1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 57 58 #include <linux/bitmap.h> 59 #include <linux/bootmem.h> 60 #include <linux/err.h> 61 #include <linux/list.h> 62 #include <linux/log2.h> 63 #include <linux/mm.h> 64 #include <linux/module.h> 65 #include <linux/mutex.h> 66 #include <linux/percpu.h> 67 #include <linux/pfn.h> 68 #include <linux/slab.h> 69 #include <linux/spinlock.h> 70 #include <linux/vmalloc.h> 71 #include <linux/workqueue.h> 72 #include <linux/kmemleak.h> 73 74 #include <asm/cacheflush.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/io.h> 78 79 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 80 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 81 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 83 #define PCPU_EMPTY_POP_PAGES_LOW 2 84 #define PCPU_EMPTY_POP_PAGES_HIGH 4 85 86 #ifdef CONFIG_SMP 87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 88 #ifndef __addr_to_pcpu_ptr 89 #define __addr_to_pcpu_ptr(addr) \ 90 (void __percpu *)((unsigned long)(addr) - \ 91 (unsigned long)pcpu_base_addr + \ 92 (unsigned long)__per_cpu_start) 93 #endif 94 #ifndef __pcpu_ptr_to_addr 95 #define __pcpu_ptr_to_addr(ptr) \ 96 (void __force *)((unsigned long)(ptr) + \ 97 (unsigned long)pcpu_base_addr - \ 98 (unsigned long)__per_cpu_start) 99 #endif 100 #else /* CONFIG_SMP */ 101 /* on UP, it's always identity mapped */ 102 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 103 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 104 #endif /* CONFIG_SMP */ 105 106 struct pcpu_chunk { 107 struct list_head list; /* linked to pcpu_slot lists */ 108 int free_size; /* free bytes in the chunk */ 109 int contig_hint; /* max contiguous size hint */ 110 void *base_addr; /* base address of this chunk */ 111 112 int map_used; /* # of map entries used before the sentry */ 113 int map_alloc; /* # of map entries allocated */ 114 int *map; /* allocation map */ 115 struct work_struct map_extend_work;/* async ->map[] extension */ 116 117 void *data; /* chunk data */ 118 int first_free; /* no free below this */ 119 bool immutable; /* no [de]population allowed */ 120 int nr_populated; /* # of populated pages */ 121 unsigned long populated[]; /* populated bitmap */ 122 }; 123 124 static int pcpu_unit_pages __read_mostly; 125 static int pcpu_unit_size __read_mostly; 126 static int pcpu_nr_units __read_mostly; 127 static int pcpu_atom_size __read_mostly; 128 static int pcpu_nr_slots __read_mostly; 129 static size_t pcpu_chunk_struct_size __read_mostly; 130 131 /* cpus with the lowest and highest unit addresses */ 132 static unsigned int pcpu_low_unit_cpu __read_mostly; 133 static unsigned int pcpu_high_unit_cpu __read_mostly; 134 135 /* the address of the first chunk which starts with the kernel static area */ 136 void *pcpu_base_addr __read_mostly; 137 EXPORT_SYMBOL_GPL(pcpu_base_addr); 138 139 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 140 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 141 142 /* group information, used for vm allocation */ 143 static int pcpu_nr_groups __read_mostly; 144 static const unsigned long *pcpu_group_offsets __read_mostly; 145 static const size_t *pcpu_group_sizes __read_mostly; 146 147 /* 148 * The first chunk which always exists. Note that unlike other 149 * chunks, this one can be allocated and mapped in several different 150 * ways and thus often doesn't live in the vmalloc area. 151 */ 152 static struct pcpu_chunk *pcpu_first_chunk; 153 154 /* 155 * Optional reserved chunk. This chunk reserves part of the first 156 * chunk and serves it for reserved allocations. The amount of 157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 158 * area doesn't exist, the following variables contain NULL and 0 159 * respectively. 160 */ 161 static struct pcpu_chunk *pcpu_reserved_chunk; 162 static int pcpu_reserved_chunk_limit; 163 164 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 165 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */ 166 167 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 168 169 /* 170 * The number of empty populated pages, protected by pcpu_lock. The 171 * reserved chunk doesn't contribute to the count. 172 */ 173 static int pcpu_nr_empty_pop_pages; 174 175 /* 176 * Balance work is used to populate or destroy chunks asynchronously. We 177 * try to keep the number of populated free pages between 178 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 179 * empty chunk. 180 */ 181 static void pcpu_balance_workfn(struct work_struct *work); 182 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 183 static bool pcpu_async_enabled __read_mostly; 184 static bool pcpu_atomic_alloc_failed; 185 186 static void pcpu_schedule_balance_work(void) 187 { 188 if (pcpu_async_enabled) 189 schedule_work(&pcpu_balance_work); 190 } 191 192 static bool pcpu_addr_in_first_chunk(void *addr) 193 { 194 void *first_start = pcpu_first_chunk->base_addr; 195 196 return addr >= first_start && addr < first_start + pcpu_unit_size; 197 } 198 199 static bool pcpu_addr_in_reserved_chunk(void *addr) 200 { 201 void *first_start = pcpu_first_chunk->base_addr; 202 203 return addr >= first_start && 204 addr < first_start + pcpu_reserved_chunk_limit; 205 } 206 207 static int __pcpu_size_to_slot(int size) 208 { 209 int highbit = fls(size); /* size is in bytes */ 210 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 211 } 212 213 static int pcpu_size_to_slot(int size) 214 { 215 if (size == pcpu_unit_size) 216 return pcpu_nr_slots - 1; 217 return __pcpu_size_to_slot(size); 218 } 219 220 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 221 { 222 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 223 return 0; 224 225 return pcpu_size_to_slot(chunk->free_size); 226 } 227 228 /* set the pointer to a chunk in a page struct */ 229 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 230 { 231 page->index = (unsigned long)pcpu; 232 } 233 234 /* obtain pointer to a chunk from a page struct */ 235 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 236 { 237 return (struct pcpu_chunk *)page->index; 238 } 239 240 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 241 { 242 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 243 } 244 245 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 246 unsigned int cpu, int page_idx) 247 { 248 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 249 (page_idx << PAGE_SHIFT); 250 } 251 252 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 253 int *rs, int *re, int end) 254 { 255 *rs = find_next_zero_bit(chunk->populated, end, *rs); 256 *re = find_next_bit(chunk->populated, end, *rs + 1); 257 } 258 259 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 260 int *rs, int *re, int end) 261 { 262 *rs = find_next_bit(chunk->populated, end, *rs); 263 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 264 } 265 266 /* 267 * (Un)populated page region iterators. Iterate over (un)populated 268 * page regions between @start and @end in @chunk. @rs and @re should 269 * be integer variables and will be set to start and end page index of 270 * the current region. 271 */ 272 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 273 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 274 (rs) < (re); \ 275 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 276 277 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 278 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 279 (rs) < (re); \ 280 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 281 282 /** 283 * pcpu_mem_zalloc - allocate memory 284 * @size: bytes to allocate 285 * 286 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 287 * kzalloc() is used; otherwise, vzalloc() is used. The returned 288 * memory is always zeroed. 289 * 290 * CONTEXT: 291 * Does GFP_KERNEL allocation. 292 * 293 * RETURNS: 294 * Pointer to the allocated area on success, NULL on failure. 295 */ 296 static void *pcpu_mem_zalloc(size_t size) 297 { 298 if (WARN_ON_ONCE(!slab_is_available())) 299 return NULL; 300 301 if (size <= PAGE_SIZE) 302 return kzalloc(size, GFP_KERNEL); 303 else 304 return vzalloc(size); 305 } 306 307 /** 308 * pcpu_mem_free - free memory 309 * @ptr: memory to free 310 * 311 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 312 */ 313 static void pcpu_mem_free(void *ptr) 314 { 315 kvfree(ptr); 316 } 317 318 /** 319 * pcpu_count_occupied_pages - count the number of pages an area occupies 320 * @chunk: chunk of interest 321 * @i: index of the area in question 322 * 323 * Count the number of pages chunk's @i'th area occupies. When the area's 324 * start and/or end address isn't aligned to page boundary, the straddled 325 * page is included in the count iff the rest of the page is free. 326 */ 327 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) 328 { 329 int off = chunk->map[i] & ~1; 330 int end = chunk->map[i + 1] & ~1; 331 332 if (!PAGE_ALIGNED(off) && i > 0) { 333 int prev = chunk->map[i - 1]; 334 335 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) 336 off = round_down(off, PAGE_SIZE); 337 } 338 339 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { 340 int next = chunk->map[i + 1]; 341 int nend = chunk->map[i + 2] & ~1; 342 343 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) 344 end = round_up(end, PAGE_SIZE); 345 } 346 347 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); 348 } 349 350 /** 351 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 352 * @chunk: chunk of interest 353 * @oslot: the previous slot it was on 354 * 355 * This function is called after an allocation or free changed @chunk. 356 * New slot according to the changed state is determined and @chunk is 357 * moved to the slot. Note that the reserved chunk is never put on 358 * chunk slots. 359 * 360 * CONTEXT: 361 * pcpu_lock. 362 */ 363 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 364 { 365 int nslot = pcpu_chunk_slot(chunk); 366 367 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 368 if (oslot < nslot) 369 list_move(&chunk->list, &pcpu_slot[nslot]); 370 else 371 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 372 } 373 } 374 375 /** 376 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 377 * @chunk: chunk of interest 378 * @is_atomic: the allocation context 379 * 380 * Determine whether area map of @chunk needs to be extended. If 381 * @is_atomic, only the amount necessary for a new allocation is 382 * considered; however, async extension is scheduled if the left amount is 383 * low. If !@is_atomic, it aims for more empty space. Combined, this 384 * ensures that the map is likely to have enough available space to 385 * accomodate atomic allocations which can't extend maps directly. 386 * 387 * CONTEXT: 388 * pcpu_lock. 389 * 390 * RETURNS: 391 * New target map allocation length if extension is necessary, 0 392 * otherwise. 393 */ 394 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) 395 { 396 int margin, new_alloc; 397 398 if (is_atomic) { 399 margin = 3; 400 401 if (chunk->map_alloc < 402 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW && 403 pcpu_async_enabled) 404 schedule_work(&chunk->map_extend_work); 405 } else { 406 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; 407 } 408 409 if (chunk->map_alloc >= chunk->map_used + margin) 410 return 0; 411 412 new_alloc = PCPU_DFL_MAP_ALLOC; 413 while (new_alloc < chunk->map_used + margin) 414 new_alloc *= 2; 415 416 return new_alloc; 417 } 418 419 /** 420 * pcpu_extend_area_map - extend area map of a chunk 421 * @chunk: chunk of interest 422 * @new_alloc: new target allocation length of the area map 423 * 424 * Extend area map of @chunk to have @new_alloc entries. 425 * 426 * CONTEXT: 427 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 428 * 429 * RETURNS: 430 * 0 on success, -errno on failure. 431 */ 432 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 433 { 434 int *old = NULL, *new = NULL; 435 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 436 unsigned long flags; 437 438 new = pcpu_mem_zalloc(new_size); 439 if (!new) 440 return -ENOMEM; 441 442 /* acquire pcpu_lock and switch to new area map */ 443 spin_lock_irqsave(&pcpu_lock, flags); 444 445 if (new_alloc <= chunk->map_alloc) 446 goto out_unlock; 447 448 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 449 old = chunk->map; 450 451 memcpy(new, old, old_size); 452 453 chunk->map_alloc = new_alloc; 454 chunk->map = new; 455 new = NULL; 456 457 out_unlock: 458 spin_unlock_irqrestore(&pcpu_lock, flags); 459 460 /* 461 * pcpu_mem_free() might end up calling vfree() which uses 462 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 463 */ 464 pcpu_mem_free(old); 465 pcpu_mem_free(new); 466 467 return 0; 468 } 469 470 static void pcpu_map_extend_workfn(struct work_struct *work) 471 { 472 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk, 473 map_extend_work); 474 int new_alloc; 475 476 spin_lock_irq(&pcpu_lock); 477 new_alloc = pcpu_need_to_extend(chunk, false); 478 spin_unlock_irq(&pcpu_lock); 479 480 if (new_alloc) 481 pcpu_extend_area_map(chunk, new_alloc); 482 } 483 484 /** 485 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area 486 * @chunk: chunk the candidate area belongs to 487 * @off: the offset to the start of the candidate area 488 * @this_size: the size of the candidate area 489 * @size: the size of the target allocation 490 * @align: the alignment of the target allocation 491 * @pop_only: only allocate from already populated region 492 * 493 * We're trying to allocate @size bytes aligned at @align. @chunk's area 494 * at @off sized @this_size is a candidate. This function determines 495 * whether the target allocation fits in the candidate area and returns the 496 * number of bytes to pad after @off. If the target area doesn't fit, -1 497 * is returned. 498 * 499 * If @pop_only is %true, this function only considers the already 500 * populated part of the candidate area. 501 */ 502 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, 503 int size, int align, bool pop_only) 504 { 505 int cand_off = off; 506 507 while (true) { 508 int head = ALIGN(cand_off, align) - off; 509 int page_start, page_end, rs, re; 510 511 if (this_size < head + size) 512 return -1; 513 514 if (!pop_only) 515 return head; 516 517 /* 518 * If the first unpopulated page is beyond the end of the 519 * allocation, the whole allocation is populated; 520 * otherwise, retry from the end of the unpopulated area. 521 */ 522 page_start = PFN_DOWN(head + off); 523 page_end = PFN_UP(head + off + size); 524 525 rs = page_start; 526 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); 527 if (rs >= page_end) 528 return head; 529 cand_off = re * PAGE_SIZE; 530 } 531 } 532 533 /** 534 * pcpu_alloc_area - allocate area from a pcpu_chunk 535 * @chunk: chunk of interest 536 * @size: wanted size in bytes 537 * @align: wanted align 538 * @pop_only: allocate only from the populated area 539 * @occ_pages_p: out param for the number of pages the area occupies 540 * 541 * Try to allocate @size bytes area aligned at @align from @chunk. 542 * Note that this function only allocates the offset. It doesn't 543 * populate or map the area. 544 * 545 * @chunk->map must have at least two free slots. 546 * 547 * CONTEXT: 548 * pcpu_lock. 549 * 550 * RETURNS: 551 * Allocated offset in @chunk on success, -1 if no matching area is 552 * found. 553 */ 554 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, 555 bool pop_only, int *occ_pages_p) 556 { 557 int oslot = pcpu_chunk_slot(chunk); 558 int max_contig = 0; 559 int i, off; 560 bool seen_free = false; 561 int *p; 562 563 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { 564 int head, tail; 565 int this_size; 566 567 off = *p; 568 if (off & 1) 569 continue; 570 571 this_size = (p[1] & ~1) - off; 572 573 head = pcpu_fit_in_area(chunk, off, this_size, size, align, 574 pop_only); 575 if (head < 0) { 576 if (!seen_free) { 577 chunk->first_free = i; 578 seen_free = true; 579 } 580 max_contig = max(this_size, max_contig); 581 continue; 582 } 583 584 /* 585 * If head is small or the previous block is free, 586 * merge'em. Note that 'small' is defined as smaller 587 * than sizeof(int), which is very small but isn't too 588 * uncommon for percpu allocations. 589 */ 590 if (head && (head < sizeof(int) || !(p[-1] & 1))) { 591 *p = off += head; 592 if (p[-1] & 1) 593 chunk->free_size -= head; 594 else 595 max_contig = max(*p - p[-1], max_contig); 596 this_size -= head; 597 head = 0; 598 } 599 600 /* if tail is small, just keep it around */ 601 tail = this_size - head - size; 602 if (tail < sizeof(int)) { 603 tail = 0; 604 size = this_size - head; 605 } 606 607 /* split if warranted */ 608 if (head || tail) { 609 int nr_extra = !!head + !!tail; 610 611 /* insert new subblocks */ 612 memmove(p + nr_extra + 1, p + 1, 613 sizeof(chunk->map[0]) * (chunk->map_used - i)); 614 chunk->map_used += nr_extra; 615 616 if (head) { 617 if (!seen_free) { 618 chunk->first_free = i; 619 seen_free = true; 620 } 621 *++p = off += head; 622 ++i; 623 max_contig = max(head, max_contig); 624 } 625 if (tail) { 626 p[1] = off + size; 627 max_contig = max(tail, max_contig); 628 } 629 } 630 631 if (!seen_free) 632 chunk->first_free = i + 1; 633 634 /* update hint and mark allocated */ 635 if (i + 1 == chunk->map_used) 636 chunk->contig_hint = max_contig; /* fully scanned */ 637 else 638 chunk->contig_hint = max(chunk->contig_hint, 639 max_contig); 640 641 chunk->free_size -= size; 642 *p |= 1; 643 644 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 645 pcpu_chunk_relocate(chunk, oslot); 646 return off; 647 } 648 649 chunk->contig_hint = max_contig; /* fully scanned */ 650 pcpu_chunk_relocate(chunk, oslot); 651 652 /* tell the upper layer that this chunk has no matching area */ 653 return -1; 654 } 655 656 /** 657 * pcpu_free_area - free area to a pcpu_chunk 658 * @chunk: chunk of interest 659 * @freeme: offset of area to free 660 * @occ_pages_p: out param for the number of pages the area occupies 661 * 662 * Free area starting from @freeme to @chunk. Note that this function 663 * only modifies the allocation map. It doesn't depopulate or unmap 664 * the area. 665 * 666 * CONTEXT: 667 * pcpu_lock. 668 */ 669 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, 670 int *occ_pages_p) 671 { 672 int oslot = pcpu_chunk_slot(chunk); 673 int off = 0; 674 unsigned i, j; 675 int to_free = 0; 676 int *p; 677 678 freeme |= 1; /* we are searching for <given offset, in use> pair */ 679 680 i = 0; 681 j = chunk->map_used; 682 while (i != j) { 683 unsigned k = (i + j) / 2; 684 off = chunk->map[k]; 685 if (off < freeme) 686 i = k + 1; 687 else if (off > freeme) 688 j = k; 689 else 690 i = j = k; 691 } 692 BUG_ON(off != freeme); 693 694 if (i < chunk->first_free) 695 chunk->first_free = i; 696 697 p = chunk->map + i; 698 *p = off &= ~1; 699 chunk->free_size += (p[1] & ~1) - off; 700 701 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 702 703 /* merge with next? */ 704 if (!(p[1] & 1)) 705 to_free++; 706 /* merge with previous? */ 707 if (i > 0 && !(p[-1] & 1)) { 708 to_free++; 709 i--; 710 p--; 711 } 712 if (to_free) { 713 chunk->map_used -= to_free; 714 memmove(p + 1, p + 1 + to_free, 715 (chunk->map_used - i) * sizeof(chunk->map[0])); 716 } 717 718 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); 719 pcpu_chunk_relocate(chunk, oslot); 720 } 721 722 static struct pcpu_chunk *pcpu_alloc_chunk(void) 723 { 724 struct pcpu_chunk *chunk; 725 726 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 727 if (!chunk) 728 return NULL; 729 730 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 731 sizeof(chunk->map[0])); 732 if (!chunk->map) { 733 pcpu_mem_free(chunk); 734 return NULL; 735 } 736 737 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 738 chunk->map[0] = 0; 739 chunk->map[1] = pcpu_unit_size | 1; 740 chunk->map_used = 1; 741 742 INIT_LIST_HEAD(&chunk->list); 743 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn); 744 chunk->free_size = pcpu_unit_size; 745 chunk->contig_hint = pcpu_unit_size; 746 747 return chunk; 748 } 749 750 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 751 { 752 if (!chunk) 753 return; 754 pcpu_mem_free(chunk->map); 755 pcpu_mem_free(chunk); 756 } 757 758 /** 759 * pcpu_chunk_populated - post-population bookkeeping 760 * @chunk: pcpu_chunk which got populated 761 * @page_start: the start page 762 * @page_end: the end page 763 * 764 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 765 * the bookkeeping information accordingly. Must be called after each 766 * successful population. 767 */ 768 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, 769 int page_start, int page_end) 770 { 771 int nr = page_end - page_start; 772 773 lockdep_assert_held(&pcpu_lock); 774 775 bitmap_set(chunk->populated, page_start, nr); 776 chunk->nr_populated += nr; 777 pcpu_nr_empty_pop_pages += nr; 778 } 779 780 /** 781 * pcpu_chunk_depopulated - post-depopulation bookkeeping 782 * @chunk: pcpu_chunk which got depopulated 783 * @page_start: the start page 784 * @page_end: the end page 785 * 786 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 787 * Update the bookkeeping information accordingly. Must be called after 788 * each successful depopulation. 789 */ 790 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 791 int page_start, int page_end) 792 { 793 int nr = page_end - page_start; 794 795 lockdep_assert_held(&pcpu_lock); 796 797 bitmap_clear(chunk->populated, page_start, nr); 798 chunk->nr_populated -= nr; 799 pcpu_nr_empty_pop_pages -= nr; 800 } 801 802 /* 803 * Chunk management implementation. 804 * 805 * To allow different implementations, chunk alloc/free and 806 * [de]population are implemented in a separate file which is pulled 807 * into this file and compiled together. The following functions 808 * should be implemented. 809 * 810 * pcpu_populate_chunk - populate the specified range of a chunk 811 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 812 * pcpu_create_chunk - create a new chunk 813 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 814 * pcpu_addr_to_page - translate address to physical address 815 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 816 */ 817 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 818 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 819 static struct pcpu_chunk *pcpu_create_chunk(void); 820 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 821 static struct page *pcpu_addr_to_page(void *addr); 822 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 823 824 #ifdef CONFIG_NEED_PER_CPU_KM 825 #include "percpu-km.c" 826 #else 827 #include "percpu-vm.c" 828 #endif 829 830 /** 831 * pcpu_chunk_addr_search - determine chunk containing specified address 832 * @addr: address for which the chunk needs to be determined. 833 * 834 * RETURNS: 835 * The address of the found chunk. 836 */ 837 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 838 { 839 /* is it in the first chunk? */ 840 if (pcpu_addr_in_first_chunk(addr)) { 841 /* is it in the reserved area? */ 842 if (pcpu_addr_in_reserved_chunk(addr)) 843 return pcpu_reserved_chunk; 844 return pcpu_first_chunk; 845 } 846 847 /* 848 * The address is relative to unit0 which might be unused and 849 * thus unmapped. Offset the address to the unit space of the 850 * current processor before looking it up in the vmalloc 851 * space. Note that any possible cpu id can be used here, so 852 * there's no need to worry about preemption or cpu hotplug. 853 */ 854 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 855 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 856 } 857 858 /** 859 * pcpu_alloc - the percpu allocator 860 * @size: size of area to allocate in bytes 861 * @align: alignment of area (max PAGE_SIZE) 862 * @reserved: allocate from the reserved chunk if available 863 * @gfp: allocation flags 864 * 865 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 866 * contain %GFP_KERNEL, the allocation is atomic. 867 * 868 * RETURNS: 869 * Percpu pointer to the allocated area on success, NULL on failure. 870 */ 871 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 872 gfp_t gfp) 873 { 874 static int warn_limit = 10; 875 struct pcpu_chunk *chunk; 876 const char *err; 877 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 878 int occ_pages = 0; 879 int slot, off, new_alloc, cpu, ret; 880 unsigned long flags; 881 void __percpu *ptr; 882 883 /* 884 * We want the lowest bit of offset available for in-use/free 885 * indicator, so force >= 16bit alignment and make size even. 886 */ 887 if (unlikely(align < 2)) 888 align = 2; 889 890 size = ALIGN(size, 2); 891 892 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 893 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n", 894 size, align); 895 return NULL; 896 } 897 898 spin_lock_irqsave(&pcpu_lock, flags); 899 900 /* serve reserved allocations from the reserved chunk if available */ 901 if (reserved && pcpu_reserved_chunk) { 902 chunk = pcpu_reserved_chunk; 903 904 if (size > chunk->contig_hint) { 905 err = "alloc from reserved chunk failed"; 906 goto fail_unlock; 907 } 908 909 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { 910 spin_unlock_irqrestore(&pcpu_lock, flags); 911 if (is_atomic || 912 pcpu_extend_area_map(chunk, new_alloc) < 0) { 913 err = "failed to extend area map of reserved chunk"; 914 goto fail; 915 } 916 spin_lock_irqsave(&pcpu_lock, flags); 917 } 918 919 off = pcpu_alloc_area(chunk, size, align, is_atomic, 920 &occ_pages); 921 if (off >= 0) 922 goto area_found; 923 924 err = "alloc from reserved chunk failed"; 925 goto fail_unlock; 926 } 927 928 restart: 929 /* search through normal chunks */ 930 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 931 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 932 if (size > chunk->contig_hint) 933 continue; 934 935 new_alloc = pcpu_need_to_extend(chunk, is_atomic); 936 if (new_alloc) { 937 if (is_atomic) 938 continue; 939 spin_unlock_irqrestore(&pcpu_lock, flags); 940 if (pcpu_extend_area_map(chunk, 941 new_alloc) < 0) { 942 err = "failed to extend area map"; 943 goto fail; 944 } 945 spin_lock_irqsave(&pcpu_lock, flags); 946 /* 947 * pcpu_lock has been dropped, need to 948 * restart cpu_slot list walking. 949 */ 950 goto restart; 951 } 952 953 off = pcpu_alloc_area(chunk, size, align, is_atomic, 954 &occ_pages); 955 if (off >= 0) 956 goto area_found; 957 } 958 } 959 960 spin_unlock_irqrestore(&pcpu_lock, flags); 961 962 /* 963 * No space left. Create a new chunk. We don't want multiple 964 * tasks to create chunks simultaneously. Serialize and create iff 965 * there's still no empty chunk after grabbing the mutex. 966 */ 967 if (is_atomic) 968 goto fail; 969 970 mutex_lock(&pcpu_alloc_mutex); 971 972 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 973 chunk = pcpu_create_chunk(); 974 if (!chunk) { 975 mutex_unlock(&pcpu_alloc_mutex); 976 err = "failed to allocate new chunk"; 977 goto fail; 978 } 979 980 spin_lock_irqsave(&pcpu_lock, flags); 981 pcpu_chunk_relocate(chunk, -1); 982 } else { 983 spin_lock_irqsave(&pcpu_lock, flags); 984 } 985 986 mutex_unlock(&pcpu_alloc_mutex); 987 goto restart; 988 989 area_found: 990 spin_unlock_irqrestore(&pcpu_lock, flags); 991 992 /* populate if not all pages are already there */ 993 if (!is_atomic) { 994 int page_start, page_end, rs, re; 995 996 mutex_lock(&pcpu_alloc_mutex); 997 998 page_start = PFN_DOWN(off); 999 page_end = PFN_UP(off + size); 1000 1001 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 1002 WARN_ON(chunk->immutable); 1003 1004 ret = pcpu_populate_chunk(chunk, rs, re); 1005 1006 spin_lock_irqsave(&pcpu_lock, flags); 1007 if (ret) { 1008 mutex_unlock(&pcpu_alloc_mutex); 1009 pcpu_free_area(chunk, off, &occ_pages); 1010 err = "failed to populate"; 1011 goto fail_unlock; 1012 } 1013 pcpu_chunk_populated(chunk, rs, re); 1014 spin_unlock_irqrestore(&pcpu_lock, flags); 1015 } 1016 1017 mutex_unlock(&pcpu_alloc_mutex); 1018 } 1019 1020 if (chunk != pcpu_reserved_chunk) 1021 pcpu_nr_empty_pop_pages -= occ_pages; 1022 1023 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1024 pcpu_schedule_balance_work(); 1025 1026 /* clear the areas and return address relative to base address */ 1027 for_each_possible_cpu(cpu) 1028 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1029 1030 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1031 kmemleak_alloc_percpu(ptr, size, gfp); 1032 return ptr; 1033 1034 fail_unlock: 1035 spin_unlock_irqrestore(&pcpu_lock, flags); 1036 fail: 1037 if (!is_atomic && warn_limit) { 1038 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1039 size, align, is_atomic, err); 1040 dump_stack(); 1041 if (!--warn_limit) 1042 pr_info("limit reached, disable warning\n"); 1043 } 1044 if (is_atomic) { 1045 /* see the flag handling in pcpu_blance_workfn() */ 1046 pcpu_atomic_alloc_failed = true; 1047 pcpu_schedule_balance_work(); 1048 } 1049 return NULL; 1050 } 1051 1052 /** 1053 * __alloc_percpu_gfp - allocate dynamic percpu area 1054 * @size: size of area to allocate in bytes 1055 * @align: alignment of area (max PAGE_SIZE) 1056 * @gfp: allocation flags 1057 * 1058 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1059 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1060 * be called from any context but is a lot more likely to fail. 1061 * 1062 * RETURNS: 1063 * Percpu pointer to the allocated area on success, NULL on failure. 1064 */ 1065 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1066 { 1067 return pcpu_alloc(size, align, false, gfp); 1068 } 1069 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1070 1071 /** 1072 * __alloc_percpu - allocate dynamic percpu area 1073 * @size: size of area to allocate in bytes 1074 * @align: alignment of area (max PAGE_SIZE) 1075 * 1076 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1077 */ 1078 void __percpu *__alloc_percpu(size_t size, size_t align) 1079 { 1080 return pcpu_alloc(size, align, false, GFP_KERNEL); 1081 } 1082 EXPORT_SYMBOL_GPL(__alloc_percpu); 1083 1084 /** 1085 * __alloc_reserved_percpu - allocate reserved percpu area 1086 * @size: size of area to allocate in bytes 1087 * @align: alignment of area (max PAGE_SIZE) 1088 * 1089 * Allocate zero-filled percpu area of @size bytes aligned at @align 1090 * from reserved percpu area if arch has set it up; otherwise, 1091 * allocation is served from the same dynamic area. Might sleep. 1092 * Might trigger writeouts. 1093 * 1094 * CONTEXT: 1095 * Does GFP_KERNEL allocation. 1096 * 1097 * RETURNS: 1098 * Percpu pointer to the allocated area on success, NULL on failure. 1099 */ 1100 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1101 { 1102 return pcpu_alloc(size, align, true, GFP_KERNEL); 1103 } 1104 1105 /** 1106 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1107 * @work: unused 1108 * 1109 * Reclaim all fully free chunks except for the first one. 1110 */ 1111 static void pcpu_balance_workfn(struct work_struct *work) 1112 { 1113 LIST_HEAD(to_free); 1114 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1115 struct pcpu_chunk *chunk, *next; 1116 int slot, nr_to_pop, ret; 1117 1118 /* 1119 * There's no reason to keep around multiple unused chunks and VM 1120 * areas can be scarce. Destroy all free chunks except for one. 1121 */ 1122 mutex_lock(&pcpu_alloc_mutex); 1123 spin_lock_irq(&pcpu_lock); 1124 1125 list_for_each_entry_safe(chunk, next, free_head, list) { 1126 WARN_ON(chunk->immutable); 1127 1128 /* spare the first one */ 1129 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1130 continue; 1131 1132 list_move(&chunk->list, &to_free); 1133 } 1134 1135 spin_unlock_irq(&pcpu_lock); 1136 1137 list_for_each_entry_safe(chunk, next, &to_free, list) { 1138 int rs, re; 1139 1140 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1141 pcpu_depopulate_chunk(chunk, rs, re); 1142 spin_lock_irq(&pcpu_lock); 1143 pcpu_chunk_depopulated(chunk, rs, re); 1144 spin_unlock_irq(&pcpu_lock); 1145 } 1146 pcpu_destroy_chunk(chunk); 1147 } 1148 1149 /* 1150 * Ensure there are certain number of free populated pages for 1151 * atomic allocs. Fill up from the most packed so that atomic 1152 * allocs don't increase fragmentation. If atomic allocation 1153 * failed previously, always populate the maximum amount. This 1154 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1155 * failing indefinitely; however, large atomic allocs are not 1156 * something we support properly and can be highly unreliable and 1157 * inefficient. 1158 */ 1159 retry_pop: 1160 if (pcpu_atomic_alloc_failed) { 1161 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1162 /* best effort anyway, don't worry about synchronization */ 1163 pcpu_atomic_alloc_failed = false; 1164 } else { 1165 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1166 pcpu_nr_empty_pop_pages, 1167 0, PCPU_EMPTY_POP_PAGES_HIGH); 1168 } 1169 1170 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1171 int nr_unpop = 0, rs, re; 1172 1173 if (!nr_to_pop) 1174 break; 1175 1176 spin_lock_irq(&pcpu_lock); 1177 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1178 nr_unpop = pcpu_unit_pages - chunk->nr_populated; 1179 if (nr_unpop) 1180 break; 1181 } 1182 spin_unlock_irq(&pcpu_lock); 1183 1184 if (!nr_unpop) 1185 continue; 1186 1187 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1188 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1189 int nr = min(re - rs, nr_to_pop); 1190 1191 ret = pcpu_populate_chunk(chunk, rs, rs + nr); 1192 if (!ret) { 1193 nr_to_pop -= nr; 1194 spin_lock_irq(&pcpu_lock); 1195 pcpu_chunk_populated(chunk, rs, rs + nr); 1196 spin_unlock_irq(&pcpu_lock); 1197 } else { 1198 nr_to_pop = 0; 1199 } 1200 1201 if (!nr_to_pop) 1202 break; 1203 } 1204 } 1205 1206 if (nr_to_pop) { 1207 /* ran out of chunks to populate, create a new one and retry */ 1208 chunk = pcpu_create_chunk(); 1209 if (chunk) { 1210 spin_lock_irq(&pcpu_lock); 1211 pcpu_chunk_relocate(chunk, -1); 1212 spin_unlock_irq(&pcpu_lock); 1213 goto retry_pop; 1214 } 1215 } 1216 1217 mutex_unlock(&pcpu_alloc_mutex); 1218 } 1219 1220 /** 1221 * free_percpu - free percpu area 1222 * @ptr: pointer to area to free 1223 * 1224 * Free percpu area @ptr. 1225 * 1226 * CONTEXT: 1227 * Can be called from atomic context. 1228 */ 1229 void free_percpu(void __percpu *ptr) 1230 { 1231 void *addr; 1232 struct pcpu_chunk *chunk; 1233 unsigned long flags; 1234 int off, occ_pages; 1235 1236 if (!ptr) 1237 return; 1238 1239 kmemleak_free_percpu(ptr); 1240 1241 addr = __pcpu_ptr_to_addr(ptr); 1242 1243 spin_lock_irqsave(&pcpu_lock, flags); 1244 1245 chunk = pcpu_chunk_addr_search(addr); 1246 off = addr - chunk->base_addr; 1247 1248 pcpu_free_area(chunk, off, &occ_pages); 1249 1250 if (chunk != pcpu_reserved_chunk) 1251 pcpu_nr_empty_pop_pages += occ_pages; 1252 1253 /* if there are more than one fully free chunks, wake up grim reaper */ 1254 if (chunk->free_size == pcpu_unit_size) { 1255 struct pcpu_chunk *pos; 1256 1257 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1258 if (pos != chunk) { 1259 pcpu_schedule_balance_work(); 1260 break; 1261 } 1262 } 1263 1264 spin_unlock_irqrestore(&pcpu_lock, flags); 1265 } 1266 EXPORT_SYMBOL_GPL(free_percpu); 1267 1268 /** 1269 * is_kernel_percpu_address - test whether address is from static percpu area 1270 * @addr: address to test 1271 * 1272 * Test whether @addr belongs to in-kernel static percpu area. Module 1273 * static percpu areas are not considered. For those, use 1274 * is_module_percpu_address(). 1275 * 1276 * RETURNS: 1277 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1278 */ 1279 bool is_kernel_percpu_address(unsigned long addr) 1280 { 1281 #ifdef CONFIG_SMP 1282 const size_t static_size = __per_cpu_end - __per_cpu_start; 1283 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1284 unsigned int cpu; 1285 1286 for_each_possible_cpu(cpu) { 1287 void *start = per_cpu_ptr(base, cpu); 1288 1289 if ((void *)addr >= start && (void *)addr < start + static_size) 1290 return true; 1291 } 1292 #endif 1293 /* on UP, can't distinguish from other static vars, always false */ 1294 return false; 1295 } 1296 1297 /** 1298 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1299 * @addr: the address to be converted to physical address 1300 * 1301 * Given @addr which is dereferenceable address obtained via one of 1302 * percpu access macros, this function translates it into its physical 1303 * address. The caller is responsible for ensuring @addr stays valid 1304 * until this function finishes. 1305 * 1306 * percpu allocator has special setup for the first chunk, which currently 1307 * supports either embedding in linear address space or vmalloc mapping, 1308 * and, from the second one, the backing allocator (currently either vm or 1309 * km) provides translation. 1310 * 1311 * The addr can be translated simply without checking if it falls into the 1312 * first chunk. But the current code reflects better how percpu allocator 1313 * actually works, and the verification can discover both bugs in percpu 1314 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1315 * code. 1316 * 1317 * RETURNS: 1318 * The physical address for @addr. 1319 */ 1320 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1321 { 1322 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1323 bool in_first_chunk = false; 1324 unsigned long first_low, first_high; 1325 unsigned int cpu; 1326 1327 /* 1328 * The following test on unit_low/high isn't strictly 1329 * necessary but will speed up lookups of addresses which 1330 * aren't in the first chunk. 1331 */ 1332 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1333 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1334 pcpu_unit_pages); 1335 if ((unsigned long)addr >= first_low && 1336 (unsigned long)addr < first_high) { 1337 for_each_possible_cpu(cpu) { 1338 void *start = per_cpu_ptr(base, cpu); 1339 1340 if (addr >= start && addr < start + pcpu_unit_size) { 1341 in_first_chunk = true; 1342 break; 1343 } 1344 } 1345 } 1346 1347 if (in_first_chunk) { 1348 if (!is_vmalloc_addr(addr)) 1349 return __pa(addr); 1350 else 1351 return page_to_phys(vmalloc_to_page(addr)) + 1352 offset_in_page(addr); 1353 } else 1354 return page_to_phys(pcpu_addr_to_page(addr)) + 1355 offset_in_page(addr); 1356 } 1357 1358 /** 1359 * pcpu_alloc_alloc_info - allocate percpu allocation info 1360 * @nr_groups: the number of groups 1361 * @nr_units: the number of units 1362 * 1363 * Allocate ai which is large enough for @nr_groups groups containing 1364 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1365 * cpu_map array which is long enough for @nr_units and filled with 1366 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1367 * pointer of other groups. 1368 * 1369 * RETURNS: 1370 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1371 * failure. 1372 */ 1373 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1374 int nr_units) 1375 { 1376 struct pcpu_alloc_info *ai; 1377 size_t base_size, ai_size; 1378 void *ptr; 1379 int unit; 1380 1381 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1382 __alignof__(ai->groups[0].cpu_map[0])); 1383 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1384 1385 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); 1386 if (!ptr) 1387 return NULL; 1388 ai = ptr; 1389 ptr += base_size; 1390 1391 ai->groups[0].cpu_map = ptr; 1392 1393 for (unit = 0; unit < nr_units; unit++) 1394 ai->groups[0].cpu_map[unit] = NR_CPUS; 1395 1396 ai->nr_groups = nr_groups; 1397 ai->__ai_size = PFN_ALIGN(ai_size); 1398 1399 return ai; 1400 } 1401 1402 /** 1403 * pcpu_free_alloc_info - free percpu allocation info 1404 * @ai: pcpu_alloc_info to free 1405 * 1406 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1407 */ 1408 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1409 { 1410 memblock_free_early(__pa(ai), ai->__ai_size); 1411 } 1412 1413 /** 1414 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1415 * @lvl: loglevel 1416 * @ai: allocation info to dump 1417 * 1418 * Print out information about @ai using loglevel @lvl. 1419 */ 1420 static void pcpu_dump_alloc_info(const char *lvl, 1421 const struct pcpu_alloc_info *ai) 1422 { 1423 int group_width = 1, cpu_width = 1, width; 1424 char empty_str[] = "--------"; 1425 int alloc = 0, alloc_end = 0; 1426 int group, v; 1427 int upa, apl; /* units per alloc, allocs per line */ 1428 1429 v = ai->nr_groups; 1430 while (v /= 10) 1431 group_width++; 1432 1433 v = num_possible_cpus(); 1434 while (v /= 10) 1435 cpu_width++; 1436 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1437 1438 upa = ai->alloc_size / ai->unit_size; 1439 width = upa * (cpu_width + 1) + group_width + 3; 1440 apl = rounddown_pow_of_two(max(60 / width, 1)); 1441 1442 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1443 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1444 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1445 1446 for (group = 0; group < ai->nr_groups; group++) { 1447 const struct pcpu_group_info *gi = &ai->groups[group]; 1448 int unit = 0, unit_end = 0; 1449 1450 BUG_ON(gi->nr_units % upa); 1451 for (alloc_end += gi->nr_units / upa; 1452 alloc < alloc_end; alloc++) { 1453 if (!(alloc % apl)) { 1454 pr_cont("\n"); 1455 printk("%spcpu-alloc: ", lvl); 1456 } 1457 pr_cont("[%0*d] ", group_width, group); 1458 1459 for (unit_end += upa; unit < unit_end; unit++) 1460 if (gi->cpu_map[unit] != NR_CPUS) 1461 pr_cont("%0*d ", 1462 cpu_width, gi->cpu_map[unit]); 1463 else 1464 pr_cont("%s ", empty_str); 1465 } 1466 } 1467 pr_cont("\n"); 1468 } 1469 1470 /** 1471 * pcpu_setup_first_chunk - initialize the first percpu chunk 1472 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1473 * @base_addr: mapped address 1474 * 1475 * Initialize the first percpu chunk which contains the kernel static 1476 * perpcu area. This function is to be called from arch percpu area 1477 * setup path. 1478 * 1479 * @ai contains all information necessary to initialize the first 1480 * chunk and prime the dynamic percpu allocator. 1481 * 1482 * @ai->static_size is the size of static percpu area. 1483 * 1484 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1485 * reserve after the static area in the first chunk. This reserves 1486 * the first chunk such that it's available only through reserved 1487 * percpu allocation. This is primarily used to serve module percpu 1488 * static areas on architectures where the addressing model has 1489 * limited offset range for symbol relocations to guarantee module 1490 * percpu symbols fall inside the relocatable range. 1491 * 1492 * @ai->dyn_size determines the number of bytes available for dynamic 1493 * allocation in the first chunk. The area between @ai->static_size + 1494 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1495 * 1496 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1497 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1498 * @ai->dyn_size. 1499 * 1500 * @ai->atom_size is the allocation atom size and used as alignment 1501 * for vm areas. 1502 * 1503 * @ai->alloc_size is the allocation size and always multiple of 1504 * @ai->atom_size. This is larger than @ai->atom_size if 1505 * @ai->unit_size is larger than @ai->atom_size. 1506 * 1507 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1508 * percpu areas. Units which should be colocated are put into the 1509 * same group. Dynamic VM areas will be allocated according to these 1510 * groupings. If @ai->nr_groups is zero, a single group containing 1511 * all units is assumed. 1512 * 1513 * The caller should have mapped the first chunk at @base_addr and 1514 * copied static data to each unit. 1515 * 1516 * If the first chunk ends up with both reserved and dynamic areas, it 1517 * is served by two chunks - one to serve the core static and reserved 1518 * areas and the other for the dynamic area. They share the same vm 1519 * and page map but uses different area allocation map to stay away 1520 * from each other. The latter chunk is circulated in the chunk slots 1521 * and available for dynamic allocation like any other chunks. 1522 * 1523 * RETURNS: 1524 * 0 on success, -errno on failure. 1525 */ 1526 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1527 void *base_addr) 1528 { 1529 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1530 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1531 size_t dyn_size = ai->dyn_size; 1532 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1533 struct pcpu_chunk *schunk, *dchunk = NULL; 1534 unsigned long *group_offsets; 1535 size_t *group_sizes; 1536 unsigned long *unit_off; 1537 unsigned int cpu; 1538 int *unit_map; 1539 int group, unit, i; 1540 1541 #define PCPU_SETUP_BUG_ON(cond) do { \ 1542 if (unlikely(cond)) { \ 1543 pr_emerg("failed to initialize, %s\n", #cond); \ 1544 pr_emerg("cpu_possible_mask=%*pb\n", \ 1545 cpumask_pr_args(cpu_possible_mask)); \ 1546 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1547 BUG(); \ 1548 } \ 1549 } while (0) 1550 1551 /* sanity checks */ 1552 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1553 #ifdef CONFIG_SMP 1554 PCPU_SETUP_BUG_ON(!ai->static_size); 1555 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 1556 #endif 1557 PCPU_SETUP_BUG_ON(!base_addr); 1558 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 1559 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1560 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 1561 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1562 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1563 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1564 1565 /* process group information and build config tables accordingly */ 1566 group_offsets = memblock_virt_alloc(ai->nr_groups * 1567 sizeof(group_offsets[0]), 0); 1568 group_sizes = memblock_virt_alloc(ai->nr_groups * 1569 sizeof(group_sizes[0]), 0); 1570 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 1571 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 1572 1573 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1574 unit_map[cpu] = UINT_MAX; 1575 1576 pcpu_low_unit_cpu = NR_CPUS; 1577 pcpu_high_unit_cpu = NR_CPUS; 1578 1579 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1580 const struct pcpu_group_info *gi = &ai->groups[group]; 1581 1582 group_offsets[group] = gi->base_offset; 1583 group_sizes[group] = gi->nr_units * ai->unit_size; 1584 1585 for (i = 0; i < gi->nr_units; i++) { 1586 cpu = gi->cpu_map[i]; 1587 if (cpu == NR_CPUS) 1588 continue; 1589 1590 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 1591 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1592 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1593 1594 unit_map[cpu] = unit + i; 1595 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1596 1597 /* determine low/high unit_cpu */ 1598 if (pcpu_low_unit_cpu == NR_CPUS || 1599 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1600 pcpu_low_unit_cpu = cpu; 1601 if (pcpu_high_unit_cpu == NR_CPUS || 1602 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1603 pcpu_high_unit_cpu = cpu; 1604 } 1605 } 1606 pcpu_nr_units = unit; 1607 1608 for_each_possible_cpu(cpu) 1609 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1610 1611 /* we're done parsing the input, undefine BUG macro and dump config */ 1612 #undef PCPU_SETUP_BUG_ON 1613 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1614 1615 pcpu_nr_groups = ai->nr_groups; 1616 pcpu_group_offsets = group_offsets; 1617 pcpu_group_sizes = group_sizes; 1618 pcpu_unit_map = unit_map; 1619 pcpu_unit_offsets = unit_off; 1620 1621 /* determine basic parameters */ 1622 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1623 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1624 pcpu_atom_size = ai->atom_size; 1625 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1626 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1627 1628 /* 1629 * Allocate chunk slots. The additional last slot is for 1630 * empty chunks. 1631 */ 1632 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1633 pcpu_slot = memblock_virt_alloc( 1634 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 1635 for (i = 0; i < pcpu_nr_slots; i++) 1636 INIT_LIST_HEAD(&pcpu_slot[i]); 1637 1638 /* 1639 * Initialize static chunk. If reserved_size is zero, the 1640 * static chunk covers static area + dynamic allocation area 1641 * in the first chunk. If reserved_size is not zero, it 1642 * covers static area + reserved area (mostly used for module 1643 * static percpu allocation). 1644 */ 1645 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1646 INIT_LIST_HEAD(&schunk->list); 1647 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn); 1648 schunk->base_addr = base_addr; 1649 schunk->map = smap; 1650 schunk->map_alloc = ARRAY_SIZE(smap); 1651 schunk->immutable = true; 1652 bitmap_fill(schunk->populated, pcpu_unit_pages); 1653 schunk->nr_populated = pcpu_unit_pages; 1654 1655 if (ai->reserved_size) { 1656 schunk->free_size = ai->reserved_size; 1657 pcpu_reserved_chunk = schunk; 1658 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1659 } else { 1660 schunk->free_size = dyn_size; 1661 dyn_size = 0; /* dynamic area covered */ 1662 } 1663 schunk->contig_hint = schunk->free_size; 1664 1665 schunk->map[0] = 1; 1666 schunk->map[1] = ai->static_size; 1667 schunk->map_used = 1; 1668 if (schunk->free_size) 1669 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size; 1670 schunk->map[schunk->map_used] |= 1; 1671 1672 /* init dynamic chunk if necessary */ 1673 if (dyn_size) { 1674 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1675 INIT_LIST_HEAD(&dchunk->list); 1676 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn); 1677 dchunk->base_addr = base_addr; 1678 dchunk->map = dmap; 1679 dchunk->map_alloc = ARRAY_SIZE(dmap); 1680 dchunk->immutable = true; 1681 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1682 dchunk->nr_populated = pcpu_unit_pages; 1683 1684 dchunk->contig_hint = dchunk->free_size = dyn_size; 1685 dchunk->map[0] = 1; 1686 dchunk->map[1] = pcpu_reserved_chunk_limit; 1687 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; 1688 dchunk->map_used = 2; 1689 } 1690 1691 /* link the first chunk in */ 1692 pcpu_first_chunk = dchunk ?: schunk; 1693 pcpu_nr_empty_pop_pages += 1694 pcpu_count_occupied_pages(pcpu_first_chunk, 1); 1695 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1696 1697 /* we're done */ 1698 pcpu_base_addr = base_addr; 1699 return 0; 1700 } 1701 1702 #ifdef CONFIG_SMP 1703 1704 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 1705 [PCPU_FC_AUTO] = "auto", 1706 [PCPU_FC_EMBED] = "embed", 1707 [PCPU_FC_PAGE] = "page", 1708 }; 1709 1710 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1711 1712 static int __init percpu_alloc_setup(char *str) 1713 { 1714 if (!str) 1715 return -EINVAL; 1716 1717 if (0) 1718 /* nada */; 1719 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1720 else if (!strcmp(str, "embed")) 1721 pcpu_chosen_fc = PCPU_FC_EMBED; 1722 #endif 1723 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1724 else if (!strcmp(str, "page")) 1725 pcpu_chosen_fc = PCPU_FC_PAGE; 1726 #endif 1727 else 1728 pr_warn("unknown allocator %s specified\n", str); 1729 1730 return 0; 1731 } 1732 early_param("percpu_alloc", percpu_alloc_setup); 1733 1734 /* 1735 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1736 * Build it if needed by the arch config or the generic setup is going 1737 * to be used. 1738 */ 1739 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1740 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1741 #define BUILD_EMBED_FIRST_CHUNK 1742 #endif 1743 1744 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1745 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1746 #define BUILD_PAGE_FIRST_CHUNK 1747 #endif 1748 1749 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1750 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1751 /** 1752 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1753 * @reserved_size: the size of reserved percpu area in bytes 1754 * @dyn_size: minimum free size for dynamic allocation in bytes 1755 * @atom_size: allocation atom size 1756 * @cpu_distance_fn: callback to determine distance between cpus, optional 1757 * 1758 * This function determines grouping of units, their mappings to cpus 1759 * and other parameters considering needed percpu size, allocation 1760 * atom size and distances between CPUs. 1761 * 1762 * Groups are always multiples of atom size and CPUs which are of 1763 * LOCAL_DISTANCE both ways are grouped together and share space for 1764 * units in the same group. The returned configuration is guaranteed 1765 * to have CPUs on different nodes on different groups and >=75% usage 1766 * of allocated virtual address space. 1767 * 1768 * RETURNS: 1769 * On success, pointer to the new allocation_info is returned. On 1770 * failure, ERR_PTR value is returned. 1771 */ 1772 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1773 size_t reserved_size, size_t dyn_size, 1774 size_t atom_size, 1775 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1776 { 1777 static int group_map[NR_CPUS] __initdata; 1778 static int group_cnt[NR_CPUS] __initdata; 1779 const size_t static_size = __per_cpu_end - __per_cpu_start; 1780 int nr_groups = 1, nr_units = 0; 1781 size_t size_sum, min_unit_size, alloc_size; 1782 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1783 int last_allocs, group, unit; 1784 unsigned int cpu, tcpu; 1785 struct pcpu_alloc_info *ai; 1786 unsigned int *cpu_map; 1787 1788 /* this function may be called multiple times */ 1789 memset(group_map, 0, sizeof(group_map)); 1790 memset(group_cnt, 0, sizeof(group_cnt)); 1791 1792 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1793 size_sum = PFN_ALIGN(static_size + reserved_size + 1794 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1795 dyn_size = size_sum - static_size - reserved_size; 1796 1797 /* 1798 * Determine min_unit_size, alloc_size and max_upa such that 1799 * alloc_size is multiple of atom_size and is the smallest 1800 * which can accommodate 4k aligned segments which are equal to 1801 * or larger than min_unit_size. 1802 */ 1803 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1804 1805 alloc_size = roundup(min_unit_size, atom_size); 1806 upa = alloc_size / min_unit_size; 1807 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 1808 upa--; 1809 max_upa = upa; 1810 1811 /* group cpus according to their proximity */ 1812 for_each_possible_cpu(cpu) { 1813 group = 0; 1814 next_group: 1815 for_each_possible_cpu(tcpu) { 1816 if (cpu == tcpu) 1817 break; 1818 if (group_map[tcpu] == group && cpu_distance_fn && 1819 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1820 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1821 group++; 1822 nr_groups = max(nr_groups, group + 1); 1823 goto next_group; 1824 } 1825 } 1826 group_map[cpu] = group; 1827 group_cnt[group]++; 1828 } 1829 1830 /* 1831 * Expand unit size until address space usage goes over 75% 1832 * and then as much as possible without using more address 1833 * space. 1834 */ 1835 last_allocs = INT_MAX; 1836 for (upa = max_upa; upa; upa--) { 1837 int allocs = 0, wasted = 0; 1838 1839 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 1840 continue; 1841 1842 for (group = 0; group < nr_groups; group++) { 1843 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1844 allocs += this_allocs; 1845 wasted += this_allocs * upa - group_cnt[group]; 1846 } 1847 1848 /* 1849 * Don't accept if wastage is over 1/3. The 1850 * greater-than comparison ensures upa==1 always 1851 * passes the following check. 1852 */ 1853 if (wasted > num_possible_cpus() / 3) 1854 continue; 1855 1856 /* and then don't consume more memory */ 1857 if (allocs > last_allocs) 1858 break; 1859 last_allocs = allocs; 1860 best_upa = upa; 1861 } 1862 upa = best_upa; 1863 1864 /* allocate and fill alloc_info */ 1865 for (group = 0; group < nr_groups; group++) 1866 nr_units += roundup(group_cnt[group], upa); 1867 1868 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1869 if (!ai) 1870 return ERR_PTR(-ENOMEM); 1871 cpu_map = ai->groups[0].cpu_map; 1872 1873 for (group = 0; group < nr_groups; group++) { 1874 ai->groups[group].cpu_map = cpu_map; 1875 cpu_map += roundup(group_cnt[group], upa); 1876 } 1877 1878 ai->static_size = static_size; 1879 ai->reserved_size = reserved_size; 1880 ai->dyn_size = dyn_size; 1881 ai->unit_size = alloc_size / upa; 1882 ai->atom_size = atom_size; 1883 ai->alloc_size = alloc_size; 1884 1885 for (group = 0, unit = 0; group_cnt[group]; group++) { 1886 struct pcpu_group_info *gi = &ai->groups[group]; 1887 1888 /* 1889 * Initialize base_offset as if all groups are located 1890 * back-to-back. The caller should update this to 1891 * reflect actual allocation. 1892 */ 1893 gi->base_offset = unit * ai->unit_size; 1894 1895 for_each_possible_cpu(cpu) 1896 if (group_map[cpu] == group) 1897 gi->cpu_map[gi->nr_units++] = cpu; 1898 gi->nr_units = roundup(gi->nr_units, upa); 1899 unit += gi->nr_units; 1900 } 1901 BUG_ON(unit != nr_units); 1902 1903 return ai; 1904 } 1905 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1906 1907 #if defined(BUILD_EMBED_FIRST_CHUNK) 1908 /** 1909 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1910 * @reserved_size: the size of reserved percpu area in bytes 1911 * @dyn_size: minimum free size for dynamic allocation in bytes 1912 * @atom_size: allocation atom size 1913 * @cpu_distance_fn: callback to determine distance between cpus, optional 1914 * @alloc_fn: function to allocate percpu page 1915 * @free_fn: function to free percpu page 1916 * 1917 * This is a helper to ease setting up embedded first percpu chunk and 1918 * can be called where pcpu_setup_first_chunk() is expected. 1919 * 1920 * If this function is used to setup the first chunk, it is allocated 1921 * by calling @alloc_fn and used as-is without being mapped into 1922 * vmalloc area. Allocations are always whole multiples of @atom_size 1923 * aligned to @atom_size. 1924 * 1925 * This enables the first chunk to piggy back on the linear physical 1926 * mapping which often uses larger page size. Please note that this 1927 * can result in very sparse cpu->unit mapping on NUMA machines thus 1928 * requiring large vmalloc address space. Don't use this allocator if 1929 * vmalloc space is not orders of magnitude larger than distances 1930 * between node memory addresses (ie. 32bit NUMA machines). 1931 * 1932 * @dyn_size specifies the minimum dynamic area size. 1933 * 1934 * If the needed size is smaller than the minimum or specified unit 1935 * size, the leftover is returned using @free_fn. 1936 * 1937 * RETURNS: 1938 * 0 on success, -errno on failure. 1939 */ 1940 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1941 size_t atom_size, 1942 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1943 pcpu_fc_alloc_fn_t alloc_fn, 1944 pcpu_fc_free_fn_t free_fn) 1945 { 1946 void *base = (void *)ULONG_MAX; 1947 void **areas = NULL; 1948 struct pcpu_alloc_info *ai; 1949 size_t size_sum, areas_size, max_distance; 1950 int group, i, rc; 1951 1952 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1953 cpu_distance_fn); 1954 if (IS_ERR(ai)) 1955 return PTR_ERR(ai); 1956 1957 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1958 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1959 1960 areas = memblock_virt_alloc_nopanic(areas_size, 0); 1961 if (!areas) { 1962 rc = -ENOMEM; 1963 goto out_free; 1964 } 1965 1966 /* allocate, copy and determine base address */ 1967 for (group = 0; group < ai->nr_groups; group++) { 1968 struct pcpu_group_info *gi = &ai->groups[group]; 1969 unsigned int cpu = NR_CPUS; 1970 void *ptr; 1971 1972 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1973 cpu = gi->cpu_map[i]; 1974 BUG_ON(cpu == NR_CPUS); 1975 1976 /* allocate space for the whole group */ 1977 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1978 if (!ptr) { 1979 rc = -ENOMEM; 1980 goto out_free_areas; 1981 } 1982 /* kmemleak tracks the percpu allocations separately */ 1983 kmemleak_free(ptr); 1984 areas[group] = ptr; 1985 1986 base = min(ptr, base); 1987 } 1988 1989 /* 1990 * Copy data and free unused parts. This should happen after all 1991 * allocations are complete; otherwise, we may end up with 1992 * overlapping groups. 1993 */ 1994 for (group = 0; group < ai->nr_groups; group++) { 1995 struct pcpu_group_info *gi = &ai->groups[group]; 1996 void *ptr = areas[group]; 1997 1998 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1999 if (gi->cpu_map[i] == NR_CPUS) { 2000 /* unused unit, free whole */ 2001 free_fn(ptr, ai->unit_size); 2002 continue; 2003 } 2004 /* copy and return the unused part */ 2005 memcpy(ptr, __per_cpu_load, ai->static_size); 2006 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2007 } 2008 } 2009 2010 /* base address is now known, determine group base offsets */ 2011 max_distance = 0; 2012 for (group = 0; group < ai->nr_groups; group++) { 2013 ai->groups[group].base_offset = areas[group] - base; 2014 max_distance = max_t(size_t, max_distance, 2015 ai->groups[group].base_offset); 2016 } 2017 max_distance += ai->unit_size; 2018 2019 /* warn if maximum distance is further than 75% of vmalloc space */ 2020 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2021 pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n", 2022 max_distance, VMALLOC_TOTAL); 2023 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2024 /* and fail if we have fallback */ 2025 rc = -EINVAL; 2026 goto out_free; 2027 #endif 2028 } 2029 2030 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2031 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2032 ai->dyn_size, ai->unit_size); 2033 2034 rc = pcpu_setup_first_chunk(ai, base); 2035 goto out_free; 2036 2037 out_free_areas: 2038 for (group = 0; group < ai->nr_groups; group++) 2039 if (areas[group]) 2040 free_fn(areas[group], 2041 ai->groups[group].nr_units * ai->unit_size); 2042 out_free: 2043 pcpu_free_alloc_info(ai); 2044 if (areas) 2045 memblock_free_early(__pa(areas), areas_size); 2046 return rc; 2047 } 2048 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2049 2050 #ifdef BUILD_PAGE_FIRST_CHUNK 2051 /** 2052 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2053 * @reserved_size: the size of reserved percpu area in bytes 2054 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2055 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2056 * @populate_pte_fn: function to populate pte 2057 * 2058 * This is a helper to ease setting up page-remapped first percpu 2059 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2060 * 2061 * This is the basic allocator. Static percpu area is allocated 2062 * page-by-page into vmalloc area. 2063 * 2064 * RETURNS: 2065 * 0 on success, -errno on failure. 2066 */ 2067 int __init pcpu_page_first_chunk(size_t reserved_size, 2068 pcpu_fc_alloc_fn_t alloc_fn, 2069 pcpu_fc_free_fn_t free_fn, 2070 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2071 { 2072 static struct vm_struct vm; 2073 struct pcpu_alloc_info *ai; 2074 char psize_str[16]; 2075 int unit_pages; 2076 size_t pages_size; 2077 struct page **pages; 2078 int unit, i, j, rc; 2079 2080 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2081 2082 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2083 if (IS_ERR(ai)) 2084 return PTR_ERR(ai); 2085 BUG_ON(ai->nr_groups != 1); 2086 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 2087 2088 unit_pages = ai->unit_size >> PAGE_SHIFT; 2089 2090 /* unaligned allocations can't be freed, round up to page size */ 2091 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2092 sizeof(pages[0])); 2093 pages = memblock_virt_alloc(pages_size, 0); 2094 2095 /* allocate pages */ 2096 j = 0; 2097 for (unit = 0; unit < num_possible_cpus(); unit++) 2098 for (i = 0; i < unit_pages; i++) { 2099 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2100 void *ptr; 2101 2102 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2103 if (!ptr) { 2104 pr_warn("failed to allocate %s page for cpu%u\n", 2105 psize_str, cpu); 2106 goto enomem; 2107 } 2108 /* kmemleak tracks the percpu allocations separately */ 2109 kmemleak_free(ptr); 2110 pages[j++] = virt_to_page(ptr); 2111 } 2112 2113 /* allocate vm area, map the pages and copy static data */ 2114 vm.flags = VM_ALLOC; 2115 vm.size = num_possible_cpus() * ai->unit_size; 2116 vm_area_register_early(&vm, PAGE_SIZE); 2117 2118 for (unit = 0; unit < num_possible_cpus(); unit++) { 2119 unsigned long unit_addr = 2120 (unsigned long)vm.addr + unit * ai->unit_size; 2121 2122 for (i = 0; i < unit_pages; i++) 2123 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2124 2125 /* pte already populated, the following shouldn't fail */ 2126 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2127 unit_pages); 2128 if (rc < 0) 2129 panic("failed to map percpu area, err=%d\n", rc); 2130 2131 /* 2132 * FIXME: Archs with virtual cache should flush local 2133 * cache for the linear mapping here - something 2134 * equivalent to flush_cache_vmap() on the local cpu. 2135 * flush_cache_vmap() can't be used as most supporting 2136 * data structures are not set up yet. 2137 */ 2138 2139 /* copy static data */ 2140 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2141 } 2142 2143 /* we're ready, commit */ 2144 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", 2145 unit_pages, psize_str, vm.addr, ai->static_size, 2146 ai->reserved_size, ai->dyn_size); 2147 2148 rc = pcpu_setup_first_chunk(ai, vm.addr); 2149 goto out_free_ar; 2150 2151 enomem: 2152 while (--j >= 0) 2153 free_fn(page_address(pages[j]), PAGE_SIZE); 2154 rc = -ENOMEM; 2155 out_free_ar: 2156 memblock_free_early(__pa(pages), pages_size); 2157 pcpu_free_alloc_info(ai); 2158 return rc; 2159 } 2160 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2161 2162 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2163 /* 2164 * Generic SMP percpu area setup. 2165 * 2166 * The embedding helper is used because its behavior closely resembles 2167 * the original non-dynamic generic percpu area setup. This is 2168 * important because many archs have addressing restrictions and might 2169 * fail if the percpu area is located far away from the previous 2170 * location. As an added bonus, in non-NUMA cases, embedding is 2171 * generally a good idea TLB-wise because percpu area can piggy back 2172 * on the physical linear memory mapping which uses large page 2173 * mappings on applicable archs. 2174 */ 2175 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2176 EXPORT_SYMBOL(__per_cpu_offset); 2177 2178 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2179 size_t align) 2180 { 2181 return memblock_virt_alloc_from_nopanic( 2182 size, align, __pa(MAX_DMA_ADDRESS)); 2183 } 2184 2185 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2186 { 2187 memblock_free_early(__pa(ptr), size); 2188 } 2189 2190 void __init setup_per_cpu_areas(void) 2191 { 2192 unsigned long delta; 2193 unsigned int cpu; 2194 int rc; 2195 2196 /* 2197 * Always reserve area for module percpu variables. That's 2198 * what the legacy allocator did. 2199 */ 2200 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2201 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2202 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2203 if (rc < 0) 2204 panic("Failed to initialize percpu areas."); 2205 2206 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2207 for_each_possible_cpu(cpu) 2208 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2209 } 2210 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2211 2212 #else /* CONFIG_SMP */ 2213 2214 /* 2215 * UP percpu area setup. 2216 * 2217 * UP always uses km-based percpu allocator with identity mapping. 2218 * Static percpu variables are indistinguishable from the usual static 2219 * variables and don't require any special preparation. 2220 */ 2221 void __init setup_per_cpu_areas(void) 2222 { 2223 const size_t unit_size = 2224 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2225 PERCPU_DYNAMIC_RESERVE)); 2226 struct pcpu_alloc_info *ai; 2227 void *fc; 2228 2229 ai = pcpu_alloc_alloc_info(1, 1); 2230 fc = memblock_virt_alloc_from_nopanic(unit_size, 2231 PAGE_SIZE, 2232 __pa(MAX_DMA_ADDRESS)); 2233 if (!ai || !fc) 2234 panic("Failed to allocate memory for percpu areas."); 2235 /* kmemleak tracks the percpu allocations separately */ 2236 kmemleak_free(fc); 2237 2238 ai->dyn_size = unit_size; 2239 ai->unit_size = unit_size; 2240 ai->atom_size = unit_size; 2241 ai->alloc_size = unit_size; 2242 ai->groups[0].nr_units = 1; 2243 ai->groups[0].cpu_map[0] = 0; 2244 2245 if (pcpu_setup_first_chunk(ai, fc) < 0) 2246 panic("Failed to initialize percpu areas."); 2247 } 2248 2249 #endif /* CONFIG_SMP */ 2250 2251 /* 2252 * First and reserved chunks are initialized with temporary allocation 2253 * map in initdata so that they can be used before slab is online. 2254 * This function is called after slab is brought up and replaces those 2255 * with properly allocated maps. 2256 */ 2257 void __init percpu_init_late(void) 2258 { 2259 struct pcpu_chunk *target_chunks[] = 2260 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 2261 struct pcpu_chunk *chunk; 2262 unsigned long flags; 2263 int i; 2264 2265 for (i = 0; (chunk = target_chunks[i]); i++) { 2266 int *map; 2267 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 2268 2269 BUILD_BUG_ON(size > PAGE_SIZE); 2270 2271 map = pcpu_mem_zalloc(size); 2272 BUG_ON(!map); 2273 2274 spin_lock_irqsave(&pcpu_lock, flags); 2275 memcpy(map, chunk->map, size); 2276 chunk->map = map; 2277 spin_unlock_irqrestore(&pcpu_lock, flags); 2278 } 2279 } 2280 2281 /* 2282 * Percpu allocator is initialized early during boot when neither slab or 2283 * workqueue is available. Plug async management until everything is up 2284 * and running. 2285 */ 2286 static int __init percpu_enable_async(void) 2287 { 2288 pcpu_async_enabled = true; 2289 return 0; 2290 } 2291 subsys_initcall(percpu_enable_async); 2292