first_start &&
191 		addr < first_start + pcpu_reserved_chunk_limit;
192 }
193 
194 static int __pcpu_size_to_slot(int size)
195 {
196 	int highbit = fls(size);	/* size is in bytes */
197 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
198 }
199 
200 static int pcpu_size_to_slot(int size)
201 {
202 	if (size == pcpu_unit_size)
203 		return pcpu_nr_slots - 1;
204 	return __pcpu_size_to_slot(size);
205 }
206 
207 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
208 {
209 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
210 		return 0;
211 
212 	return pcpu_size_to_slot(chunk->free_size);
213 }
214 
215 /* set the pointer to a chunk in a page struct */
216 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
217 {
218 	page->index = (unsigned long)pcpu;
219 }
220 
221 /* obtain pointer to a chunk from a page struct */
222 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
223 {
224 	return (struct pcpu_chunk *)page->index;
225 }
226 
227 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
228 {
229 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
230 }
231 
232 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
233 				     unsigned int cpu, int page_idx)
234 {
235 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
236 		(page_idx << PAGE_SHIFT);
237 }
238 
239 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
240 					   int *rs, int *re, int end)
241 {
242 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
243 	*re = find_next_bit(chunk->populated, end, *rs + 1);
244 }
245 
246 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
247 					 int *rs, int *re, int end)
248 {
249 	*rs = find_next_bit(chunk->populated, end, *rs);
250 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
251 }
252 
253 /*
254  * (Un)populated page region iterators.  Iterate over (un)populated
255  * page regions betwen @start and @end in @chunk.  @rs and @re should
256  * be integer variables and will be set to start and end page index of
257  * the current region.
258  */
259 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
260 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
261 	     (rs) < (re);						    \
262 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
263 
264 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
265 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
266 	     (rs) < (re);						    \
267 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
268 
269 /**
270  * pcpu_mem_alloc - allocate memory
271  * @size: bytes to allocate
272  *
273  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
274  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
275  * memory is always zeroed.
276  *
277  * CONTEXT:
278  * Does GFP_KERNEL allocation.
279  *
280  * RETURNS:
281  * Pointer to the allocated area on success, NULL on failure.
282  */
283 static void *pcpu_mem_alloc(size_t size)
284 {
285 	if (WARN_ON_ONCE(!slab_is_available()))
286 		return NULL;
287 
288 	if (size <= PAGE_SIZE)
289 		return kzalloc(size, GFP_KERNEL);
290 	else {
291 		void *ptr = vmalloc(size);
292 		if (ptr)
293 			memset(ptr, 0, size);
294 		return ptr;
295 	}
296 }
297 
298 /**
299  * pcpu_mem_free - free memory
300  * @ptr: memory to free
301  * @size: size of the area
302  *
303  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
304  */
305 static void pcpu_mem_free(void *ptr, size_t size)
306 {
307 	if (size <= PAGE_SIZE)
308 		kfree(ptr);
309 	else
310 		vfree(ptr);
311 }
312 
313 /**
314  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
315  * @chunk: chunk of interest
316  * @oslot: the previous slot it was on
317  *
318  * This function is called after an allocation or free changed @chunk.
319  * New slot according to the changed state is determined and @chunk is
320  * moved to the slot.  Note that the reserved chunk is never put on
321  * chunk slots.
322  *
323  * CONTEXT:
324  * pcpu_lock.
325  */
326 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
327 {
328 	int nslot = pcpu_chunk_slot(chunk);
329 
330 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
331 		if (oslot < nslot)
332 			list_move(&chunk->list, &pcpu_slot[nslot]);
333 		else
334 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
335 	}
336 }
337 
338 /**
339  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
340  * @chunk: chunk of interest
341  *
342  * Determine whether area map of @chunk needs to be extended to
343  * accomodate a new allocation.
344  *
345  * CONTEXT:
346  * pcpu_lock.
347  *
348  * RETURNS:
349  * New target map allocation length if extension is necessary, 0
350  * otherwise.
351  */
352 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
353 {
354 	int new_alloc;
355 
356 	if (chunk->map_alloc >= chunk->map_used + 2)
357 		return 0;
358 
359 	new_alloc = PCPU_DFL_MAP_ALLOC;
360 	while (new_alloc < chunk->map_used + 2)
361 		new_alloc *= 2;
362 
363 	return new_alloc;
364 }
365 
366 /**
367  * pcpu_extend_area_map - extend area map of a chunk
368  * @chunk: chunk of interest
369  * @new_alloc: new target allocation length of the area map
370  *
371  * Extend area map of @chunk to have @new_alloc entries.
372  *
373  * CONTEXT:
374  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
375  *
376  * RETURNS:
377  * 0 on success, -errno on failure.
378  */
379 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
380 {
381 	int *old = NULL, *new = NULL;
382 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
383 	unsigned long flags;
384 
385 	new = pcpu_mem_alloc(new_size);
386 	if (!new)
387 		return -ENOMEM;
388 
389 	/* acquire pcpu_lock and switch to new area map */
390 	spin_lock_irqsave(&pcpu_lock, flags);
391 
392 	if (new_alloc <= chunk->map_alloc)
393 		goto out_unlock;
394 
395 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
396 	old = chunk->map;
397 
398 	memcpy(new, old, old_size);
399 
400 	chunk->map_alloc = new_alloc;
401 	chunk->map = new;
402 	new = NULL;
403 
404 out_unlock:
405 	spin_unlock_irqrestore(&pcpu_lock, flags);
406 
407 	/*
408 	 * pcpu_mem_free() might end up calling vfree() which uses
409 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
410 	 */
411 	pcpu_mem_free(old, old_size);
412 	pcpu_mem_free(new, new_size);
413 
414 	return 0;
415 }
416 
417 /**
418  * pcpu_split_block - split a map block
419  * @chunk: chunk of interest
420  * @i: index of map block to split
421  * @head: head size in bytes (can be 0)
422  * @tail: tail size in bytes (can be 0)
423  *
424  * Split the @i'th map block into two or three blocks.  If @head is
425  * non-zero, @head bytes block is inserted before block @i moving it
426  * to @i+1 and reducing its size by @head bytes.
427  *
428  * If @tail is non-zero, the target block, which can be @i or @i+1
429  * depending on @head, is reduced by @tail bytes and @tail byte block
430  * is inserted after the target block.
431  *
432  * @chunk->map must have enough free slots to accomodate the split.
433  *
434  * CONTEXT:
435  * pcpu_lock.
436  */
437 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
438 			     int head, int tail)
439 {
440 	int nr_extra = !!head + !!tail;
441 
442 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
443 
444 	/* insert new subblocks */
445 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
446 		sizeof(chunk->map[0]) * (chunk->map_used - i));
447 	chunk->map_used += nr_extra;
448 
449 	if (head) {
450 		chunk->map[i + 1] = chunk->map[i] - head;
451 		chunk->map[i++] = head;
452 	}
453 	if (tail) {
454 		chunk->map[i++] -= tail;
455 		chunk->map[i] = tail;
456 	}
457 }
458 
459 /**
460  * pcpu_alloc_area - allocate area from a pcpu_chunk
461  * @chunk: chunk of interest
462  * @size: wanted size in bytes
463  * @align: wanted align
464  *
465  * Try to allocate @size bytes area aligned at @align from @chunk.
466  * Note that this function only allocates the offset.  It doesn't
467  * populate or map the area.
468  *
469  * @chunk->map must have at least two free slots.
470  *
471  * CONTEXT:
472  * pcpu_lock.
473  *
474  * RETURNS:
475  * Allocated offset in @chunk on success, -1 if no matching area is
476  * found.
477  */
478 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
479 {
480 	int oslot = pcpu_chunk_slot(chunk);
481 	int max_contig = 0;
482 	int i, off;
483 
484 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
485 		bool is_last = i + 1 == chunk->map_used;
486 		int head, tail;
487 
488 		/* extra for alignment requirement */
489 		head = ALIGN(off, align) - off;
490 		BUG_ON(i == 0 && head != 0);
491 
492 		if (chunk->map[i] < 0)
493 			continue;
494 		if (chunk->map[i] < head + size) {
495 			max_contig = max(chunk->map[i], max_contig);
496 			continue;
497 		}
498 
499 		/*
500 		 * If head is small or the previous block is free,
501 		 * merge'em.  Note that 'small' is defined as smaller
502 		 * than sizeof(int), which is very small but isn't too
503 		 * uncommon for percpu allocations.
504 		 */
505 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
506 			if (chunk->map[i - 1] > 0)
507 				chunk->map[i - 1] += head;
508 			else {
509 				chunk->map[i - 1] -= head;
510 				chunk->free_size -= head;
511 			}
512 			chunk->map[i] -= head;
513 			off += head;
514 			head = 0;
515 		}
516 
517 		/* if tail is small, just keep it around */
518 		tail = chunk->map[i] - head - size;
519 		if (tail < sizeof(int))
520 			tail = 0;
521 
522 		/* split if warranted */
523 		if (head || tail) {
524 			pcpu_split_block(chunk, i, head, tail);
525 			if (head) {
526 				i++;
527 				off += head;
528 				max_contig = max(chunk->map[i - 1], max_contig);
529 			}
530 			if (tail)
531 				max_contig = max(chunk->map[i + 1], max_contig);
532 		}
533 
534 		/* update hint and mark allocated */
535 		if (is_last)
536 			chunk->contig_hint = max_contig; /* fully scanned */
537 		else
538 			chunk->contig_hint = max(chunk->contig_hint,
539 						 max_contig);
540 
541 		chunk->free_size -= chunk->map[i];
542 		chunk->map[i] = -chunk->map[i];
543 
544 		pcpu_chunk_relocate(chunk, oslot);
545 		return off;
546 	}
547 
548 	chunk->contig_hint = max_contig;	/* fully scanned */
549 	pcpu_chunk_relocate(chunk, oslot);
550 
551 	/* tell the upper layer that this chunk has no matching area */
552 	return -1;
553 }
554 
555 /**
556  * pcpu_free_area - free area to a pcpu_chunk
557  * @chunk: chunk of interest
558  * @freeme: offset of area to free
559  *
560  * Free area starting from @freeme to @chunk.  Note that this function
561  * only modifies the allocation map.  It doesn't depopulate or unmap
562  * the area.
563  *
564  * CONTEXT:
565  * pcpu_lock.
566  */
567 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
568 {
569 	int oslot = pcpu_chunk_slot(chunk);
570 	int i, off;
571 
572 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
573 		if (off == freeme)
574 			break;
575 	BUG_ON(off != freeme);
576 	BUG_ON(chunk->map[i] > 0);
577 
578 	chunk->map[i] = -chunk->map[i];
579 	chunk->free_size += chunk->map[i];
580 
581 	/* merge with previous? */
582 	if (i > 0 && chunk->map[i - 1] >= 0) {
583 		chunk->map[i - 1] += chunk->map[i];
584 		chunk->map_used--;
585 		memmove(&chunk->map[i], &chunk->map[i + 1],
586 			(chunk->map_used - i) * sizeof(chunk->map[0]));
587 		i--;
588 	}
589 	/* merge with next? */
590 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
591 		chunk->map[i] += chunk->map[i + 1];
592 		chunk->map_used--;
593 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
594 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
595 	}
596 
597 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
598 	pcpu_chunk_relocate(chunk, oslot);
599 }
600 
601 static struct pcpu_chunk *pcpu_alloc_chunk(void)
602 {
603 	struct pcpu_chunk *chunk;
604 
605 	chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
606 	if (!chunk)
607 		return NULL;
608 
609 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
610 	if (!chunk->map) {
611 		kfree(chunk);
612 		return NULL;
613 	}
614 
615 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
616 	chunk->map[chunk->map_used++] = pcpu_unit_size;
617 
618 	INIT_LIST_HEAD(&chunk->list);
619 	chunk->free_size = pcpu_unit_size;
620 	chunk->contig_hint = pcpu_unit_size;
621 
622 	return chunk;
623 }
624 
625 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
626 {
627 	if (!chunk)
628 		return;
629 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
630 	kfree(chunk);
631 }
632 
633 /*
634  * Chunk management implementation.
635  *
636  * To allow different implementations, chunk alloc/free and
637  * [de]population are implemented in a separate file which is pulled
638  * into this file and compiled together.  The following functions
639  * should be implemented.
640  *
641  * pcpu_populate_chunk		- populate the specified range of a chunk
642  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
643  * pcpu_create_chunk		- create a new chunk
644  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
645  * pcpu_addr_to_page		- translate address to physical address
646  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
647  */
648 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
649 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
650 static struct pcpu_chunk *pcpu_create_chunk(void);
651 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
652 static struct page *pcpu_addr_to_page(void *addr);
653 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
654 
655 #ifdef CONFIG_NEED_PER_CPU_KM
656 #include "percpu-km.c"
657 #else
658 #include "percpu-vm.c"
659 #endif
660 
661 /**
662  * pcpu_chunk_addr_search - determine chunk containing specified address
663  * @addr: address for which the chunk needs to be determined.
664  *
665  * RETURNS:
666  * The address of the found chunk.
667  */
668 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
669 {
670 	/* is it in the first chunk? */
671 	if (pcpu_addr_in_first_chunk(addr)) {
672 		/* is it in the reserved area? */
673 		if (pcpu_addr_in_reserved_chunk(addr))
674 			return pcpu_reserved_chunk;
675 		return pcpu_first_chunk;
676 	}
677 
678 	/*
679 	 * The address is relative to unit0 which might be unused and
680 	 * thus unmapped.  Offset the address to the unit space of the
681 	 * current processor before looking it up in the vmalloc
682 	 * space.  Note that any possible cpu id can be used here, so
683 	 * there's no need to worry about preemption or cpu hotplug.
684 	 */
685 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
686 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
687 }
688 
689 /**
690  * pcpu_alloc - the percpu allocator
691  * @size: size of area to allocate in bytes
692  * @align: alignment of area (max PAGE_SIZE)
693  * @reserved: allocate from the reserved chunk if available
694  *
695  * Allocate percpu area of @size bytes aligned at @align.
696  *
697  * CONTEXT:
698  * Does GFP_KERNEL allocation.
699  *
700  * RETURNS:
701  * Percpu pointer to the allocated area on success, NULL on failure.
702  */
703 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
704 {
705 	static int warn_limit = 10;
706 	struct pcpu_chunk *chunk;
707 	const char *err;
708 	int slot, off, new_alloc;
709 	unsigned long flags;
710 
711 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
712 		WARN(true, "illegal size (%zu) or align (%zu) for "
713 		     "percpu allocation\n", size, align);
714 		return NULL;
715 	}
716 
717 	mutex_lock(&pcpu_alloc_mutex);
718 	spin_lock_irqsave(&pcpu_lock, flags);
719 
720 	/* serve reserved allocations from the reserved chunk if available */
721 	if (reserved && pcpu_reserved_chunk) {
722 		chunk = pcpu_reserved_chunk;
723 
724 		if (size > chunk->contig_hint) {
725 			err = "alloc from reserved chunk failed";
726 			goto fail_unlock;
727 		}
728 
729 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
730 			spin_unlock_irqrestore(&pcpu_lock, flags);
731 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
732 				err = "failed to extend area map of reserved chunk";
733 				goto fail_unlock_mutex;
734 			}
735 			spin_lock_irqsave(&pcpu_lock, flags);
736 		}
737 
738 		off = pcpu_alloc_area(chunk, size, align);
739 		if (off >= 0)
740 			goto area_found;
741 
742 		err = "alloc from reserved chunk failed";
743 		goto fail_unlock;
744 	}
745 
746 restart:
747 	/* search through normal chunks */
748 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
749 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
750 			if (size > chunk->contig_hint)
751 				continue;
752 
753 			new_alloc = pcpu_need_to_extend(chunk);
754 			if (new_alloc) {
755 				spin_unlock_irqrestore(&pcpu_lock, flags);
756 				if (pcpu_extend_area_map(chunk,
757 							 new_alloc) < 0) {
758 					err = "failed to extend area map";
759 					goto fail_unlock_mutex;
760 				}
761 				spin_lock_irqsave(&pcpu_lock, flags);
762 				/*
763 				 * pcpu_lock has been dropped, need to
764 				 * restart cpu_slot list walking.
765 				 */
766 				goto restart;
767 			}
768 
769 			off = pcpu_alloc_area(chunk, size, align);
770 			if (off >= 0)
771 				goto area_found;
772 		}
773 	}
774 
775 	/* hmmm... no space left, create a new chunk */
776 	spin_unlock_irqrestore(&pcpu_lock, flags);
777 
778 	chunk = pcpu_create_chunk();
779 	if (!chunk) {
780 		err = "failed to allocate new chunk";
781 		goto fail_unlock_mutex;
782 	}
783 
784 	spin_lock_irqsave(&pcpu_lock, flags);
785 	pcpu_chunk_relocate(chunk, -1);
786 	goto restart;
787 
788 area_found:
789 	spin_unlock_irqrestore(&pcpu_lock, flags);
790 
791 	/* populate, map and clear the area */
792 	if (pcpu_populate_chunk(chunk, off, size)) {
793 		spin_lock_irqsave(&pcpu_lock, flags);
794 		pcpu_free_area(chunk, off);
795 		err = "failed to populate";
796 		goto fail_unlock;
797 	}
798 
799 	mutex_unlock(&pcpu_alloc_mutex);
800 
801 	/* return address relative to base address */
802 	return __addr_to_pcpu_ptr(chunk->base_addr + off);
803 
804 fail_unlock:
805 	spin_unlock_irqrestore(&pcpu_lock, flags);
806 fail_unlock_mutex:
807 	mutex_unlock(&pcpu_alloc_mutex);
808 	if (warn_limit) {
809 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
810 			   "%s\n", size, align, err);
811 		dump_stack();
812 		if (!--warn_limit)
813 			pr_info("PERCPU: limit reached, disable warning\n");
814 	}
815 	return NULL;
816 }
817 
818 /**
819  * __alloc_percpu - allocate dynamic percpu area
820  * @size: size of area to allocate in bytes
821  * @align: alignment of area (max PAGE_SIZE)
822  *
823  * Allocate percpu area of @size bytes aligned at @align.  Might
824  * sleep.  Might trigger writeouts.
825  *
826  * CONTEXT:
827  * Does GFP_KERNEL allocation.
828  *
829  * RETURNS:
830  * Percpu pointer to the allocated area on success, NULL on failure.
831  */
832 void __percpu *__alloc_percpu(size_t size, size_t align)
833 {
834 	return pcpu_alloc(size, align, false);
835 }
836 EXPORT_SYMBOL_GPL(__alloc_percpu);
837 
838 /**
839  * __alloc_reserved_percpu - allocate reserved percpu area
840  * @size: size of area to allocate in bytes
841  * @align: alignment of area (max PAGE_SIZE)
842  *
843  * Allocate percpu area of @size bytes aligned at @align from reserved
844  * percpu area if arch has set it up; otherwise, allocation is served
845  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
846  *
847  * CONTEXT:
848  * Does GFP_KERNEL allocation.
849  *
850  * RETURNS:
851  * Percpu pointer to the allocated area on success, NULL on failure.
852  */
853 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
854 {
855 	return pcpu_alloc(size, align, true);
856 }
857 
858 /**
859  * pcpu_reclaim - reclaim fully free chunks, workqueue function
860  * @work: unused
861  *
862  * Reclaim all fully free chunks except for the first one.
863  *
864  * CONTEXT:
865  * workqueue context.
866  */
867 static void pcpu_reclaim(struct work_struct *work)
868 {
869 	LIST_HEAD(todo);
870 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
871 	struct pcpu_chunk *chunk, *next;
872 
873 	mutex_lock(&pcpu_alloc_mutex);
874 	spin_lock_irq(&pcpu_lock);
875 
876 	list_for_each_entry_safe(chunk, next, head, list) {
877 		WARN_ON(chunk->immutable);
878 
879 		/* spare the first one */
880 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
881 			continue;
882 
883 		list_move(&chunk->list, &todo);
884 	}
885 
886 	spin_unlock_irq(&pcpu_lock);
887 
888 	list_for_each_entry_safe(chunk, next, &todo, list) {
889 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
890 		pcpu_destroy_chunk(chunk);
891 	}
892 
893 	mutex_unlock(&pcpu_alloc_mutex);
894 }
895 
896 /**
897  * free_percpu - free percpu area
898  * @ptr: pointer to area to free
899  *
900  * Free percpu area @ptr.
901  *
902  * CONTEXT:
903  * Can be called from atomic context.
904  */
905 void free_percpu(void __percpu *ptr)
906 {
907 	void *addr;
908 	struct pcpu_chunk *chunk;
909 	unsigned long flags;
910 	int off;
911 
912 	if (!ptr)
913 		return;
914 
915 	addr = __pcpu_ptr_to_addr(ptr);
916 
917 	spin_lock_irqsave(&pcpu_lock, flags);
918 
919 	chunk = pcpu_chunk_addr_search(addr);
920 	off = addr - chunk->base_addr;
921 
922 	pcpu_free_area(chunk, off);
923 
924 	/* if there are more than one fully free chunks, wake up grim reaper */
925 	if (chunk->free_size == pcpu_unit_size) {
926 		struct pcpu_chunk *pos;
927 
928 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
929 			if (pos != chunk) {
930 				schedule_work(&pcpu_reclaim_work);
931 				break;
932 			}
933 	}
934 
935 	spin_unlock_irqrestore(&pcpu_lock, flags);
936 }
937 EXPORT_SYMBOL_GPL(free_percpu);
938 
939 /**
940  * is_kernel_percpu_address - test whether address is from static percpu area
941  * @addr: address to test
942  *
943  * Test whether @addr belongs to in-kernel static percpu area.  Module
944  * static percpu areas are not considered.  For those, use
945  * is_module_percpu_address().
946  *
947  * RETURNS:
948  * %true if @addr is from in-kernel static percpu area, %false otherwise.
949  */
950 bool is_kernel_percpu_address(unsigned long addr)
951 {
952 	const size_t static_size = __per_cpu_end - __per_cpu_start;
953 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
954 	unsigned int cpu;
955 
956 	for_each_possible_cpu(cpu) {
957 		void *start = per_cpu_ptr(base, cpu);
958 
959 		if ((void *)addr >= start && (void *)addr < start + static_size)
960 			return true;
961         }
962 	return false;
963 }
964 
965 /**
966  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
967  * @addr: the address to be converted to physical address
968  *
969  * Given @addr which is dereferenceable address obtained via one of
970  * percpu access macros, this function translates it into its physical
971  * address.  The caller is responsible for ensuring @addr stays valid
972  * until this function finishes.
973  *
974  * RETURNS:
975  * The physical address for @addr.
976  */
977 phys_addr_t per_cpu_ptr_to_phys(void *addr)
978 {
979 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
980 	bool in_first_chunk = false;
981 	unsigned long first_start, first_end;
982 	unsigned int cpu;
983 
984 	/*
985 	 * The following test on first_start/end isn't strictly
986 	 * necessary but will speed up lookups of addresses which
987 	 * aren't in the first chunk.
988 	 */
989 	first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
990 	first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
991 				    pcpu_unit_pages);
992 	if ((unsigned long)addr >= first_start &&
993 	    (unsigned long)addr < first_end) {
994 		for_each_possible_cpu(cpu) {
995 			void *start = per_cpu_ptr(base, cpu);
996 
997 			if (addr >= start && addr < start + pcpu_unit_size) {
998 				in_first_chunk = true;
999 				break;
1000 			}
1001 		}
1002 	}
1003 
1004 	if (in_first_chunk) {
1005 		if ((unsigned long)addr < VMALLOC_START ||
1006 		    (unsigned long)addr >= VMALLOC_END)
1007 			return __pa(addr);
1008 		else
1009 			return page_to_phys(vmalloc_to_page(addr));
1010 	} else
1011 		return page_to_phys(pcpu_addr_to_page(addr));
1012 }
1013 
1014 /**
1015  * pcpu_alloc_alloc_info - allocate percpu allocation info
1016  * @nr_groups: the number of groups
1017  * @nr_units: the number of units
1018  *
1019  * Allocate ai which is large enough for @nr_groups groups containing
1020  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1021  * cpu_map array which is long enough for @nr_units and filled with
1022  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1023  * pointer of other groups.
1024  *
1025  * RETURNS:
1026  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1027  * failure.
1028  */
1029 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1030 						      int nr_units)
1031 {
1032 	struct pcpu_alloc_info *ai;
1033 	size_t base_size, ai_size;
1034 	void *ptr;
1035 	int unit;
1036 
1037 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1038 			  __alignof__(ai->groups[0].cpu_map[0]));
1039 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1040 
1041 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1042 	if (!ptr)
1043 		return NULL;
1044 	ai = ptr;
1045 	ptr += base_size;
1046 
1047 	ai->groups[0].cpu_map = ptr;
1048 
1049 	for (unit = 0; unit < nr_units; unit++)
1050 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1051 
1052 	ai->nr_groups = nr_groups;
1053 	ai->__ai_size = PFN_ALIGN(ai_size);
1054 
1055 	return ai;
1056 }
1057 
1058 /**
1059  * pcpu_free_alloc_info - free percpu allocation info
1060  * @ai: pcpu_alloc_info to free
1061  *
1062  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1063  */
1064 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1065 {
1066 	free_bootmem(__pa(ai), ai->__ai_size);
1067 }
1068 
1069 /**
1070  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1071  * @reserved_size: the size of reserved percpu area in bytes
1072  * @dyn_size: minimum free size for dynamic allocation in bytes
1073  * @atom_size: allocation atom size
1074  * @cpu_distance_fn: callback to determine distance between cpus, optional
1075  *
1076  * This function determines grouping of units, their mappings to cpus
1077  * and other parameters considering needed percpu size, allocation
1078  * atom size and distances between CPUs.
1079  *
1080  * Groups are always mutliples of atom size and CPUs which are of
1081  * LOCAL_DISTANCE both ways are grouped together and share space for
1082  * units in the same group.  The returned configuration is guaranteed
1083  * to have CPUs on different nodes on different groups and >=75% usage
1084  * of allocated virtual address space.
1085  *
1086  * RETURNS:
1087  * On success, pointer to the new allocation_info is returned.  On
1088  * failure, ERR_PTR value is returned.
1089  */
1090 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1091 				size_t reserved_size, size_t dyn_size,
1092 				size_t atom_size,
1093 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1094 {
1095 	static int group_map[NR_CPUS] __initdata;
1096 	static int group_cnt[NR_CPUS] __initdata;
1097 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1098 	int nr_groups = 1, nr_units = 0;
1099 	size_t size_sum, min_unit_size, alloc_size;
1100 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1101 	int last_allocs, group, unit;
1102 	unsigned int cpu, tcpu;
1103 	struct pcpu_alloc_info *ai;
1104 	unsigned int *cpu_map;
1105 
1106 	/* this function may be called multiple times */
1107 	memset(group_map, 0, sizeof(group_map));
1108 	memset(group_cnt, 0, sizeof(group_cnt));
1109 
1110 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1111 	size_sum = PFN_ALIGN(static_size + reserved_size +
1112 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1113 	dyn_size = size_sum - static_size - reserved_size;
1114 
1115 	/*
1116 	 * Determine min_unit_size, alloc_size and max_upa such that
1117 	 * alloc_size is multiple of atom_size and is the smallest
1118 	 * which can accomodate 4k aligned segments which are equal to
1119 	 * or larger than min_unit_size.
1120 	 */
1121 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1122 
1123 	alloc_size = roundup(min_unit_size, atom_size);
1124 	upa = alloc_size / min_unit_size;
1125 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1126 		upa--;
1127 	max_upa = upa;
1128 
1129 	/* group cpus according to their proximity */
1130 	for_each_possible_cpu(cpu) {
1131 		group = 0;
1132 	next_group:
1133 		for_each_possible_cpu(tcpu) {
1134 			if (cpu == tcpu)
1135 				break;
1136 			if (group_map[tcpu] == group && cpu_distance_fn &&
1137 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1138 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1139 				group++;
1140 				nr_groups = max(nr_groups, group + 1);
1141 				goto next_group;
1142 			}
1143 		}
1144 		group_map[cpu] = group;
1145 		group_cnt[group]++;
1146 	}
1147 
1148 	/*
1149 	 * Expand unit size until address space usage goes over 75%
1150 	 * and then as much as possible without using more address
1151 	 * space.
1152 	 */
1153 	last_allocs = INT_MAX;
1154 	for (upa = max_upa; upa; upa--) {
1155 		int allocs = 0, wasted = 0;
1156 
1157 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1158 			continue;
1159 
1160 		for (group = 0; group < nr_groups; group++) {
1161 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1162 			allocs += this_allocs;
1163 			wasted += this_allocs * upa - group_cnt[group];
1164 		}
1165 
1166 		/*
1167 		 * Don't accept if wastage is over 1/3.  The
1168 		 * greater-than comparison ensures upa==1 always
1169 		 * passes the following check.
1170 		 */
1171 		if (wasted > num_possible_cpus() / 3)
1172 			continue;
1173 
1174 		/* and then don't consume more memory */
1175 		if (allocs > last_allocs)
1176 			break;
1177 		last_allocs = allocs;
1178 		best_upa = upa;
1179 	}
1180 	upa = best_upa;
1181 
1182 	/* allocate and fill alloc_info */
1183 	for (group = 0; group < nr_groups; group++)
1184 		nr_units += roundup(group_cnt[group], upa);
1185 
1186 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1187 	if (!ai)
1188 		return ERR_PTR(-ENOMEM);
1189 	cpu_map = ai->groups[0].cpu_map;
1190 
1191 	for (group = 0; group < nr_groups; group++) {
1192 		ai->groups[group].cpu_map = cpu_map;
1193 		cpu_map += roundup(group_cnt[group], upa);
1194 	}
1195 
1196 	ai->static_size = static_size;
1197 	ai->reserved_size = reserved_size;
1198 	ai->dyn_size = dyn_size;
1199 	ai->unit_size = alloc_size / upa;
1200 	ai->atom_size = atom_size;
1201 	ai->alloc_size = alloc_size;
1202 
1203 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1204 		struct pcpu_group_info *gi = &ai->groups[group];
1205 
1206 		/*
1207 		 * Initialize base_offset as if all groups are located
1208 		 * back-to-back.  The caller should update this to
1209 		 * reflect actual allocation.
1210 		 */
1211 		gi->base_offset = unit * ai->unit_size;
1212 
1213 		for_each_possible_cpu(cpu)
1214 			if (group_map[cpu] == group)
1215 				gi->cpu_map[gi->nr_units++] = cpu;
1216 		gi->nr_units = roundup(gi->nr_units, upa);
1217 		unit += gi->nr_units;
1218 	}
1219 	BUG_ON(unit != nr_units);
1220 
1221 	return ai;
1222 }
1223 
1224 /**
1225  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1226  * @lvl: loglevel
1227  * @ai: allocation info to dump
1228  *
1229  * Print out information about @ai using loglevel @lvl.
1230  */
1231 static void pcpu_dump_alloc_info(const char *lvl,
1232 				 const struct pcpu_alloc_info *ai)
1233 {
1234 	int group_width = 1, cpu_width = 1, width;
1235 	char empty_str[] = "--------";
1236 	int alloc = 0, alloc_end = 0;
1237 	int group, v;
1238 	int upa, apl;	/* units per alloc, allocs per line */
1239 
1240 	v = ai->nr_groups;
1241 	while (v /= 10)
1242 		group_width++;
1243 
1244 	v = num_possible_cpus();
1245 	while (v /= 10)
1246 		cpu_width++;
1247 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1248 
1249 	upa = ai->alloc_size / ai->unit_size;
1250 	width = upa * (cpu_width + 1) + group_width + 3;
1251 	apl = rounddown_pow_of_two(max(60 / width, 1));
1252 
1253 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1254 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1255 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1256 
1257 	for (group = 0; group < ai->nr_groups; group++) {
1258 		const struct pcpu_group_info *gi = &ai->groups[group];
1259 		int unit = 0, unit_end = 0;
1260 
1261 		BUG_ON(gi->nr_units % upa);
1262 		for (alloc_end += gi->nr_units / upa;
1263 		     alloc < alloc_end; alloc++) {
1264 			if (!(alloc % apl)) {
1265 				printk("\n");
1266 				printk("%spcpu-alloc: ", lvl);
1267 			}
1268 			printk("[%0*d] ", group_width, group);
1269 
1270 			for (unit_end += upa; unit < unit_end; unit++)
1271 				if (gi->cpu_map[unit] != NR_CPUS)
1272 					printk("%0*d ", cpu_width,
1273 					       gi->cpu_map[unit]);
1274 				else
1275 					printk("%s ", empty_str);
1276 		}
1277 	}
1278 	printk("\n");
1279 }
1280 
1281 /**
1282  * pcpu_setup_first_chunk - initialize the first percpu chunk
1283  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1284  * @base_addr: mapped address
1285  *
1286  * Initialize the first percpu chunk which contains the kernel static
1287  * perpcu area.  This function is to be called from arch percpu area
1288  * setup path.
1289  *
1290  * @ai contains all information necessary to initialize the first
1291  * chunk and prime the dynamic percpu allocator.
1292  *
1293  * @ai->static_size is the size of static percpu area.
1294  *
1295  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1296  * reserve after the static area in the first chunk.  This reserves
1297  * the first chunk such that it's available only through reserved
1298  * percpu allocation.  This is primarily used to serve module percpu
1299  * static areas on architectures where the addressing model has
1300  * limited offset range for symbol relocations to guarantee module
1301  * percpu symbols fall inside the relocatable range.
1302  *
1303  * @ai->dyn_size determines the number of bytes available for dynamic
1304  * allocation in the first chunk.  The area between @ai->static_size +
1305  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1306  *
1307  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1308  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1309  * @ai->dyn_size.
1310  *
1311  * @ai->atom_size is the allocation atom size and used as alignment
1312  * for vm areas.
1313  *
1314  * @ai->alloc_size is the allocation size and always multiple of
1315  * @ai->atom_size.  This is larger than @ai->atom_size if
1316  * @ai->unit_size is larger than @ai->atom_size.
1317  *
1318  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1319  * percpu areas.  Units which should be colocated are put into the
1320  * same group.  Dynamic VM areas will be allocated according to these
1321  * groupings.  If @ai->nr_groups is zero, a single group containing
1322  * all units is assumed.
1323  *
1324  * The caller should have mapped the first chunk at @base_addr and
1325  * copied static data to each unit.
1326  *
1327  * If the first chunk ends up with both reserved and dynamic areas, it
1328  * is served by two chunks - one to serve the core static and reserved
1329  * areas and the other for the dynamic area.  They share the same vm
1330  * and page map but uses different area allocation map to stay away
1331  * from each other.  The latter chunk is circulated in the chunk slots
1332  * and available for dynamic allocation like any other chunks.
1333  *
1334  * RETURNS:
1335  * 0 on success, -errno on failure.
1336  */
1337 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1338 				  void *base_addr)
1339 {
1340 	static char cpus_buf[4096] __initdata;
1341 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1342 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1343 	size_t dyn_size = ai->dyn_size;
1344 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1345 	struct pcpu_chunk *schunk, *dchunk = NULL;
1346 	unsigned long *group_offsets;
1347 	size_t *group_sizes;
1348 	unsigned long *unit_off;
1349 	unsigned int cpu;
1350 	int *unit_map;
1351 	int group, unit, i;
1352 
1353 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1354 
1355 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1356 	if (unlikely(cond)) {						\
1357 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1358 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1359 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1360 		BUG();							\
1361 	}								\
1362 } while (0)
1363 
1364 	/* sanity checks */
1365 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1366 	PCPU_SETUP_BUG_ON(!ai->static_size);
1367 	PCPU_SETUP_BUG_ON(!base_addr);
1368 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1369 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1370 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1371 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1372 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1373 
1374 	/* process group information and build config tables accordingly */
1375 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1376 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1377 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1378 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1379 
1380 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1381 		unit_map[cpu] = UINT_MAX;
1382 	pcpu_first_unit_cpu = NR_CPUS;
1383 
1384 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1385 		const struct pcpu_group_info *gi = &ai->groups[group];
1386 
1387 		group_offsets[group] = gi->base_offset;
1388 		group_sizes[group] = gi->nr_units * ai->unit_size;
1389 
1390 		for (i = 0; i < gi->nr_units; i++) {
1391 			cpu = gi->cpu_map[i];
1392 			if (cpu == NR_CPUS)
1393 				continue;
1394 
1395 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1396 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1397 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1398 
1399 			unit_map[cpu] = unit + i;
1400 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1401 
1402 			if (pcpu_first_unit_cpu == NR_CPUS)
1403 				pcpu_first_unit_cpu = cpu;
1404 			pcpu_last_unit_cpu = cpu;
1405 		}
1406 	}
1407 	pcpu_nr_units = unit;
1408 
1409 	for_each_possible_cpu(cpu)
1410 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1411 
1412 	/* we're done parsing the input, undefine BUG macro and dump config */
1413 #undef PCPU_SETUP_BUG_ON
1414 	pcpu_dump_alloc_info(KERN_INFO, ai);
1415 
1416 	pcpu_nr_groups = ai->nr_groups;
1417 	pcpu_group_offsets = group_offsets;
1418 	pcpu_group_sizes = group_sizes;
1419 	pcpu_unit_map = unit_map;
1420 	pcpu_unit_offsets = unit_off;
1421 
1422 	/* determine basic parameters */
1423 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1424 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1425 	pcpu_atom_size = ai->atom_size;
1426 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1427 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1428 
1429 	/*
1430 	 * Allocate chunk slots.  The additional last slot is for
1431 	 * empty chunks.
1432 	 */
1433 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1434 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1435 	for (i = 0; i < pcpu_nr_slots; i++)
1436 		INIT_LIST_HEAD(&pcpu_slot[i]);
1437 
1438 	/*
1439 	 * Initialize static chunk.  If reserved_size is zero, the
1440 	 * static chunk covers static area + dynamic allocation area
1441 	 * in the first chunk.  If reserved_size is not zero, it
1442 	 * covers static area + reserved area (mostly used for module
1443 	 * static percpu allocation).
1444 	 */
1445 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1446 	INIT_LIST_HEAD(&schunk->list);
1447 	schunk->base_addr = base_addr;
1448 	schunk->map = smap;
1449 	schunk->map_alloc = ARRAY_SIZE(smap);
1450 	schunk->immutable = true;
1451 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1452 
1453 	if (ai->reserved_size) {
1454 		schunk->free_size = ai->reserved_size;
1455 		pcpu_reserved_chunk = schunk;
1456 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1457 	} else {
1458 		schunk->free_size = dyn_size;
1459 		dyn_size = 0;			/* dynamic area covered */
1460 	}
1461 	schunk->contig_hint = schunk->free_size;
1462 
1463 	schunk->map[schunk->map_used++] = -ai->static_size;
1464 	if (schunk->free_size)
1465 		schunk->map[schunk->map_used++] = schunk->free_size;
1466 
1467 	/* init dynamic chunk if necessary */
1468 	if (dyn_size) {
1469 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1470 		INIT_LIST_HEAD(&dchunk->list);
1471 		dchunk->base_addr = base_addr;
1472 		dchunk->map = dmap;
1473 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1474 		dchunk->immutable = true;
1475 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1476 
1477 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1478 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1479 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1480 	}
1481 
1482 	/* link the first chunk in */
1483 	pcpu_first_chunk = dchunk ?: schunk;
1484 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1485 
1486 	/* we're done */
1487 	pcpu_base_addr = base_addr;
1488 	return 0;
1489 }
1490 
1491 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1492 	[PCPU_FC_AUTO]	= "auto",
1493 	[PCPU_FC_EMBED]	= "embed",
1494 	[PCPU_FC_PAGE]	= "page",
1495 };
1496 
1497 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1498 
1499 static int __init percpu_alloc_setup(char *str)
1500 {
1501 	if (0)
1502 		/* nada */;
1503 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1504 	else if (!strcmp(str, "embed"))
1505 		pcpu_chosen_fc = PCPU_FC_EMBED;
1506 #endif
1507 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1508 	else if (!strcmp(str, "page"))
1509 		pcpu_chosen_fc = PCPU_FC_PAGE;
1510 #endif
1511 	else
1512 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1513 
1514 	return 0;
1515 }
1516 early_param("percpu_alloc", percpu_alloc_setup);
1517 
1518 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1519 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1520 /**
1521  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1522  * @reserved_size: the size of reserved percpu area in bytes
1523  * @dyn_size: minimum free size for dynamic allocation in bytes
1524  * @atom_size: allocation atom size
1525  * @cpu_distance_fn: callback to determine distance between cpus, optional
1526  * @alloc_fn: function to allocate percpu page
1527  * @free_fn: funtion to free percpu page
1528  *
1529  * This is a helper to ease setting up embedded first percpu chunk and
1530  * can be called where pcpu_setup_first_chunk() is expected.
1531  *
1532  * If this function is used to setup the first chunk, it is allocated
1533  * by calling @alloc_fn and used as-is without being mapped into
1534  * vmalloc area.  Allocations are always whole multiples of @atom_size
1535  * aligned to @atom_size.
1536  *
1537  * This enables the first chunk to piggy back on the linear physical
1538  * mapping which often uses larger page size.  Please note that this
1539  * can result in very sparse cpu->unit mapping on NUMA machines thus
1540  * requiring large vmalloc address space.  Don't use this allocator if
1541  * vmalloc space is not orders of magnitude larger than distances
1542  * between node memory addresses (ie. 32bit NUMA machines).
1543  *
1544  * @dyn_size specifies the minimum dynamic area size.
1545  *
1546  * If the needed size is smaller than the minimum or specified unit
1547  * size, the leftover is returned using @free_fn.
1548  *
1549  * RETURNS:
1550  * 0 on success, -errno on failure.
1551  */
1552 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1553 				  size_t atom_size,
1554 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1555 				  pcpu_fc_alloc_fn_t alloc_fn,
1556 				  pcpu_fc_free_fn_t free_fn)
1557 {
1558 	void *base = (void *)ULONG_MAX;
1559 	void **areas = NULL;
1560 	struct pcpu_alloc_info *ai;
1561 	size_t size_sum, areas_size, max_distance;
1562 	int group, i, rc;
1563 
1564 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1565 				   cpu_distance_fn);
1566 	if (IS_ERR(ai))
1567 		return PTR_ERR(ai);
1568 
1569 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1570 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1571 
1572 	areas = alloc_bootmem_nopanic(areas_size);
1573 	if (!areas) {
1574 		rc = -ENOMEM;
1575 		goto out_free;
1576 	}
1577 
1578 	/* allocate, copy and determine base address */
1579 	for (group = 0; group < ai->nr_groups; group++) {
1580 		struct pcpu_group_info *gi = &ai->groups[group];
1581 		unsigned int cpu = NR_CPUS;
1582 		void *ptr;
1583 
1584 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1585 			cpu = gi->cpu_map[i];
1586 		BUG_ON(cpu == NR_CPUS);
1587 
1588 		/* allocate space for the whole group */
1589 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1590 		if (!ptr) {
1591 			rc = -ENOMEM;
1592 			goto out_free_areas;
1593 		}
1594 		areas[group] = ptr;
1595 
1596 		base = min(ptr, base);
1597 
1598 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1599 			if (gi->cpu_map[i] == NR_CPUS) {
1600 				/* unused unit, free whole */
1601 				free_fn(ptr, ai->unit_size);
1602 				continue;
1603 			}
1604 			/* copy and return the unused part */
1605 			memcpy(ptr, __per_cpu_load, ai->static_size);
1606 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1607 		}
1608 	}
1609 
1610 	/* base address is now known, determine group base offsets */
1611 	max_distance = 0;
1612 	for (group = 0; group < ai->nr_groups; group++) {
1613 		ai->groups[group].base_offset = areas[group] - base;
1614 		max_distance = max_t(size_t, max_distance,
1615 				     ai->groups[group].base_offset);
1616 	}
1617 	max_distance += ai->unit_size;
1618 
1619 	/* warn if maximum distance is further than 75% of vmalloc space */
1620 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1621 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1622 			   "space 0x%lx\n",
1623 			   max_distance, VMALLOC_END - VMALLOC_START);
1624 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1625 		/* and fail if we have fallback */
1626 		rc = -EINVAL;
1627 		goto out_free;
1628 #endif
1629 	}
1630 
1631 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1632 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1633 		ai->dyn_size, ai->unit_size);
1634 
1635 	rc = pcpu_setup_first_chunk(ai, base);
1636 	goto out_free;
1637 
1638 out_free_areas:
1639 	for (group = 0; group < ai->nr_groups; group++)
1640 		free_fn(areas[group],
1641 			ai->groups[group].nr_units * ai->unit_size);
1642 out_free:
1643 	pcpu_free_alloc_info(ai);
1644 	if (areas)
1645 		free_bootmem(__pa(areas), areas_size);
1646 	return rc;
1647 }
1648 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1649 	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1650 
1651 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1652 /**
1653  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1654  * @reserved_size: the size of reserved percpu area in bytes
1655  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1656  * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1657  * @populate_pte_fn: function to populate pte
1658  *
1659  * This is a helper to ease setting up page-remapped first percpu
1660  * chunk and can be called where pcpu_setup_first_chunk() is expected.
1661  *
1662  * This is the basic allocator.  Static percpu area is allocated
1663  * page-by-page into vmalloc area.
1664  *
1665  * RETURNS:
1666  * 0 on success, -errno on failure.
1667  */
1668 int __init pcpu_page_first_chunk(size_t reserved_size,
1669 				 pcpu_fc_alloc_fn_t alloc_fn,
1670 				 pcpu_fc_free_fn_t free_fn,
1671 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1672 {
1673 	static struct vm_struct vm;
1674 	struct pcpu_alloc_info *ai;
1675 	char psize_str[16];
1676 	int unit_pages;
1677 	size_t pages_size;
1678 	struct page **pages;
1679 	int unit, i, j, rc;
1680 
1681 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1682 
1683 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1684 	if (IS_ERR(ai))
1685 		return PTR_ERR(ai);
1686 	BUG_ON(ai->nr_groups != 1);
1687 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1688 
1689 	unit_pages = ai->unit_size >> PAGE_SHIFT;
1690 
1691 	/* unaligned allocations can't be freed, round up to page size */
1692 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1693 			       sizeof(pages[0]));
1694 	pages = alloc_bootmem(pages_size);
1695 
1696 	/* allocate pages */
1697 	j = 0;
1698 	for (unit = 0; unit < num_possible_cpus(); unit++)
1699 		for (i = 0; i < unit_pages; i++) {
1700 			unsigned int cpu = ai->groups[0].cpu_map[unit];
1701 			void *ptr;
1702 
1703 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1704 			if (!ptr) {
1705 				pr_warning("PERCPU: failed to allocate %s page "
1706 					   "for cpu%u\n", psize_str, cpu);
1707 				goto enomem;
1708 			}
1709 			pages[j++] = virt_to_page(ptr);
1710 		}
1711 
1712 	/* allocate vm area, map the pages and copy static data */
1713 	vm.flags = VM_ALLOC;
1714 	vm.size = num_possible_cpus() * ai->unit_size;
1715 	vm_area_register_early(&vm, PAGE_SIZE);
1716 
1717 	for (unit = 0; unit < num_possible_cpus(); unit++) {
1718 		unsigned long unit_addr =
1719 			(unsigned long)vm.addr + unit * ai->unit_size;
1720 
1721 		for (i = 0; i < unit_pages; i++)
1722 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1723 
1724 		/* pte already populated, the following shouldn't fail */
1725 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1726 				      unit_pages);
1727 		if (rc < 0)
1728 			panic("failed to map percpu area, err=%d\n", rc);
1729 
1730 		/*
1731 		 * FIXME: Archs with virtual cache should flush local
1732 		 * cache for the linear mapping here - something
1733 		 * equivalent to flush_cache_vmap() on the local cpu.
1734 		 * flush_cache_vmap() can't be used as most supporting
1735 		 * data structures are not set up yet.
1736 		 */
1737 
1738 		/* copy static data */
1739 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1740 	}
1741 
1742 	/* we're ready, commit */
1743 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1744 		unit_pages, psize_str, vm.addr, ai->static_size,
1745 		ai->reserved_size, ai->dyn_size);
1746 
1747 	rc = pcpu_setup_first_chunk(ai, vm.addr);
1748 	goto out_free_ar;
1749 
1750 enomem:
1751 	while (--j >= 0)
1752 		free_fn(page_address(pages[j]), PAGE_SIZE);
1753 	rc = -ENOMEM;
1754 out_free_ar:
1755 	free_bootmem(__pa(pages), pages_size);
1756 	pcpu_free_alloc_info(ai);
1757 	return rc;
1758 }
1759 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1760 
1761 /*
1762  * Generic percpu area setup.
1763  *
1764  * The embedding helper is used because its behavior closely resembles
1765  * the original non-dynamic generic percpu area setup.  This is
1766  * important because many archs have addressing restrictions and might
1767  * fail if the percpu area is located far away from the previous
1768  * location.  As an added bonus, in non-NUMA cases, embedding is
1769  * generally a good idea TLB-wise because percpu area can piggy back
1770  * on the physical linear memory mapping which uses large page
1771  * mappings on applicable archs.
1772  */
1773 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1774 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1775 EXPORT_SYMBOL(__per_cpu_offset);
1776 
1777 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1778 				       size_t align)
1779 {
1780 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1781 }
1782 
1783 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1784 {
1785 	free_bootmem(__pa(ptr), size);
1786 }
1787 
1788 void __init setup_per_cpu_areas(void)
1789 {
1790 	unsigned long delta;
1791 	unsigned int cpu;
1792 	int rc;
1793 
1794 	/*
1795 	 * Always reserve area for module percpu variables.  That's
1796 	 * what the legacy allocator did.
1797 	 */
1798 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1799 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1800 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1801 	if (rc < 0)
1802 		panic("Failed to initialized percpu areas.");
1803 
1804 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1805 	for_each_possible_cpu(cpu)
1806 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1807 }
1808 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1809 
1810 /*
1811  * First and reserved chunks are initialized with temporary allocation
1812  * map in initdata so that they can be used before slab is online.
1813  * This function is called after slab is brought up and replaces those
1814  * with properly allocated maps.
1815  */
1816 void __init percpu_init_late(void)
1817 {
1818 	struct pcpu_chunk *target_chunks[] =
1819 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1820 	struct pcpu_chunk *chunk;
1821 	unsigned long flags;
1822 	int i;
1823 
1824 	for (i = 0; (chunk = target_chunks[i]); i++) {
1825 		int *map;
1826 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1827 
1828 		BUILD_BUG_ON(size > PAGE_SIZE);
1829 
1830 		map = pcpu_mem_alloc(size);
1831 		BUG_ON(!map);
1832 
1833 		spin_lock_irqsave(&pcpu_lock, flags);
1834 		memcpy(map, chunk->map, size);
1835 		chunk->map = map;
1836 		spin_unlock_irqrestore(&pcpu_lock, flags);
1837 	}
1838 }
1839