1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT 41 * flag should be passed. All memcg-aware allocations are sharing one set 42 * of chunks and all unaccounted allocations and allocations performed 43 * by processes belonging to the root memory cgroup are using the second set. 44 * 45 * The allocator tries to allocate from the fullest chunk first. Each chunk 46 * is managed by a bitmap with metadata blocks. The allocation map is updated 47 * on every allocation and free to reflect the current state while the boundary 48 * map is only updated on allocation. Each metadata block contains 49 * information to help mitigate the need to iterate over large portions 50 * of the bitmap. The reverse mapping from page to chunk is stored in 51 * the page's index. Lastly, units are lazily backed and grow in unison. 52 * 53 * There is a unique conversion that goes on here between bytes and bits. 54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 55 * tracks the number of pages it is responsible for in nr_pages. Helper 56 * functions are used to convert from between the bytes, bits, and blocks. 57 * All hints are managed in bits unless explicitly stated. 58 * 59 * To use this allocator, arch code should do the following: 60 * 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 62 * regular address to percpu pointer and back if they need to be 63 * different from the default 64 * 65 * - use pcpu_setup_first_chunk() during percpu area initialization to 66 * setup the first chunk containing the kernel static percpu area 67 */ 68 69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 70 71 #include <linux/bitmap.h> 72 #include <linux/cpumask.h> 73 #include <linux/memblock.h> 74 #include <linux/err.h> 75 #include <linux/list.h> 76 #include <linux/log2.h> 77 #include <linux/mm.h> 78 #include <linux/module.h> 79 #include <linux/mutex.h> 80 #include <linux/percpu.h> 81 #include <linux/pfn.h> 82 #include <linux/slab.h> 83 #include <linux/spinlock.h> 84 #include <linux/vmalloc.h> 85 #include <linux/workqueue.h> 86 #include <linux/kmemleak.h> 87 #include <linux/sched.h> 88 #include <linux/sched/mm.h> 89 #include <linux/memcontrol.h> 90 91 #include <asm/cacheflush.h> 92 #include <asm/sections.h> 93 #include <asm/tlbflush.h> 94 #include <asm/io.h> 95 96 #define CREATE_TRACE_POINTS 97 #include <trace/events/percpu.h> 98 99 #include "percpu-internal.h" 100 101 /* 102 * The slots are sorted by the size of the biggest continuous free area. 103 * 1-31 bytes share the same slot. 104 */ 105 #define PCPU_SLOT_BASE_SHIFT 5 106 /* chunks in slots below this are subject to being sidelined on failed alloc */ 107 #define PCPU_SLOT_FAIL_THRESHOLD 3 108 109 #define PCPU_EMPTY_POP_PAGES_LOW 2 110 #define PCPU_EMPTY_POP_PAGES_HIGH 4 111 112 #ifdef CONFIG_SMP 113 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 114 #ifndef __addr_to_pcpu_ptr 115 #define __addr_to_pcpu_ptr(addr) \ 116 (void __percpu *)((unsigned long)(addr) - \ 117 (unsigned long)pcpu_base_addr + \ 118 (unsigned long)__per_cpu_start) 119 #endif 120 #ifndef __pcpu_ptr_to_addr 121 #define __pcpu_ptr_to_addr(ptr) \ 122 (void __force *)((unsigned long)(ptr) + \ 123 (unsigned long)pcpu_base_addr - \ 124 (unsigned long)__per_cpu_start) 125 #endif 126 #else /* CONFIG_SMP */ 127 /* on UP, it's always identity mapped */ 128 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 129 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 130 #endif /* CONFIG_SMP */ 131 132 static int pcpu_unit_pages __ro_after_init; 133 static int pcpu_unit_size __ro_after_init; 134 static int pcpu_nr_units __ro_after_init; 135 static int pcpu_atom_size __ro_after_init; 136 int pcpu_nr_slots __ro_after_init; 137 static int pcpu_free_slot __ro_after_init; 138 int pcpu_sidelined_slot __ro_after_init; 139 int pcpu_to_depopulate_slot __ro_after_init; 140 static size_t pcpu_chunk_struct_size __ro_after_init; 141 142 /* cpus with the lowest and highest unit addresses */ 143 static unsigned int pcpu_low_unit_cpu __ro_after_init; 144 static unsigned int pcpu_high_unit_cpu __ro_after_init; 145 146 /* the address of the first chunk which starts with the kernel static area */ 147 void *pcpu_base_addr __ro_after_init; 148 149 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 150 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 151 152 /* group information, used for vm allocation */ 153 static int pcpu_nr_groups __ro_after_init; 154 static const unsigned long *pcpu_group_offsets __ro_after_init; 155 static const size_t *pcpu_group_sizes __ro_after_init; 156 157 /* 158 * The first chunk which always exists. Note that unlike other 159 * chunks, this one can be allocated and mapped in several different 160 * ways and thus often doesn't live in the vmalloc area. 161 */ 162 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 163 164 /* 165 * Optional reserved chunk. This chunk reserves part of the first 166 * chunk and serves it for reserved allocations. When the reserved 167 * region doesn't exist, the following variable is NULL. 168 */ 169 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 170 171 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 172 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 173 174 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ 175 176 /* 177 * The number of empty populated pages, protected by pcpu_lock. 178 * The reserved chunk doesn't contribute to the count. 179 */ 180 int pcpu_nr_empty_pop_pages; 181 182 /* 183 * The number of populated pages in use by the allocator, protected by 184 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 185 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 186 * and increments/decrements this count by 1). 187 */ 188 static unsigned long pcpu_nr_populated; 189 190 /* 191 * Balance work is used to populate or destroy chunks asynchronously. We 192 * try to keep the number of populated free pages between 193 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 194 * empty chunk. 195 */ 196 static void pcpu_balance_workfn(struct work_struct *work); 197 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 198 static bool pcpu_async_enabled __read_mostly; 199 static bool pcpu_atomic_alloc_failed; 200 201 static void pcpu_schedule_balance_work(void) 202 { 203 if (pcpu_async_enabled) 204 schedule_work(&pcpu_balance_work); 205 } 206 207 /** 208 * pcpu_addr_in_chunk - check if the address is served from this chunk 209 * @chunk: chunk of interest 210 * @addr: percpu address 211 * 212 * RETURNS: 213 * True if the address is served from this chunk. 214 */ 215 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 216 { 217 void *start_addr, *end_addr; 218 219 if (!chunk) 220 return false; 221 222 start_addr = chunk->base_addr + chunk->start_offset; 223 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 224 chunk->end_offset; 225 226 return addr >= start_addr && addr < end_addr; 227 } 228 229 static int __pcpu_size_to_slot(int size) 230 { 231 int highbit = fls(size); /* size is in bytes */ 232 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 233 } 234 235 static int pcpu_size_to_slot(int size) 236 { 237 if (size == pcpu_unit_size) 238 return pcpu_free_slot; 239 return __pcpu_size_to_slot(size); 240 } 241 242 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 243 { 244 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 245 246 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 247 chunk_md->contig_hint == 0) 248 return 0; 249 250 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 251 } 252 253 /* set the pointer to a chunk in a page struct */ 254 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 255 { 256 page->index = (unsigned long)pcpu; 257 } 258 259 /* obtain pointer to a chunk from a page struct */ 260 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 261 { 262 return (struct pcpu_chunk *)page->index; 263 } 264 265 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 266 { 267 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 268 } 269 270 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 271 { 272 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 273 } 274 275 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 276 unsigned int cpu, int page_idx) 277 { 278 return (unsigned long)chunk->base_addr + 279 pcpu_unit_page_offset(cpu, page_idx); 280 } 281 282 /* 283 * The following are helper functions to help access bitmaps and convert 284 * between bitmap offsets to address offsets. 285 */ 286 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 287 { 288 return chunk->alloc_map + 289 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 290 } 291 292 static unsigned long pcpu_off_to_block_index(int off) 293 { 294 return off / PCPU_BITMAP_BLOCK_BITS; 295 } 296 297 static unsigned long pcpu_off_to_block_off(int off) 298 { 299 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 300 } 301 302 static unsigned long pcpu_block_off_to_off(int index, int off) 303 { 304 return index * PCPU_BITMAP_BLOCK_BITS + off; 305 } 306 307 /** 308 * pcpu_check_block_hint - check against the contig hint 309 * @block: block of interest 310 * @bits: size of allocation 311 * @align: alignment of area (max PAGE_SIZE) 312 * 313 * Check to see if the allocation can fit in the block's contig hint. 314 * Note, a chunk uses the same hints as a block so this can also check against 315 * the chunk's contig hint. 316 */ 317 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, 318 size_t align) 319 { 320 int bit_off = ALIGN(block->contig_hint_start, align) - 321 block->contig_hint_start; 322 323 return bit_off + bits <= block->contig_hint; 324 } 325 326 /* 327 * pcpu_next_hint - determine which hint to use 328 * @block: block of interest 329 * @alloc_bits: size of allocation 330 * 331 * This determines if we should scan based on the scan_hint or first_free. 332 * In general, we want to scan from first_free to fulfill allocations by 333 * first fit. However, if we know a scan_hint at position scan_hint_start 334 * cannot fulfill an allocation, we can begin scanning from there knowing 335 * the contig_hint will be our fallback. 336 */ 337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 338 { 339 /* 340 * The three conditions below determine if we can skip past the 341 * scan_hint. First, does the scan hint exist. Second, is the 342 * contig_hint after the scan_hint (possibly not true iff 343 * contig_hint == scan_hint). Third, is the allocation request 344 * larger than the scan_hint. 345 */ 346 if (block->scan_hint && 347 block->contig_hint_start > block->scan_hint_start && 348 alloc_bits > block->scan_hint) 349 return block->scan_hint_start + block->scan_hint; 350 351 return block->first_free; 352 } 353 354 /** 355 * pcpu_next_md_free_region - finds the next hint free area 356 * @chunk: chunk of interest 357 * @bit_off: chunk offset 358 * @bits: size of free area 359 * 360 * Helper function for pcpu_for_each_md_free_region. It checks 361 * block->contig_hint and performs aggregation across blocks to find the 362 * next hint. It modifies bit_off and bits in-place to be consumed in the 363 * loop. 364 */ 365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 366 int *bits) 367 { 368 int i = pcpu_off_to_block_index(*bit_off); 369 int block_off = pcpu_off_to_block_off(*bit_off); 370 struct pcpu_block_md *block; 371 372 *bits = 0; 373 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 374 block++, i++) { 375 /* handles contig area across blocks */ 376 if (*bits) { 377 *bits += block->left_free; 378 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 379 continue; 380 return; 381 } 382 383 /* 384 * This checks three things. First is there a contig_hint to 385 * check. Second, have we checked this hint before by 386 * comparing the block_off. Third, is this the same as the 387 * right contig hint. In the last case, it spills over into 388 * the next block and should be handled by the contig area 389 * across blocks code. 390 */ 391 *bits = block->contig_hint; 392 if (*bits && block->contig_hint_start >= block_off && 393 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 394 *bit_off = pcpu_block_off_to_off(i, 395 block->contig_hint_start); 396 return; 397 } 398 /* reset to satisfy the second predicate above */ 399 block_off = 0; 400 401 *bits = block->right_free; 402 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 403 } 404 } 405 406 /** 407 * pcpu_next_fit_region - finds fit areas for a given allocation request 408 * @chunk: chunk of interest 409 * @alloc_bits: size of allocation 410 * @align: alignment of area (max PAGE_SIZE) 411 * @bit_off: chunk offset 412 * @bits: size of free area 413 * 414 * Finds the next free region that is viable for use with a given size and 415 * alignment. This only returns if there is a valid area to be used for this 416 * allocation. block->first_free is returned if the allocation request fits 417 * within the block to see if the request can be fulfilled prior to the contig 418 * hint. 419 */ 420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 421 int align, int *bit_off, int *bits) 422 { 423 int i = pcpu_off_to_block_index(*bit_off); 424 int block_off = pcpu_off_to_block_off(*bit_off); 425 struct pcpu_block_md *block; 426 427 *bits = 0; 428 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 429 block++, i++) { 430 /* handles contig area across blocks */ 431 if (*bits) { 432 *bits += block->left_free; 433 if (*bits >= alloc_bits) 434 return; 435 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 436 continue; 437 } 438 439 /* check block->contig_hint */ 440 *bits = ALIGN(block->contig_hint_start, align) - 441 block->contig_hint_start; 442 /* 443 * This uses the block offset to determine if this has been 444 * checked in the prior iteration. 445 */ 446 if (block->contig_hint && 447 block->contig_hint_start >= block_off && 448 block->contig_hint >= *bits + alloc_bits) { 449 int start = pcpu_next_hint(block, alloc_bits); 450 451 *bits += alloc_bits + block->contig_hint_start - 452 start; 453 *bit_off = pcpu_block_off_to_off(i, start); 454 return; 455 } 456 /* reset to satisfy the second predicate above */ 457 block_off = 0; 458 459 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 460 align); 461 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 462 *bit_off = pcpu_block_off_to_off(i, *bit_off); 463 if (*bits >= alloc_bits) 464 return; 465 } 466 467 /* no valid offsets were found - fail condition */ 468 *bit_off = pcpu_chunk_map_bits(chunk); 469 } 470 471 /* 472 * Metadata free area iterators. These perform aggregation of free areas 473 * based on the metadata blocks and return the offset @bit_off and size in 474 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 475 * a fit is found for the allocation request. 476 */ 477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 478 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 479 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 480 (bit_off) += (bits) + 1, \ 481 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 482 483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 484 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 485 &(bits)); \ 486 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 487 (bit_off) += (bits), \ 488 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 489 &(bits))) 490 491 /** 492 * pcpu_mem_zalloc - allocate memory 493 * @size: bytes to allocate 494 * @gfp: allocation flags 495 * 496 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 497 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 498 * This is to facilitate passing through whitelisted flags. The 499 * returned memory is always zeroed. 500 * 501 * RETURNS: 502 * Pointer to the allocated area on success, NULL on failure. 503 */ 504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 505 { 506 if (WARN_ON_ONCE(!slab_is_available())) 507 return NULL; 508 509 if (size <= PAGE_SIZE) 510 return kzalloc(size, gfp); 511 else 512 return __vmalloc(size, gfp | __GFP_ZERO); 513 } 514 515 /** 516 * pcpu_mem_free - free memory 517 * @ptr: memory to free 518 * 519 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 520 */ 521 static void pcpu_mem_free(void *ptr) 522 { 523 kvfree(ptr); 524 } 525 526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 527 bool move_front) 528 { 529 if (chunk != pcpu_reserved_chunk) { 530 if (move_front) 531 list_move(&chunk->list, &pcpu_chunk_lists[slot]); 532 else 533 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); 534 } 535 } 536 537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 538 { 539 __pcpu_chunk_move(chunk, slot, true); 540 } 541 542 /** 543 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 544 * @chunk: chunk of interest 545 * @oslot: the previous slot it was on 546 * 547 * This function is called after an allocation or free changed @chunk. 548 * New slot according to the changed state is determined and @chunk is 549 * moved to the slot. Note that the reserved chunk is never put on 550 * chunk slots. 551 * 552 * CONTEXT: 553 * pcpu_lock. 554 */ 555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 556 { 557 int nslot = pcpu_chunk_slot(chunk); 558 559 /* leave isolated chunks in-place */ 560 if (chunk->isolated) 561 return; 562 563 if (oslot != nslot) 564 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 565 } 566 567 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk) 568 { 569 lockdep_assert_held(&pcpu_lock); 570 571 if (!chunk->isolated) { 572 chunk->isolated = true; 573 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; 574 } 575 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); 576 } 577 578 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) 579 { 580 lockdep_assert_held(&pcpu_lock); 581 582 if (chunk->isolated) { 583 chunk->isolated = false; 584 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; 585 pcpu_chunk_relocate(chunk, -1); 586 } 587 } 588 589 /* 590 * pcpu_update_empty_pages - update empty page counters 591 * @chunk: chunk of interest 592 * @nr: nr of empty pages 593 * 594 * This is used to keep track of the empty pages now based on the premise 595 * a md_block covers a page. The hint update functions recognize if a block 596 * is made full or broken to calculate deltas for keeping track of free pages. 597 */ 598 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 599 { 600 chunk->nr_empty_pop_pages += nr; 601 if (chunk != pcpu_reserved_chunk && !chunk->isolated) 602 pcpu_nr_empty_pop_pages += nr; 603 } 604 605 /* 606 * pcpu_region_overlap - determines if two regions overlap 607 * @a: start of first region, inclusive 608 * @b: end of first region, exclusive 609 * @x: start of second region, inclusive 610 * @y: end of second region, exclusive 611 * 612 * This is used to determine if the hint region [a, b) overlaps with the 613 * allocated region [x, y). 614 */ 615 static inline bool pcpu_region_overlap(int a, int b, int x, int y) 616 { 617 return (a < y) && (x < b); 618 } 619 620 /** 621 * pcpu_block_update - updates a block given a free area 622 * @block: block of interest 623 * @start: start offset in block 624 * @end: end offset in block 625 * 626 * Updates a block given a known free area. The region [start, end) is 627 * expected to be the entirety of the free area within a block. Chooses 628 * the best starting offset if the contig hints are equal. 629 */ 630 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 631 { 632 int contig = end - start; 633 634 block->first_free = min(block->first_free, start); 635 if (start == 0) 636 block->left_free = contig; 637 638 if (end == block->nr_bits) 639 block->right_free = contig; 640 641 if (contig > block->contig_hint) { 642 /* promote the old contig_hint to be the new scan_hint */ 643 if (start > block->contig_hint_start) { 644 if (block->contig_hint > block->scan_hint) { 645 block->scan_hint_start = 646 block->contig_hint_start; 647 block->scan_hint = block->contig_hint; 648 } else if (start < block->scan_hint_start) { 649 /* 650 * The old contig_hint == scan_hint. But, the 651 * new contig is larger so hold the invariant 652 * scan_hint_start < contig_hint_start. 653 */ 654 block->scan_hint = 0; 655 } 656 } else { 657 block->scan_hint = 0; 658 } 659 block->contig_hint_start = start; 660 block->contig_hint = contig; 661 } else if (contig == block->contig_hint) { 662 if (block->contig_hint_start && 663 (!start || 664 __ffs(start) > __ffs(block->contig_hint_start))) { 665 /* start has a better alignment so use it */ 666 block->contig_hint_start = start; 667 if (start < block->scan_hint_start && 668 block->contig_hint > block->scan_hint) 669 block->scan_hint = 0; 670 } else if (start > block->scan_hint_start || 671 block->contig_hint > block->scan_hint) { 672 /* 673 * Knowing contig == contig_hint, update the scan_hint 674 * if it is farther than or larger than the current 675 * scan_hint. 676 */ 677 block->scan_hint_start = start; 678 block->scan_hint = contig; 679 } 680 } else { 681 /* 682 * The region is smaller than the contig_hint. So only update 683 * the scan_hint if it is larger than or equal and farther than 684 * the current scan_hint. 685 */ 686 if ((start < block->contig_hint_start && 687 (contig > block->scan_hint || 688 (contig == block->scan_hint && 689 start > block->scan_hint_start)))) { 690 block->scan_hint_start = start; 691 block->scan_hint = contig; 692 } 693 } 694 } 695 696 /* 697 * pcpu_block_update_scan - update a block given a free area from a scan 698 * @chunk: chunk of interest 699 * @bit_off: chunk offset 700 * @bits: size of free area 701 * 702 * Finding the final allocation spot first goes through pcpu_find_block_fit() 703 * to find a block that can hold the allocation and then pcpu_alloc_area() 704 * where a scan is used. When allocations require specific alignments, 705 * we can inadvertently create holes which will not be seen in the alloc 706 * or free paths. 707 * 708 * This takes a given free area hole and updates a block as it may change the 709 * scan_hint. We need to scan backwards to ensure we don't miss free bits 710 * from alignment. 711 */ 712 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 713 int bits) 714 { 715 int s_off = pcpu_off_to_block_off(bit_off); 716 int e_off = s_off + bits; 717 int s_index, l_bit; 718 struct pcpu_block_md *block; 719 720 if (e_off > PCPU_BITMAP_BLOCK_BITS) 721 return; 722 723 s_index = pcpu_off_to_block_index(bit_off); 724 block = chunk->md_blocks + s_index; 725 726 /* scan backwards in case of alignment skipping free bits */ 727 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 728 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 729 730 pcpu_block_update(block, s_off, e_off); 731 } 732 733 /** 734 * pcpu_chunk_refresh_hint - updates metadata about a chunk 735 * @chunk: chunk of interest 736 * @full_scan: if we should scan from the beginning 737 * 738 * Iterates over the metadata blocks to find the largest contig area. 739 * A full scan can be avoided on the allocation path as this is triggered 740 * if we broke the contig_hint. In doing so, the scan_hint will be before 741 * the contig_hint or after if the scan_hint == contig_hint. This cannot 742 * be prevented on freeing as we want to find the largest area possibly 743 * spanning blocks. 744 */ 745 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 746 { 747 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 748 int bit_off, bits; 749 750 /* promote scan_hint to contig_hint */ 751 if (!full_scan && chunk_md->scan_hint) { 752 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 753 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 754 chunk_md->contig_hint = chunk_md->scan_hint; 755 chunk_md->scan_hint = 0; 756 } else { 757 bit_off = chunk_md->first_free; 758 chunk_md->contig_hint = 0; 759 } 760 761 bits = 0; 762 pcpu_for_each_md_free_region(chunk, bit_off, bits) 763 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 764 } 765 766 /** 767 * pcpu_block_refresh_hint 768 * @chunk: chunk of interest 769 * @index: index of the metadata block 770 * 771 * Scans over the block beginning at first_free and updates the block 772 * metadata accordingly. 773 */ 774 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 775 { 776 struct pcpu_block_md *block = chunk->md_blocks + index; 777 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 778 unsigned int start, end; /* region start, region end */ 779 780 /* promote scan_hint to contig_hint */ 781 if (block->scan_hint) { 782 start = block->scan_hint_start + block->scan_hint; 783 block->contig_hint_start = block->scan_hint_start; 784 block->contig_hint = block->scan_hint; 785 block->scan_hint = 0; 786 } else { 787 start = block->first_free; 788 block->contig_hint = 0; 789 } 790 791 block->right_free = 0; 792 793 /* iterate over free areas and update the contig hints */ 794 for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS) 795 pcpu_block_update(block, start, end); 796 } 797 798 /** 799 * pcpu_block_update_hint_alloc - update hint on allocation path 800 * @chunk: chunk of interest 801 * @bit_off: chunk offset 802 * @bits: size of request 803 * 804 * Updates metadata for the allocation path. The metadata only has to be 805 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 806 * scans are required if the block's contig hint is broken. 807 */ 808 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 809 int bits) 810 { 811 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 812 int nr_empty_pages = 0; 813 struct pcpu_block_md *s_block, *e_block, *block; 814 int s_index, e_index; /* block indexes of the freed allocation */ 815 int s_off, e_off; /* block offsets of the freed allocation */ 816 817 /* 818 * Calculate per block offsets. 819 * The calculation uses an inclusive range, but the resulting offsets 820 * are [start, end). e_index always points to the last block in the 821 * range. 822 */ 823 s_index = pcpu_off_to_block_index(bit_off); 824 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 825 s_off = pcpu_off_to_block_off(bit_off); 826 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 827 828 s_block = chunk->md_blocks + s_index; 829 e_block = chunk->md_blocks + e_index; 830 831 /* 832 * Update s_block. 833 */ 834 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 835 nr_empty_pages++; 836 837 /* 838 * block->first_free must be updated if the allocation takes its place. 839 * If the allocation breaks the contig_hint, a scan is required to 840 * restore this hint. 841 */ 842 if (s_off == s_block->first_free) 843 s_block->first_free = find_next_zero_bit( 844 pcpu_index_alloc_map(chunk, s_index), 845 PCPU_BITMAP_BLOCK_BITS, 846 s_off + bits); 847 848 if (pcpu_region_overlap(s_block->scan_hint_start, 849 s_block->scan_hint_start + s_block->scan_hint, 850 s_off, 851 s_off + bits)) 852 s_block->scan_hint = 0; 853 854 if (pcpu_region_overlap(s_block->contig_hint_start, 855 s_block->contig_hint_start + 856 s_block->contig_hint, 857 s_off, 858 s_off + bits)) { 859 /* block contig hint is broken - scan to fix it */ 860 if (!s_off) 861 s_block->left_free = 0; 862 pcpu_block_refresh_hint(chunk, s_index); 863 } else { 864 /* update left and right contig manually */ 865 s_block->left_free = min(s_block->left_free, s_off); 866 if (s_index == e_index) 867 s_block->right_free = min_t(int, s_block->right_free, 868 PCPU_BITMAP_BLOCK_BITS - e_off); 869 else 870 s_block->right_free = 0; 871 } 872 873 /* 874 * Update e_block. 875 */ 876 if (s_index != e_index) { 877 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 878 nr_empty_pages++; 879 880 /* 881 * When the allocation is across blocks, the end is along 882 * the left part of the e_block. 883 */ 884 e_block->first_free = find_next_zero_bit( 885 pcpu_index_alloc_map(chunk, e_index), 886 PCPU_BITMAP_BLOCK_BITS, e_off); 887 888 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 889 /* reset the block */ 890 e_block++; 891 } else { 892 if (e_off > e_block->scan_hint_start) 893 e_block->scan_hint = 0; 894 895 e_block->left_free = 0; 896 if (e_off > e_block->contig_hint_start) { 897 /* contig hint is broken - scan to fix it */ 898 pcpu_block_refresh_hint(chunk, e_index); 899 } else { 900 e_block->right_free = 901 min_t(int, e_block->right_free, 902 PCPU_BITMAP_BLOCK_BITS - e_off); 903 } 904 } 905 906 /* update in-between md_blocks */ 907 nr_empty_pages += (e_index - s_index - 1); 908 for (block = s_block + 1; block < e_block; block++) { 909 block->scan_hint = 0; 910 block->contig_hint = 0; 911 block->left_free = 0; 912 block->right_free = 0; 913 } 914 } 915 916 /* 917 * If the allocation is not atomic, some blocks may not be 918 * populated with pages, while we account it here. The number 919 * of pages will be added back with pcpu_chunk_populated() 920 * when populating pages. 921 */ 922 if (nr_empty_pages) 923 pcpu_update_empty_pages(chunk, -nr_empty_pages); 924 925 if (pcpu_region_overlap(chunk_md->scan_hint_start, 926 chunk_md->scan_hint_start + 927 chunk_md->scan_hint, 928 bit_off, 929 bit_off + bits)) 930 chunk_md->scan_hint = 0; 931 932 /* 933 * The only time a full chunk scan is required is if the chunk 934 * contig hint is broken. Otherwise, it means a smaller space 935 * was used and therefore the chunk contig hint is still correct. 936 */ 937 if (pcpu_region_overlap(chunk_md->contig_hint_start, 938 chunk_md->contig_hint_start + 939 chunk_md->contig_hint, 940 bit_off, 941 bit_off + bits)) 942 pcpu_chunk_refresh_hint(chunk, false); 943 } 944 945 /** 946 * pcpu_block_update_hint_free - updates the block hints on the free path 947 * @chunk: chunk of interest 948 * @bit_off: chunk offset 949 * @bits: size of request 950 * 951 * Updates metadata for the allocation path. This avoids a blind block 952 * refresh by making use of the block contig hints. If this fails, it scans 953 * forward and backward to determine the extent of the free area. This is 954 * capped at the boundary of blocks. 955 * 956 * A chunk update is triggered if a page becomes free, a block becomes free, 957 * or the free spans across blocks. This tradeoff is to minimize iterating 958 * over the block metadata to update chunk_md->contig_hint. 959 * chunk_md->contig_hint may be off by up to a page, but it will never be more 960 * than the available space. If the contig hint is contained in one block, it 961 * will be accurate. 962 */ 963 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 964 int bits) 965 { 966 int nr_empty_pages = 0; 967 struct pcpu_block_md *s_block, *e_block, *block; 968 int s_index, e_index; /* block indexes of the freed allocation */ 969 int s_off, e_off; /* block offsets of the freed allocation */ 970 int start, end; /* start and end of the whole free area */ 971 972 /* 973 * Calculate per block offsets. 974 * The calculation uses an inclusive range, but the resulting offsets 975 * are [start, end). e_index always points to the last block in the 976 * range. 977 */ 978 s_index = pcpu_off_to_block_index(bit_off); 979 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 980 s_off = pcpu_off_to_block_off(bit_off); 981 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 982 983 s_block = chunk->md_blocks + s_index; 984 e_block = chunk->md_blocks + e_index; 985 986 /* 987 * Check if the freed area aligns with the block->contig_hint. 988 * If it does, then the scan to find the beginning/end of the 989 * larger free area can be avoided. 990 * 991 * start and end refer to beginning and end of the free area 992 * within each their respective blocks. This is not necessarily 993 * the entire free area as it may span blocks past the beginning 994 * or end of the block. 995 */ 996 start = s_off; 997 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 998 start = s_block->contig_hint_start; 999 } else { 1000 /* 1001 * Scan backwards to find the extent of the free area. 1002 * find_last_bit returns the starting bit, so if the start bit 1003 * is returned, that means there was no last bit and the 1004 * remainder of the chunk is free. 1005 */ 1006 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 1007 start); 1008 start = (start == l_bit) ? 0 : l_bit + 1; 1009 } 1010 1011 end = e_off; 1012 if (e_off == e_block->contig_hint_start) 1013 end = e_block->contig_hint_start + e_block->contig_hint; 1014 else 1015 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 1016 PCPU_BITMAP_BLOCK_BITS, end); 1017 1018 /* update s_block */ 1019 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 1020 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 1021 nr_empty_pages++; 1022 pcpu_block_update(s_block, start, e_off); 1023 1024 /* freeing in the same block */ 1025 if (s_index != e_index) { 1026 /* update e_block */ 1027 if (end == PCPU_BITMAP_BLOCK_BITS) 1028 nr_empty_pages++; 1029 pcpu_block_update(e_block, 0, end); 1030 1031 /* reset md_blocks in the middle */ 1032 nr_empty_pages += (e_index - s_index - 1); 1033 for (block = s_block + 1; block < e_block; block++) { 1034 block->first_free = 0; 1035 block->scan_hint = 0; 1036 block->contig_hint_start = 0; 1037 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1038 block->left_free = PCPU_BITMAP_BLOCK_BITS; 1039 block->right_free = PCPU_BITMAP_BLOCK_BITS; 1040 } 1041 } 1042 1043 if (nr_empty_pages) 1044 pcpu_update_empty_pages(chunk, nr_empty_pages); 1045 1046 /* 1047 * Refresh chunk metadata when the free makes a block free or spans 1048 * across blocks. The contig_hint may be off by up to a page, but if 1049 * the contig_hint is contained in a block, it will be accurate with 1050 * the else condition below. 1051 */ 1052 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 1053 pcpu_chunk_refresh_hint(chunk, true); 1054 else 1055 pcpu_block_update(&chunk->chunk_md, 1056 pcpu_block_off_to_off(s_index, start), 1057 end); 1058 } 1059 1060 /** 1061 * pcpu_is_populated - determines if the region is populated 1062 * @chunk: chunk of interest 1063 * @bit_off: chunk offset 1064 * @bits: size of area 1065 * @next_off: return value for the next offset to start searching 1066 * 1067 * For atomic allocations, check if the backing pages are populated. 1068 * 1069 * RETURNS: 1070 * Bool if the backing pages are populated. 1071 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1072 */ 1073 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1074 int *next_off) 1075 { 1076 unsigned int start, end; 1077 1078 start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1079 end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1080 1081 start = find_next_zero_bit(chunk->populated, end, start); 1082 if (start >= end) 1083 return true; 1084 1085 end = find_next_bit(chunk->populated, end, start + 1); 1086 1087 *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1088 return false; 1089 } 1090 1091 /** 1092 * pcpu_find_block_fit - finds the block index to start searching 1093 * @chunk: chunk of interest 1094 * @alloc_bits: size of request in allocation units 1095 * @align: alignment of area (max PAGE_SIZE bytes) 1096 * @pop_only: use populated regions only 1097 * 1098 * Given a chunk and an allocation spec, find the offset to begin searching 1099 * for a free region. This iterates over the bitmap metadata blocks to 1100 * find an offset that will be guaranteed to fit the requirements. It is 1101 * not quite first fit as if the allocation does not fit in the contig hint 1102 * of a block or chunk, it is skipped. This errs on the side of caution 1103 * to prevent excess iteration. Poor alignment can cause the allocator to 1104 * skip over blocks and chunks that have valid free areas. 1105 * 1106 * RETURNS: 1107 * The offset in the bitmap to begin searching. 1108 * -1 if no offset is found. 1109 */ 1110 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1111 size_t align, bool pop_only) 1112 { 1113 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1114 int bit_off, bits, next_off; 1115 1116 /* 1117 * This is an optimization to prevent scanning by assuming if the 1118 * allocation cannot fit in the global hint, there is memory pressure 1119 * and creating a new chunk would happen soon. 1120 */ 1121 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) 1122 return -1; 1123 1124 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1125 bits = 0; 1126 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1127 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1128 &next_off)) 1129 break; 1130 1131 bit_off = next_off; 1132 bits = 0; 1133 } 1134 1135 if (bit_off == pcpu_chunk_map_bits(chunk)) 1136 return -1; 1137 1138 return bit_off; 1139 } 1140 1141 /* 1142 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1143 * @map: the address to base the search on 1144 * @size: the bitmap size in bits 1145 * @start: the bitnumber to start searching at 1146 * @nr: the number of zeroed bits we're looking for 1147 * @align_mask: alignment mask for zero area 1148 * @largest_off: offset of the largest area skipped 1149 * @largest_bits: size of the largest area skipped 1150 * 1151 * The @align_mask should be one less than a power of 2. 1152 * 1153 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1154 * the largest area that was skipped. This is imperfect, but in general is 1155 * good enough. The largest remembered region is the largest failed region 1156 * seen. This does not include anything we possibly skipped due to alignment. 1157 * pcpu_block_update_scan() does scan backwards to try and recover what was 1158 * lost to alignment. While this can cause scanning to miss earlier possible 1159 * free areas, smaller allocations will eventually fill those holes. 1160 */ 1161 static unsigned long pcpu_find_zero_area(unsigned long *map, 1162 unsigned long size, 1163 unsigned long start, 1164 unsigned long nr, 1165 unsigned long align_mask, 1166 unsigned long *largest_off, 1167 unsigned long *largest_bits) 1168 { 1169 unsigned long index, end, i, area_off, area_bits; 1170 again: 1171 index = find_next_zero_bit(map, size, start); 1172 1173 /* Align allocation */ 1174 index = __ALIGN_MASK(index, align_mask); 1175 area_off = index; 1176 1177 end = index + nr; 1178 if (end > size) 1179 return end; 1180 i = find_next_bit(map, end, index); 1181 if (i < end) { 1182 area_bits = i - area_off; 1183 /* remember largest unused area with best alignment */ 1184 if (area_bits > *largest_bits || 1185 (area_bits == *largest_bits && *largest_off && 1186 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1187 *largest_off = area_off; 1188 *largest_bits = area_bits; 1189 } 1190 1191 start = i + 1; 1192 goto again; 1193 } 1194 return index; 1195 } 1196 1197 /** 1198 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1199 * @chunk: chunk of interest 1200 * @alloc_bits: size of request in allocation units 1201 * @align: alignment of area (max PAGE_SIZE) 1202 * @start: bit_off to start searching 1203 * 1204 * This function takes in a @start offset to begin searching to fit an 1205 * allocation of @alloc_bits with alignment @align. It needs to scan 1206 * the allocation map because if it fits within the block's contig hint, 1207 * @start will be block->first_free. This is an attempt to fill the 1208 * allocation prior to breaking the contig hint. The allocation and 1209 * boundary maps are updated accordingly if it confirms a valid 1210 * free area. 1211 * 1212 * RETURNS: 1213 * Allocated addr offset in @chunk on success. 1214 * -1 if no matching area is found. 1215 */ 1216 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1217 size_t align, int start) 1218 { 1219 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1220 size_t align_mask = (align) ? (align - 1) : 0; 1221 unsigned long area_off = 0, area_bits = 0; 1222 int bit_off, end, oslot; 1223 1224 lockdep_assert_held(&pcpu_lock); 1225 1226 oslot = pcpu_chunk_slot(chunk); 1227 1228 /* 1229 * Search to find a fit. 1230 */ 1231 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1232 pcpu_chunk_map_bits(chunk)); 1233 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1234 align_mask, &area_off, &area_bits); 1235 if (bit_off >= end) 1236 return -1; 1237 1238 if (area_bits) 1239 pcpu_block_update_scan(chunk, area_off, area_bits); 1240 1241 /* update alloc map */ 1242 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1243 1244 /* update boundary map */ 1245 set_bit(bit_off, chunk->bound_map); 1246 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1247 set_bit(bit_off + alloc_bits, chunk->bound_map); 1248 1249 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1250 1251 /* update first free bit */ 1252 if (bit_off == chunk_md->first_free) 1253 chunk_md->first_free = find_next_zero_bit( 1254 chunk->alloc_map, 1255 pcpu_chunk_map_bits(chunk), 1256 bit_off + alloc_bits); 1257 1258 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1259 1260 pcpu_chunk_relocate(chunk, oslot); 1261 1262 return bit_off * PCPU_MIN_ALLOC_SIZE; 1263 } 1264 1265 /** 1266 * pcpu_free_area - frees the corresponding offset 1267 * @chunk: chunk of interest 1268 * @off: addr offset into chunk 1269 * 1270 * This function determines the size of an allocation to free using 1271 * the boundary bitmap and clears the allocation map. 1272 * 1273 * RETURNS: 1274 * Number of freed bytes. 1275 */ 1276 static int pcpu_free_area(struct pcpu_chunk *chunk, int off) 1277 { 1278 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1279 int bit_off, bits, end, oslot, freed; 1280 1281 lockdep_assert_held(&pcpu_lock); 1282 pcpu_stats_area_dealloc(chunk); 1283 1284 oslot = pcpu_chunk_slot(chunk); 1285 1286 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1287 1288 /* find end index */ 1289 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1290 bit_off + 1); 1291 bits = end - bit_off; 1292 bitmap_clear(chunk->alloc_map, bit_off, bits); 1293 1294 freed = bits * PCPU_MIN_ALLOC_SIZE; 1295 1296 /* update metadata */ 1297 chunk->free_bytes += freed; 1298 1299 /* update first free bit */ 1300 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1301 1302 pcpu_block_update_hint_free(chunk, bit_off, bits); 1303 1304 pcpu_chunk_relocate(chunk, oslot); 1305 1306 return freed; 1307 } 1308 1309 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1310 { 1311 block->scan_hint = 0; 1312 block->contig_hint = nr_bits; 1313 block->left_free = nr_bits; 1314 block->right_free = nr_bits; 1315 block->first_free = 0; 1316 block->nr_bits = nr_bits; 1317 } 1318 1319 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1320 { 1321 struct pcpu_block_md *md_block; 1322 1323 /* init the chunk's block */ 1324 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1325 1326 for (md_block = chunk->md_blocks; 1327 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1328 md_block++) 1329 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1330 } 1331 1332 /** 1333 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1334 * @tmp_addr: the start of the region served 1335 * @map_size: size of the region served 1336 * 1337 * This is responsible for creating the chunks that serve the first chunk. The 1338 * base_addr is page aligned down of @tmp_addr while the region end is page 1339 * aligned up. Offsets are kept track of to determine the region served. All 1340 * this is done to appease the bitmap allocator in avoiding partial blocks. 1341 * 1342 * RETURNS: 1343 * Chunk serving the region at @tmp_addr of @map_size. 1344 */ 1345 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1346 int map_size) 1347 { 1348 struct pcpu_chunk *chunk; 1349 unsigned long aligned_addr; 1350 int start_offset, offset_bits, region_size, region_bits; 1351 size_t alloc_size; 1352 1353 /* region calculations */ 1354 aligned_addr = tmp_addr & PAGE_MASK; 1355 1356 start_offset = tmp_addr - aligned_addr; 1357 region_size = ALIGN(start_offset + map_size, PAGE_SIZE); 1358 1359 /* allocate chunk */ 1360 alloc_size = struct_size(chunk, populated, 1361 BITS_TO_LONGS(region_size >> PAGE_SHIFT)); 1362 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1363 if (!chunk) 1364 panic("%s: Failed to allocate %zu bytes\n", __func__, 1365 alloc_size); 1366 1367 INIT_LIST_HEAD(&chunk->list); 1368 1369 chunk->base_addr = (void *)aligned_addr; 1370 chunk->start_offset = start_offset; 1371 chunk->end_offset = region_size - chunk->start_offset - map_size; 1372 1373 chunk->nr_pages = region_size >> PAGE_SHIFT; 1374 region_bits = pcpu_chunk_map_bits(chunk); 1375 1376 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1377 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1378 if (!chunk->alloc_map) 1379 panic("%s: Failed to allocate %zu bytes\n", __func__, 1380 alloc_size); 1381 1382 alloc_size = 1383 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1384 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1385 if (!chunk->bound_map) 1386 panic("%s: Failed to allocate %zu bytes\n", __func__, 1387 alloc_size); 1388 1389 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1390 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1391 if (!chunk->md_blocks) 1392 panic("%s: Failed to allocate %zu bytes\n", __func__, 1393 alloc_size); 1394 1395 #ifdef CONFIG_MEMCG_KMEM 1396 /* first chunk is free to use */ 1397 chunk->obj_cgroups = NULL; 1398 #endif 1399 pcpu_init_md_blocks(chunk); 1400 1401 /* manage populated page bitmap */ 1402 chunk->immutable = true; 1403 bitmap_fill(chunk->populated, chunk->nr_pages); 1404 chunk->nr_populated = chunk->nr_pages; 1405 chunk->nr_empty_pop_pages = chunk->nr_pages; 1406 1407 chunk->free_bytes = map_size; 1408 1409 if (chunk->start_offset) { 1410 /* hide the beginning of the bitmap */ 1411 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1412 bitmap_set(chunk->alloc_map, 0, offset_bits); 1413 set_bit(0, chunk->bound_map); 1414 set_bit(offset_bits, chunk->bound_map); 1415 1416 chunk->chunk_md.first_free = offset_bits; 1417 1418 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1419 } 1420 1421 if (chunk->end_offset) { 1422 /* hide the end of the bitmap */ 1423 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1424 bitmap_set(chunk->alloc_map, 1425 pcpu_chunk_map_bits(chunk) - offset_bits, 1426 offset_bits); 1427 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1428 chunk->bound_map); 1429 set_bit(region_bits, chunk->bound_map); 1430 1431 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1432 - offset_bits, offset_bits); 1433 } 1434 1435 return chunk; 1436 } 1437 1438 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1439 { 1440 struct pcpu_chunk *chunk; 1441 int region_bits; 1442 1443 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1444 if (!chunk) 1445 return NULL; 1446 1447 INIT_LIST_HEAD(&chunk->list); 1448 chunk->nr_pages = pcpu_unit_pages; 1449 region_bits = pcpu_chunk_map_bits(chunk); 1450 1451 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1452 sizeof(chunk->alloc_map[0]), gfp); 1453 if (!chunk->alloc_map) 1454 goto alloc_map_fail; 1455 1456 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1457 sizeof(chunk->bound_map[0]), gfp); 1458 if (!chunk->bound_map) 1459 goto bound_map_fail; 1460 1461 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1462 sizeof(chunk->md_blocks[0]), gfp); 1463 if (!chunk->md_blocks) 1464 goto md_blocks_fail; 1465 1466 #ifdef CONFIG_MEMCG_KMEM 1467 if (!mem_cgroup_kmem_disabled()) { 1468 chunk->obj_cgroups = 1469 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * 1470 sizeof(struct obj_cgroup *), gfp); 1471 if (!chunk->obj_cgroups) 1472 goto objcg_fail; 1473 } 1474 #endif 1475 1476 pcpu_init_md_blocks(chunk); 1477 1478 /* init metadata */ 1479 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1480 1481 return chunk; 1482 1483 #ifdef CONFIG_MEMCG_KMEM 1484 objcg_fail: 1485 pcpu_mem_free(chunk->md_blocks); 1486 #endif 1487 md_blocks_fail: 1488 pcpu_mem_free(chunk->bound_map); 1489 bound_map_fail: 1490 pcpu_mem_free(chunk->alloc_map); 1491 alloc_map_fail: 1492 pcpu_mem_free(chunk); 1493 1494 return NULL; 1495 } 1496 1497 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1498 { 1499 if (!chunk) 1500 return; 1501 #ifdef CONFIG_MEMCG_KMEM 1502 pcpu_mem_free(chunk->obj_cgroups); 1503 #endif 1504 pcpu_mem_free(chunk->md_blocks); 1505 pcpu_mem_free(chunk->bound_map); 1506 pcpu_mem_free(chunk->alloc_map); 1507 pcpu_mem_free(chunk); 1508 } 1509 1510 /** 1511 * pcpu_chunk_populated - post-population bookkeeping 1512 * @chunk: pcpu_chunk which got populated 1513 * @page_start: the start page 1514 * @page_end: the end page 1515 * 1516 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1517 * the bookkeeping information accordingly. Must be called after each 1518 * successful population. 1519 */ 1520 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1521 int page_end) 1522 { 1523 int nr = page_end - page_start; 1524 1525 lockdep_assert_held(&pcpu_lock); 1526 1527 bitmap_set(chunk->populated, page_start, nr); 1528 chunk->nr_populated += nr; 1529 pcpu_nr_populated += nr; 1530 1531 pcpu_update_empty_pages(chunk, nr); 1532 } 1533 1534 /** 1535 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1536 * @chunk: pcpu_chunk which got depopulated 1537 * @page_start: the start page 1538 * @page_end: the end page 1539 * 1540 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1541 * Update the bookkeeping information accordingly. Must be called after 1542 * each successful depopulation. 1543 */ 1544 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1545 int page_start, int page_end) 1546 { 1547 int nr = page_end - page_start; 1548 1549 lockdep_assert_held(&pcpu_lock); 1550 1551 bitmap_clear(chunk->populated, page_start, nr); 1552 chunk->nr_populated -= nr; 1553 pcpu_nr_populated -= nr; 1554 1555 pcpu_update_empty_pages(chunk, -nr); 1556 } 1557 1558 /* 1559 * Chunk management implementation. 1560 * 1561 * To allow different implementations, chunk alloc/free and 1562 * [de]population are implemented in a separate file which is pulled 1563 * into this file and compiled together. The following functions 1564 * should be implemented. 1565 * 1566 * pcpu_populate_chunk - populate the specified range of a chunk 1567 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1568 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk 1569 * pcpu_create_chunk - create a new chunk 1570 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1571 * pcpu_addr_to_page - translate address to physical address 1572 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1573 */ 1574 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1575 int page_start, int page_end, gfp_t gfp); 1576 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1577 int page_start, int page_end); 1578 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, 1579 int page_start, int page_end); 1580 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1581 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1582 static struct page *pcpu_addr_to_page(void *addr); 1583 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1584 1585 #ifdef CONFIG_NEED_PER_CPU_KM 1586 #include "percpu-km.c" 1587 #else 1588 #include "percpu-vm.c" 1589 #endif 1590 1591 /** 1592 * pcpu_chunk_addr_search - determine chunk containing specified address 1593 * @addr: address for which the chunk needs to be determined. 1594 * 1595 * This is an internal function that handles all but static allocations. 1596 * Static percpu address values should never be passed into the allocator. 1597 * 1598 * RETURNS: 1599 * The address of the found chunk. 1600 */ 1601 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1602 { 1603 /* is it in the dynamic region (first chunk)? */ 1604 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1605 return pcpu_first_chunk; 1606 1607 /* is it in the reserved region? */ 1608 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1609 return pcpu_reserved_chunk; 1610 1611 /* 1612 * The address is relative to unit0 which might be unused and 1613 * thus unmapped. Offset the address to the unit space of the 1614 * current processor before looking it up in the vmalloc 1615 * space. Note that any possible cpu id can be used here, so 1616 * there's no need to worry about preemption or cpu hotplug. 1617 */ 1618 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1619 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1620 } 1621 1622 #ifdef CONFIG_MEMCG_KMEM 1623 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, 1624 struct obj_cgroup **objcgp) 1625 { 1626 struct obj_cgroup *objcg; 1627 1628 if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT)) 1629 return true; 1630 1631 objcg = get_obj_cgroup_from_current(); 1632 if (!objcg) 1633 return true; 1634 1635 if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) { 1636 obj_cgroup_put(objcg); 1637 return false; 1638 } 1639 1640 *objcgp = objcg; 1641 return true; 1642 } 1643 1644 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1645 struct pcpu_chunk *chunk, int off, 1646 size_t size) 1647 { 1648 if (!objcg) 1649 return; 1650 1651 if (likely(chunk && chunk->obj_cgroups)) { 1652 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; 1653 1654 rcu_read_lock(); 1655 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1656 pcpu_obj_full_size(size)); 1657 rcu_read_unlock(); 1658 } else { 1659 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); 1660 obj_cgroup_put(objcg); 1661 } 1662 } 1663 1664 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1665 { 1666 struct obj_cgroup *objcg; 1667 1668 if (unlikely(!chunk->obj_cgroups)) 1669 return; 1670 1671 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; 1672 if (!objcg) 1673 return; 1674 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; 1675 1676 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); 1677 1678 rcu_read_lock(); 1679 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1680 -pcpu_obj_full_size(size)); 1681 rcu_read_unlock(); 1682 1683 obj_cgroup_put(objcg); 1684 } 1685 1686 #else /* CONFIG_MEMCG_KMEM */ 1687 static bool 1688 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) 1689 { 1690 return true; 1691 } 1692 1693 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1694 struct pcpu_chunk *chunk, int off, 1695 size_t size) 1696 { 1697 } 1698 1699 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1700 { 1701 } 1702 #endif /* CONFIG_MEMCG_KMEM */ 1703 1704 /** 1705 * pcpu_alloc - the percpu allocator 1706 * @size: size of area to allocate in bytes 1707 * @align: alignment of area (max PAGE_SIZE) 1708 * @reserved: allocate from the reserved chunk if available 1709 * @gfp: allocation flags 1710 * 1711 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1712 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1713 * then no warning will be triggered on invalid or failed allocation 1714 * requests. 1715 * 1716 * RETURNS: 1717 * Percpu pointer to the allocated area on success, NULL on failure. 1718 */ 1719 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1720 gfp_t gfp) 1721 { 1722 gfp_t pcpu_gfp; 1723 bool is_atomic; 1724 bool do_warn; 1725 struct obj_cgroup *objcg = NULL; 1726 static int warn_limit = 10; 1727 struct pcpu_chunk *chunk, *next; 1728 const char *err; 1729 int slot, off, cpu, ret; 1730 unsigned long flags; 1731 void __percpu *ptr; 1732 size_t bits, bit_align; 1733 1734 gfp = current_gfp_context(gfp); 1735 /* whitelisted flags that can be passed to the backing allocators */ 1736 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1737 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1738 do_warn = !(gfp & __GFP_NOWARN); 1739 1740 /* 1741 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1742 * therefore alignment must be a minimum of that many bytes. 1743 * An allocation may have internal fragmentation from rounding up 1744 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1745 */ 1746 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1747 align = PCPU_MIN_ALLOC_SIZE; 1748 1749 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1750 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1751 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1752 1753 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1754 !is_power_of_2(align))) { 1755 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1756 size, align); 1757 return NULL; 1758 } 1759 1760 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) 1761 return NULL; 1762 1763 if (!is_atomic) { 1764 /* 1765 * pcpu_balance_workfn() allocates memory under this mutex, 1766 * and it may wait for memory reclaim. Allow current task 1767 * to become OOM victim, in case of memory pressure. 1768 */ 1769 if (gfp & __GFP_NOFAIL) { 1770 mutex_lock(&pcpu_alloc_mutex); 1771 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { 1772 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1773 return NULL; 1774 } 1775 } 1776 1777 spin_lock_irqsave(&pcpu_lock, flags); 1778 1779 /* serve reserved allocations from the reserved chunk if available */ 1780 if (reserved && pcpu_reserved_chunk) { 1781 chunk = pcpu_reserved_chunk; 1782 1783 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1784 if (off < 0) { 1785 err = "alloc from reserved chunk failed"; 1786 goto fail_unlock; 1787 } 1788 1789 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1790 if (off >= 0) 1791 goto area_found; 1792 1793 err = "alloc from reserved chunk failed"; 1794 goto fail_unlock; 1795 } 1796 1797 restart: 1798 /* search through normal chunks */ 1799 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { 1800 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], 1801 list) { 1802 off = pcpu_find_block_fit(chunk, bits, bit_align, 1803 is_atomic); 1804 if (off < 0) { 1805 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1806 pcpu_chunk_move(chunk, 0); 1807 continue; 1808 } 1809 1810 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1811 if (off >= 0) { 1812 pcpu_reintegrate_chunk(chunk); 1813 goto area_found; 1814 } 1815 } 1816 } 1817 1818 spin_unlock_irqrestore(&pcpu_lock, flags); 1819 1820 if (is_atomic) { 1821 err = "atomic alloc failed, no space left"; 1822 goto fail; 1823 } 1824 1825 /* No space left. Create a new chunk. */ 1826 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { 1827 chunk = pcpu_create_chunk(pcpu_gfp); 1828 if (!chunk) { 1829 err = "failed to allocate new chunk"; 1830 goto fail; 1831 } 1832 1833 spin_lock_irqsave(&pcpu_lock, flags); 1834 pcpu_chunk_relocate(chunk, -1); 1835 } else { 1836 spin_lock_irqsave(&pcpu_lock, flags); 1837 } 1838 1839 goto restart; 1840 1841 area_found: 1842 pcpu_stats_area_alloc(chunk, size); 1843 spin_unlock_irqrestore(&pcpu_lock, flags); 1844 1845 /* populate if not all pages are already there */ 1846 if (!is_atomic) { 1847 unsigned int page_end, rs, re; 1848 1849 rs = PFN_DOWN(off); 1850 page_end = PFN_UP(off + size); 1851 1852 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) { 1853 WARN_ON(chunk->immutable); 1854 1855 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1856 1857 spin_lock_irqsave(&pcpu_lock, flags); 1858 if (ret) { 1859 pcpu_free_area(chunk, off); 1860 err = "failed to populate"; 1861 goto fail_unlock; 1862 } 1863 pcpu_chunk_populated(chunk, rs, re); 1864 spin_unlock_irqrestore(&pcpu_lock, flags); 1865 } 1866 1867 mutex_unlock(&pcpu_alloc_mutex); 1868 } 1869 1870 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1871 pcpu_schedule_balance_work(); 1872 1873 /* clear the areas and return address relative to base address */ 1874 for_each_possible_cpu(cpu) 1875 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1876 1877 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1878 kmemleak_alloc_percpu(ptr, size, gfp); 1879 1880 trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align, 1881 chunk->base_addr, off, ptr, 1882 pcpu_obj_full_size(size), gfp); 1883 1884 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); 1885 1886 return ptr; 1887 1888 fail_unlock: 1889 spin_unlock_irqrestore(&pcpu_lock, flags); 1890 fail: 1891 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1892 1893 if (do_warn && warn_limit) { 1894 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1895 size, align, is_atomic, err); 1896 if (!is_atomic) 1897 dump_stack(); 1898 if (!--warn_limit) 1899 pr_info("limit reached, disable warning\n"); 1900 } 1901 1902 if (is_atomic) { 1903 /* see the flag handling in pcpu_balance_workfn() */ 1904 pcpu_atomic_alloc_failed = true; 1905 pcpu_schedule_balance_work(); 1906 } else { 1907 mutex_unlock(&pcpu_alloc_mutex); 1908 } 1909 1910 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1911 1912 return NULL; 1913 } 1914 1915 /** 1916 * __alloc_percpu_gfp - allocate dynamic percpu area 1917 * @size: size of area to allocate in bytes 1918 * @align: alignment of area (max PAGE_SIZE) 1919 * @gfp: allocation flags 1920 * 1921 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1922 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1923 * be called from any context but is a lot more likely to fail. If @gfp 1924 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1925 * allocation requests. 1926 * 1927 * RETURNS: 1928 * Percpu pointer to the allocated area on success, NULL on failure. 1929 */ 1930 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1931 { 1932 return pcpu_alloc(size, align, false, gfp); 1933 } 1934 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1935 1936 /** 1937 * __alloc_percpu - allocate dynamic percpu area 1938 * @size: size of area to allocate in bytes 1939 * @align: alignment of area (max PAGE_SIZE) 1940 * 1941 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1942 */ 1943 void __percpu *__alloc_percpu(size_t size, size_t align) 1944 { 1945 return pcpu_alloc(size, align, false, GFP_KERNEL); 1946 } 1947 EXPORT_SYMBOL_GPL(__alloc_percpu); 1948 1949 /** 1950 * __alloc_reserved_percpu - allocate reserved percpu area 1951 * @size: size of area to allocate in bytes 1952 * @align: alignment of area (max PAGE_SIZE) 1953 * 1954 * Allocate zero-filled percpu area of @size bytes aligned at @align 1955 * from reserved percpu area if arch has set it up; otherwise, 1956 * allocation is served from the same dynamic area. Might sleep. 1957 * Might trigger writeouts. 1958 * 1959 * CONTEXT: 1960 * Does GFP_KERNEL allocation. 1961 * 1962 * RETURNS: 1963 * Percpu pointer to the allocated area on success, NULL on failure. 1964 */ 1965 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1966 { 1967 return pcpu_alloc(size, align, true, GFP_KERNEL); 1968 } 1969 1970 /** 1971 * pcpu_balance_free - manage the amount of free chunks 1972 * @empty_only: free chunks only if there are no populated pages 1973 * 1974 * If empty_only is %false, reclaim all fully free chunks regardless of the 1975 * number of populated pages. Otherwise, only reclaim chunks that have no 1976 * populated pages. 1977 * 1978 * CONTEXT: 1979 * pcpu_lock (can be dropped temporarily) 1980 */ 1981 static void pcpu_balance_free(bool empty_only) 1982 { 1983 LIST_HEAD(to_free); 1984 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; 1985 struct pcpu_chunk *chunk, *next; 1986 1987 lockdep_assert_held(&pcpu_lock); 1988 1989 /* 1990 * There's no reason to keep around multiple unused chunks and VM 1991 * areas can be scarce. Destroy all free chunks except for one. 1992 */ 1993 list_for_each_entry_safe(chunk, next, free_head, list) { 1994 WARN_ON(chunk->immutable); 1995 1996 /* spare the first one */ 1997 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1998 continue; 1999 2000 if (!empty_only || chunk->nr_empty_pop_pages == 0) 2001 list_move(&chunk->list, &to_free); 2002 } 2003 2004 if (list_empty(&to_free)) 2005 return; 2006 2007 spin_unlock_irq(&pcpu_lock); 2008 list_for_each_entry_safe(chunk, next, &to_free, list) { 2009 unsigned int rs, re; 2010 2011 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) { 2012 pcpu_depopulate_chunk(chunk, rs, re); 2013 spin_lock_irq(&pcpu_lock); 2014 pcpu_chunk_depopulated(chunk, rs, re); 2015 spin_unlock_irq(&pcpu_lock); 2016 } 2017 pcpu_destroy_chunk(chunk); 2018 cond_resched(); 2019 } 2020 spin_lock_irq(&pcpu_lock); 2021 } 2022 2023 /** 2024 * pcpu_balance_populated - manage the amount of populated pages 2025 * 2026 * Maintain a certain amount of populated pages to satisfy atomic allocations. 2027 * It is possible that this is called when physical memory is scarce causing 2028 * OOM killer to be triggered. We should avoid doing so until an actual 2029 * allocation causes the failure as it is possible that requests can be 2030 * serviced from already backed regions. 2031 * 2032 * CONTEXT: 2033 * pcpu_lock (can be dropped temporarily) 2034 */ 2035 static void pcpu_balance_populated(void) 2036 { 2037 /* gfp flags passed to underlying allocators */ 2038 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 2039 struct pcpu_chunk *chunk; 2040 int slot, nr_to_pop, ret; 2041 2042 lockdep_assert_held(&pcpu_lock); 2043 2044 /* 2045 * Ensure there are certain number of free populated pages for 2046 * atomic allocs. Fill up from the most packed so that atomic 2047 * allocs don't increase fragmentation. If atomic allocation 2048 * failed previously, always populate the maximum amount. This 2049 * should prevent atomic allocs larger than PAGE_SIZE from keeping 2050 * failing indefinitely; however, large atomic allocs are not 2051 * something we support properly and can be highly unreliable and 2052 * inefficient. 2053 */ 2054 retry_pop: 2055 if (pcpu_atomic_alloc_failed) { 2056 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 2057 /* best effort anyway, don't worry about synchronization */ 2058 pcpu_atomic_alloc_failed = false; 2059 } else { 2060 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 2061 pcpu_nr_empty_pop_pages, 2062 0, PCPU_EMPTY_POP_PAGES_HIGH); 2063 } 2064 2065 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { 2066 unsigned int nr_unpop = 0, rs, re; 2067 2068 if (!nr_to_pop) 2069 break; 2070 2071 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { 2072 nr_unpop = chunk->nr_pages - chunk->nr_populated; 2073 if (nr_unpop) 2074 break; 2075 } 2076 2077 if (!nr_unpop) 2078 continue; 2079 2080 /* @chunk can't go away while pcpu_alloc_mutex is held */ 2081 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) { 2082 int nr = min_t(int, re - rs, nr_to_pop); 2083 2084 spin_unlock_irq(&pcpu_lock); 2085 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 2086 cond_resched(); 2087 spin_lock_irq(&pcpu_lock); 2088 if (!ret) { 2089 nr_to_pop -= nr; 2090 pcpu_chunk_populated(chunk, rs, rs + nr); 2091 } else { 2092 nr_to_pop = 0; 2093 } 2094 2095 if (!nr_to_pop) 2096 break; 2097 } 2098 } 2099 2100 if (nr_to_pop) { 2101 /* ran out of chunks to populate, create a new one and retry */ 2102 spin_unlock_irq(&pcpu_lock); 2103 chunk = pcpu_create_chunk(gfp); 2104 cond_resched(); 2105 spin_lock_irq(&pcpu_lock); 2106 if (chunk) { 2107 pcpu_chunk_relocate(chunk, -1); 2108 goto retry_pop; 2109 } 2110 } 2111 } 2112 2113 /** 2114 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages 2115 * 2116 * Scan over chunks in the depopulate list and try to release unused populated 2117 * pages back to the system. Depopulated chunks are sidelined to prevent 2118 * repopulating these pages unless required. Fully free chunks are reintegrated 2119 * and freed accordingly (1 is kept around). If we drop below the empty 2120 * populated pages threshold, reintegrate the chunk if it has empty free pages. 2121 * Each chunk is scanned in the reverse order to keep populated pages close to 2122 * the beginning of the chunk. 2123 * 2124 * CONTEXT: 2125 * pcpu_lock (can be dropped temporarily) 2126 * 2127 */ 2128 static void pcpu_reclaim_populated(void) 2129 { 2130 struct pcpu_chunk *chunk; 2131 struct pcpu_block_md *block; 2132 int freed_page_start, freed_page_end; 2133 int i, end; 2134 bool reintegrate; 2135 2136 lockdep_assert_held(&pcpu_lock); 2137 2138 /* 2139 * Once a chunk is isolated to the to_depopulate list, the chunk is no 2140 * longer discoverable to allocations whom may populate pages. The only 2141 * other accessor is the free path which only returns area back to the 2142 * allocator not touching the populated bitmap. 2143 */ 2144 while ((chunk = list_first_entry_or_null( 2145 &pcpu_chunk_lists[pcpu_to_depopulate_slot], 2146 struct pcpu_chunk, list))) { 2147 WARN_ON(chunk->immutable); 2148 2149 /* 2150 * Scan chunk's pages in the reverse order to keep populated 2151 * pages close to the beginning of the chunk. 2152 */ 2153 freed_page_start = chunk->nr_pages; 2154 freed_page_end = 0; 2155 reintegrate = false; 2156 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { 2157 /* no more work to do */ 2158 if (chunk->nr_empty_pop_pages == 0) 2159 break; 2160 2161 /* reintegrate chunk to prevent atomic alloc failures */ 2162 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { 2163 reintegrate = true; 2164 break; 2165 } 2166 2167 /* 2168 * If the page is empty and populated, start or 2169 * extend the (i, end) range. If i == 0, decrease 2170 * i and perform the depopulation to cover the last 2171 * (first) page in the chunk. 2172 */ 2173 block = chunk->md_blocks + i; 2174 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && 2175 test_bit(i, chunk->populated)) { 2176 if (end == -1) 2177 end = i; 2178 if (i > 0) 2179 continue; 2180 i--; 2181 } 2182 2183 /* depopulate if there is an active range */ 2184 if (end == -1) 2185 continue; 2186 2187 spin_unlock_irq(&pcpu_lock); 2188 pcpu_depopulate_chunk(chunk, i + 1, end + 1); 2189 cond_resched(); 2190 spin_lock_irq(&pcpu_lock); 2191 2192 pcpu_chunk_depopulated(chunk, i + 1, end + 1); 2193 freed_page_start = min(freed_page_start, i + 1); 2194 freed_page_end = max(freed_page_end, end + 1); 2195 2196 /* reset the range and continue */ 2197 end = -1; 2198 } 2199 2200 /* batch tlb flush per chunk to amortize cost */ 2201 if (freed_page_start < freed_page_end) { 2202 spin_unlock_irq(&pcpu_lock); 2203 pcpu_post_unmap_tlb_flush(chunk, 2204 freed_page_start, 2205 freed_page_end); 2206 cond_resched(); 2207 spin_lock_irq(&pcpu_lock); 2208 } 2209 2210 if (reintegrate || chunk->free_bytes == pcpu_unit_size) 2211 pcpu_reintegrate_chunk(chunk); 2212 else 2213 list_move_tail(&chunk->list, 2214 &pcpu_chunk_lists[pcpu_sidelined_slot]); 2215 } 2216 } 2217 2218 /** 2219 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 2220 * @work: unused 2221 * 2222 * For each chunk type, manage the number of fully free chunks and the number of 2223 * populated pages. An important thing to consider is when pages are freed and 2224 * how they contribute to the global counts. 2225 */ 2226 static void pcpu_balance_workfn(struct work_struct *work) 2227 { 2228 /* 2229 * pcpu_balance_free() is called twice because the first time we may 2230 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us 2231 * to grow other chunks. This then gives pcpu_reclaim_populated() time 2232 * to move fully free chunks to the active list to be freed if 2233 * appropriate. 2234 */ 2235 mutex_lock(&pcpu_alloc_mutex); 2236 spin_lock_irq(&pcpu_lock); 2237 2238 pcpu_balance_free(false); 2239 pcpu_reclaim_populated(); 2240 pcpu_balance_populated(); 2241 pcpu_balance_free(true); 2242 2243 spin_unlock_irq(&pcpu_lock); 2244 mutex_unlock(&pcpu_alloc_mutex); 2245 } 2246 2247 /** 2248 * pcpu_alloc_size - the size of the dynamic percpu area 2249 * @ptr: pointer to the dynamic percpu area 2250 * 2251 * Returns the size of the @ptr allocation. This is undefined for statically 2252 * defined percpu variables as there is no corresponding chunk->bound_map. 2253 * 2254 * RETURNS: 2255 * The size of the dynamic percpu area. 2256 * 2257 * CONTEXT: 2258 * Can be called from atomic context. 2259 */ 2260 size_t pcpu_alloc_size(void __percpu *ptr) 2261 { 2262 struct pcpu_chunk *chunk; 2263 unsigned long bit_off, end; 2264 void *addr; 2265 2266 if (!ptr) 2267 return 0; 2268 2269 addr = __pcpu_ptr_to_addr(ptr); 2270 /* No pcpu_lock here: ptr has not been freed, so chunk is still alive */ 2271 chunk = pcpu_chunk_addr_search(addr); 2272 bit_off = (addr - chunk->base_addr) / PCPU_MIN_ALLOC_SIZE; 2273 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 2274 bit_off + 1); 2275 return (end - bit_off) * PCPU_MIN_ALLOC_SIZE; 2276 } 2277 2278 /** 2279 * free_percpu - free percpu area 2280 * @ptr: pointer to area to free 2281 * 2282 * Free percpu area @ptr. 2283 * 2284 * CONTEXT: 2285 * Can be called from atomic context. 2286 */ 2287 void free_percpu(void __percpu *ptr) 2288 { 2289 void *addr; 2290 struct pcpu_chunk *chunk; 2291 unsigned long flags; 2292 int size, off; 2293 bool need_balance = false; 2294 2295 if (!ptr) 2296 return; 2297 2298 kmemleak_free_percpu(ptr); 2299 2300 addr = __pcpu_ptr_to_addr(ptr); 2301 chunk = pcpu_chunk_addr_search(addr); 2302 off = addr - chunk->base_addr; 2303 2304 spin_lock_irqsave(&pcpu_lock, flags); 2305 size = pcpu_free_area(chunk, off); 2306 2307 pcpu_memcg_free_hook(chunk, off, size); 2308 2309 /* 2310 * If there are more than one fully free chunks, wake up grim reaper. 2311 * If the chunk is isolated, it may be in the process of being 2312 * reclaimed. Let reclaim manage cleaning up of that chunk. 2313 */ 2314 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { 2315 struct pcpu_chunk *pos; 2316 2317 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) 2318 if (pos != chunk) { 2319 need_balance = true; 2320 break; 2321 } 2322 } else if (pcpu_should_reclaim_chunk(chunk)) { 2323 pcpu_isolate_chunk(chunk); 2324 need_balance = true; 2325 } 2326 2327 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 2328 2329 spin_unlock_irqrestore(&pcpu_lock, flags); 2330 2331 if (need_balance) 2332 pcpu_schedule_balance_work(); 2333 } 2334 EXPORT_SYMBOL_GPL(free_percpu); 2335 2336 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 2337 { 2338 #ifdef CONFIG_SMP 2339 const size_t static_size = __per_cpu_end - __per_cpu_start; 2340 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2341 unsigned int cpu; 2342 2343 for_each_possible_cpu(cpu) { 2344 void *start = per_cpu_ptr(base, cpu); 2345 void *va = (void *)addr; 2346 2347 if (va >= start && va < start + static_size) { 2348 if (can_addr) { 2349 *can_addr = (unsigned long) (va - start); 2350 *can_addr += (unsigned long) 2351 per_cpu_ptr(base, get_boot_cpu_id()); 2352 } 2353 return true; 2354 } 2355 } 2356 #endif 2357 /* on UP, can't distinguish from other static vars, always false */ 2358 return false; 2359 } 2360 2361 /** 2362 * is_kernel_percpu_address - test whether address is from static percpu area 2363 * @addr: address to test 2364 * 2365 * Test whether @addr belongs to in-kernel static percpu area. Module 2366 * static percpu areas are not considered. For those, use 2367 * is_module_percpu_address(). 2368 * 2369 * RETURNS: 2370 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2371 */ 2372 bool is_kernel_percpu_address(unsigned long addr) 2373 { 2374 return __is_kernel_percpu_address(addr, NULL); 2375 } 2376 2377 /** 2378 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2379 * @addr: the address to be converted to physical address 2380 * 2381 * Given @addr which is dereferenceable address obtained via one of 2382 * percpu access macros, this function translates it into its physical 2383 * address. The caller is responsible for ensuring @addr stays valid 2384 * until this function finishes. 2385 * 2386 * percpu allocator has special setup for the first chunk, which currently 2387 * supports either embedding in linear address space or vmalloc mapping, 2388 * and, from the second one, the backing allocator (currently either vm or 2389 * km) provides translation. 2390 * 2391 * The addr can be translated simply without checking if it falls into the 2392 * first chunk. But the current code reflects better how percpu allocator 2393 * actually works, and the verification can discover both bugs in percpu 2394 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2395 * code. 2396 * 2397 * RETURNS: 2398 * The physical address for @addr. 2399 */ 2400 phys_addr_t per_cpu_ptr_to_phys(void *addr) 2401 { 2402 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2403 bool in_first_chunk = false; 2404 unsigned long first_low, first_high; 2405 unsigned int cpu; 2406 2407 /* 2408 * The following test on unit_low/high isn't strictly 2409 * necessary but will speed up lookups of addresses which 2410 * aren't in the first chunk. 2411 * 2412 * The address check is against full chunk sizes. pcpu_base_addr 2413 * points to the beginning of the first chunk including the 2414 * static region. Assumes good intent as the first chunk may 2415 * not be full (ie. < pcpu_unit_pages in size). 2416 */ 2417 first_low = (unsigned long)pcpu_base_addr + 2418 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2419 first_high = (unsigned long)pcpu_base_addr + 2420 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2421 if ((unsigned long)addr >= first_low && 2422 (unsigned long)addr < first_high) { 2423 for_each_possible_cpu(cpu) { 2424 void *start = per_cpu_ptr(base, cpu); 2425 2426 if (addr >= start && addr < start + pcpu_unit_size) { 2427 in_first_chunk = true; 2428 break; 2429 } 2430 } 2431 } 2432 2433 if (in_first_chunk) { 2434 if (!is_vmalloc_addr(addr)) 2435 return __pa(addr); 2436 else 2437 return page_to_phys(vmalloc_to_page(addr)) + 2438 offset_in_page(addr); 2439 } else 2440 return page_to_phys(pcpu_addr_to_page(addr)) + 2441 offset_in_page(addr); 2442 } 2443 2444 /** 2445 * pcpu_alloc_alloc_info - allocate percpu allocation info 2446 * @nr_groups: the number of groups 2447 * @nr_units: the number of units 2448 * 2449 * Allocate ai which is large enough for @nr_groups groups containing 2450 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2451 * cpu_map array which is long enough for @nr_units and filled with 2452 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2453 * pointer of other groups. 2454 * 2455 * RETURNS: 2456 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2457 * failure. 2458 */ 2459 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2460 int nr_units) 2461 { 2462 struct pcpu_alloc_info *ai; 2463 size_t base_size, ai_size; 2464 void *ptr; 2465 int unit; 2466 2467 base_size = ALIGN(struct_size(ai, groups, nr_groups), 2468 __alignof__(ai->groups[0].cpu_map[0])); 2469 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2470 2471 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2472 if (!ptr) 2473 return NULL; 2474 ai = ptr; 2475 ptr += base_size; 2476 2477 ai->groups[0].cpu_map = ptr; 2478 2479 for (unit = 0; unit < nr_units; unit++) 2480 ai->groups[0].cpu_map[unit] = NR_CPUS; 2481 2482 ai->nr_groups = nr_groups; 2483 ai->__ai_size = PFN_ALIGN(ai_size); 2484 2485 return ai; 2486 } 2487 2488 /** 2489 * pcpu_free_alloc_info - free percpu allocation info 2490 * @ai: pcpu_alloc_info to free 2491 * 2492 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2493 */ 2494 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2495 { 2496 memblock_free(ai, ai->__ai_size); 2497 } 2498 2499 /** 2500 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2501 * @lvl: loglevel 2502 * @ai: allocation info to dump 2503 * 2504 * Print out information about @ai using loglevel @lvl. 2505 */ 2506 static void pcpu_dump_alloc_info(const char *lvl, 2507 const struct pcpu_alloc_info *ai) 2508 { 2509 int group_width = 1, cpu_width = 1, width; 2510 char empty_str[] = "--------"; 2511 int alloc = 0, alloc_end = 0; 2512 int group, v; 2513 int upa, apl; /* units per alloc, allocs per line */ 2514 2515 v = ai->nr_groups; 2516 while (v /= 10) 2517 group_width++; 2518 2519 v = num_possible_cpus(); 2520 while (v /= 10) 2521 cpu_width++; 2522 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2523 2524 upa = ai->alloc_size / ai->unit_size; 2525 width = upa * (cpu_width + 1) + group_width + 3; 2526 apl = rounddown_pow_of_two(max(60 / width, 1)); 2527 2528 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2529 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2530 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2531 2532 for (group = 0; group < ai->nr_groups; group++) { 2533 const struct pcpu_group_info *gi = &ai->groups[group]; 2534 int unit = 0, unit_end = 0; 2535 2536 BUG_ON(gi->nr_units % upa); 2537 for (alloc_end += gi->nr_units / upa; 2538 alloc < alloc_end; alloc++) { 2539 if (!(alloc % apl)) { 2540 pr_cont("\n"); 2541 printk("%spcpu-alloc: ", lvl); 2542 } 2543 pr_cont("[%0*d] ", group_width, group); 2544 2545 for (unit_end += upa; unit < unit_end; unit++) 2546 if (gi->cpu_map[unit] != NR_CPUS) 2547 pr_cont("%0*d ", 2548 cpu_width, gi->cpu_map[unit]); 2549 else 2550 pr_cont("%s ", empty_str); 2551 } 2552 } 2553 pr_cont("\n"); 2554 } 2555 2556 /** 2557 * pcpu_setup_first_chunk - initialize the first percpu chunk 2558 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2559 * @base_addr: mapped address 2560 * 2561 * Initialize the first percpu chunk which contains the kernel static 2562 * percpu area. This function is to be called from arch percpu area 2563 * setup path. 2564 * 2565 * @ai contains all information necessary to initialize the first 2566 * chunk and prime the dynamic percpu allocator. 2567 * 2568 * @ai->static_size is the size of static percpu area. 2569 * 2570 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2571 * reserve after the static area in the first chunk. This reserves 2572 * the first chunk such that it's available only through reserved 2573 * percpu allocation. This is primarily used to serve module percpu 2574 * static areas on architectures where the addressing model has 2575 * limited offset range for symbol relocations to guarantee module 2576 * percpu symbols fall inside the relocatable range. 2577 * 2578 * @ai->dyn_size determines the number of bytes available for dynamic 2579 * allocation in the first chunk. The area between @ai->static_size + 2580 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2581 * 2582 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2583 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2584 * @ai->dyn_size. 2585 * 2586 * @ai->atom_size is the allocation atom size and used as alignment 2587 * for vm areas. 2588 * 2589 * @ai->alloc_size is the allocation size and always multiple of 2590 * @ai->atom_size. This is larger than @ai->atom_size if 2591 * @ai->unit_size is larger than @ai->atom_size. 2592 * 2593 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2594 * percpu areas. Units which should be colocated are put into the 2595 * same group. Dynamic VM areas will be allocated according to these 2596 * groupings. If @ai->nr_groups is zero, a single group containing 2597 * all units is assumed. 2598 * 2599 * The caller should have mapped the first chunk at @base_addr and 2600 * copied static data to each unit. 2601 * 2602 * The first chunk will always contain a static and a dynamic region. 2603 * However, the static region is not managed by any chunk. If the first 2604 * chunk also contains a reserved region, it is served by two chunks - 2605 * one for the reserved region and one for the dynamic region. They 2606 * share the same vm, but use offset regions in the area allocation map. 2607 * The chunk serving the dynamic region is circulated in the chunk slots 2608 * and available for dynamic allocation like any other chunk. 2609 */ 2610 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2611 void *base_addr) 2612 { 2613 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2614 size_t static_size, dyn_size; 2615 unsigned long *group_offsets; 2616 size_t *group_sizes; 2617 unsigned long *unit_off; 2618 unsigned int cpu; 2619 int *unit_map; 2620 int group, unit, i; 2621 unsigned long tmp_addr; 2622 size_t alloc_size; 2623 2624 #define PCPU_SETUP_BUG_ON(cond) do { \ 2625 if (unlikely(cond)) { \ 2626 pr_emerg("failed to initialize, %s\n", #cond); \ 2627 pr_emerg("cpu_possible_mask=%*pb\n", \ 2628 cpumask_pr_args(cpu_possible_mask)); \ 2629 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2630 BUG(); \ 2631 } \ 2632 } while (0) 2633 2634 /* sanity checks */ 2635 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2636 #ifdef CONFIG_SMP 2637 PCPU_SETUP_BUG_ON(!ai->static_size); 2638 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2639 #endif 2640 PCPU_SETUP_BUG_ON(!base_addr); 2641 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2642 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2643 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2644 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2645 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2646 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2647 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2648 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2649 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2650 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2651 2652 /* process group information and build config tables accordingly */ 2653 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2654 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2655 if (!group_offsets) 2656 panic("%s: Failed to allocate %zu bytes\n", __func__, 2657 alloc_size); 2658 2659 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2660 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2661 if (!group_sizes) 2662 panic("%s: Failed to allocate %zu bytes\n", __func__, 2663 alloc_size); 2664 2665 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2666 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2667 if (!unit_map) 2668 panic("%s: Failed to allocate %zu bytes\n", __func__, 2669 alloc_size); 2670 2671 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2672 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2673 if (!unit_off) 2674 panic("%s: Failed to allocate %zu bytes\n", __func__, 2675 alloc_size); 2676 2677 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2678 unit_map[cpu] = UINT_MAX; 2679 2680 pcpu_low_unit_cpu = NR_CPUS; 2681 pcpu_high_unit_cpu = NR_CPUS; 2682 2683 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2684 const struct pcpu_group_info *gi = &ai->groups[group]; 2685 2686 group_offsets[group] = gi->base_offset; 2687 group_sizes[group] = gi->nr_units * ai->unit_size; 2688 2689 for (i = 0; i < gi->nr_units; i++) { 2690 cpu = gi->cpu_map[i]; 2691 if (cpu == NR_CPUS) 2692 continue; 2693 2694 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2695 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2696 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2697 2698 unit_map[cpu] = unit + i; 2699 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2700 2701 /* determine low/high unit_cpu */ 2702 if (pcpu_low_unit_cpu == NR_CPUS || 2703 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2704 pcpu_low_unit_cpu = cpu; 2705 if (pcpu_high_unit_cpu == NR_CPUS || 2706 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2707 pcpu_high_unit_cpu = cpu; 2708 } 2709 } 2710 pcpu_nr_units = unit; 2711 2712 for_each_possible_cpu(cpu) 2713 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2714 2715 /* we're done parsing the input, undefine BUG macro and dump config */ 2716 #undef PCPU_SETUP_BUG_ON 2717 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2718 2719 pcpu_nr_groups = ai->nr_groups; 2720 pcpu_group_offsets = group_offsets; 2721 pcpu_group_sizes = group_sizes; 2722 pcpu_unit_map = unit_map; 2723 pcpu_unit_offsets = unit_off; 2724 2725 /* determine basic parameters */ 2726 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2727 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2728 pcpu_atom_size = ai->atom_size; 2729 pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated, 2730 BITS_TO_LONGS(pcpu_unit_pages)); 2731 2732 pcpu_stats_save_ai(ai); 2733 2734 /* 2735 * Allocate chunk slots. The slots after the active slots are: 2736 * sidelined_slot - isolated, depopulated chunks 2737 * free_slot - fully free chunks 2738 * to_depopulate_slot - isolated, chunks to depopulate 2739 */ 2740 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; 2741 pcpu_free_slot = pcpu_sidelined_slot + 1; 2742 pcpu_to_depopulate_slot = pcpu_free_slot + 1; 2743 pcpu_nr_slots = pcpu_to_depopulate_slot + 1; 2744 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * 2745 sizeof(pcpu_chunk_lists[0]), 2746 SMP_CACHE_BYTES); 2747 if (!pcpu_chunk_lists) 2748 panic("%s: Failed to allocate %zu bytes\n", __func__, 2749 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0])); 2750 2751 for (i = 0; i < pcpu_nr_slots; i++) 2752 INIT_LIST_HEAD(&pcpu_chunk_lists[i]); 2753 2754 /* 2755 * The end of the static region needs to be aligned with the 2756 * minimum allocation size as this offsets the reserved and 2757 * dynamic region. The first chunk ends page aligned by 2758 * expanding the dynamic region, therefore the dynamic region 2759 * can be shrunk to compensate while still staying above the 2760 * configured sizes. 2761 */ 2762 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2763 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2764 2765 /* 2766 * Initialize first chunk: 2767 * This chunk is broken up into 3 parts: 2768 * < static | [reserved] | dynamic > 2769 * - static - there is no backing chunk because these allocations can 2770 * never be freed. 2771 * - reserved (pcpu_reserved_chunk) - exists primarily to serve 2772 * allocations from module load. 2773 * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first 2774 * chunk. 2775 */ 2776 tmp_addr = (unsigned long)base_addr + static_size; 2777 if (ai->reserved_size) 2778 pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr, 2779 ai->reserved_size); 2780 tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size; 2781 pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size); 2782 2783 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2784 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2785 2786 /* include all regions of the first chunk */ 2787 pcpu_nr_populated += PFN_DOWN(size_sum); 2788 2789 pcpu_stats_chunk_alloc(); 2790 trace_percpu_create_chunk(base_addr); 2791 2792 /* we're done */ 2793 pcpu_base_addr = base_addr; 2794 } 2795 2796 #ifdef CONFIG_SMP 2797 2798 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2799 [PCPU_FC_AUTO] = "auto", 2800 [PCPU_FC_EMBED] = "embed", 2801 [PCPU_FC_PAGE] = "page", 2802 }; 2803 2804 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2805 2806 static int __init percpu_alloc_setup(char *str) 2807 { 2808 if (!str) 2809 return -EINVAL; 2810 2811 if (0) 2812 /* nada */; 2813 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2814 else if (!strcmp(str, "embed")) 2815 pcpu_chosen_fc = PCPU_FC_EMBED; 2816 #endif 2817 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2818 else if (!strcmp(str, "page")) 2819 pcpu_chosen_fc = PCPU_FC_PAGE; 2820 #endif 2821 else 2822 pr_warn("unknown allocator %s specified\n", str); 2823 2824 return 0; 2825 } 2826 early_param("percpu_alloc", percpu_alloc_setup); 2827 2828 /* 2829 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2830 * Build it if needed by the arch config or the generic setup is going 2831 * to be used. 2832 */ 2833 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2834 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2835 #define BUILD_EMBED_FIRST_CHUNK 2836 #endif 2837 2838 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2839 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2840 #define BUILD_PAGE_FIRST_CHUNK 2841 #endif 2842 2843 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2844 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2845 /** 2846 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2847 * @reserved_size: the size of reserved percpu area in bytes 2848 * @dyn_size: minimum free size for dynamic allocation in bytes 2849 * @atom_size: allocation atom size 2850 * @cpu_distance_fn: callback to determine distance between cpus, optional 2851 * 2852 * This function determines grouping of units, their mappings to cpus 2853 * and other parameters considering needed percpu size, allocation 2854 * atom size and distances between CPUs. 2855 * 2856 * Groups are always multiples of atom size and CPUs which are of 2857 * LOCAL_DISTANCE both ways are grouped together and share space for 2858 * units in the same group. The returned configuration is guaranteed 2859 * to have CPUs on different nodes on different groups and >=75% usage 2860 * of allocated virtual address space. 2861 * 2862 * RETURNS: 2863 * On success, pointer to the new allocation_info is returned. On 2864 * failure, ERR_PTR value is returned. 2865 */ 2866 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( 2867 size_t reserved_size, size_t dyn_size, 2868 size_t atom_size, 2869 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2870 { 2871 static int group_map[NR_CPUS] __initdata; 2872 static int group_cnt[NR_CPUS] __initdata; 2873 static struct cpumask mask __initdata; 2874 const size_t static_size = __per_cpu_end - __per_cpu_start; 2875 int nr_groups = 1, nr_units = 0; 2876 size_t size_sum, min_unit_size, alloc_size; 2877 int upa, max_upa, best_upa; /* units_per_alloc */ 2878 int last_allocs, group, unit; 2879 unsigned int cpu, tcpu; 2880 struct pcpu_alloc_info *ai; 2881 unsigned int *cpu_map; 2882 2883 /* this function may be called multiple times */ 2884 memset(group_map, 0, sizeof(group_map)); 2885 memset(group_cnt, 0, sizeof(group_cnt)); 2886 cpumask_clear(&mask); 2887 2888 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2889 size_sum = PFN_ALIGN(static_size + reserved_size + 2890 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2891 dyn_size = size_sum - static_size - reserved_size; 2892 2893 /* 2894 * Determine min_unit_size, alloc_size and max_upa such that 2895 * alloc_size is multiple of atom_size and is the smallest 2896 * which can accommodate 4k aligned segments which are equal to 2897 * or larger than min_unit_size. 2898 */ 2899 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2900 2901 /* determine the maximum # of units that can fit in an allocation */ 2902 alloc_size = roundup(min_unit_size, atom_size); 2903 upa = alloc_size / min_unit_size; 2904 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2905 upa--; 2906 max_upa = upa; 2907 2908 cpumask_copy(&mask, cpu_possible_mask); 2909 2910 /* group cpus according to their proximity */ 2911 for (group = 0; !cpumask_empty(&mask); group++) { 2912 /* pop the group's first cpu */ 2913 cpu = cpumask_first(&mask); 2914 group_map[cpu] = group; 2915 group_cnt[group]++; 2916 cpumask_clear_cpu(cpu, &mask); 2917 2918 for_each_cpu(tcpu, &mask) { 2919 if (!cpu_distance_fn || 2920 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && 2921 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { 2922 group_map[tcpu] = group; 2923 group_cnt[group]++; 2924 cpumask_clear_cpu(tcpu, &mask); 2925 } 2926 } 2927 } 2928 nr_groups = group; 2929 2930 /* 2931 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2932 * Expand the unit_size until we use >= 75% of the units allocated. 2933 * Related to atom_size, which could be much larger than the unit_size. 2934 */ 2935 last_allocs = INT_MAX; 2936 best_upa = 0; 2937 for (upa = max_upa; upa; upa--) { 2938 int allocs = 0, wasted = 0; 2939 2940 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2941 continue; 2942 2943 for (group = 0; group < nr_groups; group++) { 2944 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2945 allocs += this_allocs; 2946 wasted += this_allocs * upa - group_cnt[group]; 2947 } 2948 2949 /* 2950 * Don't accept if wastage is over 1/3. The 2951 * greater-than comparison ensures upa==1 always 2952 * passes the following check. 2953 */ 2954 if (wasted > num_possible_cpus() / 3) 2955 continue; 2956 2957 /* and then don't consume more memory */ 2958 if (allocs > last_allocs) 2959 break; 2960 last_allocs = allocs; 2961 best_upa = upa; 2962 } 2963 BUG_ON(!best_upa); 2964 upa = best_upa; 2965 2966 /* allocate and fill alloc_info */ 2967 for (group = 0; group < nr_groups; group++) 2968 nr_units += roundup(group_cnt[group], upa); 2969 2970 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2971 if (!ai) 2972 return ERR_PTR(-ENOMEM); 2973 cpu_map = ai->groups[0].cpu_map; 2974 2975 for (group = 0; group < nr_groups; group++) { 2976 ai->groups[group].cpu_map = cpu_map; 2977 cpu_map += roundup(group_cnt[group], upa); 2978 } 2979 2980 ai->static_size = static_size; 2981 ai->reserved_size = reserved_size; 2982 ai->dyn_size = dyn_size; 2983 ai->unit_size = alloc_size / upa; 2984 ai->atom_size = atom_size; 2985 ai->alloc_size = alloc_size; 2986 2987 for (group = 0, unit = 0; group < nr_groups; group++) { 2988 struct pcpu_group_info *gi = &ai->groups[group]; 2989 2990 /* 2991 * Initialize base_offset as if all groups are located 2992 * back-to-back. The caller should update this to 2993 * reflect actual allocation. 2994 */ 2995 gi->base_offset = unit * ai->unit_size; 2996 2997 for_each_possible_cpu(cpu) 2998 if (group_map[cpu] == group) 2999 gi->cpu_map[gi->nr_units++] = cpu; 3000 gi->nr_units = roundup(gi->nr_units, upa); 3001 unit += gi->nr_units; 3002 } 3003 BUG_ON(unit != nr_units); 3004 3005 return ai; 3006 } 3007 3008 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align, 3009 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 3010 { 3011 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 3012 #ifdef CONFIG_NUMA 3013 int node = NUMA_NO_NODE; 3014 void *ptr; 3015 3016 if (cpu_to_nd_fn) 3017 node = cpu_to_nd_fn(cpu); 3018 3019 if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) { 3020 ptr = memblock_alloc_from(size, align, goal); 3021 pr_info("cpu %d has no node %d or node-local memory\n", 3022 cpu, node); 3023 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n", 3024 cpu, size, (u64)__pa(ptr)); 3025 } else { 3026 ptr = memblock_alloc_try_nid(size, align, goal, 3027 MEMBLOCK_ALLOC_ACCESSIBLE, 3028 node); 3029 3030 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n", 3031 cpu, size, node, (u64)__pa(ptr)); 3032 } 3033 return ptr; 3034 #else 3035 return memblock_alloc_from(size, align, goal); 3036 #endif 3037 } 3038 3039 static void __init pcpu_fc_free(void *ptr, size_t size) 3040 { 3041 memblock_free(ptr, size); 3042 } 3043 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 3044 3045 #if defined(BUILD_EMBED_FIRST_CHUNK) 3046 /** 3047 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 3048 * @reserved_size: the size of reserved percpu area in bytes 3049 * @dyn_size: minimum free size for dynamic allocation in bytes 3050 * @atom_size: allocation atom size 3051 * @cpu_distance_fn: callback to determine distance between cpus, optional 3052 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional 3053 * 3054 * This is a helper to ease setting up embedded first percpu chunk and 3055 * can be called where pcpu_setup_first_chunk() is expected. 3056 * 3057 * If this function is used to setup the first chunk, it is allocated 3058 * by calling pcpu_fc_alloc and used as-is without being mapped into 3059 * vmalloc area. Allocations are always whole multiples of @atom_size 3060 * aligned to @atom_size. 3061 * 3062 * This enables the first chunk to piggy back on the linear physical 3063 * mapping which often uses larger page size. Please note that this 3064 * can result in very sparse cpu->unit mapping on NUMA machines thus 3065 * requiring large vmalloc address space. Don't use this allocator if 3066 * vmalloc space is not orders of magnitude larger than distances 3067 * between node memory addresses (ie. 32bit NUMA machines). 3068 * 3069 * @dyn_size specifies the minimum dynamic area size. 3070 * 3071 * If the needed size is smaller than the minimum or specified unit 3072 * size, the leftover is returned using pcpu_fc_free. 3073 * 3074 * RETURNS: 3075 * 0 on success, -errno on failure. 3076 */ 3077 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 3078 size_t atom_size, 3079 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 3080 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 3081 { 3082 void *base = (void *)ULONG_MAX; 3083 void **areas = NULL; 3084 struct pcpu_alloc_info *ai; 3085 size_t size_sum, areas_size; 3086 unsigned long max_distance; 3087 int group, i, highest_group, rc = 0; 3088 3089 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 3090 cpu_distance_fn); 3091 if (IS_ERR(ai)) 3092 return PTR_ERR(ai); 3093 3094 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 3095 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 3096 3097 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 3098 if (!areas) { 3099 rc = -ENOMEM; 3100 goto out_free; 3101 } 3102 3103 /* allocate, copy and determine base address & max_distance */ 3104 highest_group = 0; 3105 for (group = 0; group < ai->nr_groups; group++) { 3106 struct pcpu_group_info *gi = &ai->groups[group]; 3107 unsigned int cpu = NR_CPUS; 3108 void *ptr; 3109 3110 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 3111 cpu = gi->cpu_map[i]; 3112 BUG_ON(cpu == NR_CPUS); 3113 3114 /* allocate space for the whole group */ 3115 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn); 3116 if (!ptr) { 3117 rc = -ENOMEM; 3118 goto out_free_areas; 3119 } 3120 /* kmemleak tracks the percpu allocations separately */ 3121 kmemleak_ignore_phys(__pa(ptr)); 3122 areas[group] = ptr; 3123 3124 base = min(ptr, base); 3125 if (ptr > areas[highest_group]) 3126 highest_group = group; 3127 } 3128 max_distance = areas[highest_group] - base; 3129 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 3130 3131 /* warn if maximum distance is further than 75% of vmalloc space */ 3132 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 3133 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 3134 max_distance, VMALLOC_TOTAL); 3135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 3136 /* and fail if we have fallback */ 3137 rc = -EINVAL; 3138 goto out_free_areas; 3139 #endif 3140 } 3141 3142 /* 3143 * Copy data and free unused parts. This should happen after all 3144 * allocations are complete; otherwise, we may end up with 3145 * overlapping groups. 3146 */ 3147 for (group = 0; group < ai->nr_groups; group++) { 3148 struct pcpu_group_info *gi = &ai->groups[group]; 3149 void *ptr = areas[group]; 3150 3151 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 3152 if (gi->cpu_map[i] == NR_CPUS) { 3153 /* unused unit, free whole */ 3154 pcpu_fc_free(ptr, ai->unit_size); 3155 continue; 3156 } 3157 /* copy and return the unused part */ 3158 memcpy(ptr, __per_cpu_load, ai->static_size); 3159 pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum); 3160 } 3161 } 3162 3163 /* base address is now known, determine group base offsets */ 3164 for (group = 0; group < ai->nr_groups; group++) { 3165 ai->groups[group].base_offset = areas[group] - base; 3166 } 3167 3168 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 3169 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 3170 ai->dyn_size, ai->unit_size); 3171 3172 pcpu_setup_first_chunk(ai, base); 3173 goto out_free; 3174 3175 out_free_areas: 3176 for (group = 0; group < ai->nr_groups; group++) 3177 if (areas[group]) 3178 pcpu_fc_free(areas[group], 3179 ai->groups[group].nr_units * ai->unit_size); 3180 out_free: 3181 pcpu_free_alloc_info(ai); 3182 if (areas) 3183 memblock_free(areas, areas_size); 3184 return rc; 3185 } 3186 #endif /* BUILD_EMBED_FIRST_CHUNK */ 3187 3188 #ifdef BUILD_PAGE_FIRST_CHUNK 3189 #include <asm/pgalloc.h> 3190 3191 #ifndef P4D_TABLE_SIZE 3192 #define P4D_TABLE_SIZE PAGE_SIZE 3193 #endif 3194 3195 #ifndef PUD_TABLE_SIZE 3196 #define PUD_TABLE_SIZE PAGE_SIZE 3197 #endif 3198 3199 #ifndef PMD_TABLE_SIZE 3200 #define PMD_TABLE_SIZE PAGE_SIZE 3201 #endif 3202 3203 #ifndef PTE_TABLE_SIZE 3204 #define PTE_TABLE_SIZE PAGE_SIZE 3205 #endif 3206 void __init __weak pcpu_populate_pte(unsigned long addr) 3207 { 3208 pgd_t *pgd = pgd_offset_k(addr); 3209 p4d_t *p4d; 3210 pud_t *pud; 3211 pmd_t *pmd; 3212 3213 if (pgd_none(*pgd)) { 3214 p4d = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE); 3215 if (!p4d) 3216 goto err_alloc; 3217 pgd_populate(&init_mm, pgd, p4d); 3218 } 3219 3220 p4d = p4d_offset(pgd, addr); 3221 if (p4d_none(*p4d)) { 3222 pud = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE); 3223 if (!pud) 3224 goto err_alloc; 3225 p4d_populate(&init_mm, p4d, pud); 3226 } 3227 3228 pud = pud_offset(p4d, addr); 3229 if (pud_none(*pud)) { 3230 pmd = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE); 3231 if (!pmd) 3232 goto err_alloc; 3233 pud_populate(&init_mm, pud, pmd); 3234 } 3235 3236 pmd = pmd_offset(pud, addr); 3237 if (!pmd_present(*pmd)) { 3238 pte_t *new; 3239 3240 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE); 3241 if (!new) 3242 goto err_alloc; 3243 pmd_populate_kernel(&init_mm, pmd, new); 3244 } 3245 3246 return; 3247 3248 err_alloc: 3249 panic("%s: Failed to allocate memory\n", __func__); 3250 } 3251 3252 /** 3253 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 3254 * @reserved_size: the size of reserved percpu area in bytes 3255 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional 3256 * 3257 * This is a helper to ease setting up page-remapped first percpu 3258 * chunk and can be called where pcpu_setup_first_chunk() is expected. 3259 * 3260 * This is the basic allocator. Static percpu area is allocated 3261 * page-by-page into vmalloc area. 3262 * 3263 * RETURNS: 3264 * 0 on success, -errno on failure. 3265 */ 3266 int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 3267 { 3268 static struct vm_struct vm; 3269 struct pcpu_alloc_info *ai; 3270 char psize_str[16]; 3271 int unit_pages; 3272 size_t pages_size; 3273 struct page **pages; 3274 int unit, i, j, rc = 0; 3275 int upa; 3276 int nr_g0_units; 3277 3278 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 3279 3280 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 3281 if (IS_ERR(ai)) 3282 return PTR_ERR(ai); 3283 BUG_ON(ai->nr_groups != 1); 3284 upa = ai->alloc_size/ai->unit_size; 3285 nr_g0_units = roundup(num_possible_cpus(), upa); 3286 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 3287 pcpu_free_alloc_info(ai); 3288 return -EINVAL; 3289 } 3290 3291 unit_pages = ai->unit_size >> PAGE_SHIFT; 3292 3293 /* unaligned allocations can't be freed, round up to page size */ 3294 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 3295 sizeof(pages[0])); 3296 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 3297 if (!pages) 3298 panic("%s: Failed to allocate %zu bytes\n", __func__, 3299 pages_size); 3300 3301 /* allocate pages */ 3302 j = 0; 3303 for (unit = 0; unit < num_possible_cpus(); unit++) { 3304 unsigned int cpu = ai->groups[0].cpu_map[unit]; 3305 for (i = 0; i < unit_pages; i++) { 3306 void *ptr; 3307 3308 ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn); 3309 if (!ptr) { 3310 pr_warn("failed to allocate %s page for cpu%u\n", 3311 psize_str, cpu); 3312 goto enomem; 3313 } 3314 /* kmemleak tracks the percpu allocations separately */ 3315 kmemleak_ignore_phys(__pa(ptr)); 3316 pages[j++] = virt_to_page(ptr); 3317 } 3318 } 3319 3320 /* allocate vm area, map the pages and copy static data */ 3321 vm.flags = VM_ALLOC; 3322 vm.size = num_possible_cpus() * ai->unit_size; 3323 vm_area_register_early(&vm, PAGE_SIZE); 3324 3325 for (unit = 0; unit < num_possible_cpus(); unit++) { 3326 unsigned long unit_addr = 3327 (unsigned long)vm.addr + unit * ai->unit_size; 3328 3329 for (i = 0; i < unit_pages; i++) 3330 pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT)); 3331 3332 /* pte already populated, the following shouldn't fail */ 3333 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 3334 unit_pages); 3335 if (rc < 0) 3336 panic("failed to map percpu area, err=%d\n", rc); 3337 3338 /* 3339 * FIXME: Archs with virtual cache should flush local 3340 * cache for the linear mapping here - something 3341 * equivalent to flush_cache_vmap() on the local cpu. 3342 * flush_cache_vmap() can't be used as most supporting 3343 * data structures are not set up yet. 3344 */ 3345 3346 /* copy static data */ 3347 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 3348 } 3349 3350 /* we're ready, commit */ 3351 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 3352 unit_pages, psize_str, ai->static_size, 3353 ai->reserved_size, ai->dyn_size); 3354 3355 pcpu_setup_first_chunk(ai, vm.addr); 3356 goto out_free_ar; 3357 3358 enomem: 3359 while (--j >= 0) 3360 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE); 3361 rc = -ENOMEM; 3362 out_free_ar: 3363 memblock_free(pages, pages_size); 3364 pcpu_free_alloc_info(ai); 3365 return rc; 3366 } 3367 #endif /* BUILD_PAGE_FIRST_CHUNK */ 3368 3369 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 3370 /* 3371 * Generic SMP percpu area setup. 3372 * 3373 * The embedding helper is used because its behavior closely resembles 3374 * the original non-dynamic generic percpu area setup. This is 3375 * important because many archs have addressing restrictions and might 3376 * fail if the percpu area is located far away from the previous 3377 * location. As an added bonus, in non-NUMA cases, embedding is 3378 * generally a good idea TLB-wise because percpu area can piggy back 3379 * on the physical linear memory mapping which uses large page 3380 * mappings on applicable archs. 3381 */ 3382 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 3383 EXPORT_SYMBOL(__per_cpu_offset); 3384 3385 void __init setup_per_cpu_areas(void) 3386 { 3387 unsigned long delta; 3388 unsigned int cpu; 3389 int rc; 3390 3391 /* 3392 * Always reserve area for module percpu variables. That's 3393 * what the legacy allocator did. 3394 */ 3395 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, 3396 PAGE_SIZE, NULL, NULL); 3397 if (rc < 0) 3398 panic("Failed to initialize percpu areas."); 3399 3400 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 3401 for_each_possible_cpu(cpu) 3402 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 3403 } 3404 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 3405 3406 #else /* CONFIG_SMP */ 3407 3408 /* 3409 * UP percpu area setup. 3410 * 3411 * UP always uses km-based percpu allocator with identity mapping. 3412 * Static percpu variables are indistinguishable from the usual static 3413 * variables and don't require any special preparation. 3414 */ 3415 void __init setup_per_cpu_areas(void) 3416 { 3417 const size_t unit_size = 3418 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 3419 PERCPU_DYNAMIC_RESERVE)); 3420 struct pcpu_alloc_info *ai; 3421 void *fc; 3422 3423 ai = pcpu_alloc_alloc_info(1, 1); 3424 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 3425 if (!ai || !fc) 3426 panic("Failed to allocate memory for percpu areas."); 3427 /* kmemleak tracks the percpu allocations separately */ 3428 kmemleak_ignore_phys(__pa(fc)); 3429 3430 ai->dyn_size = unit_size; 3431 ai->unit_size = unit_size; 3432 ai->atom_size = unit_size; 3433 ai->alloc_size = unit_size; 3434 ai->groups[0].nr_units = 1; 3435 ai->groups[0].cpu_map[0] = 0; 3436 3437 pcpu_setup_first_chunk(ai, fc); 3438 pcpu_free_alloc_info(ai); 3439 } 3440 3441 #endif /* CONFIG_SMP */ 3442 3443 /* 3444 * pcpu_nr_pages - calculate total number of populated backing pages 3445 * 3446 * This reflects the number of pages populated to back chunks. Metadata is 3447 * excluded in the number exposed in meminfo as the number of backing pages 3448 * scales with the number of cpus and can quickly outweigh the memory used for 3449 * metadata. It also keeps this calculation nice and simple. 3450 * 3451 * RETURNS: 3452 * Total number of populated backing pages in use by the allocator. 3453 */ 3454 unsigned long pcpu_nr_pages(void) 3455 { 3456 return pcpu_nr_populated * pcpu_nr_units; 3457 } 3458 3459 /* 3460 * Percpu allocator is initialized early during boot when neither slab or 3461 * workqueue is available. Plug async management until everything is up 3462 * and running. 3463 */ 3464 static int __init percpu_enable_async(void) 3465 { 3466 pcpu_async_enabled = true; 3467 return 0; 3468 } 3469 subsys_initcall(percpu_enable_async); 3470