xref: /linux/mm/percpu.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41  * flag should be passed.  All memcg-aware allocations are sharing one set
42  * of chunks and all unaccounted allocations and allocations performed
43  * by processes belonging to the root memory cgroup are using the second set.
44  *
45  * The allocator tries to allocate from the fullest chunk first. Each chunk
46  * is managed by a bitmap with metadata blocks.  The allocation map is updated
47  * on every allocation and free to reflect the current state while the boundary
48  * map is only updated on allocation.  Each metadata block contains
49  * information to help mitigate the need to iterate over large portions
50  * of the bitmap.  The reverse mapping from page to chunk is stored in
51  * the page's index.  Lastly, units are lazily backed and grow in unison.
52  *
53  * There is a unique conversion that goes on here between bytes and bits.
54  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
55  * tracks the number of pages it is responsible for in nr_pages.  Helper
56  * functions are used to convert from between the bytes, bits, and blocks.
57  * All hints are managed in bits unless explicitly stated.
58  *
59  * To use this allocator, arch code should do the following:
60  *
61  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62  *   regular address to percpu pointer and back if they need to be
63  *   different from the default
64  *
65  * - use pcpu_setup_first_chunk() during percpu area initialization to
66  *   setup the first chunk containing the kernel static percpu area
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
77 #include <linux/mm.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
90 
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
94 #include <asm/io.h>
95 
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
98 
99 #include "percpu-internal.h"
100 
101 /*
102  * The slots are sorted by the size of the biggest continuous free area.
103  * 1-31 bytes share the same slot.
104  */
105 #define PCPU_SLOT_BASE_SHIFT		5
106 /* chunks in slots below this are subject to being sidelined on failed alloc */
107 #define PCPU_SLOT_FAIL_THRESHOLD	3
108 
109 #define PCPU_EMPTY_POP_PAGES_LOW	2
110 #define PCPU_EMPTY_POP_PAGES_HIGH	4
111 
112 #ifdef CONFIG_SMP
113 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
114 #ifndef __addr_to_pcpu_ptr
115 #define __addr_to_pcpu_ptr(addr)					\
116 	(void __percpu *)((unsigned long)(addr) -			\
117 			  (unsigned long)pcpu_base_addr	+		\
118 			  (unsigned long)__per_cpu_start)
119 #endif
120 #ifndef __pcpu_ptr_to_addr
121 #define __pcpu_ptr_to_addr(ptr)						\
122 	(void __force *)((unsigned long)(ptr) +				\
123 			 (unsigned long)pcpu_base_addr -		\
124 			 (unsigned long)__per_cpu_start)
125 #endif
126 #else	/* CONFIG_SMP */
127 /* on UP, it's always identity mapped */
128 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
129 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
130 #endif	/* CONFIG_SMP */
131 
132 static int pcpu_unit_pages __ro_after_init;
133 static int pcpu_unit_size __ro_after_init;
134 static int pcpu_nr_units __ro_after_init;
135 static int pcpu_atom_size __ro_after_init;
136 int pcpu_nr_slots __ro_after_init;
137 static int pcpu_free_slot __ro_after_init;
138 int pcpu_sidelined_slot __ro_after_init;
139 int pcpu_to_depopulate_slot __ro_after_init;
140 static size_t pcpu_chunk_struct_size __ro_after_init;
141 
142 /* cpus with the lowest and highest unit addresses */
143 static unsigned int pcpu_low_unit_cpu __ro_after_init;
144 static unsigned int pcpu_high_unit_cpu __ro_after_init;
145 
146 /* the address of the first chunk which starts with the kernel static area */
147 void *pcpu_base_addr __ro_after_init;
148 
149 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
150 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
151 
152 /* group information, used for vm allocation */
153 static int pcpu_nr_groups __ro_after_init;
154 static const unsigned long *pcpu_group_offsets __ro_after_init;
155 static const size_t *pcpu_group_sizes __ro_after_init;
156 
157 /*
158  * The first chunk which always exists.  Note that unlike other
159  * chunks, this one can be allocated and mapped in several different
160  * ways and thus often doesn't live in the vmalloc area.
161  */
162 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
163 
164 /*
165  * Optional reserved chunk.  This chunk reserves part of the first
166  * chunk and serves it for reserved allocations.  When the reserved
167  * region doesn't exist, the following variable is NULL.
168  */
169 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
170 
171 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
172 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
173 
174 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
175 
176 /*
177  * The number of empty populated pages, protected by pcpu_lock.
178  * The reserved chunk doesn't contribute to the count.
179  */
180 int pcpu_nr_empty_pop_pages;
181 
182 /*
183  * The number of populated pages in use by the allocator, protected by
184  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
185  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
186  * and increments/decrements this count by 1).
187  */
188 static unsigned long pcpu_nr_populated;
189 
190 /*
191  * Balance work is used to populate or destroy chunks asynchronously.  We
192  * try to keep the number of populated free pages between
193  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
194  * empty chunk.
195  */
196 static void pcpu_balance_workfn(struct work_struct *work);
197 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
198 static bool pcpu_async_enabled __read_mostly;
199 static bool pcpu_atomic_alloc_failed;
200 
201 static void pcpu_schedule_balance_work(void)
202 {
203 	if (pcpu_async_enabled)
204 		schedule_work(&pcpu_balance_work);
205 }
206 
207 /**
208  * pcpu_addr_in_chunk - check if the address is served from this chunk
209  * @chunk: chunk of interest
210  * @addr: percpu address
211  *
212  * RETURNS:
213  * True if the address is served from this chunk.
214  */
215 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
216 {
217 	void *start_addr, *end_addr;
218 
219 	if (!chunk)
220 		return false;
221 
222 	start_addr = chunk->base_addr + chunk->start_offset;
223 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
224 		   chunk->end_offset;
225 
226 	return addr >= start_addr && addr < end_addr;
227 }
228 
229 static int __pcpu_size_to_slot(int size)
230 {
231 	int highbit = fls(size);	/* size is in bytes */
232 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
233 }
234 
235 static int pcpu_size_to_slot(int size)
236 {
237 	if (size == pcpu_unit_size)
238 		return pcpu_free_slot;
239 	return __pcpu_size_to_slot(size);
240 }
241 
242 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
243 {
244 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
245 
246 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
247 	    chunk_md->contig_hint == 0)
248 		return 0;
249 
250 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
251 }
252 
253 /* set the pointer to a chunk in a page struct */
254 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
255 {
256 	page->index = (unsigned long)pcpu;
257 }
258 
259 /* obtain pointer to a chunk from a page struct */
260 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
261 {
262 	return (struct pcpu_chunk *)page->index;
263 }
264 
265 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
266 {
267 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
268 }
269 
270 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
271 {
272 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
273 }
274 
275 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
276 				     unsigned int cpu, int page_idx)
277 {
278 	return (unsigned long)chunk->base_addr +
279 	       pcpu_unit_page_offset(cpu, page_idx);
280 }
281 
282 /*
283  * The following are helper functions to help access bitmaps and convert
284  * between bitmap offsets to address offsets.
285  */
286 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
287 {
288 	return chunk->alloc_map +
289 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
290 }
291 
292 static unsigned long pcpu_off_to_block_index(int off)
293 {
294 	return off / PCPU_BITMAP_BLOCK_BITS;
295 }
296 
297 static unsigned long pcpu_off_to_block_off(int off)
298 {
299 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
300 }
301 
302 static unsigned long pcpu_block_off_to_off(int index, int off)
303 {
304 	return index * PCPU_BITMAP_BLOCK_BITS + off;
305 }
306 
307 /**
308  * pcpu_check_block_hint - check against the contig hint
309  * @block: block of interest
310  * @bits: size of allocation
311  * @align: alignment of area (max PAGE_SIZE)
312  *
313  * Check to see if the allocation can fit in the block's contig hint.
314  * Note, a chunk uses the same hints as a block so this can also check against
315  * the chunk's contig hint.
316  */
317 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
318 				  size_t align)
319 {
320 	int bit_off = ALIGN(block->contig_hint_start, align) -
321 		block->contig_hint_start;
322 
323 	return bit_off + bits <= block->contig_hint;
324 }
325 
326 /*
327  * pcpu_next_hint - determine which hint to use
328  * @block: block of interest
329  * @alloc_bits: size of allocation
330  *
331  * This determines if we should scan based on the scan_hint or first_free.
332  * In general, we want to scan from first_free to fulfill allocations by
333  * first fit.  However, if we know a scan_hint at position scan_hint_start
334  * cannot fulfill an allocation, we can begin scanning from there knowing
335  * the contig_hint will be our fallback.
336  */
337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
338 {
339 	/*
340 	 * The three conditions below determine if we can skip past the
341 	 * scan_hint.  First, does the scan hint exist.  Second, is the
342 	 * contig_hint after the scan_hint (possibly not true iff
343 	 * contig_hint == scan_hint).  Third, is the allocation request
344 	 * larger than the scan_hint.
345 	 */
346 	if (block->scan_hint &&
347 	    block->contig_hint_start > block->scan_hint_start &&
348 	    alloc_bits > block->scan_hint)
349 		return block->scan_hint_start + block->scan_hint;
350 
351 	return block->first_free;
352 }
353 
354 /**
355  * pcpu_next_md_free_region - finds the next hint free area
356  * @chunk: chunk of interest
357  * @bit_off: chunk offset
358  * @bits: size of free area
359  *
360  * Helper function for pcpu_for_each_md_free_region.  It checks
361  * block->contig_hint and performs aggregation across blocks to find the
362  * next hint.  It modifies bit_off and bits in-place to be consumed in the
363  * loop.
364  */
365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
366 				     int *bits)
367 {
368 	int i = pcpu_off_to_block_index(*bit_off);
369 	int block_off = pcpu_off_to_block_off(*bit_off);
370 	struct pcpu_block_md *block;
371 
372 	*bits = 0;
373 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
374 	     block++, i++) {
375 		/* handles contig area across blocks */
376 		if (*bits) {
377 			*bits += block->left_free;
378 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
379 				continue;
380 			return;
381 		}
382 
383 		/*
384 		 * This checks three things.  First is there a contig_hint to
385 		 * check.  Second, have we checked this hint before by
386 		 * comparing the block_off.  Third, is this the same as the
387 		 * right contig hint.  In the last case, it spills over into
388 		 * the next block and should be handled by the contig area
389 		 * across blocks code.
390 		 */
391 		*bits = block->contig_hint;
392 		if (*bits && block->contig_hint_start >= block_off &&
393 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
394 			*bit_off = pcpu_block_off_to_off(i,
395 					block->contig_hint_start);
396 			return;
397 		}
398 		/* reset to satisfy the second predicate above */
399 		block_off = 0;
400 
401 		*bits = block->right_free;
402 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
403 	}
404 }
405 
406 /**
407  * pcpu_next_fit_region - finds fit areas for a given allocation request
408  * @chunk: chunk of interest
409  * @alloc_bits: size of allocation
410  * @align: alignment of area (max PAGE_SIZE)
411  * @bit_off: chunk offset
412  * @bits: size of free area
413  *
414  * Finds the next free region that is viable for use with a given size and
415  * alignment.  This only returns if there is a valid area to be used for this
416  * allocation.  block->first_free is returned if the allocation request fits
417  * within the block to see if the request can be fulfilled prior to the contig
418  * hint.
419  */
420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
421 				 int align, int *bit_off, int *bits)
422 {
423 	int i = pcpu_off_to_block_index(*bit_off);
424 	int block_off = pcpu_off_to_block_off(*bit_off);
425 	struct pcpu_block_md *block;
426 
427 	*bits = 0;
428 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
429 	     block++, i++) {
430 		/* handles contig area across blocks */
431 		if (*bits) {
432 			*bits += block->left_free;
433 			if (*bits >= alloc_bits)
434 				return;
435 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
436 				continue;
437 		}
438 
439 		/* check block->contig_hint */
440 		*bits = ALIGN(block->contig_hint_start, align) -
441 			block->contig_hint_start;
442 		/*
443 		 * This uses the block offset to determine if this has been
444 		 * checked in the prior iteration.
445 		 */
446 		if (block->contig_hint &&
447 		    block->contig_hint_start >= block_off &&
448 		    block->contig_hint >= *bits + alloc_bits) {
449 			int start = pcpu_next_hint(block, alloc_bits);
450 
451 			*bits += alloc_bits + block->contig_hint_start -
452 				 start;
453 			*bit_off = pcpu_block_off_to_off(i, start);
454 			return;
455 		}
456 		/* reset to satisfy the second predicate above */
457 		block_off = 0;
458 
459 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
460 				 align);
461 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
462 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
463 		if (*bits >= alloc_bits)
464 			return;
465 	}
466 
467 	/* no valid offsets were found - fail condition */
468 	*bit_off = pcpu_chunk_map_bits(chunk);
469 }
470 
471 /*
472  * Metadata free area iterators.  These perform aggregation of free areas
473  * based on the metadata blocks and return the offset @bit_off and size in
474  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
475  * a fit is found for the allocation request.
476  */
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
478 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
479 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
480 	     (bit_off) += (bits) + 1,					\
481 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
482 
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
484 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
485 				  &(bits));				      \
486 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
487 	     (bit_off) += (bits),					      \
488 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
489 				  &(bits)))
490 
491 /**
492  * pcpu_mem_zalloc - allocate memory
493  * @size: bytes to allocate
494  * @gfp: allocation flags
495  *
496  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
497  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498  * This is to facilitate passing through whitelisted flags.  The
499  * returned memory is always zeroed.
500  *
501  * RETURNS:
502  * Pointer to the allocated area on success, NULL on failure.
503  */
504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
505 {
506 	if (WARN_ON_ONCE(!slab_is_available()))
507 		return NULL;
508 
509 	if (size <= PAGE_SIZE)
510 		return kzalloc(size, gfp);
511 	else
512 		return __vmalloc(size, gfp | __GFP_ZERO);
513 }
514 
515 /**
516  * pcpu_mem_free - free memory
517  * @ptr: memory to free
518  *
519  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
520  */
521 static void pcpu_mem_free(void *ptr)
522 {
523 	kvfree(ptr);
524 }
525 
526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
527 			      bool move_front)
528 {
529 	if (chunk != pcpu_reserved_chunk) {
530 		if (move_front)
531 			list_move(&chunk->list, &pcpu_chunk_lists[slot]);
532 		else
533 			list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
534 	}
535 }
536 
537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
538 {
539 	__pcpu_chunk_move(chunk, slot, true);
540 }
541 
542 /**
543  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544  * @chunk: chunk of interest
545  * @oslot: the previous slot it was on
546  *
547  * This function is called after an allocation or free changed @chunk.
548  * New slot according to the changed state is determined and @chunk is
549  * moved to the slot.  Note that the reserved chunk is never put on
550  * chunk slots.
551  *
552  * CONTEXT:
553  * pcpu_lock.
554  */
555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
556 {
557 	int nslot = pcpu_chunk_slot(chunk);
558 
559 	/* leave isolated chunks in-place */
560 	if (chunk->isolated)
561 		return;
562 
563 	if (oslot != nslot)
564 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
565 }
566 
567 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
568 {
569 	lockdep_assert_held(&pcpu_lock);
570 
571 	if (!chunk->isolated) {
572 		chunk->isolated = true;
573 		pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
574 	}
575 	list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
576 }
577 
578 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
579 {
580 	lockdep_assert_held(&pcpu_lock);
581 
582 	if (chunk->isolated) {
583 		chunk->isolated = false;
584 		pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
585 		pcpu_chunk_relocate(chunk, -1);
586 	}
587 }
588 
589 /*
590  * pcpu_update_empty_pages - update empty page counters
591  * @chunk: chunk of interest
592  * @nr: nr of empty pages
593  *
594  * This is used to keep track of the empty pages now based on the premise
595  * a md_block covers a page.  The hint update functions recognize if a block
596  * is made full or broken to calculate deltas for keeping track of free pages.
597  */
598 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
599 {
600 	chunk->nr_empty_pop_pages += nr;
601 	if (chunk != pcpu_reserved_chunk && !chunk->isolated)
602 		pcpu_nr_empty_pop_pages += nr;
603 }
604 
605 /*
606  * pcpu_region_overlap - determines if two regions overlap
607  * @a: start of first region, inclusive
608  * @b: end of first region, exclusive
609  * @x: start of second region, inclusive
610  * @y: end of second region, exclusive
611  *
612  * This is used to determine if the hint region [a, b) overlaps with the
613  * allocated region [x, y).
614  */
615 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
616 {
617 	return (a < y) && (x < b);
618 }
619 
620 /**
621  * pcpu_block_update - updates a block given a free area
622  * @block: block of interest
623  * @start: start offset in block
624  * @end: end offset in block
625  *
626  * Updates a block given a known free area.  The region [start, end) is
627  * expected to be the entirety of the free area within a block.  Chooses
628  * the best starting offset if the contig hints are equal.
629  */
630 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
631 {
632 	int contig = end - start;
633 
634 	block->first_free = min(block->first_free, start);
635 	if (start == 0)
636 		block->left_free = contig;
637 
638 	if (end == block->nr_bits)
639 		block->right_free = contig;
640 
641 	if (contig > block->contig_hint) {
642 		/* promote the old contig_hint to be the new scan_hint */
643 		if (start > block->contig_hint_start) {
644 			if (block->contig_hint > block->scan_hint) {
645 				block->scan_hint_start =
646 					block->contig_hint_start;
647 				block->scan_hint = block->contig_hint;
648 			} else if (start < block->scan_hint_start) {
649 				/*
650 				 * The old contig_hint == scan_hint.  But, the
651 				 * new contig is larger so hold the invariant
652 				 * scan_hint_start < contig_hint_start.
653 				 */
654 				block->scan_hint = 0;
655 			}
656 		} else {
657 			block->scan_hint = 0;
658 		}
659 		block->contig_hint_start = start;
660 		block->contig_hint = contig;
661 	} else if (contig == block->contig_hint) {
662 		if (block->contig_hint_start &&
663 		    (!start ||
664 		     __ffs(start) > __ffs(block->contig_hint_start))) {
665 			/* start has a better alignment so use it */
666 			block->contig_hint_start = start;
667 			if (start < block->scan_hint_start &&
668 			    block->contig_hint > block->scan_hint)
669 				block->scan_hint = 0;
670 		} else if (start > block->scan_hint_start ||
671 			   block->contig_hint > block->scan_hint) {
672 			/*
673 			 * Knowing contig == contig_hint, update the scan_hint
674 			 * if it is farther than or larger than the current
675 			 * scan_hint.
676 			 */
677 			block->scan_hint_start = start;
678 			block->scan_hint = contig;
679 		}
680 	} else {
681 		/*
682 		 * The region is smaller than the contig_hint.  So only update
683 		 * the scan_hint if it is larger than or equal and farther than
684 		 * the current scan_hint.
685 		 */
686 		if ((start < block->contig_hint_start &&
687 		     (contig > block->scan_hint ||
688 		      (contig == block->scan_hint &&
689 		       start > block->scan_hint_start)))) {
690 			block->scan_hint_start = start;
691 			block->scan_hint = contig;
692 		}
693 	}
694 }
695 
696 /*
697  * pcpu_block_update_scan - update a block given a free area from a scan
698  * @chunk: chunk of interest
699  * @bit_off: chunk offset
700  * @bits: size of free area
701  *
702  * Finding the final allocation spot first goes through pcpu_find_block_fit()
703  * to find a block that can hold the allocation and then pcpu_alloc_area()
704  * where a scan is used.  When allocations require specific alignments,
705  * we can inadvertently create holes which will not be seen in the alloc
706  * or free paths.
707  *
708  * This takes a given free area hole and updates a block as it may change the
709  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
710  * from alignment.
711  */
712 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
713 				   int bits)
714 {
715 	int s_off = pcpu_off_to_block_off(bit_off);
716 	int e_off = s_off + bits;
717 	int s_index, l_bit;
718 	struct pcpu_block_md *block;
719 
720 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
721 		return;
722 
723 	s_index = pcpu_off_to_block_index(bit_off);
724 	block = chunk->md_blocks + s_index;
725 
726 	/* scan backwards in case of alignment skipping free bits */
727 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
728 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
729 
730 	pcpu_block_update(block, s_off, e_off);
731 }
732 
733 /**
734  * pcpu_chunk_refresh_hint - updates metadata about a chunk
735  * @chunk: chunk of interest
736  * @full_scan: if we should scan from the beginning
737  *
738  * Iterates over the metadata blocks to find the largest contig area.
739  * A full scan can be avoided on the allocation path as this is triggered
740  * if we broke the contig_hint.  In doing so, the scan_hint will be before
741  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
742  * be prevented on freeing as we want to find the largest area possibly
743  * spanning blocks.
744  */
745 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
746 {
747 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
748 	int bit_off, bits;
749 
750 	/* promote scan_hint to contig_hint */
751 	if (!full_scan && chunk_md->scan_hint) {
752 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
753 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
754 		chunk_md->contig_hint = chunk_md->scan_hint;
755 		chunk_md->scan_hint = 0;
756 	} else {
757 		bit_off = chunk_md->first_free;
758 		chunk_md->contig_hint = 0;
759 	}
760 
761 	bits = 0;
762 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
763 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
764 }
765 
766 /**
767  * pcpu_block_refresh_hint
768  * @chunk: chunk of interest
769  * @index: index of the metadata block
770  *
771  * Scans over the block beginning at first_free and updates the block
772  * metadata accordingly.
773  */
774 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
775 {
776 	struct pcpu_block_md *block = chunk->md_blocks + index;
777 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
778 	unsigned int start, end;	/* region start, region end */
779 
780 	/* promote scan_hint to contig_hint */
781 	if (block->scan_hint) {
782 		start = block->scan_hint_start + block->scan_hint;
783 		block->contig_hint_start = block->scan_hint_start;
784 		block->contig_hint = block->scan_hint;
785 		block->scan_hint = 0;
786 	} else {
787 		start = block->first_free;
788 		block->contig_hint = 0;
789 	}
790 
791 	block->right_free = 0;
792 
793 	/* iterate over free areas and update the contig hints */
794 	for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
795 		pcpu_block_update(block, start, end);
796 }
797 
798 /**
799  * pcpu_block_update_hint_alloc - update hint on allocation path
800  * @chunk: chunk of interest
801  * @bit_off: chunk offset
802  * @bits: size of request
803  *
804  * Updates metadata for the allocation path.  The metadata only has to be
805  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
806  * scans are required if the block's contig hint is broken.
807  */
808 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
809 					 int bits)
810 {
811 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
812 	int nr_empty_pages = 0;
813 	struct pcpu_block_md *s_block, *e_block, *block;
814 	int s_index, e_index;	/* block indexes of the freed allocation */
815 	int s_off, e_off;	/* block offsets of the freed allocation */
816 
817 	/*
818 	 * Calculate per block offsets.
819 	 * The calculation uses an inclusive range, but the resulting offsets
820 	 * are [start, end).  e_index always points to the last block in the
821 	 * range.
822 	 */
823 	s_index = pcpu_off_to_block_index(bit_off);
824 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
825 	s_off = pcpu_off_to_block_off(bit_off);
826 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
827 
828 	s_block = chunk->md_blocks + s_index;
829 	e_block = chunk->md_blocks + e_index;
830 
831 	/*
832 	 * Update s_block.
833 	 */
834 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
835 		nr_empty_pages++;
836 
837 	/*
838 	 * block->first_free must be updated if the allocation takes its place.
839 	 * If the allocation breaks the contig_hint, a scan is required to
840 	 * restore this hint.
841 	 */
842 	if (s_off == s_block->first_free)
843 		s_block->first_free = find_next_zero_bit(
844 					pcpu_index_alloc_map(chunk, s_index),
845 					PCPU_BITMAP_BLOCK_BITS,
846 					s_off + bits);
847 
848 	if (pcpu_region_overlap(s_block->scan_hint_start,
849 				s_block->scan_hint_start + s_block->scan_hint,
850 				s_off,
851 				s_off + bits))
852 		s_block->scan_hint = 0;
853 
854 	if (pcpu_region_overlap(s_block->contig_hint_start,
855 				s_block->contig_hint_start +
856 				s_block->contig_hint,
857 				s_off,
858 				s_off + bits)) {
859 		/* block contig hint is broken - scan to fix it */
860 		if (!s_off)
861 			s_block->left_free = 0;
862 		pcpu_block_refresh_hint(chunk, s_index);
863 	} else {
864 		/* update left and right contig manually */
865 		s_block->left_free = min(s_block->left_free, s_off);
866 		if (s_index == e_index)
867 			s_block->right_free = min_t(int, s_block->right_free,
868 					PCPU_BITMAP_BLOCK_BITS - e_off);
869 		else
870 			s_block->right_free = 0;
871 	}
872 
873 	/*
874 	 * Update e_block.
875 	 */
876 	if (s_index != e_index) {
877 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
878 			nr_empty_pages++;
879 
880 		/*
881 		 * When the allocation is across blocks, the end is along
882 		 * the left part of the e_block.
883 		 */
884 		e_block->first_free = find_next_zero_bit(
885 				pcpu_index_alloc_map(chunk, e_index),
886 				PCPU_BITMAP_BLOCK_BITS, e_off);
887 
888 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
889 			/* reset the block */
890 			e_block++;
891 		} else {
892 			if (e_off > e_block->scan_hint_start)
893 				e_block->scan_hint = 0;
894 
895 			e_block->left_free = 0;
896 			if (e_off > e_block->contig_hint_start) {
897 				/* contig hint is broken - scan to fix it */
898 				pcpu_block_refresh_hint(chunk, e_index);
899 			} else {
900 				e_block->right_free =
901 					min_t(int, e_block->right_free,
902 					      PCPU_BITMAP_BLOCK_BITS - e_off);
903 			}
904 		}
905 
906 		/* update in-between md_blocks */
907 		nr_empty_pages += (e_index - s_index - 1);
908 		for (block = s_block + 1; block < e_block; block++) {
909 			block->scan_hint = 0;
910 			block->contig_hint = 0;
911 			block->left_free = 0;
912 			block->right_free = 0;
913 		}
914 	}
915 
916 	/*
917 	 * If the allocation is not atomic, some blocks may not be
918 	 * populated with pages, while we account it here.  The number
919 	 * of pages will be added back with pcpu_chunk_populated()
920 	 * when populating pages.
921 	 */
922 	if (nr_empty_pages)
923 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
924 
925 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
926 				chunk_md->scan_hint_start +
927 				chunk_md->scan_hint,
928 				bit_off,
929 				bit_off + bits))
930 		chunk_md->scan_hint = 0;
931 
932 	/*
933 	 * The only time a full chunk scan is required is if the chunk
934 	 * contig hint is broken.  Otherwise, it means a smaller space
935 	 * was used and therefore the chunk contig hint is still correct.
936 	 */
937 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
938 				chunk_md->contig_hint_start +
939 				chunk_md->contig_hint,
940 				bit_off,
941 				bit_off + bits))
942 		pcpu_chunk_refresh_hint(chunk, false);
943 }
944 
945 /**
946  * pcpu_block_update_hint_free - updates the block hints on the free path
947  * @chunk: chunk of interest
948  * @bit_off: chunk offset
949  * @bits: size of request
950  *
951  * Updates metadata for the allocation path.  This avoids a blind block
952  * refresh by making use of the block contig hints.  If this fails, it scans
953  * forward and backward to determine the extent of the free area.  This is
954  * capped at the boundary of blocks.
955  *
956  * A chunk update is triggered if a page becomes free, a block becomes free,
957  * or the free spans across blocks.  This tradeoff is to minimize iterating
958  * over the block metadata to update chunk_md->contig_hint.
959  * chunk_md->contig_hint may be off by up to a page, but it will never be more
960  * than the available space.  If the contig hint is contained in one block, it
961  * will be accurate.
962  */
963 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
964 					int bits)
965 {
966 	int nr_empty_pages = 0;
967 	struct pcpu_block_md *s_block, *e_block, *block;
968 	int s_index, e_index;	/* block indexes of the freed allocation */
969 	int s_off, e_off;	/* block offsets of the freed allocation */
970 	int start, end;		/* start and end of the whole free area */
971 
972 	/*
973 	 * Calculate per block offsets.
974 	 * The calculation uses an inclusive range, but the resulting offsets
975 	 * are [start, end).  e_index always points to the last block in the
976 	 * range.
977 	 */
978 	s_index = pcpu_off_to_block_index(bit_off);
979 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
980 	s_off = pcpu_off_to_block_off(bit_off);
981 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
982 
983 	s_block = chunk->md_blocks + s_index;
984 	e_block = chunk->md_blocks + e_index;
985 
986 	/*
987 	 * Check if the freed area aligns with the block->contig_hint.
988 	 * If it does, then the scan to find the beginning/end of the
989 	 * larger free area can be avoided.
990 	 *
991 	 * start and end refer to beginning and end of the free area
992 	 * within each their respective blocks.  This is not necessarily
993 	 * the entire free area as it may span blocks past the beginning
994 	 * or end of the block.
995 	 */
996 	start = s_off;
997 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
998 		start = s_block->contig_hint_start;
999 	} else {
1000 		/*
1001 		 * Scan backwards to find the extent of the free area.
1002 		 * find_last_bit returns the starting bit, so if the start bit
1003 		 * is returned, that means there was no last bit and the
1004 		 * remainder of the chunk is free.
1005 		 */
1006 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1007 					  start);
1008 		start = (start == l_bit) ? 0 : l_bit + 1;
1009 	}
1010 
1011 	end = e_off;
1012 	if (e_off == e_block->contig_hint_start)
1013 		end = e_block->contig_hint_start + e_block->contig_hint;
1014 	else
1015 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1016 				    PCPU_BITMAP_BLOCK_BITS, end);
1017 
1018 	/* update s_block */
1019 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1020 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1021 		nr_empty_pages++;
1022 	pcpu_block_update(s_block, start, e_off);
1023 
1024 	/* freeing in the same block */
1025 	if (s_index != e_index) {
1026 		/* update e_block */
1027 		if (end == PCPU_BITMAP_BLOCK_BITS)
1028 			nr_empty_pages++;
1029 		pcpu_block_update(e_block, 0, end);
1030 
1031 		/* reset md_blocks in the middle */
1032 		nr_empty_pages += (e_index - s_index - 1);
1033 		for (block = s_block + 1; block < e_block; block++) {
1034 			block->first_free = 0;
1035 			block->scan_hint = 0;
1036 			block->contig_hint_start = 0;
1037 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1038 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
1039 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
1040 		}
1041 	}
1042 
1043 	if (nr_empty_pages)
1044 		pcpu_update_empty_pages(chunk, nr_empty_pages);
1045 
1046 	/*
1047 	 * Refresh chunk metadata when the free makes a block free or spans
1048 	 * across blocks.  The contig_hint may be off by up to a page, but if
1049 	 * the contig_hint is contained in a block, it will be accurate with
1050 	 * the else condition below.
1051 	 */
1052 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1053 		pcpu_chunk_refresh_hint(chunk, true);
1054 	else
1055 		pcpu_block_update(&chunk->chunk_md,
1056 				  pcpu_block_off_to_off(s_index, start),
1057 				  end);
1058 }
1059 
1060 /**
1061  * pcpu_is_populated - determines if the region is populated
1062  * @chunk: chunk of interest
1063  * @bit_off: chunk offset
1064  * @bits: size of area
1065  * @next_off: return value for the next offset to start searching
1066  *
1067  * For atomic allocations, check if the backing pages are populated.
1068  *
1069  * RETURNS:
1070  * Bool if the backing pages are populated.
1071  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1072  */
1073 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1074 			      int *next_off)
1075 {
1076 	unsigned int start, end;
1077 
1078 	start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1079 	end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1080 
1081 	start = find_next_zero_bit(chunk->populated, end, start);
1082 	if (start >= end)
1083 		return true;
1084 
1085 	end = find_next_bit(chunk->populated, end, start + 1);
1086 
1087 	*next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1088 	return false;
1089 }
1090 
1091 /**
1092  * pcpu_find_block_fit - finds the block index to start searching
1093  * @chunk: chunk of interest
1094  * @alloc_bits: size of request in allocation units
1095  * @align: alignment of area (max PAGE_SIZE bytes)
1096  * @pop_only: use populated regions only
1097  *
1098  * Given a chunk and an allocation spec, find the offset to begin searching
1099  * for a free region.  This iterates over the bitmap metadata blocks to
1100  * find an offset that will be guaranteed to fit the requirements.  It is
1101  * not quite first fit as if the allocation does not fit in the contig hint
1102  * of a block or chunk, it is skipped.  This errs on the side of caution
1103  * to prevent excess iteration.  Poor alignment can cause the allocator to
1104  * skip over blocks and chunks that have valid free areas.
1105  *
1106  * RETURNS:
1107  * The offset in the bitmap to begin searching.
1108  * -1 if no offset is found.
1109  */
1110 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1111 			       size_t align, bool pop_only)
1112 {
1113 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1114 	int bit_off, bits, next_off;
1115 
1116 	/*
1117 	 * This is an optimization to prevent scanning by assuming if the
1118 	 * allocation cannot fit in the global hint, there is memory pressure
1119 	 * and creating a new chunk would happen soon.
1120 	 */
1121 	if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1122 		return -1;
1123 
1124 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1125 	bits = 0;
1126 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1127 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1128 						   &next_off))
1129 			break;
1130 
1131 		bit_off = next_off;
1132 		bits = 0;
1133 	}
1134 
1135 	if (bit_off == pcpu_chunk_map_bits(chunk))
1136 		return -1;
1137 
1138 	return bit_off;
1139 }
1140 
1141 /*
1142  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1143  * @map: the address to base the search on
1144  * @size: the bitmap size in bits
1145  * @start: the bitnumber to start searching at
1146  * @nr: the number of zeroed bits we're looking for
1147  * @align_mask: alignment mask for zero area
1148  * @largest_off: offset of the largest area skipped
1149  * @largest_bits: size of the largest area skipped
1150  *
1151  * The @align_mask should be one less than a power of 2.
1152  *
1153  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1154  * the largest area that was skipped.  This is imperfect, but in general is
1155  * good enough.  The largest remembered region is the largest failed region
1156  * seen.  This does not include anything we possibly skipped due to alignment.
1157  * pcpu_block_update_scan() does scan backwards to try and recover what was
1158  * lost to alignment.  While this can cause scanning to miss earlier possible
1159  * free areas, smaller allocations will eventually fill those holes.
1160  */
1161 static unsigned long pcpu_find_zero_area(unsigned long *map,
1162 					 unsigned long size,
1163 					 unsigned long start,
1164 					 unsigned long nr,
1165 					 unsigned long align_mask,
1166 					 unsigned long *largest_off,
1167 					 unsigned long *largest_bits)
1168 {
1169 	unsigned long index, end, i, area_off, area_bits;
1170 again:
1171 	index = find_next_zero_bit(map, size, start);
1172 
1173 	/* Align allocation */
1174 	index = __ALIGN_MASK(index, align_mask);
1175 	area_off = index;
1176 
1177 	end = index + nr;
1178 	if (end > size)
1179 		return end;
1180 	i = find_next_bit(map, end, index);
1181 	if (i < end) {
1182 		area_bits = i - area_off;
1183 		/* remember largest unused area with best alignment */
1184 		if (area_bits > *largest_bits ||
1185 		    (area_bits == *largest_bits && *largest_off &&
1186 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1187 			*largest_off = area_off;
1188 			*largest_bits = area_bits;
1189 		}
1190 
1191 		start = i + 1;
1192 		goto again;
1193 	}
1194 	return index;
1195 }
1196 
1197 /**
1198  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1199  * @chunk: chunk of interest
1200  * @alloc_bits: size of request in allocation units
1201  * @align: alignment of area (max PAGE_SIZE)
1202  * @start: bit_off to start searching
1203  *
1204  * This function takes in a @start offset to begin searching to fit an
1205  * allocation of @alloc_bits with alignment @align.  It needs to scan
1206  * the allocation map because if it fits within the block's contig hint,
1207  * @start will be block->first_free. This is an attempt to fill the
1208  * allocation prior to breaking the contig hint.  The allocation and
1209  * boundary maps are updated accordingly if it confirms a valid
1210  * free area.
1211  *
1212  * RETURNS:
1213  * Allocated addr offset in @chunk on success.
1214  * -1 if no matching area is found.
1215  */
1216 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1217 			   size_t align, int start)
1218 {
1219 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1220 	size_t align_mask = (align) ? (align - 1) : 0;
1221 	unsigned long area_off = 0, area_bits = 0;
1222 	int bit_off, end, oslot;
1223 
1224 	lockdep_assert_held(&pcpu_lock);
1225 
1226 	oslot = pcpu_chunk_slot(chunk);
1227 
1228 	/*
1229 	 * Search to find a fit.
1230 	 */
1231 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1232 		    pcpu_chunk_map_bits(chunk));
1233 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1234 				      align_mask, &area_off, &area_bits);
1235 	if (bit_off >= end)
1236 		return -1;
1237 
1238 	if (area_bits)
1239 		pcpu_block_update_scan(chunk, area_off, area_bits);
1240 
1241 	/* update alloc map */
1242 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1243 
1244 	/* update boundary map */
1245 	set_bit(bit_off, chunk->bound_map);
1246 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1247 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1248 
1249 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1250 
1251 	/* update first free bit */
1252 	if (bit_off == chunk_md->first_free)
1253 		chunk_md->first_free = find_next_zero_bit(
1254 					chunk->alloc_map,
1255 					pcpu_chunk_map_bits(chunk),
1256 					bit_off + alloc_bits);
1257 
1258 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1259 
1260 	pcpu_chunk_relocate(chunk, oslot);
1261 
1262 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1263 }
1264 
1265 /**
1266  * pcpu_free_area - frees the corresponding offset
1267  * @chunk: chunk of interest
1268  * @off: addr offset into chunk
1269  *
1270  * This function determines the size of an allocation to free using
1271  * the boundary bitmap and clears the allocation map.
1272  *
1273  * RETURNS:
1274  * Number of freed bytes.
1275  */
1276 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1277 {
1278 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1279 	int bit_off, bits, end, oslot, freed;
1280 
1281 	lockdep_assert_held(&pcpu_lock);
1282 	pcpu_stats_area_dealloc(chunk);
1283 
1284 	oslot = pcpu_chunk_slot(chunk);
1285 
1286 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1287 
1288 	/* find end index */
1289 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1290 			    bit_off + 1);
1291 	bits = end - bit_off;
1292 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1293 
1294 	freed = bits * PCPU_MIN_ALLOC_SIZE;
1295 
1296 	/* update metadata */
1297 	chunk->free_bytes += freed;
1298 
1299 	/* update first free bit */
1300 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1301 
1302 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1303 
1304 	pcpu_chunk_relocate(chunk, oslot);
1305 
1306 	return freed;
1307 }
1308 
1309 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1310 {
1311 	block->scan_hint = 0;
1312 	block->contig_hint = nr_bits;
1313 	block->left_free = nr_bits;
1314 	block->right_free = nr_bits;
1315 	block->first_free = 0;
1316 	block->nr_bits = nr_bits;
1317 }
1318 
1319 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1320 {
1321 	struct pcpu_block_md *md_block;
1322 
1323 	/* init the chunk's block */
1324 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1325 
1326 	for (md_block = chunk->md_blocks;
1327 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1328 	     md_block++)
1329 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1330 }
1331 
1332 /**
1333  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1334  * @tmp_addr: the start of the region served
1335  * @map_size: size of the region served
1336  *
1337  * This is responsible for creating the chunks that serve the first chunk.  The
1338  * base_addr is page aligned down of @tmp_addr while the region end is page
1339  * aligned up.  Offsets are kept track of to determine the region served. All
1340  * this is done to appease the bitmap allocator in avoiding partial blocks.
1341  *
1342  * RETURNS:
1343  * Chunk serving the region at @tmp_addr of @map_size.
1344  */
1345 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1346 							 int map_size)
1347 {
1348 	struct pcpu_chunk *chunk;
1349 	unsigned long aligned_addr;
1350 	int start_offset, offset_bits, region_size, region_bits;
1351 	size_t alloc_size;
1352 
1353 	/* region calculations */
1354 	aligned_addr = tmp_addr & PAGE_MASK;
1355 
1356 	start_offset = tmp_addr - aligned_addr;
1357 	region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
1358 
1359 	/* allocate chunk */
1360 	alloc_size = struct_size(chunk, populated,
1361 				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1362 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1363 	if (!chunk)
1364 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1365 		      alloc_size);
1366 
1367 	INIT_LIST_HEAD(&chunk->list);
1368 
1369 	chunk->base_addr = (void *)aligned_addr;
1370 	chunk->start_offset = start_offset;
1371 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1372 
1373 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1374 	region_bits = pcpu_chunk_map_bits(chunk);
1375 
1376 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1377 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1378 	if (!chunk->alloc_map)
1379 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1380 		      alloc_size);
1381 
1382 	alloc_size =
1383 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1384 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1385 	if (!chunk->bound_map)
1386 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1387 		      alloc_size);
1388 
1389 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1390 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1391 	if (!chunk->md_blocks)
1392 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1393 		      alloc_size);
1394 
1395 #ifdef CONFIG_MEMCG_KMEM
1396 	/* first chunk is free to use */
1397 	chunk->obj_cgroups = NULL;
1398 #endif
1399 	pcpu_init_md_blocks(chunk);
1400 
1401 	/* manage populated page bitmap */
1402 	chunk->immutable = true;
1403 	bitmap_fill(chunk->populated, chunk->nr_pages);
1404 	chunk->nr_populated = chunk->nr_pages;
1405 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1406 
1407 	chunk->free_bytes = map_size;
1408 
1409 	if (chunk->start_offset) {
1410 		/* hide the beginning of the bitmap */
1411 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1412 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1413 		set_bit(0, chunk->bound_map);
1414 		set_bit(offset_bits, chunk->bound_map);
1415 
1416 		chunk->chunk_md.first_free = offset_bits;
1417 
1418 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1419 	}
1420 
1421 	if (chunk->end_offset) {
1422 		/* hide the end of the bitmap */
1423 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1424 		bitmap_set(chunk->alloc_map,
1425 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1426 			   offset_bits);
1427 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1428 			chunk->bound_map);
1429 		set_bit(region_bits, chunk->bound_map);
1430 
1431 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1432 					     - offset_bits, offset_bits);
1433 	}
1434 
1435 	return chunk;
1436 }
1437 
1438 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1439 {
1440 	struct pcpu_chunk *chunk;
1441 	int region_bits;
1442 
1443 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1444 	if (!chunk)
1445 		return NULL;
1446 
1447 	INIT_LIST_HEAD(&chunk->list);
1448 	chunk->nr_pages = pcpu_unit_pages;
1449 	region_bits = pcpu_chunk_map_bits(chunk);
1450 
1451 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1452 					   sizeof(chunk->alloc_map[0]), gfp);
1453 	if (!chunk->alloc_map)
1454 		goto alloc_map_fail;
1455 
1456 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1457 					   sizeof(chunk->bound_map[0]), gfp);
1458 	if (!chunk->bound_map)
1459 		goto bound_map_fail;
1460 
1461 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1462 					   sizeof(chunk->md_blocks[0]), gfp);
1463 	if (!chunk->md_blocks)
1464 		goto md_blocks_fail;
1465 
1466 #ifdef CONFIG_MEMCG_KMEM
1467 	if (!mem_cgroup_kmem_disabled()) {
1468 		chunk->obj_cgroups =
1469 			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1470 					sizeof(struct obj_cgroup *), gfp);
1471 		if (!chunk->obj_cgroups)
1472 			goto objcg_fail;
1473 	}
1474 #endif
1475 
1476 	pcpu_init_md_blocks(chunk);
1477 
1478 	/* init metadata */
1479 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1480 
1481 	return chunk;
1482 
1483 #ifdef CONFIG_MEMCG_KMEM
1484 objcg_fail:
1485 	pcpu_mem_free(chunk->md_blocks);
1486 #endif
1487 md_blocks_fail:
1488 	pcpu_mem_free(chunk->bound_map);
1489 bound_map_fail:
1490 	pcpu_mem_free(chunk->alloc_map);
1491 alloc_map_fail:
1492 	pcpu_mem_free(chunk);
1493 
1494 	return NULL;
1495 }
1496 
1497 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1498 {
1499 	if (!chunk)
1500 		return;
1501 #ifdef CONFIG_MEMCG_KMEM
1502 	pcpu_mem_free(chunk->obj_cgroups);
1503 #endif
1504 	pcpu_mem_free(chunk->md_blocks);
1505 	pcpu_mem_free(chunk->bound_map);
1506 	pcpu_mem_free(chunk->alloc_map);
1507 	pcpu_mem_free(chunk);
1508 }
1509 
1510 /**
1511  * pcpu_chunk_populated - post-population bookkeeping
1512  * @chunk: pcpu_chunk which got populated
1513  * @page_start: the start page
1514  * @page_end: the end page
1515  *
1516  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1517  * the bookkeeping information accordingly.  Must be called after each
1518  * successful population.
1519  */
1520 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1521 				 int page_end)
1522 {
1523 	int nr = page_end - page_start;
1524 
1525 	lockdep_assert_held(&pcpu_lock);
1526 
1527 	bitmap_set(chunk->populated, page_start, nr);
1528 	chunk->nr_populated += nr;
1529 	pcpu_nr_populated += nr;
1530 
1531 	pcpu_update_empty_pages(chunk, nr);
1532 }
1533 
1534 /**
1535  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1536  * @chunk: pcpu_chunk which got depopulated
1537  * @page_start: the start page
1538  * @page_end: the end page
1539  *
1540  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1541  * Update the bookkeeping information accordingly.  Must be called after
1542  * each successful depopulation.
1543  */
1544 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1545 				   int page_start, int page_end)
1546 {
1547 	int nr = page_end - page_start;
1548 
1549 	lockdep_assert_held(&pcpu_lock);
1550 
1551 	bitmap_clear(chunk->populated, page_start, nr);
1552 	chunk->nr_populated -= nr;
1553 	pcpu_nr_populated -= nr;
1554 
1555 	pcpu_update_empty_pages(chunk, -nr);
1556 }
1557 
1558 /*
1559  * Chunk management implementation.
1560  *
1561  * To allow different implementations, chunk alloc/free and
1562  * [de]population are implemented in a separate file which is pulled
1563  * into this file and compiled together.  The following functions
1564  * should be implemented.
1565  *
1566  * pcpu_populate_chunk		- populate the specified range of a chunk
1567  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1568  * pcpu_post_unmap_tlb_flush	- flush tlb for the specified range of a chunk
1569  * pcpu_create_chunk		- create a new chunk
1570  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1571  * pcpu_addr_to_page		- translate address to physical address
1572  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1573  */
1574 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1575 			       int page_start, int page_end, gfp_t gfp);
1576 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1577 				  int page_start, int page_end);
1578 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1579 				      int page_start, int page_end);
1580 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1581 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1582 static struct page *pcpu_addr_to_page(void *addr);
1583 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1584 
1585 #ifdef CONFIG_NEED_PER_CPU_KM
1586 #include "percpu-km.c"
1587 #else
1588 #include "percpu-vm.c"
1589 #endif
1590 
1591 /**
1592  * pcpu_chunk_addr_search - determine chunk containing specified address
1593  * @addr: address for which the chunk needs to be determined.
1594  *
1595  * This is an internal function that handles all but static allocations.
1596  * Static percpu address values should never be passed into the allocator.
1597  *
1598  * RETURNS:
1599  * The address of the found chunk.
1600  */
1601 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1602 {
1603 	/* is it in the dynamic region (first chunk)? */
1604 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1605 		return pcpu_first_chunk;
1606 
1607 	/* is it in the reserved region? */
1608 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1609 		return pcpu_reserved_chunk;
1610 
1611 	/*
1612 	 * The address is relative to unit0 which might be unused and
1613 	 * thus unmapped.  Offset the address to the unit space of the
1614 	 * current processor before looking it up in the vmalloc
1615 	 * space.  Note that any possible cpu id can be used here, so
1616 	 * there's no need to worry about preemption or cpu hotplug.
1617 	 */
1618 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1619 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1620 }
1621 
1622 #ifdef CONFIG_MEMCG_KMEM
1623 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1624 				      struct obj_cgroup **objcgp)
1625 {
1626 	struct obj_cgroup *objcg;
1627 
1628 	if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
1629 		return true;
1630 
1631 	objcg = get_obj_cgroup_from_current();
1632 	if (!objcg)
1633 		return true;
1634 
1635 	if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) {
1636 		obj_cgroup_put(objcg);
1637 		return false;
1638 	}
1639 
1640 	*objcgp = objcg;
1641 	return true;
1642 }
1643 
1644 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1645 				       struct pcpu_chunk *chunk, int off,
1646 				       size_t size)
1647 {
1648 	if (!objcg)
1649 		return;
1650 
1651 	if (likely(chunk && chunk->obj_cgroups)) {
1652 		chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1653 
1654 		rcu_read_lock();
1655 		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1656 				pcpu_obj_full_size(size));
1657 		rcu_read_unlock();
1658 	} else {
1659 		obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1660 		obj_cgroup_put(objcg);
1661 	}
1662 }
1663 
1664 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1665 {
1666 	struct obj_cgroup *objcg;
1667 
1668 	if (unlikely(!chunk->obj_cgroups))
1669 		return;
1670 
1671 	objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1672 	if (!objcg)
1673 		return;
1674 	chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1675 
1676 	obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1677 
1678 	rcu_read_lock();
1679 	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1680 			-pcpu_obj_full_size(size));
1681 	rcu_read_unlock();
1682 
1683 	obj_cgroup_put(objcg);
1684 }
1685 
1686 #else /* CONFIG_MEMCG_KMEM */
1687 static bool
1688 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1689 {
1690 	return true;
1691 }
1692 
1693 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1694 				       struct pcpu_chunk *chunk, int off,
1695 				       size_t size)
1696 {
1697 }
1698 
1699 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1700 {
1701 }
1702 #endif /* CONFIG_MEMCG_KMEM */
1703 
1704 /**
1705  * pcpu_alloc - the percpu allocator
1706  * @size: size of area to allocate in bytes
1707  * @align: alignment of area (max PAGE_SIZE)
1708  * @reserved: allocate from the reserved chunk if available
1709  * @gfp: allocation flags
1710  *
1711  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1712  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1713  * then no warning will be triggered on invalid or failed allocation
1714  * requests.
1715  *
1716  * RETURNS:
1717  * Percpu pointer to the allocated area on success, NULL on failure.
1718  */
1719 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1720 				 gfp_t gfp)
1721 {
1722 	gfp_t pcpu_gfp;
1723 	bool is_atomic;
1724 	bool do_warn;
1725 	struct obj_cgroup *objcg = NULL;
1726 	static int warn_limit = 10;
1727 	struct pcpu_chunk *chunk, *next;
1728 	const char *err;
1729 	int slot, off, cpu, ret;
1730 	unsigned long flags;
1731 	void __percpu *ptr;
1732 	size_t bits, bit_align;
1733 
1734 	gfp = current_gfp_context(gfp);
1735 	/* whitelisted flags that can be passed to the backing allocators */
1736 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1737 	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1738 	do_warn = !(gfp & __GFP_NOWARN);
1739 
1740 	/*
1741 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1742 	 * therefore alignment must be a minimum of that many bytes.
1743 	 * An allocation may have internal fragmentation from rounding up
1744 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1745 	 */
1746 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1747 		align = PCPU_MIN_ALLOC_SIZE;
1748 
1749 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1750 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1751 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1752 
1753 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1754 		     !is_power_of_2(align))) {
1755 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1756 		     size, align);
1757 		return NULL;
1758 	}
1759 
1760 	if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1761 		return NULL;
1762 
1763 	if (!is_atomic) {
1764 		/*
1765 		 * pcpu_balance_workfn() allocates memory under this mutex,
1766 		 * and it may wait for memory reclaim. Allow current task
1767 		 * to become OOM victim, in case of memory pressure.
1768 		 */
1769 		if (gfp & __GFP_NOFAIL) {
1770 			mutex_lock(&pcpu_alloc_mutex);
1771 		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1772 			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1773 			return NULL;
1774 		}
1775 	}
1776 
1777 	spin_lock_irqsave(&pcpu_lock, flags);
1778 
1779 	/* serve reserved allocations from the reserved chunk if available */
1780 	if (reserved && pcpu_reserved_chunk) {
1781 		chunk = pcpu_reserved_chunk;
1782 
1783 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1784 		if (off < 0) {
1785 			err = "alloc from reserved chunk failed";
1786 			goto fail_unlock;
1787 		}
1788 
1789 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1790 		if (off >= 0)
1791 			goto area_found;
1792 
1793 		err = "alloc from reserved chunk failed";
1794 		goto fail_unlock;
1795 	}
1796 
1797 restart:
1798 	/* search through normal chunks */
1799 	for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1800 		list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1801 					 list) {
1802 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1803 						  is_atomic);
1804 			if (off < 0) {
1805 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1806 					pcpu_chunk_move(chunk, 0);
1807 				continue;
1808 			}
1809 
1810 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1811 			if (off >= 0) {
1812 				pcpu_reintegrate_chunk(chunk);
1813 				goto area_found;
1814 			}
1815 		}
1816 	}
1817 
1818 	spin_unlock_irqrestore(&pcpu_lock, flags);
1819 
1820 	if (is_atomic) {
1821 		err = "atomic alloc failed, no space left";
1822 		goto fail;
1823 	}
1824 
1825 	/* No space left.  Create a new chunk. */
1826 	if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1827 		chunk = pcpu_create_chunk(pcpu_gfp);
1828 		if (!chunk) {
1829 			err = "failed to allocate new chunk";
1830 			goto fail;
1831 		}
1832 
1833 		spin_lock_irqsave(&pcpu_lock, flags);
1834 		pcpu_chunk_relocate(chunk, -1);
1835 	} else {
1836 		spin_lock_irqsave(&pcpu_lock, flags);
1837 	}
1838 
1839 	goto restart;
1840 
1841 area_found:
1842 	pcpu_stats_area_alloc(chunk, size);
1843 	spin_unlock_irqrestore(&pcpu_lock, flags);
1844 
1845 	/* populate if not all pages are already there */
1846 	if (!is_atomic) {
1847 		unsigned int page_end, rs, re;
1848 
1849 		rs = PFN_DOWN(off);
1850 		page_end = PFN_UP(off + size);
1851 
1852 		for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
1853 			WARN_ON(chunk->immutable);
1854 
1855 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1856 
1857 			spin_lock_irqsave(&pcpu_lock, flags);
1858 			if (ret) {
1859 				pcpu_free_area(chunk, off);
1860 				err = "failed to populate";
1861 				goto fail_unlock;
1862 			}
1863 			pcpu_chunk_populated(chunk, rs, re);
1864 			spin_unlock_irqrestore(&pcpu_lock, flags);
1865 		}
1866 
1867 		mutex_unlock(&pcpu_alloc_mutex);
1868 	}
1869 
1870 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1871 		pcpu_schedule_balance_work();
1872 
1873 	/* clear the areas and return address relative to base address */
1874 	for_each_possible_cpu(cpu)
1875 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1876 
1877 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1878 	kmemleak_alloc_percpu(ptr, size, gfp);
1879 
1880 	trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1881 				  chunk->base_addr, off, ptr,
1882 				  pcpu_obj_full_size(size), gfp);
1883 
1884 	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1885 
1886 	return ptr;
1887 
1888 fail_unlock:
1889 	spin_unlock_irqrestore(&pcpu_lock, flags);
1890 fail:
1891 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1892 
1893 	if (do_warn && warn_limit) {
1894 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1895 			size, align, is_atomic, err);
1896 		if (!is_atomic)
1897 			dump_stack();
1898 		if (!--warn_limit)
1899 			pr_info("limit reached, disable warning\n");
1900 	}
1901 
1902 	if (is_atomic) {
1903 		/* see the flag handling in pcpu_balance_workfn() */
1904 		pcpu_atomic_alloc_failed = true;
1905 		pcpu_schedule_balance_work();
1906 	} else {
1907 		mutex_unlock(&pcpu_alloc_mutex);
1908 	}
1909 
1910 	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1911 
1912 	return NULL;
1913 }
1914 
1915 /**
1916  * __alloc_percpu_gfp - allocate dynamic percpu area
1917  * @size: size of area to allocate in bytes
1918  * @align: alignment of area (max PAGE_SIZE)
1919  * @gfp: allocation flags
1920  *
1921  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1922  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1923  * be called from any context but is a lot more likely to fail. If @gfp
1924  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1925  * allocation requests.
1926  *
1927  * RETURNS:
1928  * Percpu pointer to the allocated area on success, NULL on failure.
1929  */
1930 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1931 {
1932 	return pcpu_alloc(size, align, false, gfp);
1933 }
1934 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1935 
1936 /**
1937  * __alloc_percpu - allocate dynamic percpu area
1938  * @size: size of area to allocate in bytes
1939  * @align: alignment of area (max PAGE_SIZE)
1940  *
1941  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1942  */
1943 void __percpu *__alloc_percpu(size_t size, size_t align)
1944 {
1945 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1946 }
1947 EXPORT_SYMBOL_GPL(__alloc_percpu);
1948 
1949 /**
1950  * __alloc_reserved_percpu - allocate reserved percpu area
1951  * @size: size of area to allocate in bytes
1952  * @align: alignment of area (max PAGE_SIZE)
1953  *
1954  * Allocate zero-filled percpu area of @size bytes aligned at @align
1955  * from reserved percpu area if arch has set it up; otherwise,
1956  * allocation is served from the same dynamic area.  Might sleep.
1957  * Might trigger writeouts.
1958  *
1959  * CONTEXT:
1960  * Does GFP_KERNEL allocation.
1961  *
1962  * RETURNS:
1963  * Percpu pointer to the allocated area on success, NULL on failure.
1964  */
1965 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1966 {
1967 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1968 }
1969 
1970 /**
1971  * pcpu_balance_free - manage the amount of free chunks
1972  * @empty_only: free chunks only if there are no populated pages
1973  *
1974  * If empty_only is %false, reclaim all fully free chunks regardless of the
1975  * number of populated pages.  Otherwise, only reclaim chunks that have no
1976  * populated pages.
1977  *
1978  * CONTEXT:
1979  * pcpu_lock (can be dropped temporarily)
1980  */
1981 static void pcpu_balance_free(bool empty_only)
1982 {
1983 	LIST_HEAD(to_free);
1984 	struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1985 	struct pcpu_chunk *chunk, *next;
1986 
1987 	lockdep_assert_held(&pcpu_lock);
1988 
1989 	/*
1990 	 * There's no reason to keep around multiple unused chunks and VM
1991 	 * areas can be scarce.  Destroy all free chunks except for one.
1992 	 */
1993 	list_for_each_entry_safe(chunk, next, free_head, list) {
1994 		WARN_ON(chunk->immutable);
1995 
1996 		/* spare the first one */
1997 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1998 			continue;
1999 
2000 		if (!empty_only || chunk->nr_empty_pop_pages == 0)
2001 			list_move(&chunk->list, &to_free);
2002 	}
2003 
2004 	if (list_empty(&to_free))
2005 		return;
2006 
2007 	spin_unlock_irq(&pcpu_lock);
2008 	list_for_each_entry_safe(chunk, next, &to_free, list) {
2009 		unsigned int rs, re;
2010 
2011 		for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2012 			pcpu_depopulate_chunk(chunk, rs, re);
2013 			spin_lock_irq(&pcpu_lock);
2014 			pcpu_chunk_depopulated(chunk, rs, re);
2015 			spin_unlock_irq(&pcpu_lock);
2016 		}
2017 		pcpu_destroy_chunk(chunk);
2018 		cond_resched();
2019 	}
2020 	spin_lock_irq(&pcpu_lock);
2021 }
2022 
2023 /**
2024  * pcpu_balance_populated - manage the amount of populated pages
2025  *
2026  * Maintain a certain amount of populated pages to satisfy atomic allocations.
2027  * It is possible that this is called when physical memory is scarce causing
2028  * OOM killer to be triggered.  We should avoid doing so until an actual
2029  * allocation causes the failure as it is possible that requests can be
2030  * serviced from already backed regions.
2031  *
2032  * CONTEXT:
2033  * pcpu_lock (can be dropped temporarily)
2034  */
2035 static void pcpu_balance_populated(void)
2036 {
2037 	/* gfp flags passed to underlying allocators */
2038 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2039 	struct pcpu_chunk *chunk;
2040 	int slot, nr_to_pop, ret;
2041 
2042 	lockdep_assert_held(&pcpu_lock);
2043 
2044 	/*
2045 	 * Ensure there are certain number of free populated pages for
2046 	 * atomic allocs.  Fill up from the most packed so that atomic
2047 	 * allocs don't increase fragmentation.  If atomic allocation
2048 	 * failed previously, always populate the maximum amount.  This
2049 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2050 	 * failing indefinitely; however, large atomic allocs are not
2051 	 * something we support properly and can be highly unreliable and
2052 	 * inefficient.
2053 	 */
2054 retry_pop:
2055 	if (pcpu_atomic_alloc_failed) {
2056 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2057 		/* best effort anyway, don't worry about synchronization */
2058 		pcpu_atomic_alloc_failed = false;
2059 	} else {
2060 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2061 				  pcpu_nr_empty_pop_pages,
2062 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
2063 	}
2064 
2065 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2066 		unsigned int nr_unpop = 0, rs, re;
2067 
2068 		if (!nr_to_pop)
2069 			break;
2070 
2071 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2072 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
2073 			if (nr_unpop)
2074 				break;
2075 		}
2076 
2077 		if (!nr_unpop)
2078 			continue;
2079 
2080 		/* @chunk can't go away while pcpu_alloc_mutex is held */
2081 		for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2082 			int nr = min_t(int, re - rs, nr_to_pop);
2083 
2084 			spin_unlock_irq(&pcpu_lock);
2085 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2086 			cond_resched();
2087 			spin_lock_irq(&pcpu_lock);
2088 			if (!ret) {
2089 				nr_to_pop -= nr;
2090 				pcpu_chunk_populated(chunk, rs, rs + nr);
2091 			} else {
2092 				nr_to_pop = 0;
2093 			}
2094 
2095 			if (!nr_to_pop)
2096 				break;
2097 		}
2098 	}
2099 
2100 	if (nr_to_pop) {
2101 		/* ran out of chunks to populate, create a new one and retry */
2102 		spin_unlock_irq(&pcpu_lock);
2103 		chunk = pcpu_create_chunk(gfp);
2104 		cond_resched();
2105 		spin_lock_irq(&pcpu_lock);
2106 		if (chunk) {
2107 			pcpu_chunk_relocate(chunk, -1);
2108 			goto retry_pop;
2109 		}
2110 	}
2111 }
2112 
2113 /**
2114  * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2115  *
2116  * Scan over chunks in the depopulate list and try to release unused populated
2117  * pages back to the system.  Depopulated chunks are sidelined to prevent
2118  * repopulating these pages unless required.  Fully free chunks are reintegrated
2119  * and freed accordingly (1 is kept around).  If we drop below the empty
2120  * populated pages threshold, reintegrate the chunk if it has empty free pages.
2121  * Each chunk is scanned in the reverse order to keep populated pages close to
2122  * the beginning of the chunk.
2123  *
2124  * CONTEXT:
2125  * pcpu_lock (can be dropped temporarily)
2126  *
2127  */
2128 static void pcpu_reclaim_populated(void)
2129 {
2130 	struct pcpu_chunk *chunk;
2131 	struct pcpu_block_md *block;
2132 	int freed_page_start, freed_page_end;
2133 	int i, end;
2134 	bool reintegrate;
2135 
2136 	lockdep_assert_held(&pcpu_lock);
2137 
2138 	/*
2139 	 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2140 	 * longer discoverable to allocations whom may populate pages.  The only
2141 	 * other accessor is the free path which only returns area back to the
2142 	 * allocator not touching the populated bitmap.
2143 	 */
2144 	while ((chunk = list_first_entry_or_null(
2145 			&pcpu_chunk_lists[pcpu_to_depopulate_slot],
2146 			struct pcpu_chunk, list))) {
2147 		WARN_ON(chunk->immutable);
2148 
2149 		/*
2150 		 * Scan chunk's pages in the reverse order to keep populated
2151 		 * pages close to the beginning of the chunk.
2152 		 */
2153 		freed_page_start = chunk->nr_pages;
2154 		freed_page_end = 0;
2155 		reintegrate = false;
2156 		for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2157 			/* no more work to do */
2158 			if (chunk->nr_empty_pop_pages == 0)
2159 				break;
2160 
2161 			/* reintegrate chunk to prevent atomic alloc failures */
2162 			if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2163 				reintegrate = true;
2164 				break;
2165 			}
2166 
2167 			/*
2168 			 * If the page is empty and populated, start or
2169 			 * extend the (i, end) range.  If i == 0, decrease
2170 			 * i and perform the depopulation to cover the last
2171 			 * (first) page in the chunk.
2172 			 */
2173 			block = chunk->md_blocks + i;
2174 			if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2175 			    test_bit(i, chunk->populated)) {
2176 				if (end == -1)
2177 					end = i;
2178 				if (i > 0)
2179 					continue;
2180 				i--;
2181 			}
2182 
2183 			/* depopulate if there is an active range */
2184 			if (end == -1)
2185 				continue;
2186 
2187 			spin_unlock_irq(&pcpu_lock);
2188 			pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2189 			cond_resched();
2190 			spin_lock_irq(&pcpu_lock);
2191 
2192 			pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2193 			freed_page_start = min(freed_page_start, i + 1);
2194 			freed_page_end = max(freed_page_end, end + 1);
2195 
2196 			/* reset the range and continue */
2197 			end = -1;
2198 		}
2199 
2200 		/* batch tlb flush per chunk to amortize cost */
2201 		if (freed_page_start < freed_page_end) {
2202 			spin_unlock_irq(&pcpu_lock);
2203 			pcpu_post_unmap_tlb_flush(chunk,
2204 						  freed_page_start,
2205 						  freed_page_end);
2206 			cond_resched();
2207 			spin_lock_irq(&pcpu_lock);
2208 		}
2209 
2210 		if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2211 			pcpu_reintegrate_chunk(chunk);
2212 		else
2213 			list_move_tail(&chunk->list,
2214 				       &pcpu_chunk_lists[pcpu_sidelined_slot]);
2215 	}
2216 }
2217 
2218 /**
2219  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2220  * @work: unused
2221  *
2222  * For each chunk type, manage the number of fully free chunks and the number of
2223  * populated pages.  An important thing to consider is when pages are freed and
2224  * how they contribute to the global counts.
2225  */
2226 static void pcpu_balance_workfn(struct work_struct *work)
2227 {
2228 	/*
2229 	 * pcpu_balance_free() is called twice because the first time we may
2230 	 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2231 	 * to grow other chunks.  This then gives pcpu_reclaim_populated() time
2232 	 * to move fully free chunks to the active list to be freed if
2233 	 * appropriate.
2234 	 */
2235 	mutex_lock(&pcpu_alloc_mutex);
2236 	spin_lock_irq(&pcpu_lock);
2237 
2238 	pcpu_balance_free(false);
2239 	pcpu_reclaim_populated();
2240 	pcpu_balance_populated();
2241 	pcpu_balance_free(true);
2242 
2243 	spin_unlock_irq(&pcpu_lock);
2244 	mutex_unlock(&pcpu_alloc_mutex);
2245 }
2246 
2247 /**
2248  * pcpu_alloc_size - the size of the dynamic percpu area
2249  * @ptr: pointer to the dynamic percpu area
2250  *
2251  * Returns the size of the @ptr allocation.  This is undefined for statically
2252  * defined percpu variables as there is no corresponding chunk->bound_map.
2253  *
2254  * RETURNS:
2255  * The size of the dynamic percpu area.
2256  *
2257  * CONTEXT:
2258  * Can be called from atomic context.
2259  */
2260 size_t pcpu_alloc_size(void __percpu *ptr)
2261 {
2262 	struct pcpu_chunk *chunk;
2263 	unsigned long bit_off, end;
2264 	void *addr;
2265 
2266 	if (!ptr)
2267 		return 0;
2268 
2269 	addr = __pcpu_ptr_to_addr(ptr);
2270 	/* No pcpu_lock here: ptr has not been freed, so chunk is still alive */
2271 	chunk = pcpu_chunk_addr_search(addr);
2272 	bit_off = (addr - chunk->base_addr) / PCPU_MIN_ALLOC_SIZE;
2273 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
2274 			    bit_off + 1);
2275 	return (end - bit_off) * PCPU_MIN_ALLOC_SIZE;
2276 }
2277 
2278 /**
2279  * free_percpu - free percpu area
2280  * @ptr: pointer to area to free
2281  *
2282  * Free percpu area @ptr.
2283  *
2284  * CONTEXT:
2285  * Can be called from atomic context.
2286  */
2287 void free_percpu(void __percpu *ptr)
2288 {
2289 	void *addr;
2290 	struct pcpu_chunk *chunk;
2291 	unsigned long flags;
2292 	int size, off;
2293 	bool need_balance = false;
2294 
2295 	if (!ptr)
2296 		return;
2297 
2298 	kmemleak_free_percpu(ptr);
2299 
2300 	addr = __pcpu_ptr_to_addr(ptr);
2301 	chunk = pcpu_chunk_addr_search(addr);
2302 	off = addr - chunk->base_addr;
2303 
2304 	spin_lock_irqsave(&pcpu_lock, flags);
2305 	size = pcpu_free_area(chunk, off);
2306 
2307 	pcpu_memcg_free_hook(chunk, off, size);
2308 
2309 	/*
2310 	 * If there are more than one fully free chunks, wake up grim reaper.
2311 	 * If the chunk is isolated, it may be in the process of being
2312 	 * reclaimed.  Let reclaim manage cleaning up of that chunk.
2313 	 */
2314 	if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2315 		struct pcpu_chunk *pos;
2316 
2317 		list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2318 			if (pos != chunk) {
2319 				need_balance = true;
2320 				break;
2321 			}
2322 	} else if (pcpu_should_reclaim_chunk(chunk)) {
2323 		pcpu_isolate_chunk(chunk);
2324 		need_balance = true;
2325 	}
2326 
2327 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2328 
2329 	spin_unlock_irqrestore(&pcpu_lock, flags);
2330 
2331 	if (need_balance)
2332 		pcpu_schedule_balance_work();
2333 }
2334 EXPORT_SYMBOL_GPL(free_percpu);
2335 
2336 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2337 {
2338 #ifdef CONFIG_SMP
2339 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2340 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2341 	unsigned int cpu;
2342 
2343 	for_each_possible_cpu(cpu) {
2344 		void *start = per_cpu_ptr(base, cpu);
2345 		void *va = (void *)addr;
2346 
2347 		if (va >= start && va < start + static_size) {
2348 			if (can_addr) {
2349 				*can_addr = (unsigned long) (va - start);
2350 				*can_addr += (unsigned long)
2351 					per_cpu_ptr(base, get_boot_cpu_id());
2352 			}
2353 			return true;
2354 		}
2355 	}
2356 #endif
2357 	/* on UP, can't distinguish from other static vars, always false */
2358 	return false;
2359 }
2360 
2361 /**
2362  * is_kernel_percpu_address - test whether address is from static percpu area
2363  * @addr: address to test
2364  *
2365  * Test whether @addr belongs to in-kernel static percpu area.  Module
2366  * static percpu areas are not considered.  For those, use
2367  * is_module_percpu_address().
2368  *
2369  * RETURNS:
2370  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2371  */
2372 bool is_kernel_percpu_address(unsigned long addr)
2373 {
2374 	return __is_kernel_percpu_address(addr, NULL);
2375 }
2376 
2377 /**
2378  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2379  * @addr: the address to be converted to physical address
2380  *
2381  * Given @addr which is dereferenceable address obtained via one of
2382  * percpu access macros, this function translates it into its physical
2383  * address.  The caller is responsible for ensuring @addr stays valid
2384  * until this function finishes.
2385  *
2386  * percpu allocator has special setup for the first chunk, which currently
2387  * supports either embedding in linear address space or vmalloc mapping,
2388  * and, from the second one, the backing allocator (currently either vm or
2389  * km) provides translation.
2390  *
2391  * The addr can be translated simply without checking if it falls into the
2392  * first chunk. But the current code reflects better how percpu allocator
2393  * actually works, and the verification can discover both bugs in percpu
2394  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2395  * code.
2396  *
2397  * RETURNS:
2398  * The physical address for @addr.
2399  */
2400 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2401 {
2402 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2403 	bool in_first_chunk = false;
2404 	unsigned long first_low, first_high;
2405 	unsigned int cpu;
2406 
2407 	/*
2408 	 * The following test on unit_low/high isn't strictly
2409 	 * necessary but will speed up lookups of addresses which
2410 	 * aren't in the first chunk.
2411 	 *
2412 	 * The address check is against full chunk sizes.  pcpu_base_addr
2413 	 * points to the beginning of the first chunk including the
2414 	 * static region.  Assumes good intent as the first chunk may
2415 	 * not be full (ie. < pcpu_unit_pages in size).
2416 	 */
2417 	first_low = (unsigned long)pcpu_base_addr +
2418 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2419 	first_high = (unsigned long)pcpu_base_addr +
2420 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2421 	if ((unsigned long)addr >= first_low &&
2422 	    (unsigned long)addr < first_high) {
2423 		for_each_possible_cpu(cpu) {
2424 			void *start = per_cpu_ptr(base, cpu);
2425 
2426 			if (addr >= start && addr < start + pcpu_unit_size) {
2427 				in_first_chunk = true;
2428 				break;
2429 			}
2430 		}
2431 	}
2432 
2433 	if (in_first_chunk) {
2434 		if (!is_vmalloc_addr(addr))
2435 			return __pa(addr);
2436 		else
2437 			return page_to_phys(vmalloc_to_page(addr)) +
2438 			       offset_in_page(addr);
2439 	} else
2440 		return page_to_phys(pcpu_addr_to_page(addr)) +
2441 		       offset_in_page(addr);
2442 }
2443 
2444 /**
2445  * pcpu_alloc_alloc_info - allocate percpu allocation info
2446  * @nr_groups: the number of groups
2447  * @nr_units: the number of units
2448  *
2449  * Allocate ai which is large enough for @nr_groups groups containing
2450  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2451  * cpu_map array which is long enough for @nr_units and filled with
2452  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2453  * pointer of other groups.
2454  *
2455  * RETURNS:
2456  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2457  * failure.
2458  */
2459 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2460 						      int nr_units)
2461 {
2462 	struct pcpu_alloc_info *ai;
2463 	size_t base_size, ai_size;
2464 	void *ptr;
2465 	int unit;
2466 
2467 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2468 			  __alignof__(ai->groups[0].cpu_map[0]));
2469 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2470 
2471 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2472 	if (!ptr)
2473 		return NULL;
2474 	ai = ptr;
2475 	ptr += base_size;
2476 
2477 	ai->groups[0].cpu_map = ptr;
2478 
2479 	for (unit = 0; unit < nr_units; unit++)
2480 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2481 
2482 	ai->nr_groups = nr_groups;
2483 	ai->__ai_size = PFN_ALIGN(ai_size);
2484 
2485 	return ai;
2486 }
2487 
2488 /**
2489  * pcpu_free_alloc_info - free percpu allocation info
2490  * @ai: pcpu_alloc_info to free
2491  *
2492  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2493  */
2494 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2495 {
2496 	memblock_free(ai, ai->__ai_size);
2497 }
2498 
2499 /**
2500  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2501  * @lvl: loglevel
2502  * @ai: allocation info to dump
2503  *
2504  * Print out information about @ai using loglevel @lvl.
2505  */
2506 static void pcpu_dump_alloc_info(const char *lvl,
2507 				 const struct pcpu_alloc_info *ai)
2508 {
2509 	int group_width = 1, cpu_width = 1, width;
2510 	char empty_str[] = "--------";
2511 	int alloc = 0, alloc_end = 0;
2512 	int group, v;
2513 	int upa, apl;	/* units per alloc, allocs per line */
2514 
2515 	v = ai->nr_groups;
2516 	while (v /= 10)
2517 		group_width++;
2518 
2519 	v = num_possible_cpus();
2520 	while (v /= 10)
2521 		cpu_width++;
2522 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2523 
2524 	upa = ai->alloc_size / ai->unit_size;
2525 	width = upa * (cpu_width + 1) + group_width + 3;
2526 	apl = rounddown_pow_of_two(max(60 / width, 1));
2527 
2528 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2529 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2530 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2531 
2532 	for (group = 0; group < ai->nr_groups; group++) {
2533 		const struct pcpu_group_info *gi = &ai->groups[group];
2534 		int unit = 0, unit_end = 0;
2535 
2536 		BUG_ON(gi->nr_units % upa);
2537 		for (alloc_end += gi->nr_units / upa;
2538 		     alloc < alloc_end; alloc++) {
2539 			if (!(alloc % apl)) {
2540 				pr_cont("\n");
2541 				printk("%spcpu-alloc: ", lvl);
2542 			}
2543 			pr_cont("[%0*d] ", group_width, group);
2544 
2545 			for (unit_end += upa; unit < unit_end; unit++)
2546 				if (gi->cpu_map[unit] != NR_CPUS)
2547 					pr_cont("%0*d ",
2548 						cpu_width, gi->cpu_map[unit]);
2549 				else
2550 					pr_cont("%s ", empty_str);
2551 		}
2552 	}
2553 	pr_cont("\n");
2554 }
2555 
2556 /**
2557  * pcpu_setup_first_chunk - initialize the first percpu chunk
2558  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2559  * @base_addr: mapped address
2560  *
2561  * Initialize the first percpu chunk which contains the kernel static
2562  * percpu area.  This function is to be called from arch percpu area
2563  * setup path.
2564  *
2565  * @ai contains all information necessary to initialize the first
2566  * chunk and prime the dynamic percpu allocator.
2567  *
2568  * @ai->static_size is the size of static percpu area.
2569  *
2570  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2571  * reserve after the static area in the first chunk.  This reserves
2572  * the first chunk such that it's available only through reserved
2573  * percpu allocation.  This is primarily used to serve module percpu
2574  * static areas on architectures where the addressing model has
2575  * limited offset range for symbol relocations to guarantee module
2576  * percpu symbols fall inside the relocatable range.
2577  *
2578  * @ai->dyn_size determines the number of bytes available for dynamic
2579  * allocation in the first chunk.  The area between @ai->static_size +
2580  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2581  *
2582  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2583  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2584  * @ai->dyn_size.
2585  *
2586  * @ai->atom_size is the allocation atom size and used as alignment
2587  * for vm areas.
2588  *
2589  * @ai->alloc_size is the allocation size and always multiple of
2590  * @ai->atom_size.  This is larger than @ai->atom_size if
2591  * @ai->unit_size is larger than @ai->atom_size.
2592  *
2593  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2594  * percpu areas.  Units which should be colocated are put into the
2595  * same group.  Dynamic VM areas will be allocated according to these
2596  * groupings.  If @ai->nr_groups is zero, a single group containing
2597  * all units is assumed.
2598  *
2599  * The caller should have mapped the first chunk at @base_addr and
2600  * copied static data to each unit.
2601  *
2602  * The first chunk will always contain a static and a dynamic region.
2603  * However, the static region is not managed by any chunk.  If the first
2604  * chunk also contains a reserved region, it is served by two chunks -
2605  * one for the reserved region and one for the dynamic region.  They
2606  * share the same vm, but use offset regions in the area allocation map.
2607  * The chunk serving the dynamic region is circulated in the chunk slots
2608  * and available for dynamic allocation like any other chunk.
2609  */
2610 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2611 				   void *base_addr)
2612 {
2613 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2614 	size_t static_size, dyn_size;
2615 	unsigned long *group_offsets;
2616 	size_t *group_sizes;
2617 	unsigned long *unit_off;
2618 	unsigned int cpu;
2619 	int *unit_map;
2620 	int group, unit, i;
2621 	unsigned long tmp_addr;
2622 	size_t alloc_size;
2623 
2624 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2625 	if (unlikely(cond)) {						\
2626 		pr_emerg("failed to initialize, %s\n", #cond);		\
2627 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2628 			 cpumask_pr_args(cpu_possible_mask));		\
2629 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2630 		BUG();							\
2631 	}								\
2632 } while (0)
2633 
2634 	/* sanity checks */
2635 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2636 #ifdef CONFIG_SMP
2637 	PCPU_SETUP_BUG_ON(!ai->static_size);
2638 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2639 #endif
2640 	PCPU_SETUP_BUG_ON(!base_addr);
2641 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2642 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2643 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2644 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2645 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2646 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2647 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2648 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2649 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2650 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2651 
2652 	/* process group information and build config tables accordingly */
2653 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2654 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2655 	if (!group_offsets)
2656 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2657 		      alloc_size);
2658 
2659 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2660 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2661 	if (!group_sizes)
2662 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2663 		      alloc_size);
2664 
2665 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2666 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2667 	if (!unit_map)
2668 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2669 		      alloc_size);
2670 
2671 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2672 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2673 	if (!unit_off)
2674 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2675 		      alloc_size);
2676 
2677 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2678 		unit_map[cpu] = UINT_MAX;
2679 
2680 	pcpu_low_unit_cpu = NR_CPUS;
2681 	pcpu_high_unit_cpu = NR_CPUS;
2682 
2683 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2684 		const struct pcpu_group_info *gi = &ai->groups[group];
2685 
2686 		group_offsets[group] = gi->base_offset;
2687 		group_sizes[group] = gi->nr_units * ai->unit_size;
2688 
2689 		for (i = 0; i < gi->nr_units; i++) {
2690 			cpu = gi->cpu_map[i];
2691 			if (cpu == NR_CPUS)
2692 				continue;
2693 
2694 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2695 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2696 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2697 
2698 			unit_map[cpu] = unit + i;
2699 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2700 
2701 			/* determine low/high unit_cpu */
2702 			if (pcpu_low_unit_cpu == NR_CPUS ||
2703 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2704 				pcpu_low_unit_cpu = cpu;
2705 			if (pcpu_high_unit_cpu == NR_CPUS ||
2706 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2707 				pcpu_high_unit_cpu = cpu;
2708 		}
2709 	}
2710 	pcpu_nr_units = unit;
2711 
2712 	for_each_possible_cpu(cpu)
2713 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2714 
2715 	/* we're done parsing the input, undefine BUG macro and dump config */
2716 #undef PCPU_SETUP_BUG_ON
2717 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2718 
2719 	pcpu_nr_groups = ai->nr_groups;
2720 	pcpu_group_offsets = group_offsets;
2721 	pcpu_group_sizes = group_sizes;
2722 	pcpu_unit_map = unit_map;
2723 	pcpu_unit_offsets = unit_off;
2724 
2725 	/* determine basic parameters */
2726 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2727 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2728 	pcpu_atom_size = ai->atom_size;
2729 	pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated,
2730 					     BITS_TO_LONGS(pcpu_unit_pages));
2731 
2732 	pcpu_stats_save_ai(ai);
2733 
2734 	/*
2735 	 * Allocate chunk slots.  The slots after the active slots are:
2736 	 *   sidelined_slot - isolated, depopulated chunks
2737 	 *   free_slot - fully free chunks
2738 	 *   to_depopulate_slot - isolated, chunks to depopulate
2739 	 */
2740 	pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2741 	pcpu_free_slot = pcpu_sidelined_slot + 1;
2742 	pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2743 	pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2744 	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2745 					  sizeof(pcpu_chunk_lists[0]),
2746 					  SMP_CACHE_BYTES);
2747 	if (!pcpu_chunk_lists)
2748 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2749 		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2750 
2751 	for (i = 0; i < pcpu_nr_slots; i++)
2752 		INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2753 
2754 	/*
2755 	 * The end of the static region needs to be aligned with the
2756 	 * minimum allocation size as this offsets the reserved and
2757 	 * dynamic region.  The first chunk ends page aligned by
2758 	 * expanding the dynamic region, therefore the dynamic region
2759 	 * can be shrunk to compensate while still staying above the
2760 	 * configured sizes.
2761 	 */
2762 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2763 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2764 
2765 	/*
2766 	 * Initialize first chunk:
2767 	 * This chunk is broken up into 3 parts:
2768 	 *		< static | [reserved] | dynamic >
2769 	 * - static - there is no backing chunk because these allocations can
2770 	 *   never be freed.
2771 	 * - reserved (pcpu_reserved_chunk) - exists primarily to serve
2772 	 *   allocations from module load.
2773 	 * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first
2774 	 *   chunk.
2775 	 */
2776 	tmp_addr = (unsigned long)base_addr + static_size;
2777 	if (ai->reserved_size)
2778 		pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr,
2779 						ai->reserved_size);
2780 	tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size;
2781 	pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size);
2782 
2783 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2784 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2785 
2786 	/* include all regions of the first chunk */
2787 	pcpu_nr_populated += PFN_DOWN(size_sum);
2788 
2789 	pcpu_stats_chunk_alloc();
2790 	trace_percpu_create_chunk(base_addr);
2791 
2792 	/* we're done */
2793 	pcpu_base_addr = base_addr;
2794 }
2795 
2796 #ifdef CONFIG_SMP
2797 
2798 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2799 	[PCPU_FC_AUTO]	= "auto",
2800 	[PCPU_FC_EMBED]	= "embed",
2801 	[PCPU_FC_PAGE]	= "page",
2802 };
2803 
2804 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2805 
2806 static int __init percpu_alloc_setup(char *str)
2807 {
2808 	if (!str)
2809 		return -EINVAL;
2810 
2811 	if (0)
2812 		/* nada */;
2813 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2814 	else if (!strcmp(str, "embed"))
2815 		pcpu_chosen_fc = PCPU_FC_EMBED;
2816 #endif
2817 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2818 	else if (!strcmp(str, "page"))
2819 		pcpu_chosen_fc = PCPU_FC_PAGE;
2820 #endif
2821 	else
2822 		pr_warn("unknown allocator %s specified\n", str);
2823 
2824 	return 0;
2825 }
2826 early_param("percpu_alloc", percpu_alloc_setup);
2827 
2828 /*
2829  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2830  * Build it if needed by the arch config or the generic setup is going
2831  * to be used.
2832  */
2833 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2834 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2835 #define BUILD_EMBED_FIRST_CHUNK
2836 #endif
2837 
2838 /* build pcpu_page_first_chunk() iff needed by the arch config */
2839 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2840 #define BUILD_PAGE_FIRST_CHUNK
2841 #endif
2842 
2843 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2844 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2845 /**
2846  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2847  * @reserved_size: the size of reserved percpu area in bytes
2848  * @dyn_size: minimum free size for dynamic allocation in bytes
2849  * @atom_size: allocation atom size
2850  * @cpu_distance_fn: callback to determine distance between cpus, optional
2851  *
2852  * This function determines grouping of units, their mappings to cpus
2853  * and other parameters considering needed percpu size, allocation
2854  * atom size and distances between CPUs.
2855  *
2856  * Groups are always multiples of atom size and CPUs which are of
2857  * LOCAL_DISTANCE both ways are grouped together and share space for
2858  * units in the same group.  The returned configuration is guaranteed
2859  * to have CPUs on different nodes on different groups and >=75% usage
2860  * of allocated virtual address space.
2861  *
2862  * RETURNS:
2863  * On success, pointer to the new allocation_info is returned.  On
2864  * failure, ERR_PTR value is returned.
2865  */
2866 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2867 				size_t reserved_size, size_t dyn_size,
2868 				size_t atom_size,
2869 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2870 {
2871 	static int group_map[NR_CPUS] __initdata;
2872 	static int group_cnt[NR_CPUS] __initdata;
2873 	static struct cpumask mask __initdata;
2874 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2875 	int nr_groups = 1, nr_units = 0;
2876 	size_t size_sum, min_unit_size, alloc_size;
2877 	int upa, max_upa, best_upa;	/* units_per_alloc */
2878 	int last_allocs, group, unit;
2879 	unsigned int cpu, tcpu;
2880 	struct pcpu_alloc_info *ai;
2881 	unsigned int *cpu_map;
2882 
2883 	/* this function may be called multiple times */
2884 	memset(group_map, 0, sizeof(group_map));
2885 	memset(group_cnt, 0, sizeof(group_cnt));
2886 	cpumask_clear(&mask);
2887 
2888 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2889 	size_sum = PFN_ALIGN(static_size + reserved_size +
2890 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2891 	dyn_size = size_sum - static_size - reserved_size;
2892 
2893 	/*
2894 	 * Determine min_unit_size, alloc_size and max_upa such that
2895 	 * alloc_size is multiple of atom_size and is the smallest
2896 	 * which can accommodate 4k aligned segments which are equal to
2897 	 * or larger than min_unit_size.
2898 	 */
2899 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2900 
2901 	/* determine the maximum # of units that can fit in an allocation */
2902 	alloc_size = roundup(min_unit_size, atom_size);
2903 	upa = alloc_size / min_unit_size;
2904 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2905 		upa--;
2906 	max_upa = upa;
2907 
2908 	cpumask_copy(&mask, cpu_possible_mask);
2909 
2910 	/* group cpus according to their proximity */
2911 	for (group = 0; !cpumask_empty(&mask); group++) {
2912 		/* pop the group's first cpu */
2913 		cpu = cpumask_first(&mask);
2914 		group_map[cpu] = group;
2915 		group_cnt[group]++;
2916 		cpumask_clear_cpu(cpu, &mask);
2917 
2918 		for_each_cpu(tcpu, &mask) {
2919 			if (!cpu_distance_fn ||
2920 			    (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2921 			     cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2922 				group_map[tcpu] = group;
2923 				group_cnt[group]++;
2924 				cpumask_clear_cpu(tcpu, &mask);
2925 			}
2926 		}
2927 	}
2928 	nr_groups = group;
2929 
2930 	/*
2931 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2932 	 * Expand the unit_size until we use >= 75% of the units allocated.
2933 	 * Related to atom_size, which could be much larger than the unit_size.
2934 	 */
2935 	last_allocs = INT_MAX;
2936 	best_upa = 0;
2937 	for (upa = max_upa; upa; upa--) {
2938 		int allocs = 0, wasted = 0;
2939 
2940 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2941 			continue;
2942 
2943 		for (group = 0; group < nr_groups; group++) {
2944 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2945 			allocs += this_allocs;
2946 			wasted += this_allocs * upa - group_cnt[group];
2947 		}
2948 
2949 		/*
2950 		 * Don't accept if wastage is over 1/3.  The
2951 		 * greater-than comparison ensures upa==1 always
2952 		 * passes the following check.
2953 		 */
2954 		if (wasted > num_possible_cpus() / 3)
2955 			continue;
2956 
2957 		/* and then don't consume more memory */
2958 		if (allocs > last_allocs)
2959 			break;
2960 		last_allocs = allocs;
2961 		best_upa = upa;
2962 	}
2963 	BUG_ON(!best_upa);
2964 	upa = best_upa;
2965 
2966 	/* allocate and fill alloc_info */
2967 	for (group = 0; group < nr_groups; group++)
2968 		nr_units += roundup(group_cnt[group], upa);
2969 
2970 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2971 	if (!ai)
2972 		return ERR_PTR(-ENOMEM);
2973 	cpu_map = ai->groups[0].cpu_map;
2974 
2975 	for (group = 0; group < nr_groups; group++) {
2976 		ai->groups[group].cpu_map = cpu_map;
2977 		cpu_map += roundup(group_cnt[group], upa);
2978 	}
2979 
2980 	ai->static_size = static_size;
2981 	ai->reserved_size = reserved_size;
2982 	ai->dyn_size = dyn_size;
2983 	ai->unit_size = alloc_size / upa;
2984 	ai->atom_size = atom_size;
2985 	ai->alloc_size = alloc_size;
2986 
2987 	for (group = 0, unit = 0; group < nr_groups; group++) {
2988 		struct pcpu_group_info *gi = &ai->groups[group];
2989 
2990 		/*
2991 		 * Initialize base_offset as if all groups are located
2992 		 * back-to-back.  The caller should update this to
2993 		 * reflect actual allocation.
2994 		 */
2995 		gi->base_offset = unit * ai->unit_size;
2996 
2997 		for_each_possible_cpu(cpu)
2998 			if (group_map[cpu] == group)
2999 				gi->cpu_map[gi->nr_units++] = cpu;
3000 		gi->nr_units = roundup(gi->nr_units, upa);
3001 		unit += gi->nr_units;
3002 	}
3003 	BUG_ON(unit != nr_units);
3004 
3005 	return ai;
3006 }
3007 
3008 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
3009 				   pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3010 {
3011 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
3012 #ifdef CONFIG_NUMA
3013 	int node = NUMA_NO_NODE;
3014 	void *ptr;
3015 
3016 	if (cpu_to_nd_fn)
3017 		node = cpu_to_nd_fn(cpu);
3018 
3019 	if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
3020 		ptr = memblock_alloc_from(size, align, goal);
3021 		pr_info("cpu %d has no node %d or node-local memory\n",
3022 			cpu, node);
3023 		pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
3024 			 cpu, size, (u64)__pa(ptr));
3025 	} else {
3026 		ptr = memblock_alloc_try_nid(size, align, goal,
3027 					     MEMBLOCK_ALLOC_ACCESSIBLE,
3028 					     node);
3029 
3030 		pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
3031 			 cpu, size, node, (u64)__pa(ptr));
3032 	}
3033 	return ptr;
3034 #else
3035 	return memblock_alloc_from(size, align, goal);
3036 #endif
3037 }
3038 
3039 static void __init pcpu_fc_free(void *ptr, size_t size)
3040 {
3041 	memblock_free(ptr, size);
3042 }
3043 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
3044 
3045 #if defined(BUILD_EMBED_FIRST_CHUNK)
3046 /**
3047  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
3048  * @reserved_size: the size of reserved percpu area in bytes
3049  * @dyn_size: minimum free size for dynamic allocation in bytes
3050  * @atom_size: allocation atom size
3051  * @cpu_distance_fn: callback to determine distance between cpus, optional
3052  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3053  *
3054  * This is a helper to ease setting up embedded first percpu chunk and
3055  * can be called where pcpu_setup_first_chunk() is expected.
3056  *
3057  * If this function is used to setup the first chunk, it is allocated
3058  * by calling pcpu_fc_alloc and used as-is without being mapped into
3059  * vmalloc area.  Allocations are always whole multiples of @atom_size
3060  * aligned to @atom_size.
3061  *
3062  * This enables the first chunk to piggy back on the linear physical
3063  * mapping which often uses larger page size.  Please note that this
3064  * can result in very sparse cpu->unit mapping on NUMA machines thus
3065  * requiring large vmalloc address space.  Don't use this allocator if
3066  * vmalloc space is not orders of magnitude larger than distances
3067  * between node memory addresses (ie. 32bit NUMA machines).
3068  *
3069  * @dyn_size specifies the minimum dynamic area size.
3070  *
3071  * If the needed size is smaller than the minimum or specified unit
3072  * size, the leftover is returned using pcpu_fc_free.
3073  *
3074  * RETURNS:
3075  * 0 on success, -errno on failure.
3076  */
3077 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3078 				  size_t atom_size,
3079 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3080 				  pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3081 {
3082 	void *base = (void *)ULONG_MAX;
3083 	void **areas = NULL;
3084 	struct pcpu_alloc_info *ai;
3085 	size_t size_sum, areas_size;
3086 	unsigned long max_distance;
3087 	int group, i, highest_group, rc = 0;
3088 
3089 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3090 				   cpu_distance_fn);
3091 	if (IS_ERR(ai))
3092 		return PTR_ERR(ai);
3093 
3094 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3095 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3096 
3097 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3098 	if (!areas) {
3099 		rc = -ENOMEM;
3100 		goto out_free;
3101 	}
3102 
3103 	/* allocate, copy and determine base address & max_distance */
3104 	highest_group = 0;
3105 	for (group = 0; group < ai->nr_groups; group++) {
3106 		struct pcpu_group_info *gi = &ai->groups[group];
3107 		unsigned int cpu = NR_CPUS;
3108 		void *ptr;
3109 
3110 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3111 			cpu = gi->cpu_map[i];
3112 		BUG_ON(cpu == NR_CPUS);
3113 
3114 		/* allocate space for the whole group */
3115 		ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
3116 		if (!ptr) {
3117 			rc = -ENOMEM;
3118 			goto out_free_areas;
3119 		}
3120 		/* kmemleak tracks the percpu allocations separately */
3121 		kmemleak_ignore_phys(__pa(ptr));
3122 		areas[group] = ptr;
3123 
3124 		base = min(ptr, base);
3125 		if (ptr > areas[highest_group])
3126 			highest_group = group;
3127 	}
3128 	max_distance = areas[highest_group] - base;
3129 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3130 
3131 	/* warn if maximum distance is further than 75% of vmalloc space */
3132 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3133 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3134 				max_distance, VMALLOC_TOTAL);
3135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3136 		/* and fail if we have fallback */
3137 		rc = -EINVAL;
3138 		goto out_free_areas;
3139 #endif
3140 	}
3141 
3142 	/*
3143 	 * Copy data and free unused parts.  This should happen after all
3144 	 * allocations are complete; otherwise, we may end up with
3145 	 * overlapping groups.
3146 	 */
3147 	for (group = 0; group < ai->nr_groups; group++) {
3148 		struct pcpu_group_info *gi = &ai->groups[group];
3149 		void *ptr = areas[group];
3150 
3151 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3152 			if (gi->cpu_map[i] == NR_CPUS) {
3153 				/* unused unit, free whole */
3154 				pcpu_fc_free(ptr, ai->unit_size);
3155 				continue;
3156 			}
3157 			/* copy and return the unused part */
3158 			memcpy(ptr, __per_cpu_load, ai->static_size);
3159 			pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
3160 		}
3161 	}
3162 
3163 	/* base address is now known, determine group base offsets */
3164 	for (group = 0; group < ai->nr_groups; group++) {
3165 		ai->groups[group].base_offset = areas[group] - base;
3166 	}
3167 
3168 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3169 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3170 		ai->dyn_size, ai->unit_size);
3171 
3172 	pcpu_setup_first_chunk(ai, base);
3173 	goto out_free;
3174 
3175 out_free_areas:
3176 	for (group = 0; group < ai->nr_groups; group++)
3177 		if (areas[group])
3178 			pcpu_fc_free(areas[group],
3179 				ai->groups[group].nr_units * ai->unit_size);
3180 out_free:
3181 	pcpu_free_alloc_info(ai);
3182 	if (areas)
3183 		memblock_free(areas, areas_size);
3184 	return rc;
3185 }
3186 #endif /* BUILD_EMBED_FIRST_CHUNK */
3187 
3188 #ifdef BUILD_PAGE_FIRST_CHUNK
3189 #include <asm/pgalloc.h>
3190 
3191 #ifndef P4D_TABLE_SIZE
3192 #define P4D_TABLE_SIZE PAGE_SIZE
3193 #endif
3194 
3195 #ifndef PUD_TABLE_SIZE
3196 #define PUD_TABLE_SIZE PAGE_SIZE
3197 #endif
3198 
3199 #ifndef PMD_TABLE_SIZE
3200 #define PMD_TABLE_SIZE PAGE_SIZE
3201 #endif
3202 
3203 #ifndef PTE_TABLE_SIZE
3204 #define PTE_TABLE_SIZE PAGE_SIZE
3205 #endif
3206 void __init __weak pcpu_populate_pte(unsigned long addr)
3207 {
3208 	pgd_t *pgd = pgd_offset_k(addr);
3209 	p4d_t *p4d;
3210 	pud_t *pud;
3211 	pmd_t *pmd;
3212 
3213 	if (pgd_none(*pgd)) {
3214 		p4d = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3215 		if (!p4d)
3216 			goto err_alloc;
3217 		pgd_populate(&init_mm, pgd, p4d);
3218 	}
3219 
3220 	p4d = p4d_offset(pgd, addr);
3221 	if (p4d_none(*p4d)) {
3222 		pud = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3223 		if (!pud)
3224 			goto err_alloc;
3225 		p4d_populate(&init_mm, p4d, pud);
3226 	}
3227 
3228 	pud = pud_offset(p4d, addr);
3229 	if (pud_none(*pud)) {
3230 		pmd = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3231 		if (!pmd)
3232 			goto err_alloc;
3233 		pud_populate(&init_mm, pud, pmd);
3234 	}
3235 
3236 	pmd = pmd_offset(pud, addr);
3237 	if (!pmd_present(*pmd)) {
3238 		pte_t *new;
3239 
3240 		new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3241 		if (!new)
3242 			goto err_alloc;
3243 		pmd_populate_kernel(&init_mm, pmd, new);
3244 	}
3245 
3246 	return;
3247 
3248 err_alloc:
3249 	panic("%s: Failed to allocate memory\n", __func__);
3250 }
3251 
3252 /**
3253  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3254  * @reserved_size: the size of reserved percpu area in bytes
3255  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3256  *
3257  * This is a helper to ease setting up page-remapped first percpu
3258  * chunk and can be called where pcpu_setup_first_chunk() is expected.
3259  *
3260  * This is the basic allocator.  Static percpu area is allocated
3261  * page-by-page into vmalloc area.
3262  *
3263  * RETURNS:
3264  * 0 on success, -errno on failure.
3265  */
3266 int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3267 {
3268 	static struct vm_struct vm;
3269 	struct pcpu_alloc_info *ai;
3270 	char psize_str[16];
3271 	int unit_pages;
3272 	size_t pages_size;
3273 	struct page **pages;
3274 	int unit, i, j, rc = 0;
3275 	int upa;
3276 	int nr_g0_units;
3277 
3278 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3279 
3280 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3281 	if (IS_ERR(ai))
3282 		return PTR_ERR(ai);
3283 	BUG_ON(ai->nr_groups != 1);
3284 	upa = ai->alloc_size/ai->unit_size;
3285 	nr_g0_units = roundup(num_possible_cpus(), upa);
3286 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3287 		pcpu_free_alloc_info(ai);
3288 		return -EINVAL;
3289 	}
3290 
3291 	unit_pages = ai->unit_size >> PAGE_SHIFT;
3292 
3293 	/* unaligned allocations can't be freed, round up to page size */
3294 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3295 			       sizeof(pages[0]));
3296 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3297 	if (!pages)
3298 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3299 		      pages_size);
3300 
3301 	/* allocate pages */
3302 	j = 0;
3303 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3304 		unsigned int cpu = ai->groups[0].cpu_map[unit];
3305 		for (i = 0; i < unit_pages; i++) {
3306 			void *ptr;
3307 
3308 			ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
3309 			if (!ptr) {
3310 				pr_warn("failed to allocate %s page for cpu%u\n",
3311 						psize_str, cpu);
3312 				goto enomem;
3313 			}
3314 			/* kmemleak tracks the percpu allocations separately */
3315 			kmemleak_ignore_phys(__pa(ptr));
3316 			pages[j++] = virt_to_page(ptr);
3317 		}
3318 	}
3319 
3320 	/* allocate vm area, map the pages and copy static data */
3321 	vm.flags = VM_ALLOC;
3322 	vm.size = num_possible_cpus() * ai->unit_size;
3323 	vm_area_register_early(&vm, PAGE_SIZE);
3324 
3325 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3326 		unsigned long unit_addr =
3327 			(unsigned long)vm.addr + unit * ai->unit_size;
3328 
3329 		for (i = 0; i < unit_pages; i++)
3330 			pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
3331 
3332 		/* pte already populated, the following shouldn't fail */
3333 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3334 				      unit_pages);
3335 		if (rc < 0)
3336 			panic("failed to map percpu area, err=%d\n", rc);
3337 
3338 		/*
3339 		 * FIXME: Archs with virtual cache should flush local
3340 		 * cache for the linear mapping here - something
3341 		 * equivalent to flush_cache_vmap() on the local cpu.
3342 		 * flush_cache_vmap() can't be used as most supporting
3343 		 * data structures are not set up yet.
3344 		 */
3345 
3346 		/* copy static data */
3347 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3348 	}
3349 
3350 	/* we're ready, commit */
3351 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3352 		unit_pages, psize_str, ai->static_size,
3353 		ai->reserved_size, ai->dyn_size);
3354 
3355 	pcpu_setup_first_chunk(ai, vm.addr);
3356 	goto out_free_ar;
3357 
3358 enomem:
3359 	while (--j >= 0)
3360 		pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
3361 	rc = -ENOMEM;
3362 out_free_ar:
3363 	memblock_free(pages, pages_size);
3364 	pcpu_free_alloc_info(ai);
3365 	return rc;
3366 }
3367 #endif /* BUILD_PAGE_FIRST_CHUNK */
3368 
3369 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
3370 /*
3371  * Generic SMP percpu area setup.
3372  *
3373  * The embedding helper is used because its behavior closely resembles
3374  * the original non-dynamic generic percpu area setup.  This is
3375  * important because many archs have addressing restrictions and might
3376  * fail if the percpu area is located far away from the previous
3377  * location.  As an added bonus, in non-NUMA cases, embedding is
3378  * generally a good idea TLB-wise because percpu area can piggy back
3379  * on the physical linear memory mapping which uses large page
3380  * mappings on applicable archs.
3381  */
3382 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3383 EXPORT_SYMBOL(__per_cpu_offset);
3384 
3385 void __init setup_per_cpu_areas(void)
3386 {
3387 	unsigned long delta;
3388 	unsigned int cpu;
3389 	int rc;
3390 
3391 	/*
3392 	 * Always reserve area for module percpu variables.  That's
3393 	 * what the legacy allocator did.
3394 	 */
3395 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3396 				    PAGE_SIZE, NULL, NULL);
3397 	if (rc < 0)
3398 		panic("Failed to initialize percpu areas.");
3399 
3400 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3401 	for_each_possible_cpu(cpu)
3402 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3403 }
3404 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3405 
3406 #else	/* CONFIG_SMP */
3407 
3408 /*
3409  * UP percpu area setup.
3410  *
3411  * UP always uses km-based percpu allocator with identity mapping.
3412  * Static percpu variables are indistinguishable from the usual static
3413  * variables and don't require any special preparation.
3414  */
3415 void __init setup_per_cpu_areas(void)
3416 {
3417 	const size_t unit_size =
3418 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3419 					 PERCPU_DYNAMIC_RESERVE));
3420 	struct pcpu_alloc_info *ai;
3421 	void *fc;
3422 
3423 	ai = pcpu_alloc_alloc_info(1, 1);
3424 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3425 	if (!ai || !fc)
3426 		panic("Failed to allocate memory for percpu areas.");
3427 	/* kmemleak tracks the percpu allocations separately */
3428 	kmemleak_ignore_phys(__pa(fc));
3429 
3430 	ai->dyn_size = unit_size;
3431 	ai->unit_size = unit_size;
3432 	ai->atom_size = unit_size;
3433 	ai->alloc_size = unit_size;
3434 	ai->groups[0].nr_units = 1;
3435 	ai->groups[0].cpu_map[0] = 0;
3436 
3437 	pcpu_setup_first_chunk(ai, fc);
3438 	pcpu_free_alloc_info(ai);
3439 }
3440 
3441 #endif	/* CONFIG_SMP */
3442 
3443 /*
3444  * pcpu_nr_pages - calculate total number of populated backing pages
3445  *
3446  * This reflects the number of pages populated to back chunks.  Metadata is
3447  * excluded in the number exposed in meminfo as the number of backing pages
3448  * scales with the number of cpus and can quickly outweigh the memory used for
3449  * metadata.  It also keeps this calculation nice and simple.
3450  *
3451  * RETURNS:
3452  * Total number of populated backing pages in use by the allocator.
3453  */
3454 unsigned long pcpu_nr_pages(void)
3455 {
3456 	return pcpu_nr_populated * pcpu_nr_units;
3457 }
3458 
3459 /*
3460  * Percpu allocator is initialized early during boot when neither slab or
3461  * workqueue is available.  Plug async management until everything is up
3462  * and running.
3463  */
3464 static int __init percpu_enable_async(void)
3465 {
3466 	pcpu_async_enabled = true;
3467 	return 0;
3468 }
3469 subsys_initcall(percpu_enable_async);
3470